JEFFREY A BARRETT

THE SUGGESTIVE PROPERTIES OF QUANTUM
MECHANICS WITHOUT THE COLLAPSE POSTULATE

ABSTRACT. Everett proposed resolving the quantum measurement probiem by drop-
ping the nonlinear collapse dynamics from quantum mechanics and taking what is left as
a complete physical theory. If one takes such a proposal seriously, then the question
becomes how much of the predictive and explanatory power of the standard theory can
one recover without the collapse postulate and without adding anything else. Quantum
mechanics without the collapse postulate has several suggestive properties, which we will
consider in some detail. While these properties are not enough to make it acceptable
given the usual standards for a satisfactory physical theory, one might want to exploit
these properties to cook up a satisfactory no-collapse formulation of quantum mechanics.
In considering how this might work, we will see why any no-collapse theory must generally
fail to satisfy at least one of two plausible-sounding conditions.

1

The standard theory of quantum mechanics tells us that there are two
ways the state of a physical system might evolve.! If no measurement
is made of a system S, its time-evolution is described by the continuous
linear dynamics. If §’s state at time 1, is given by |¢(t))s, then its state
at time ¢; will be given by U(to, 1,)|¥(to))s, where U(to, t;) is a unitary
operator that depends on the energy properties of S. But if a measure-
ment is made, then § instantaneously and nonlinearly jumps into an
eigenstate of the observable being measured, a state where S has a
determinate value for the property being measured. If the initial state
is given by |¢)s and if |x)s is an eigenstate of the observable O, then
the probability of S collapsing to |x)s is equal to |(/|x)|*, the magnitude
of the projection of S’s premeasurement state onto the eigenstate.
The linear and nonlinear dynamics are mutually incompatible in that
they cannot both correctly describe the time-evolution of the same
system at the same time. The standard theory, however, fails to tell us
what constitutes a measurement, so it does not provide a clear criterion
for when to apply the linear dynamics and when to apply the nonlinear
dynamics. Further, there are at least in principle empirical conse-
quences to any criterion one might specify for when to apply one or
the other of these dynamics. And finally, any criterion one might specify
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for what constitutes a measuring device or other nonlinear system is
bound to look ad hoc unless one can also give some explanation of
how systems constructed entirely from fundamental systems that each
apparently follow a perfectly linear dynamics end up following a non-
linear dynamics. In short, the standard theory of quantum mechanics
is either logically inconsistent or incomplete in an empirically significant
way. This is the quantum measurement problem - a resolution would
require one to provide a satisfactory alternative to the standard theory.

A resolution was proposed by Hugh Everett in 1957. Everett’s idea
was to suppose that measurements, just like every other sort of interac-
tion, are perfectly linear. He thus suggested simply dropping the non-
linear collapse dynamics from the standard theory and taking the result-
ing theory as complete. An immediate reaction might be to argue that
the collapse dynamics is necessary for the empirical adequacy of quan-
tum mechanics. Without a collapse, measuring devices would in general
report a superposition of results, and presumably no one has ever seen
a measuring device, or any other ordinary macroscopic object, in a
superposition. But this may be too fast — after all, it is not entirely
clear what a superposition would look like.

Given the assumption that all interactions are perfectly linear, Ever-
ett believed that he was able to provide some insight into what it would
be like to observe a system that is not in an eigenstate of the observable
being measured. He argued that an observer might measure a system
in a superposition of eigenstates of the observable being measured, end
up in a superposition of recording the results corresponding to these
various eigenstates, but nonetheless have the subjective experience of
an ordinary, determinate result to the measurement. While it is not
entirely clear how Everett’s relative-state formulation of quantum me-
chanics was supposed to work, he was convinced that quantum mechan-
ics without the collapse postulate provided a “more general and com-
plete formulation [of quantum mechanics], from which the conventional
formulation can be deduced” (Everett 1957, 315). Here we will take
Everett’s proposal to regard the linear dynamics as a complete and
accurate description of the time-evolution of every physical system
seriously, perhaps more seriously than he did, and then examine its
consequences.

One reason for taking Everett’s proposal seriously is that there is
some empirical support for believing that physical systems always evolve
linearly. Whenever we have been able to perform the appropriate type
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of experiment, the systems we have observed have always evolved
linearly. These experiments, however, are generally extremely difficult
to perform. Roughly speaking, the object system must be one that
can be well isolated from interactions with its environment, and the
measurement interaction itself must be very precise. This means that
we have only been able to perform the appropriate measurements on
very simple systems that are easily isolated from their environments.
Even so, our actual experiments have provided the basis for something
of an inductive argument for the universal validity of the linear dynam-
ics. It is an inductive argument on the complexity of a system and the
difficulty in isolating it from its environment: we have empirical evi-
dence that very simple easily isolated systems (fundamental particles)
behave linearly, that slightly more complex and difficult to isolate sys-
tems (atoms) behave linearly, that slightly more complex and difficult
to isolate systems (small molecules) behave linearly, etc. As we move
to more complex and difficult to isolate systems, the experiments be-
come more difficult to perform and relevant empirical evidence conse-
quently becomes rarer. One might nonetheless take the evidence we
do have as providing some empirical support for the proposal that all
systems behave linearly.

