
THE SETTLING-TIME REDUCIBILITY ORDERING

BARBARA F. CSIMA AND RICHARD A. SHORE

Abstract. To each computable enumerable (c.e.) set A with a particu-
lar enumeration {As}s∈ω, there is associated a settling function mA(x),
where mA(x) is the last stage when a number less than or equal to x
was enumerated into A. One c.e. set A is settling time dominated by
another set B (B >st A) if for every computable function f , for all
but finitely many x, mB(x) > f(mA(x)). This settling-time ordering,
which is a natural extension to an ordering of the idea of domination,
was first introduced by Nabutovsky and Weinberger in [3] and Soare [6].
They desired a sequence of sets descending in this relationship to give
results in differential geometry. In this paper we examine properties of
the <st ordering. We show that it is not invariant under computable
isomorphism, that any countable partial ordering embeds into it, that
there are maximal and minimal sets, and that two c.e. sets need not
have an inf or sup in the ordering. We also examine a related ordering,
the strong settling-time ordering where we require for all computable f
and g, for almost all x, mB(x) > f(mA(g(x))).

August 22, 2006

1. Introduction

This paper concerns the settling-time reducibility ordering on c.e. sets,
which we now define.

Definition 1.1. (i) For every computably enumerable (c.e.) set We and
associated enumeration We,s,we define the settling (or modulus) function:
me(x) = (µs)[We,s��x = We��x] where A ��x = {y ≤ x|y ∈ A}.

(ii) For c.e. sets A and B, we say A settling time dominates B and write
A >st B iff (∃Wi = A) (∃Wj = B)

(1) (∀ computable f)(a.e. x)[mi(x) > f(mj(x))].

(We use “a.e. x” to mean “for all but finitely many x”.) Andre Nies showed
that (ii) is equivalent to (∀Wi = A)(∀Wj = B) [(1) holds]. Hence we will
abuse notation by writingmA forme when A = We. We denote the structure
of the c.e. sets with the relation <st as Est.

This ordering was first introduced by Nabutovsky and Weinberger [3]
and Soare [6]. Nabutovsky and Weinberger desired a descending sequence
in Est to use in the construction of various manifolds that gave information

Partially supported by Canadian NSERC Discovery Grant 312501.
Partially supported by NSF Grants DMS-0100035 and DMS-0554855.

1

2 BARBARA F. CSIMA AND RICHARD A. SHORE

on the geometry of Riemannian metrics modulo diffeomorphisms. Soare
constructed such a sequence as described in [6]. Sequences with additional
useful or interesting properties were constructed by Csima [1] and Csima
and Soare [2]. For general background information on the ordering and its
applications to differential geometry we suggest Soare [6], Csima and Soare
[2] and Weinberger [8].

In this paper we investigate properties of the <st relation and order the-
oretic facts about Est. We show (Theorem 2.1) that the relation itself is not
invariant under computable isomorphism. On the other hand, in §7, we ex-
amine a stronger relation <sst introduced in [2] and show that it is invariant
under not only computable isomorphism but even under wtt-degree. We
also construct a descending chain in this ordering to answer a question from
[2]. As for the structure of Est, we show (Theorem 3.1) that any countable
partial ordering embeds into it; it has maximal (Theorem 4.1) and minimal
(Theorem 5.1) elements; and that there are pairs of c.e. sets with no inf and
ones with no sup (Theorem 6.2).

For Computability Theory, we follow the notation of Soare’s Recursively
enumerable sets and Degrees [5] and new notation from Soare’s Computabil-
ity Theory and Applications [7], which we also define.

We let {We,s}e,s∈ω be any standard enumeration of the c.e. sets. We let ϕe

denote the e-th partial computable function according to some standard enu-
meration. We often use the convention that ϕe,s(n) ↓⇒ (∀m ≤ n)ϕe,s(m) ↓,
i.e. that the partial computable functions converge on numbers in order.

We write “∀∞x” and “for a.e. x” for “for all but finitely many x”. Simi-
larly, “∃∞x” denotes “there are infinitely many x”.

