Skip to main content
Log in

The Many Moral Matters of Organoid Models: A systematic review of reasons

  • Review Article
  • Published:
Medicine, Health Care and Philosophy Aims and scope Submit manuscript

Abstract

Objective

To present the ethical issues, moral arguments, and reasons found in the ethical literature on organoid models.

Design

In this systematic review of reasons in ethical literature, we selected sources based on predefined criteria: (1) The publication mentions moral reasons or arguments directly relating to the creation and/or use of organoid models in biomedical research; (2) These moral reasons and arguments are significantly addressed, not as mere passing mentions, or comprise a large portion of the body of work; (3) The publication is peer-reviewed and published in an academic article, book, national-level report, working paper, or Ph.D. thesis; (4) The publications collected are in English.

Analysis

Each article was read in-depth for identifiable moral reasons, arguments, and concerns. These were then inductively classified and synthesized to create broader categories of reasons, and eventually an overarching conceptual scheme was created.

Results

A total of twenty-three sources were included and analyzed out of an initial 266 collected sources. Five themes of ethical issues and arguments were found: Animal Experimentation; Clinical Applications and Experiments; Commercialization and Consent; Organoid Ontology and Moral Status; and Research Ethics and Research Integrity. These themes are then further broken down into sub-themes and topics. Given the extensive nature of the topics found, we will focus on describing the topics that comprised of more in-depth reasons and arguments rather than few, passing mentions or concerns.

Conclusions

The ethics of organoids requires further deliberation in multiple areas, as much of the discussions are not presented as in-depth arguments. Such sentiments are also echoed throughout the organoid ethics literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials:

Not applicable.

References

  • Ankeny, R. A., and E. Wolvetang. 2021. Testing the Correlates of Consciousness in Brain Organoids: How Do We Know and What Do We Do? The American Journal of Bioethics 21: 51–53.

    Article  Google Scholar 

  • Ankeny, R. A., M. J. Munsie, and J. Leach. 2021. Developing a Reflexive, Anticipatory, and Deliberative Approach to Unanticipated Discoveries: Ethical Lessons from iBlastoids. The American Journal of Bioethics 22: 1–10.

  • Baertschi, B., H. Atlan, M. Botbol-Baum, B. Bed’hom, H. Combrisson, C. Dosquet, A. Dubart-Kupperschmitt, F. Hirsch, P. Jouannet, and I. Remy-Jouet, et al. 2020. Organoids Research: What are the ethical issues? inserm–03117706.

  • Barnhart, A. J., and K. Dierickx. 2021. Cultures and cures: neurodiversity and brain organoids. BMC Med Ethics 22: 61.

    Article  Google Scholar 

  • Barnhart, A. J., and K. Dierickx. 2022. A RAD Approach to iBlastoids with a Moral Principle of Complexity. The American Journal of Bioethics 22: 54–56.

    Article  Google Scholar 

  • Birch, J., and H. Browning. 2021. Neural Organoids and the Precautionary Principle. The American Journal of Bioethics 21: 56–58.

    Article  Google Scholar 

  • Boers, S. N. 2019a. Chapter 9: Ethics of organoid transplantation: first-in-children? In Organoid Technology: An Identification and Evaluation of the Ethical Challenges. Utrecht, NL: Utrecht University), p. 167–181.

    Google Scholar 

  • Boers, S. N. 2019b. Chapter 11: General Discussion. In Organoid Technology: An Identification and Evaluation of Ethical Challenges. Utrecht, NL: Utrecht University), p. 205–227.

    Google Scholar 

  • Boers, S. N. 2019c. Chapter 1: General Introduction. In Organoid Technology: An Identification and Evaluation of Ethical Challenges. Utrecht, NL: Utrecht University), p. 12–25.

    Google Scholar 

  • Boers, S. N., and A. L. Bredenoord. 2018. Consent for governance in the ethical use of organoids. Nature Cell Biology 20: 642–646.

    Article  Google Scholar 

  • Boers, S. N., J. J. M. van Delden, H. Clevers, and A. L. Bredenoord. 2016. Organoid biobanking: identifying the ethics Organoids revive old and raise new ethical challenges for basic research and therapeutic use. EMBO Reports 17: 938–941.