But again, the collapse postulate apparently plays a critical role in
the standard theory of quantum mechanics. Among other things, it
helps to explain why we always get a determinate result to a measure-
ment, why we get the same result when we repeat a measurement on
an undisturbed system, why our measurement results are randomly
distributed and have the relative frequencies that they do, and why
there appear to be nonlocal quantum-mechanical effects. In order to
take quantum mechanics without the collapse postulate seriously one
must presumably find some way of providing such explanations without
the collapse postulate. Our initial strategy is to drop the collapse postu-
late, then see how much we can do without it. It turns out that we can
do more than one might at first imagine but less than one might reason-
ably want.

Quantum mechanics without the collapse postulate, what Albert calls
the “bare” theory, has several properties that seem to be relevant to
recapturing some of what the collapse postulate provides for the stan-
dard theory.? These properties tell us what an observer would report
under specified physical circumstances. For example, if the bare theory
is true, then we can show such things as the following: (1) After making
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a perfect measurement of any observable, an ideal measuring device
M will be in an eigenstate of answering the question “Did you get a
definite, unambiguous result?”’ with “Yes™, (2) After a second perfect
measurement of the same observable, M will be in an eigenstate of
answering the question “Did you get the same result for both measure-
ments?”’ with “Yes” if the object system is undisturbed between mea-
surements, (3) If M measures the same observable of each of an infinite
number of systems all in the same initial state, then M will approach
an eigenstate of answering the question ‘“Were your results randomly
distributed with the same relative frequencies the standard theory of
quantum mechanics would predict?”’ with “Yes” as the number of
observations gets large, and (4) If an appropriate sequence of EPR
experiments is performed on systems all in the same initial state, then
the measuring devices involved will approach an eigenstate of answering
the question ‘““Were your results compatible with the Bell-type inequalit-
ies?” with “No” as the number of observations gets large.

While such properties are certainly suggestive, we presumably want
more than these from a satisfactory physical theory. There will be more
to say about this later, but it may help to have at least a vague idea of
what is at stake from the beginning. According to the bare theory,
an observer who begins in an eigenstate of being ready to make a
measurement would end up in an eigenstate of reporting that he has
an ordinary, determinate result to his measurement. This might mean
that the observer believes that he has a determinate measurement
resu {, but in the context of the bare theory this would not generally
mean that there is any determinate result that the observer believes he
has. Contrary to what Everett and others have claimed, the bare theory
does not make the same empirical predictions as the standard theory;
rather, the bare theory at best provides an explanation for why it might
appear to an observer that the standard theory’s empirical predictions
are true when they are in fact false. That is, the bare theory provides
the basis for claiming in some circumstances that some of one’s beliefs
are the result of an illusion. It cannot, however, generally do even this.
Each of the bare theory’s suggestive properties have the form ‘If such-
and-such physical conditions hold for an observer and his object system,
then the observer would end up in an eigenstate of reporting such-and-
such a belief’, but if the bare theory is true, if the linear dynamics
always correctly describes the time-evolution of all physical systems,
then the antecedent conditions would virtually never be satisfied;
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rather, the physical state would typically be a superposition of the
antecedent conditions being satisfied and not being satisfied. Since the
bare theory has little to say about what this would be like, it is presum-
ably left with little to say about an observer’s actual experience.

Given that one wants more from a satisfactory version of quantum
mechanics than what the bare theory provides, one might want to
exploit its suggestive properties to formulate a satisfactory no-collapse
version of quantum mechanics. One strategy would be to supplement
the bare theory with conditions that are as weak as possible yet allow
one to recover much more of the predictive and explanatory power of
the standard theory than the bare theory alone does. The consequences
of adding the following two conditions to the bare theory suggest the
possibility of a much richer theory that can exploit the suggestive pro-
perties in making predictions and providing explanations: (1) if the
state of an observer M is an eigenstate of making some report, then M
makes that report; and (2) an ideal observer’s reports concerning his
own mental states and the mental states of his ideal friends (given that
he has asked them what they believe, etc.) are always true. It turns
out, however, that these particular conditions are too strong — it is impos-
sible to formulate any no-collapse version of quantum mechanics for
which both of these are always satisfied.