2. Noninvariance under computable isomorphism

Nies (unpublished, see [2]) showed that the settling time ordering is well-
defined on c.e. sets. Csima and Soare [2] show that it is not well-defined
on Turing degrees. In fact, the settling time ordering is not invariant under
computable isomorphism.

Theorem 2.1. There exist c.e. sets A and B such that A ≡1 B but A >st B.

Proof. We first recursively associate to each n ∈ ω an even xn ∈ ω in the
following way. Let x0 = 0. For n ≥ 0, let xn+1 = xn + 2(n+ 1).

We now construct the sets A and B by stages.
Stage s: Step 1. Enumerate xs into A (to ensure that A will be infinite).
Step 2. If xn+1 was enumerated into B at stage t < s and ϕi(t) converged

at stage s for some i < n, enumerate xn + 2(i+ 1) into A (note that this is
the only circumstance under which xn +2(i+1) will be enumerated into A).

Step 3. If 2m is enumerated into A, enumerate xm into B.

Lemma 2.2. A ≤1 B.

Proof. Let f(2m) = xm and f(2m+1) = xm+1. By construction 2m ∈ A iff
xm ∈ B. Also, there are no odd numbers in A, and there are only numbers

THE SETTLING-TIME REDUCIBILITY ORDERING 3

of the form xm in B. Thus n ∈ A iff f(n) ∈ B. It is also clear that f is one
to one and computable. �

Lemma 2.3. B ≤1 A.

Proof. Let g(m) = 2n if m = xn, and g(m) = 2m + 1 otherwise. Then g is
a computable one to one function such that m ∈ B iff g(m) ∈ A. �

Lemma 2.4. A >st B.

Proof. Let f be a total computable function. We must show that (∀∞x)mA(x)
> f(mB(x)). It suffices to show that for a.e. x, if x entered B at a stage
s, some z ≤ x entered A at a stage greater than f(s). Let i be such that
f = ϕi. Let x > xi+1, and suppose x entered B at stage s. Then by con-
struction, x = xn+1 for some n > i. At the stage t when ϕi(s) converged,
xn + 2(i+ 1) was enumerated into A. Note that f(s) = ϕi(s) < t, and that
xn + 2(i+ 1) < xn+1. �

Thus A ≡1 B and A >st B. �

As A ≡1 B if and only if there is a computable permutation p of N such
that B is the image of A under p, the relation <st is not invariant even
under computable permutations (isomorphisms) of N. From the viewpoint
of computability theory presented by Rogers [4, Ch. 4], one can question if
such a relation is properly viewed as computability theoretic. In §7 we study
a stronger notion <sst also described in [2] which is invariant under com-
putable permutations and more and construct the descending chain desired
by Nabutovsky and Weinberger in that ordering as asked for in [2].

3. Embedding Partial Orderings

Theorem 3.1. Consider a computable partial ordering P on N. We build
a uniformly c.e. sequence {An} of sets such that Ai <st Aj ⇐⇒ i <P

j. Hence, by the existence of a computable universal partial ordering, any
countable partial ordering can be embedded into Est.

Proof. We construct the sequence {An} by stages. At each stage s there
will be only finitely many numbers enumerated.

If i <P j we wish to ensure that ϕn total ⇒ (∀∞x)mAj (x) > ϕn ◦mAi(x).
We do this by observing the following Golden Rule.

Golden Rule. If i <P j and 〈i, j〉 ≤ s, then at stage s we enumerate x into
Ai only if there are appointed x0, ..., xs, all less than x, and we make the
commitment that xn will be enumerated into Aj at the stage when ϕn(s) ↓,
should this ever happen. We refer to the xn as “guards” ready to enter Aj

in case ϕn converges on s.
If i 6<P j we wish to ensure that (∃∞x)mAi(x) ≥ mAj (x). At each

stage s with 〈i, j〉 < s, we will obtain a witness ns and we will promise
to keep mAi(ns) ≥ mAj (ns) by enumerating into Ai below ns whenever we
enumerate into Aj below ns.