    Article  Google Scholar 

  • Boers, S. N., J. J. M. van Delden, and A. L. Bredenoord. 2018. Organoids as hybrids: ethical implications for the exchange of human tissues. J Med Ethics 45: 131–139.

    Article  Google Scholar 

  • Bollinger, J., E. May, D. Mathews, M. Donowitz, and J. Sugarman. 2021. Patients’ perspectives on the derivation and use of organoids. Stem Cell Reports 18: 1874–1883.

  • Bredenoord, A. L., H. Clevers, and J. A. Knoblich. 2017. Human tissues in a dish: the research and ethical implications of organoid technology. Science 355: eaaf9414.

    Article  Google Scholar 

  • van den Brink, S. C., and A. van Oudenaarden. 2021. 3D gastruloids: a novel frontier in stem cell-based in vitro modeling of mammalian gastrulation. Trends in Cell Biology 31: 747–759.

    Article  Google Scholar 

  • Chapman, A. R. 2019. Brain Models in a Dish: Ethical Issues in Developing Brain Organoids. AJOB Neurosci 10: 113–115.

    Article  Google Scholar 

  • Chen, H. I., H. Song, and G. Ming. 2018. Applications of human brain organoids to clinical problems. Developmental Dynamics 248: 53–64.

    Article  Google Scholar 

  • Chen, H. I., J. A. Wolf, R. Blue, M. M. Song, J. D. Moreno, G. Ming, and H. Song. 2019. Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras. Cell Stem Cell 25: 462–472.

    Article  Google Scholar 

  • Cheshire, W. P. 2014. Miniature human brains: An ethical analysis. Ethics and Medicine 30: 7–12.

    Google Scholar 

  • Choi, H., J. Song, G. Park, and J. Kim. 2017. Modeling of Autism Using Organoid Technology. Mol Neurobiol 54: 7789–7795.

    Article  Google Scholar 

  • Corrò, C., L. Novellasdemunt, and V. S. W. Li. 2020. A brief history of organoids. American Journal of Physiology. Cell Physiology 319: C151–C165.

    Article  Google Scholar 

  • DeGrazia, D., and T. L. Beauchamp. 2019. Beyond the 3 Rs to a More Comprehensive Framework of Principles for Animal Research Ethics. ILAR Journal 60: 308–317.

  • Denker, H.-W. 2021. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells 10, 1461.

  • Farahany, N. A., H. T. Greely, S. Hyman, C. Koch, C. Grady, S. P. Pașca, N. Sestan, P. Arlotta, J. L. Bernat, and J. Ting, et al. 2018. The ethics of experimenting with human brain tissue. Nature 556: 429–432.

    Article  Google Scholar 

  • Fins, J. J. 2021. Brain Organoids and Consciousness: Late Night Musings Inspired by Lewis Thomas. Camb Q Healthc Ethics 30: 557–560.

    Article  Google Scholar 

  • Greely, H. T. 2021. Human Brain Surrogates Research: The Onrushing Ethical Dilemma. The American Journal of Bioethics 21: 34–45.

    Article  Google Scholar 

  • Greely, H. T., “Hank,” and K. V. Kreitmair. 2021. Should Cerebral Organoids be Used for Research if they Have the Capacity for Consciousness? Camb Q Healthc Ethics 30: 575–584.

    Article  Google Scholar 

  • Hali, S., J. Kim, T. H. Kwak, H. Lee, C. Y. Shin, and D. W. Han. 2020. Modelling monogenic autism spectrum disorder using mouse cortical organoids. Biochemical and Biophysical Research Communications 521: 164–171.

  • Hengstschläger, M., and M. Rosner. 2021. Embryoid research calls for reassessment of legal regulations. Stem Cell Res Ther 12: 356.

    Article  Google Scholar 

  • Hostiuc, S., M. C. Rusu, I. Negoi, P. Perlea, B. Dorobanţu, and E. Drima. 2019. The moral status of cerebral organoids. Regenerative Therapy 10: 118–122.