2

Let’s begin by examining several of the bare theory’s suggestive proper-
ties in order to see precisely what they say and why they are true.
While these hold for any physical observable, we will keep things simple
by considering only spin observables of spin-1/2 systems.

Suppose that M is a perfect x-spin measuring device in the following
sense: it is constructed so that its pointer variable becomes perfectly
correlated with the x-spin of its object system S without disturbing the
x-spin of S. If S is initially in an x-spin up eigenstate, then M reports
that the result of its measurement is x-spin up and leaves S in the x-
spin up state, and if S is initially in an x-spin down eigenstate, then M
reports that the result of its measurement is x-spin down and leaves S
in the x-spin down state. Now consider what happens when we take
the linear dynamics to be a complete and accurate description of the
time-evolution of every physical system.
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It follows from how M has been constructed and from the linear
dynamics that if the initial state |y of M + S is

INa(al 1)s + Bli)s)

the state |¢,) after M’s x-spin measurement will be

(2) aIT)MH)s‘*'BN)MH)s-

Here M'’s state has become entangled with S’s state. Furthermore,
assuming that a and B are both non-zero, |ys) is not an eigenstate of
M reporting a particular determinate x-spin result; rather, M is in a
superposition of reporting mutually contradictory results. It is, how-
ever, easy to show that |¢,) is an eigenstate of M reporting that it got
some determinate x-spin result, either x-spin up or x-spin down.

Determinate Result

Asking M whether it got a determinate x-spin result amounts to measur-
ing a physical observable of M. Let D be an observable such that
eigenvalue +1 corresponds to a state where M has the disposition to
report I did get a determinate result to my x-spin measurement’ and
eigenvalue —1 corresponds to any orthogonal state. Since |1 )m |1 )s
corresponds to a state where M has recorded 1 for the outcome of its
measurement, if M is operating correctly, then it will report that it
obtained a determinate x-spin result when in this state; and since the
same is true for || )ar| | )s, both of these are eigenstates of D with
eigenvalue +1. That is,

DlT)MIT)S"-'lT)MH)s and DH)MN)S"‘N)MN)S-
So

Dlgy) = D(a| 1 | 1)s + Bl dne| L )s)
=aD| 1) u|1)s+ BDI L Imld)s
=al a1t )s+ Bl dudd)s
= |¢).
Consequently, |¢,) is an eigenvector of D with eigenvalue +1, so M
has the disposition to report “I did get a determinate result to my x-

spin measurement.” Further, if M repeats its measurement, it will
report that its second result agrees with the first even though, at least
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in the ordinary sense, it failed to get a determinate result to either
measurement.

Repeatability

Suppose M makes a second x-spin measurement. Let M; and M; be
the registers M uses to record the first and second measurement results.
If S is undisturbed between measurements, the state |y,) after the
second measurement will be

o] 1)aa | s | )s + Bl a1 dasal 4 )s

Let C be an observable such that states where M has the disposition
to report that its first and second x-spin measurements agree (that is,
they are both 1 or both | ) correspond to eigenvalue +1. Since regis-
ters M, and M, agree in the states represented by 1)a, T)m. 1)s
and || Dag, | { Yaga | )s,, it follows that

) C]T)MxH)leT)S=IT)M1IT)Mz|T)S

and

Cll)u,”)m”)s"|l)M1|l)Mz|l)s-

Since |y») is just a linear combination of eigenvectors of C with eigen-
value +1, it is also an eigenvector of C with eigenvalue +1, so M has
the disposition to report that its first and second x-spin measurements
agree.

Agreement

Suppose that rather than being interpreted as registers of the same
measuring device, M; and M, are taken to be different measuring
devices capable of comparing their results. It immediately follows from
the repeatability property above that if M; and M, compare their
results, they will report that they agree.

Given these properties, then, M will report that it got a determinate
x-spin result (1 or | ) regardless of whether S is initially in an x-spin
eigenstate; if M remeasures S, it will report that its second result agrees
with its first; and if a second measuring device measures the x-spin S
and the two measuring devices compare results, both will report that
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their results agree. But again, if « and B are both non-zero, then none
of these measurements in fact yield a determinate result, at least not
in the ordinary sense. There are well-defined states resulting from M’s
interaction with S, but when M reports that it obtained a determinate
result of 1 or | on its first measurement, for example, its report is
false since |y,) is not a state where M has recorded the result 1 and
it is not a state where M has recorded the result |, and these are the
only possible determinate results here. While one might reasonably
interpret M’s report to mean that the physical state is either | T )ar| T )s
or | | )a| ! )s, while it may even seem to M that this is the case if M is
a sentient observer, M is in fact in a superposition of having recorded
mutually incompatible results. In order for M to correctly determine
its state, it would have to measure an appropriate observable of the
composite system M + S, but such a measurement would generally be
very difficult to perform for reasons mentioned earlier.