4 BARBARA F. CSIMA AND RICHARD A. SHORE

Stage s: For each n = 〈i, j〉 < s such that i 6<P j, do as follows, in turn.
Our plan is to choose an ns, enumerate it into Ai, and ensure that no

y ≤ ns enters Aj at t ≥ s unless some z < ns enters Ai at t. To find ns,
note first that there are only finitely many elements that may enter Aj due
to prior commitments, say m many. Now looking at P � s × s, there are
finitely many finite maximal chains of the form k0 = i <P k1 <P ... <P kr.
Note that j does not appear in any of these chains. Choose m+ 1 numbers
that are ready to enter Ai (should something enter Aj) such that there
are enough guards for ϕ0, ..., ϕs for all P -chains. That is, at stage s we
appoint finitely many possible entrants of sets, all greater than any number
mentioned earlier in the construction, according to the following rules. We
appoint z1, ..., zm < ns and promise to enumerate zk into Ai at the stage
when the kth number less than or equal to ns is enumerated into Aj . For
each P -chain of the form k0 = i <P k1 <P ... <P kr, and each pair (kp, kq)
with 0 ≤ p < q ≤ r, for each possible entrant y of Akp appointed at this

stage, we appoint y(kp,kq)
0 , ..., y

(kp,kq)
s < y and promise to enumerate y(kp,kq)

k
into Akq at the stage when ϕk(s(y, kp)) ↓, where s(y, kp) denotes the stage
when y enters Akp . Note that since j doesn’t appear in any of the P -chains,
this won’t cause the number of possible future entrants of Aj to go up. Now
we enumerate ns into Ai.

Lemma 3.2. If i <P j then Ai <st Aj.

Proof. Suppose i <P j. Suppose f is a total function. We must show
∀∞x(mAj (x) > f(mAi(x))). Let k be such that f = ϕk. Let s = 〈i, j〉.
By stage s, we have appointed only finitely many possible entrants of Ai.
Let t ≥ k be a stage by which all of those that were appointed before
stage s and belong to Ai entered Ai. Then any x which entered Ai after
stage t was appointed after stage s, so the P -chain containing i and j was
considered, and an x

(i,j)
k < x was appointed to enter Aj at the stage when

ϕk(s(x, i)) ↓. �

Lemma 3.3. If i 6<P j then Ai 6<st Aj.

Proof. Suppose i 6<P j. Let n = 〈i, j〉. At every stage s > n, an ns

was enumerated into Ai, and for every x ≤ ns that entered Aj after stage s,
something less than ns entered Ai. SomAi(ns) ≥ mAj (ns), so Ai 6<st Aj . �

By the above lemmas, the sequence {An} has the required properties. �

One anomaly about Est relative to other partial orderings studied in com-
putability theory is that it is a strict partial ordering rather than a reflexive
one. This has the seemingly strange consequence that an embedding of,
for example, an incomparable pair x, y can be realized by any set A as the
image for both x and y (or A and any finite variation of A). The largest
equivalence relation on Est (or any strict partial order) that respects the
given ordering and gives a reflexive partial ordering as a quotient is given by
A ≡st B ⇔ {C|C >st A} = {C|C >st B} & {C|C <st A} = {C|C <st B}.

THE SETTLING-TIME REDUCIBILITY ORDERING 5

One could instead of Est then reasonably study its quotient E∗st by this equiv-
alence relation with the natural partial ordering ≤. It is easy to see, however,
that by simply adding on extra elements to a given partial ordering P one
can produce one P ′ such that any embedding of P ′ into Est will restrict to
one of P into E∗st. Thus every countable partial ordering can be embedded
in E∗st as well.

4. A Maximal Set

Theorem 4.1. There exists an A such that for all e, We ≯st A.