    Article  Google Scholar 

  • Hyun, I. 2017. Engineering ethics and self-organizing models of human development: opportunities and challenges. Cell Stem Cell 21: 718–720.

    Article  Google Scholar 

  • Hyun, I. 2018. The Ethics of Chimera Creation in Stem Cell Research. Current Stem Cell Reports 4: 235–239.

    Article  Google Scholar 

  • Hyun, I., J. C. Scharf-Deering, and J. E. Lunshof. 2020. Ethical issues related to brain organoid research. Brain Research 1732: 146653.

    Article  Google Scholar 

  • Ide, K., N. Matsuoka, and M. Fujita. 2021. Ethical Aspects of Brain Organoid Research in News Reports: An Exploratory Descriptive Analysis. Medicina 57: 532.

  • ISSCR. 2021. Guidelines for Stem Cell Research and Clinical Translation. International Society for Stem Cell Research (ISSCR)).

  • Jameson, J. L. 2015. Precision Medicine — Personalized, Problematic, and Promising. N Engl J Med 372: 2229–2234.

  • Kim, H., H. J. Park, H. Choi, Y. Chang, H. Park, J. Shin, J. Kim, C. J. Lengner, Y. K. Lee, and J. Kim. 2019. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Reports 12: 518–531.

    Article  Google Scholar 

  • Kirchhoffer, D. G., and K. Dierickx. 2011. Human dignity and human tissue: a meaningful ethical relationship? Journal of Medical Ethics 37: 552–556.

    Article  Google Scholar 

  • Koplin, J., and J. Massie. 2020. Lessons from Frankenstein 200 years on: brain organoids, chimaeras and other ‘monsters.’ J Med Ethics 47: 567–571.

  • Koplin, J. J., and J. Savulescu. 2019. Moral limits of brain organoid research. The Journal of Law, Medicine and Ethics 47: 760–767.

    Article  Google Scholar 

  • Lancaster, M. A., and M. Huch. 2019. Disease modelling in human organoids. Dis. Model. Mech. 12: dmm039347.

    Article  Google Scholar 

  • Lavazza, A. 2019. What (or sometimes who) are organoids? And whose are they? Journal of Medical Ethics 45: 144–145.

    Article  Google Scholar 

  • Lavazza, A. 2020b. Human cerebral organoids and consciousness: a double-edged sword. Monash Bioethics Review 38: 105–128.

  • Lavazza, A. 2021a. ‘Consciousnessoids’: clues and insights from human cerebral organoids for the study of consciousness. Neuroscience of Consciousness 2021, niab029.

  • Lavazza, A. 2021b. Potential ethical problems with human cerebral organoids: Consciousness and moral status of future brains in a dish. Brain Research 1750: 147146.

    Article  Google Scholar 

  • Lavazza, A., and M. Massimini. 2018a. Cerebral organoids: ethical issues and consciousness assessment. Journal of Medical Ethics 44: 606–610.

    Article  Google Scholar 

  • Lavazza, A., and M. Massimini. 2018b. Cerebral organoids and consciousness: how far are we willing to go? Journal of Medical Ethics 44: 613–614.

    Article  Google Scholar 

  • Lavazza, A., and F. G. Pizzetti. 2020a. Human cerebral organoids as a new legal and ethical challenge. Journal of Law and the Biosciences 7: 1–22.

  • Lensink, M. A., K. R. Jongsma, S. N. Boers, J. J. Noordhoek, J. M. Beekman, and A. L. Bredenoord. 2020a. Responsible use of organoids in precision medicine: the need for active participant involvement. Development 147: dev177972.

    Article  Google Scholar 

  • Lensink, M. A., S. N. Boers, K. R. Jongsma, S. E. Carter, C. K. van der Ent, and A. L. Bredenoord. 2020b. Organoids for personalized treatment of Cystic Fibrosis: Professional perspectives on the ethics and governance of organoid biobanking. J. Cyst. Fibros 20: 443–451.

  • Liberati, A., D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gotzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339: b2700–b2700.