Relative Frequency

Consider a system T consisting of a measuring device M and an infinite
set of systems S;, S,,S3,...,5,..., each of which is initially in the
state a| 1 )s, + Bl { )s,, where | 1 )s, and | | )s, are x-spin eigenstates and
a and B are non-zero. Let T, be the system consisting of M’s first n
registers and systems S, through S,. The Hilbert space corresponding
toT,is

(7 ¥ ML B --QF 0,

where 4 is the Hilbert space corresponding to the first n registers of
the measuring device M, ¥, is the Hilbert space corresponding to the
system S,, etc.

Suppose M makes an x-spin measurement on each S, in turn. The
states before and after the nth measurement might be represented by

elements of #,. For example, the state of T; before the first measure-
ment corresponds to the vector

(8) lr)M(al T >S1 + Bl ‘lv )51)9

which is an element of #,. After the first measurement, T, will be in
the state corresponding to

alT)M‘T)S|+ﬁ|Vl')M|l)S1
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Similarly, the state of T; in > before the second measurement is the
state corresponding to

10) alT,r)M T)s;*’ﬁllﬁ)u 'L)S:(Q.T)Sz-*'ﬁll.?z)

and after the second measurement,

A1, Dul Ds s, +aBl T, D[ Dsil s,
+Ba|l$ T)M l)leT)Sz
+B2Il’ l)Mll).ﬁ'l)Sz-

There are 2" terms in the vector |§,) representing the state of T, after
n measurements when written in this basis.

Let’s call this the X,-basis, and let the observable X, be such that
T, is in an eigenstate of X,, if and only if M is determinately reporting
a particular sequence of results for the first » measurements. Given
this, one can define a relative-frequency operator F,(e) such that
E.(€)|W) = | W) if and only if X,|¢) = A|¢s) and (n — m)/n =|af* * ¢,
for € >0, where n — m is the number of f-results that M has after n
measurements. If T, is in an eigenstate of F,(e), then M is in an
eigenstate of displaying that the ratio of the number of 1-results n —m
to the total number of results n is within € of |af* - that is, that the
ratio of {-results to |-results is about what the standard theory would
predict. Note, however, that since |, is not an eigenvector of X, for
any finite n, it is also not an eigenvector of E,(€) for any finite n.

Write |4,) in the X,-basis, and let |x{€),) be the sum of those terms
where the ratio of the number of {-results n — m to the total number
of results n is within € of |af*. In other words, let |x(€),) be the sum
of the terms in the X,-expansion of |¢,) that are eigenvectors of F.(€)
with eigenvalue +1. Note that since |(x(€).|x(€)n)* <1 for all finite ,
|x(€).) does not correspond to the state of any system; rather, |x(€).)
is just the orthogonal projection of the state |y,) onto the A= +1
eigenspace of F,(¢). Finally, note that for all n, | x(€),) is an eigenvector
of F,(€) with eigenvalue +1.

Roughly speaking, the following lemma says that, for all €> 0, the
magnitude of the component of |¢,) that is an eigenvector of F,(e) with
eigenvalue +1 goes to one as n gets large. Since the magnitude of | @)
is one for all n, this will mean that |y,) must approach an eigenvector
of F,(¢€) for all e. We will then interpret this to mean that T, approaches
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ln
a s [
Al

T )S‘[ T Sz‘ l )S..—1 i l )Su

sl dsi |4 )s: l)s,.
with 2" such terms.

We will first partition these terms into equivalence classes by the
relative frequency of f-results in each term, then consider a measure
M that assigns a real number to each equivalence class. For a given n,
all terms where the number of f-results equals n» — m will be in the
same equivalence class %,,. For a given n, p,(%,,) will be the sum of
the squares of each of the coefficients of the terms in &,,. For a given
n, then, there will be n equivalence classes, and

13) inl@m) = (" ) 10",

which means that

2 (™Yl = Kol

n
m \m

where the sum is over all m such that m=<n and
fa|* — €< (n — m)/n <|a® + € - that is, the sum is over all m where
the ratio of the number of f-results to the total number of results is
within € of |a>. Since it is a basic result of probability theory that

lim > (’:) la* g™ =1

N0

Kx(€)alx(€))f > 1as n— (m;
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Given this, it is easy to show that, as n gets large, |y,) gets arbitrarily
close to an eigenvector of F,(e) with eigenvalue +1.