Proof. We will construct a c.e. set A by stages. For each e, we wish to
ensure that We 6>st A. That is, we must ensure that there is a computable
function f and infinitely many “winning locations” x such that f(mA(x)) >
me(x). We will do this by having separate strategies for each e which do not
interfere with one another. Note that the computable functions providing
the counterexample for each e do not have to be found effectively in e.

We first outline the strategy for defeating W0. We allow ourselves to
enumerate even numbers for the sake of defeating W0. We save the odds for
other We.

To show W0 6>st A, we need a computable function f and infinitely many
x such that f ◦mA(x) ≥ m0(x).

If W0 is finite, we will win with the identity, by making A infinite (this will
happen automatically, as an infinite We will cause infinitely many numbers
to enter A).

If W0 is infinite, Γ0, Γ1, . . . will mark the winning locations.
We will define a partial computable function f . We will either win with

the identity, or else f will be almost total, and we will win with a finite
variation of f .

Start off with all Γk undefined. We let Γk[s] denote the position of the
marker Γk at the end of stage s, and let Γk denote the final position of the
marker, i.e., Γk = lims Γk[s]. We assume that Γk[s + 1] = Γk[s] unless the
construction states otherwise.

Stage s+ 1: Suppose x is enumerated into W0 at stage s.
Case 1: Γk−1[s] < x ≤ Γk[s] for some k. Let Γl[s + 1] be undefined for

l > k. If a y with Γk−1[s] < y ≤ Γk[s] has already been enumerated into A
at a stage yA with f(yA) not yet defined, define f(yA) = s+ 1. Otherwise,
enumerate an even number y, Γk−1[s] < y ≤ Γk[s] into A.

Case 2: Γk[s] < x, and Γl[s] is undefined for l > k. If there is a y > Γk[s]
that entered A at stage yA with f(yA) undefined, set f(yA) = s+1. If there
is no such y, set Γk+1[s+1] to be an even number greater than x and greater
than any number enumerated into A so far, and enumerate Γk+1[s+ 1] into
A.

If we did not enumerate anything into A at stage s, define f(s) = s.

6 BARBARA F. CSIMA AND RICHARD A. SHORE

If W0 is infinite then eventually all the Γk will be defined and reach a
limit. Note also that by construction, m0(Γk−1) < m0(Γk), since whenever
a number less than or equal to Γk−1[s] enters W0,s+1, Γk[s+1] is undefined,
and Γk[t + 1] is only redefined at a later stage t + 1 (to be larger than
any previously mentioned number) if a number greater than Γk−1[t] enters
We,t+1.

In each interval (Γk−1,Γk], if some x entered W0, we either enumerated
into A in that interval, or defined f on a stage number of something that had
already been enumerated into A in that interval. This is because if at stage s
we act to define Γl[s], then we only do this if Γm[s−1] is defined for allm < l,
and we define Γl[s] to be larger than any number previously mentioned in
the construction. Hence there will exist a k ≤ l such that (Γl−1[s],Γl[s]] ⊆
(Γk−1,Γk]; and whenever x enters W0,s+1, if Γl−1[s] < x ≤ Γl[s] then we
either enumerate into A or define f on a stage number of something that
had already been enumerated into A in the interval (Γl−1[s],Γl[s]], and if
x > Γl[s] with Γl+1[s] undefined, we either define and enumerate Γl+1[s+ 1]
into A, or we define f on the stage number when a number y > Γl[s] entered
A. In the latter case, if W0 is infinite, both x and y are in an interval
(Γm[t],Γm+1[t]] for some t > s+ 1 and m ≤ l.

Let A[0] denote the part of A that we are controlling for W0 (in this case
the even numbers). Note that for any x, mA[0]

(x) ≤ mA(x).
If there are infinitely many intervals where the last action was to enumer-

ate into A, then on these intervals we have m0(Γk) ≤ mA[0]
(Γk) ≤ mA(Γk).