    Article  Google Scholar 

  • Liu, X., J. P. Tan, J. Schröder, A. Aberkane, J. F. Ouyang, M. Mohenska, S. M. Lim, Y. B. Y. Sun, J. Chen, and G. Sun, et al. 2021. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591: 627–632.

  • Lo, Y.-H., K. Karlsson, and C. J. Kuo. 2020. Applications of organoids for cancer biology and precision medicine. Nature Cancer 1: 761–773.

    Article  Google Scholar 

  • Manley, W. F., and S. A. Anderson. 2019. Dosage Counts: Correcting Trisomy-21-Related Phenotypes in Human Organoids and Xenografts. Cell Stem Cell 24: 835–836.

    Article  Google Scholar 

  • Mariani, J., G. Coppola, P. Zhang, A. Abyzov, L. Provini, L. Tomasini, M. Amenduni, A. Szekely, D. Palejev, and M. Wilson, et al. 2015. FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell 162: 375–390.

    Article  Google Scholar 

  • Mollaki, V. 2021. Ethical Challenges in Organoid Use. BioTech 10: 12.

  • Monasterio Astobiza, A., and A. Molina Pérez. 2022. Why iBlastoids (Embryo-like Structures) Do Not Rise Significant Ethical Issues. The American Journal of Bioethics 22: 59–61.

    Article  Google Scholar 

  • Morata Tarifa, C., L. López Navas, G. Azkona, and R. Sánchez Pernaute. 2020. Chimeras for the twenty-first century. Critical Reviews in Biotechnology 40: 283–291.

    Article  Google Scholar 

  • Munsie, M., and C. Gyngell. 2018. Ethical issues in genetic modification and why application matters. Current Opinion in Genetics & Development 52: 7–12.

    Article  Google Scholar 

  • Munsie, M., I. Hyun, and J. Sugarman. 2017. Ethical issues in human organoid and gastruloid research. Development 144: 942–945.

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. 2021. The Emerging Field of Human Neural Organoids, Transplants, and Chimeras: Science, Ethics, and Governance (Washington, D.C.: National Academies Press).

  • Nguyen, A., K. McAleavey, and K. Lyall. 2019. SnapShot: Advancing Organoid Technology. Cell Stem Cell 24: 1008.

    Article  Google Scholar 

  • Nicolas, P., F. Etoc, and A. H. Brivanlou. 2021. The ethics of human-embryoids model: a call for consistency. J Mol Med 99: 569–579.

    Article  Google Scholar 

  • Ooi, L., M. Dottori, A. L. Cook, M. Engel, V. Gautam, A. Grubman, D. Hernández, A. E. King, S. Maksour, and Targa Dias Anastacio, H., et al. 2020. If Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions? The Neuroscientist 26: 438–454.

  • Pereira Daoud, A. M., M. Popovic, W. J. Dondorp, M. Trani Bustos, A. L. Bredenoord, S. M. Chuva de Sousa Lopes, S. C. van den Brink, B. A. J. Roelen, G. M. W. R. de Wert, and B. Heindryckx. 2020. Modelling human embryogenesis: embryo-like structures spark ethical and policy debate. Human Reproduction Update 26: 779–798.

    Article  Google Scholar 

  • Praharaj, P. P., S. K. Bhutia, S. Nagrath, R. L. Bitting, and G. Deep. 2018. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1869: 117–127.

  • Qian, X., H. N. Nguyen, F. Jacob, H. Song, and G. Ming. 2017. Using brain organoids to understand Zika virus-induced microcephaly. Development 144: 952–957.

    Article  Google Scholar 

  • Qian, X., H. Song, and G. Ming. 2019. Brain organoids: advances, applications and challenges. Development 146: dev166074.

    Article  Google Scholar 

  • Rezaei Topraggaleh, T., M. Rezazadeh Valojerdi, L. Montazeri, and H. Baharvand. 2019. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomaterials Science 7: 1422–1436.

    Article  Google Scholar 

  • Roper, J., and Ö.H. Yilmaz. 2019. Breakthrough Moments: Genome Editing and Organoids. Cell Stem Cell 24: 841–842.