THEOREM 1. For all € >0, limp e (Y, = x(€)nltn — x(€))? = 0.
Proof. Since |x(¢),) is an orthogonal projection of |¢,) onto a sub-
;ace of #,, namely the eigenspace corresponding to eigenvalue +1 of
2(€), |¥n. — x(€),) is orthogonal to |x(e).). So, by the Pythagorean
theorem,

Kibm = x(€)nlthn = X(E)n) = Kbl — Kx(€)nlx(€)nl.

Since |(¢n|4)* =1 for all n and since |(x(€)a|x(€) ) —1 as n—x,
K ~ X(€)nlthn — x(€)a)* >0 as n > . 0

It follows that if M makes measurements of the x-spin on each system,
then it will approach an eigenstate of answering the question “Were
your results distributed with the same frequencies the standard theory
of quantum mechanics would predict?” with ‘“Yes” as the number
of observations gets large. Or more specifically, M will approach an
eigenstate of reporting that

lim 2=

n——s00 n

=|af

where n — m is the number of f-results and n is the total number of
x-spin results. Note that while M approaches an eigenstate of reporting
that it has a determinate sequence of results that are distributed just as
predicted by ordinary quantum mechanics, it does not approach a state
where it actually has a determinate set of results.

Randomness

As the number of x-spin measurements gets large, T, also approaches a
state where M would answer the question ‘“Were your results randomly
distributed?”” with “Yes”. Given the argument for the relative-fre-
quency property, this is fan‘ly straightforward. Write ||[1,.), the state of
T, after n measurements, in the X,-basis. Each term in the expansion
will correspond to a different sequence of measurement results, and
each sequence of length n will be represented by some term. For all i,
the norm squared of the coefficient associated with each sequence
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determines a measure u, on the set of all length n sequences Q,, such
that u,(Q.) = 1 and such that if the u,-measure on the subset of random
sequences of Q, goes to one as n gets large, then M would approach
an eigenstate of reporting that its x-spin results were randomly distri-
buted in the limit. So M will approach an eigenstate of reporting that
its results were randomly distributed for any notion of randomness
where the u,-measure of random sequences of length n goes to one as
n gets large. Presumably any satisfactory notion of randomness would
have this property. Note that since the bare theory is in fact perfectly
deterministic, there is at most the appearance of randomness.

The relative-frequency and randomness properties have the following
corollary: if any single experiment whatsoever yields a state where the
amplitude of M recording the result r; is a;, then M will approach a
state where it reports that the result r; is randomly distributed with
relative frequency |a;[* in the limit as an infinite number of identical
experiments are performed. Let’s call this the general limiting property.*
Two concrete examples will help to show how general it is.

In these examples we will use the following three noncommuting spin
observables of the system S: x-spin, which has eigenstates |1 )s and
| | «)s; z-spin, whiclr has eigenstates |1 )s = 1/V2(] | ,)s + | 1 »)s) and
|4 s=1V2(J]l s —|1xs); and u-spin, which has eigenstates
[ t2s=V32|1 s — 12| Is and | | s = 172] 1 s + V32| | »)s.°

Suppose that S is initially in the state |1 ,)s. Observer A measures
x-spin, then observer B measures u-spin. What is the probability for
each of the possible outcomes of the two measurements? The standard
theory of quantum mechanics tells us that when A measures the x-spin
of S, S will nonlinearly collapse to the state | 1 ,)s with probability 1/2
and collapse to the state | | ,)s with probability 1/2 - that is, p( 1 ,) =
p({ ) = 1/2. When B then measures the u-spin of S, S will similarly
collapse to an eigenstate of u-spin. If § initially collapsed to | 1 ,)s, then
the probability of | 1 ,)s is 3/4 and the probability of | | .)s is 1/4, but
if S initially collapsed to | | ,)s, then the probability of | 1 ,.)s is 1/4 and
the probability of || ,)s is 3/4. It follows that p(1, and 1,) =3/8,
p(t.and |,)=1/8, p(l and 1,)=1/8, and p(| . and | ,) =3/8.
Note that these joint probabilities are calculated in the standard theory
by supposing that S collapses to an eigenstate of x-spin on the first
measurement.

Now suppose that the linear dynamics correctly describes the evol-
ution of the systems — what relative frequencies will A and B report in
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the limit as they perform an infinite number of such measurements?
The initial state is

|r>aur>A—\}—i(| 195+ s).