So W0 is defeated. If not, then on almost all intervals our last action was to
define f on a stage number. So f is almost total, and m0(Γk) ≤ f(mA[0]

(Γk))
for almost all k. Let f∗ be an increasing computable function with f∗(x) ≥
f(x) for almost all x. Then m0(Γk) ≤ f(mA[0]

(Γk)) ≤ f∗(mA[0]
(Γk)) ≤

f∗(mA(Γk)).
So we see that not only have we defeated W0, but it doesn’t matter what

we enumerate into A on the odd numbers.
To defeat W1 we will work with numbers of the form 1+4n. We will have

to use three partial computable functions f1, f2, f3. In this case we will first
enumerate into A, then define f1 on the stage number, then f2, and then f3,
before enumerating into A again. This way, if we don’t win on the identity,
f1 is almost total. If we don’t win on f1, then f2 is almost total, and so
forth.

We now outline the general case. To defeat We, we work with numbers of
the form 2e−1+2e+1n. That is, for each We, we enumerate a set A[e] ⊆ ω[e],
where ω[e] = {2e−1+2e+1n | n ∈ ω}. Note that if e 6= k then ω[e]∩ω[k] = ∅.

We will build partial computable functions fe
1 , f

e
2 , ..., f

e
2e+1−1.

As before, if We is infinite, Γe
0,Γ

e
1, ... will mark the winning locations.

Start with all Γe
k undefined.

Stage s: Suppose x is enumerated into We at stage s.

THE SETTLING-TIME REDUCIBILITY ORDERING 7

Case 1: Γe
k−1[s] < x ≤ Γe

k[s] for some k. Let Γe
l [s + 1] be undefined for

l > k. If some y with Γe
k−1[s] < y ≤ Γe

k[s] was enumerated into A[e] at a stage
yA with fm(yA) undefined for some m, let m be the least such, and define
fm(yA) = s. Otherwise, enumerate a number y ∈ ω[e], Γe

k−1[s] < y ≤ Γe
k[s]

into A[e].
Case 2: Γe

k[s] < x, and Γe
l [s] is undefined for l > k. If there is an m and

a y > Γe
k[s] which was enumerated into A[e] at a stage yA with fe

m(yA) now
undefined, choose the least such m and define fe

m(yA) = s. If there is no
such m and y, set Γe

k+1[s + 1] to be in ω[e] and to be greater than x and
greater than any number enumerated into A[e] so far. Enumerate Γe

k+1[s+1]
into A[e].

If we did not enumerate anything into A at stage s, define fe
m(s) = s for

all 1 ≤ m ≤ 2e+1 − 1.
If We is infinite then eventually all the Γe

k will be defined and reach a
limit. Note also that by construction, me(Γe

k−1) < me(Γe
k).

In each interval (Γk−1,Γk], if some x entered We, we either enumerated
into A in that interval, or defined fm on a stage number of something that
was enumerated into A in that interval for the least m for which fm was un-
defined on a stage number of something already enumerated in that interval.
This is because, as in the the discussion for W0, any interval that is ever de-
fined can only change by being absorbed by a larger interval. The fact that
even in the limit interval it is still the least m for which fm was undefined on
a stage number of something enumerated into the interval that gets defined
follows from the fact that an interval is only ever set by enumerating it’s
right endpoint into A.

Let f0 denote the identity function.
Let m be least such that there are infinitely many intervals where our last

action was to define fm. Note that m exists by the Pigeon Hole Principle.
By our convention of first trying to define fm for the least m ≥ 1, and by the
minimality of m, fm is almost total. Let f∗ be a total computable increasing
function such that fm(x) ≤ f∗(x) for all x on which fm is defined. Then
for those intervals (Γk−1,Γk] where our last action was to define the fm we
have me(Γk) ≤ fm(mA[e]

(Γk)) ≤ f∗(mA[e]
(Γk)) ≤ f∗(mA(Γk)). �

Of course, any set maximal in Est is (i.e. its equivalence class is) maximal
in E∗st.