    Article  Google Scholar 

  • Rozich, N. S., A. B. Blair, and R. A. Burkhart. 2020. Organoids: a model for precision medicine. In Precision Medicine for Investigators, Practitioners and Providers, (Elsevier), pp. 123–129.

  • Sabatello, M., S. Callier, N. A. Garrison, and E. G. Cohn. 2018. Trust, Precision Medicine Research, and Equitable Participation of Underserved Populations. The American Journal of Bioethics 18: 34–36.

    Article  Google Scholar 

  • Sawai, T., H. Sakaguchi, E. Thomas, J. Takahashi, and M. Fujita. 2019. The Ethics of Cerebral Organoid Research: Being Conscious of Consciousness. Stem Cell Reports 13: 440–447.

    Article  Google Scholar 

  • Sawai, T., Y. Hayashi, T. Niikawa, J. Shepherd, E. Thomas, T.-L. Lee, A. Erler, M. Watanabe, and H. Sakaguchi. 2021. Mapping the Ethical Issues of Brain Organoid Research and Application. AJOB Neuroscience 13: 1–14.

  • Schneemann, S. A., S. N. Boers, J. J. M. van Delden, E. E. S. Nieuwenhuis, S. A. Fuchs, and A. L. Bredenoord. 2020. Ethical challenges for pediatric liver organoid transplantation. Science Translational Medicine 12: eaau8471.

    Article  Google Scholar 

  • Sharma, A., P. Zuk, and C. T. Scott. 2021. Scientific and Ethical Uncertainties in Brain Organoid Research. The American Journal of Bioethics 21: 48–51.

    Article  Google Scholar 

  • Shepherd, J. 2018. Ethical (and epistemological) issues regarding consciousness in cerebral organoids. J Med Ethics 44: 611–612.

    Article  Google Scholar 

  • Siegel, A. 2018. Ethics of stem cell research. Stanford University: Metaphysics Research Lab.

    Google Scholar 

  • Sofaer, N., and D. Strech. 2011. Reasons Why Post-Trial Access to Trial Drugs Should, or Need not be Ensured to Research Participants: A Systematic Review. Public Health Ethics 4: 160–184.

    Article  Google Scholar 

  • Sofaer, N., and D. Strech. 2012. The Need for Systematic Review of Reasons. Bioethics 26: 315–328.

  • Strech, D., and N. Sofaer. 2012. How to write a systematic review of reasons. J Med Ethics 38: 121–126.

    Article  Google Scholar 

  • Xu, H., Y. Jiao, S. Qin, W. Zhao, Q. Chu, and K. Wu. 2018. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol 7: 30.

    Article  Google Scholar 

  • Xu, R., A. T. Brawner, S. Li, J.-J. Liu, H. Kim, H. Xue, Z. P. Pang, W.-Y. Kim, R. P. Hart, and Y. Liu, et al. 2019. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 24: 908–926.e8.

    Article  Google Scholar 

  • Yu, L., Y. Wei, J. Duan, D. A. Schmitz, M. Sakurai, L. Wang, K. Wang, S. Zhao, G. C. Hon, and J. Wu. 2021. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591: 620–626.

    Article  Google Scholar 

Download references

Acknowledgements

We thank OrganoVIR for their generosity in funding this work.

Funding

This work has received funding from the European Union Horizon 2020 research and innovation program, OrganoVIR, under the Marie Skłodowska-Curie grant agreement N. 812673.

Author information

Authors and Affiliations

Authors

Contributions

AJB and KD (1) have made substantial contributions to the concepts in the manuscript; (2) have been involved in drafting the manuscript or revising it critically for important intellectual content; and (3) have given final approval for this work to be published.

Corresponding author

Correspondence to Andrew J. Barnhart.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Authors AJB and KD declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnhart, A.J., Dierickx, K. The Many Moral Matters of Organoid Models: A systematic review of reasons. Med Health Care and Philos 25, 545–560 (2022). https://doi.org/10.1007/s11019-022-10082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11019-022-10082-3

Keywords

Navigation