The linear dynamics tells us that after the x-spin measurement the state
will be

|r>.-\}—5(|1,>4|1,s+u,),,u,)s),

where | 1 )4 represents a state where measuring device A reports x-
spin up, etc.
Similarly, after the u-spin measurement that state will be

V3 1
(20) E\/—inu)lﬂTx)AHu)s‘*'EVillu)BHx)AHu)s)

1 V3
_'-;lTu)Ble)AlTB)S)+5T2|l“)3|l‘)‘4|l")3)'

Consequently, it follows from the bare theory’s general limiting pro-
perty that A and B will approach a state where they report that the
possible outcomes were randomly distributed with the same relative
frequencies predicted by the standard theory: p(1. and 1.,)
= [V3I2V2)P =318, etc.®

For another example suppose that two systems S, and S are initially
in the EPR state

1) %(le)s,.lfx)s.‘Hx)sAHx)s.)

and that A and B make space-like separate measurements of their
respective systems. When A measures the x-spin of S,, the standard
theory predicts that the composite system will collapse to the state
| s« |1 x)ss with probability 1/2 and collapse to the state
|1 2)sa | | x)s, With probability 1/2. This means that p(1,@A) =
p(| @A) = 1/2. If the composite system collapses t0 | | 2)s, | 1 x)ss
then p( 1. @ B) = 3/4 and p(| . @ B) = 1/4. If the composite system
collapses t0 |1 .)s, || x)ss> then p(1.,@B)=1/4 and p(l.@B) =
3/4. So the standard theory predicts that p(1, @A and 1,@ B) =
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/8, p(1:@A and | ,@B)=3/8, p({|.@A and 1,@ B)=3/8,
and p(| ,@A and |, @ B) = 1/8.

What does the bare theory predict in the limit as this experiment is
performed an infinite number of times? After A’s x-spin measurement
and B’s u-spin measurement, the linear dynamics tells us that the state
of the composite system will be

(22) ‘—-l":.'lfu)sltx)AIT")sﬁlT")sA
+2—\/—.2. [ | w/Spl v x/Sy
5\7,—5 |TI>A v u/Sgl | x/Sa

+-2\1/—§u..>,u‘>m.>s.u,>s,

So given the general limiting property, A and B will approach an
eigenstate of reporting that their measurement results were randomly
distributed and statistically correlated in just the w\;y the standard
theory predicts: p(1,.@A and 1,@ B) =[-1/(2V2)]*=1/8, etc.
Since in the limit A and B will similarly agree that they got the statistical
correlations predicted by standard theory for any other pair of spin
observables and since the standard theory’s predictions fail to satisfy
the Bell-type inequalities, if they perform an appropriate sequence of
different experiments, then they will approach an eigenstate of re-
porting that their results fail to satisfy the Bell-type inequalities. Since
what happens at A seems to instantaneously influence the result of a
measurement at B and the other way around, the observers may be
tempted to conclude that there is a nonlocal causal connection between
their measurements. Note, however, that since the linear dynamics can
be written in a perfectly local form, there are in fact no nonlocal causal
connections in the bare theory. One might explain that since A and B
in fact have no measurement results, there are in fact no determinate
events that are correlated, so it is not at all surprising that there are
no nonlocal causal connections between events at A and events at
B. Just as reports of determinate results, relative frequencies, and
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randomness would generally be explained by the bare theory as il-
lusions, the apparent nonlocality here would be just that, apparent.

3.

Since the bare theory’s suggestive properties suggest the possibility of
accounting for an observer’s reports concerning his own experience as
illusions generated by the linear dynamics, one might be tempted to
take the bare theory to be a complete and accurate physical theory.
There is something perversely attractive in this, but it is very difficult
to take the bare theory to be the whole story. As Albert has argued,
for example, if the bare theory is true, then there will be matters of
fact concerning what we think about the relative frequencies of our
measurement results only in the limit as the number of those measure-
ments goes to infinity: . .. if the bare theory is true. .., then there
can’t now be any matter of fact (not withstanding our delusion that
there is one) about what we take those frequencies to be.”” Further,

If the bare theory is true, then it seems extraordinarily unlikely that the present quantum
state of the world can possibly be one of those in which there’s even a matter of fact
about whether or not any sentient experimenters exist at all. And of course in the event
that there isn’t any matter of fact about whether or not any sentient experimenters exist,
then it becomes unintelligible to inquire . . . about what sorts of things experimenters will
report (Albert 1992, 124-5).

The point again is that the suggestive properties at best only tell us
what a good observer would believe about his experiences in certain
specific circumstances, circumstances that the linear dynamics itself tells
us would rarely if ever obtain.