5. Minimal Sets

If A and B are c.e. sets such that A >st B, then A must be high (see
Csima-Soare [2]). Hence if A is not high, then A ≯st B for any B. Thus
A is minimal in Est. However, this is not entirely satisfying since A does
not settling time dominate any set at all. We note that if A >st C for any
infinite c.e. set C, then A settling time dominates every computable set. (So
all the infinite computable sets are in the same class, 0, in E∗st.) Hence we
will write A >st 0 if A settling time dominates any infinite c.e. set.

8 BARBARA F. CSIMA AND RICHARD A. SHORE

In this section we show that there is a nontrivial (i.e. above 0) minimal
set in Est(and so in E∗st). That is, we construct a c.e. set A such that A >st 0,
and for any B, if A >st B, then for all We, B ≯st We. Indeed, we will build
A such that for all e if We is noncomputable, then A ≯st We.

Theorem 5.1. There exists a nontrivial minimal set in Est. Indeed, there
exists a c.e. set A such that A >st 0 and if We is noncomputable then
A ≯st We.

Proof. We construct the c.e. set A, and also an infinite computable set C
such that A >st C. Let c0 = 0 and cn+1 = cn + n + 1. Let an

i = cn + i for
0 ≤ i ≤ n. At stage s we enumerate cs into C (so C is computable).

The strategy to make A >st C will be to try to enumerate an
i into A at a

stage after the stage when ϕi(n+ 1) ↓.
For each We, if We is noncomputable, we want infinitely many x with

me(x) ≥ mA(x). Thus, when some x enters We, it would be nice to restrain
A below x to ensure that me(x) ≥ mA(x).

For each e, we will have restraint functions r(e, j, s) for all j ≥ e. We will
let R(j, s) = max{r(e, j, s) | e ≤ j}.

We now construct A by stages as follows.
Stage s+1: We start off with r̃(e, j) = r(e, j, s) for all e, j ∈ ω, and let

R̃(j) = max{r̃(e, j) | e ≤ j}.
Suppose x is enumerated into We,s+1. If x < r̃(e, j) for any j, reset

r̃(e, j) = x for all such j (note that there can be only finitely many such j).
Otherwise, let j be least such that r̃(e, j) = 0, and reset r̃(e, j) = x.

Now, perform the following loop. Suppose ϕi,s+1(n+1) ↓ for some i, n with
i ≤ n. If an

i > R̃(i), enumerate an
i into As+1. For all e, j with an

i < r̃(e, j),
reset r̃(e, j) = 0. If anything is enumerated, repeat the loop. Otherwise end
the loop and set r(e, j, s+ 1) = r̃(e, j) for all e, j.

Note that by construction, the only way that r(e, j, s) can increase as a
function of s is if the restraint is injured by enumeration into A during a
loop and set to 0, and then reset to a larger number in a later stage. That is,
we have r(e, j, s+ 1) ≤ r(e, j, s) unless r(e, j, s) = 0. Also, if r(e, j, s+ 1) >
r(e, j, s) = 0, then this was because r(e, j, s+1) was enumerated into We,s+1.
Hence for any e, j ∈ ω, lims r(e, j, s) <∞ or lim sups r(e, j, s) = ∞.

Lemma 5.2. For all e, if We is noncomputable, then A ≯st We.

Proof. Case 1: For all j ≥ e, lims r(e, j, s) < ∞. Let xj = lims r(e, j, s).
Then either We is finite, or there exist infinitely many j such that xj < xj+1,
and for all j, me(xj) ≥ mA(xj). To see this suppose that r(e, j, s) reaches
its final value x at stage t. It must be that x entered We at stage t. If some
y < x enters A at a later stage v then r(e, j, v) = 0 for a contradiction. Thus
A ≯st We.

Case 2: Otherwise, let j be the least such that lim sups r(e, j, s) = ∞. By
our conventions, if ϕi is not total, then it converges on only finitely many n.
Hence the function f(n) = (µs)[(∀i ≤ j)ϕi(n) ↓→ ϕi,s(n) ↓] is computable.