Given the suggestive properties, then, perhaps the most difficult
question is what to do with them. They are too suggestive to ignore,
so we ought to exploit them some way. After all, they show us that
much of what the collapse postulate is supposed to do for the standard
theory can be done in certain circumstances with just the linear dynam-
ics. The problem is how to best exploit these properties. One would
presumably want to add something that would at least ensure that there
are ordinary matters of fact concerning the mental states of sentient
observers.

As a starting point, let’s suppose that the linear dynamics is a com-
plete and accurate description of the time-evolution of the physical
state and that the following two conditions are satisfied:
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Eigenstate condition: If the state of an observer M is an
eigenstate of making some report, then M makes that report.

Reliability condition: An ideal observer’s reports concerning
his own mental states and the mental states of his ideal
friends (given that they have told him what their mental
states are, etc.) are always true.

The eigenstate condition is so basic to our understanding of quantum-
mechanical states that it is usually assumed without comment. The
reliability condition is also plausible. It may be that real observers fall
short of the ideal, but one would presumably be surprised to find that
it is physically impossible for there to be an ideal observer in this sense.
If it were impossible, then first-person authority would be limited by
our physical theory.

Given the eigenstate condition, the bare theory’s suggestive proper-
ties tell us what an observer would report in certain circumstances. So
the reliability condition directly determines what some of the observer’s
beliefs would be in those circumstances. But what about those beliefs
that are not directly determined by the fact that the observer is in an
eigenstate of making a particular report? One answer is that the reli-
ability condition together with those beliefs that are directly determined
by the observer’s physical state indirectly determine many of those
beliefs that are not.

By assuming that the linear dynamics is universally true and by
imposing the two conditions above, one is forced to conclude that an
observer’s mental state is not fully determined by his physical state.
One consequence of this is that an observer might generally have a
determinate belief concerning what his experience has been even when
his physical state is a superposition of states corresponding to different
beliefs. Suppose an observer makes a perfect x-spin measurement of
an object system initially in an eigenstate of z-spin and ends up in the
physical state predicted by the linear dynamics. The determinate result
property tells us that the observer will report that he got either x-spin
up or x-spin down as the result of his measurement. If we assume that
the observer’s reports concerning his own mental state are true, then
the determinate result property requires his mental state to correspond
to one or the other of the two possible x-spin results — that is, he must
believe that the result was 1 or he must believe that the result was
! . But which belief will he in fact have? The relative-frequency and
randomness properties help here. They require that the observer’s



THE SUGGESTIVE PROPERTIES OF QUANTUM MECHANICS 249

physical state approach an eigenstate state of reporting that his mea-
surement results were randomly distributed with the same relative fre-
quencies predicted by the standard theory in the limit. In order for this
report to be true, the observer’s mental state would have to approach a
state where his beliefs concerning the x-spin results of his measurements
really were randomly distributed with the appropriate relative frequenc-
ies. If we suppose that the observer’s mental dynamics is trial-indepen-
dent, that the rules that determine which x-spin belief he will end up
with do not change from measurement to measurement, each x-spin
belief would have to be randomly determined by probabilities equal to
the limiting relative frequencies. This means that the result of a single
x-spin measurement of a system initially in an eigenstate of z-spin would
with probability 1/2 be x-spin up and with probability 1/2 be x-spin
down, which is just what we want.

4.

While the eigenstate and reliability conditions may serve as a convenient
starting point for exploiting the bare theory’s suggestive properties and
while they might at first seem plausible, no no-collapse formulation of
quantum mechanics can generally satisfy both of these conditions. In
the limit as an observer M performs an infinite number of x-spin mea-
surements, for example, M will approach an eigenstate of reporting that
there exists a determinate sequence of results that correctly describes his
experience. But for each possible sequence of results, M will also
approach an eigenstate of denying that that particular sequence cor-
rectly describes his experience. This is because the norm squared of
the coefficient on each term of the state after n measurements |y,)
written in the X,-basis goes to zero as n gets large. Given this, either
the eigenstate condition or one of M’s reports must be false.

The following is perhaps a more vivid example of what can happen
if one assumes both the eigenstate and reliability conditions in a no-
collapse formulation of quantum mechanics. Suppose M measures the
x-spin of each of an infinite sequence of systems all initially in eigen-
states of z-spin. By the eigenstate condition, M will report that he got
a determinate result to each measurement - either x-spin up or x-spin
down. The reliability condition consequently requires there to be some
sequence of results that M believes that he got. Suppose that after each
measurement M decides whether or not to carefully remeasure the x-
spin of the system. Suppose further that an infinite number of M’s first-
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measurement results are x-spin up. presumably this would happen with
probability one in an empirically adequate formulation of quantum
mechanics, and suppose that by pure chance, say, M decides to remea-
sure exactly those systems that he got x-spin up for on his first measure-
ment. By the eigenstate condition, M will report that he got the same
result for both measurements whenever he remeasures a system. So by
the reliability condition and the assumption that M remeasured only
those systems where he got x-spin up for his first result, all of his second
measurements must also yield the result x-spin up. On the other hand,
the eigenstate condition together with the relative-frequency and ran-
domness properties entail that M will approach a state where he reports
that the second-measurement results were randomly distributed with
half of the results x-spin up. By the reliability condition, then, an infinite
number of M’s second measurements must fail to yield the result x-spin
up. Since it is impossible for an infinite number of results to be both
x-spin up and not x-spin-up, the eigenstate and reliability conditions
cannot both be true here.

One might want to weaken one or the other of the two conditions.
The eigenstate condition, for example, might be changed to say that if
the state of an observer M is an eigenstate of making some report, then
with probability one M makes that report. Or one might be willing to
accept the conclusion that no observer car generally make reliable
reports concerning his own experiences. In any case, the moral here is
that any no-collapse theory that can make coherent emp rical predic-
tions in the limit must violate either the eigenstate con.ition or the
reliability condition or both.

5

Quantum mechanics without the collapse postulate has several sugges-
tive properties. These properties tell us what an observer would report
in various situations. If he measures a system that is not in an eigenstate
of the observable being measured, then the linear dynamics together
with what it means to be a good observer tells us that he will nonetheless
report that he got a ordinary, determinate report. If he carefully repeats
the measurement, then he will report that he got the same result for
the second measurement. If he and his friends carefully measure the
state of the same system, then they will report that their results agree.
Further, as an observer measures the same observable of an infinite
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sequence of identically prepared systems, he will approach an eigenstate
of reporting that the results were randomly distributed with the usual
relative frequencies. Or stated another way, if any single experiment
whatsoever yields a state where the amplitude of the observer recording
the result r; is a;, then the observer would approach an eigenstate
of reporting that the result r;, was randomly distributed with relative
frequency |a;}? in the limit as an infinite number of identical experi-
ments were performed. Among other things, this means that all of the
joint probabilities come out right in the limit: if, for example, an
appropriate sequence of EPR experiments were performed, the ob-
servers involved would approach an eigenstate of reporting that their
empirical results violate the Bell-type inequalities in just the way the
standard theory does.

The bare theory, however, does not provide what one might reason-
ably expect from a satisfactory physical theory. It makes determinate
empirical predictions whenever one’s object system happens to be in
an eigenstate of the observable being measured, but if the linear dynam-
ics is correct, this would virtually never happen. If the object system is
not in an eigenstate of the observable being measured, then the bare
theory provides a basis for explaining why an observer might believe
that he has a determinate belief concerning the result when he in fact
does not. But even this requires the observer to begin in an eigenstate
of being ready to perform a reliable measurement on the particular
object system, and if the linear dynamics is correct, this would virtually
never happen. The bare theory’s general limiting property tells us what
an observer would report in the limit as an infinite number of identical
experiments were performed, but whether or not the bare theory is
correct, observers presumably never do anything like perform an infi-
nite number of measurements on identically prepared systems. In short,
the bare theory seems to have little to say that is directly relevant to
the experiences of a real observer.

If one adds something like the eigenstate and reliability conditions
to the bare theory, then the suggestive properties constrain an ob-
server’s beliefs in a way that suggests the possibility of a theory that
exploits the suggestive properties to make empirical predictions which
are much richer than those of the bare theory. While these conditions
may sound plausible, however, it is impossible for any no-collapse
theory to satisfy them.
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NOTES

! See von Neumann (1932) for an early example of this formulation of quantum mechan-
ics.

2 Some of these properties were strongly suggested by Everett (1957). There have been
several subsequent attempts to clarify the properties discussed by Everett and to deter-
mine their significance: see Hartle (1968), DeWitt (1971), Everett (1973), Graham (1973),
and Albert (1992) for examples.

3 Note that D is not the identity operator. For example, D|r)a | 1)s # [Par| 1)s.

* The general limiting property holds even if we allow for certain sorts of imperfect
measurements. It can be shown, for example, that it remains true even if M measures a
slightly different observable in each experiment as long as these observables are distri-
buted about a mean observable in the limit.

° In order to work though these examples the following identities may be useful:
| Tx)S = \/3/2[ T u)S + llzl l u)S and l lx)S = _llzl T u)S + \/§/2| l u)S'

This state is analogous to the state of M + S, after one measurement in the argument
for the relative-frequency property. Note that in the argument for the relative-frequency
property, the relative frequencies that M would report in the limit were shown to be
equal to the squares of the coefficients on the terms corresponding to each possible result
after the first measurement.
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