THE SETTLING-TIME REDUCIBILITY ORDERING 9

For x > max{lims r(e, i, s) | i < j}, we can certainly compute m such that
x < cm. Then x ∈ We ⇐⇒ x ∈ We,f(m+1) for otherwise we would have
lims r(e, j, s) ≤ x. Thus We is computable. �

Lemma 5.3. A >st C.

It suffices to show that for all i, if ϕi is total then there exists an m such
that whenever an

i > m and ϕi,s(n + 1) ↓ then there is a stage t ≥ s where
an

i is enumerated into A.
For e ≤ i, let r(e, i) = lim sups r(e, i, s). Let R(i) = max{r(e, i) | r(e, i) <

∞∧ e ≤ i}. Suppose an
i > R(i), and suppose ϕi,s(n + 1) ↓. For t ≥ s, let

b(t) = min{r(e, i, t) | r(e, i, t) > 0 ∧ r(e, i) = ∞∧ e ≤ i}. We wish to show
that there is a stage t ≥ s such that b(t) is undefined, and hence an

i would
be enumerated into At. The function b(t) cannot increase without being
undefined in between. (For b(v) to increase, r(e, i, v) must increase for the
i such that r(e, i, t) is the smallest among the relevant values. Before it
can increase, however, it must first become 0 because some smaller element
entered A and so all the other relevant r(e, j, v) for which r(e, j, t) were
larger than r(e, i, t) also become 0.) So we may assume for a contradiction
that b = limt b(t) exists. Let t1 be such that b = r(e, i, t1) with r(e, i) = ∞,
e ≤ i, and b(t) = b for all t ≥ t1. Since lim supt r(e, i, t) = ∞, there is some
number less than b enumerated into A at a stage t2 > t1. But then b(t2) is
undefined. �

6. No infs and sups

In this section, we show that infs and sups need not exist in Est or E∗st.
One way of showing that there is a pair with no sup, is to build a set

which is both maximal and minimal in the <st ordering. We do not do this
in detail, since the existence of such a pair follows from the construction we
do to show there is a pair with no inf. However, we state the existence of
such a set, and outline how to go about it’s construction.

Theorem 6.1. There exists a c.e. set which is both maximal and minimal
with respect to the <st ordering.

Proof Sketch. Combine the constructions of the maximal and minimal set A.
There will be finite injury, since the minimal set construction wishes to hold
members out of the set A. By introducing an extra function fe

2e+1 for the
e-th requirement of the maximal set construction, one can afford to injure
the requirements by “kicking the Γe

k markers” a distance of 2e+1r when a
minimality requirement of higher priority wishes to restrain A below r. �

We now give a detailed construction showing that there are c.e. sets A
and B which have no inf in Est and ones C and D which have no sup. We
do this by also building c.e. sets E,F,G such that A,B >st C,D; E >st A
but E ≯st B; F >st D but F ≯st C; C,D >st G; A |st B and C |st D. We
also ensure that there is no c.e. set H such that A >st H >st C, we refer

10 BARBARA F. CSIMA AND RICHARD A. SHORE

to this property as having a gap between A and C (and indicate it by the
double line from A to C in the diagram below). That is, the sets will satisfy
the following diagram:

E

A

~~~~~~~
| B

|@@@@@

@@@

F

C

������������������������

|~~~~~

~~~

D

777777777777777777777777

@@@@@@@
|

G

@@@@@@@

~~~~~~~

Theorem 6.2. There are c.e. sets A and B such that A and B have no
infimum in the <st ordering, indeed, such A and B can be found with A 6≡st

B. There are c.e. sets C and D such that C and D have no supremum in
the <st ordering, indeed, such C and D can be found with C 6≡st D.

Proof. We will construct A,B,C,D,E, F , and G as described above, and A,
B, C, and D will be the desired sets. Since E >st A and E 6>st B, A 6≡st B.
Since A 6<st B and there is a gap between A and C, and since C <st A and
C <st B, the only candidate for an inf of A and B is C. However, D <st A
and D <st B, but D 6<st C and D 6≡st C (since F >st D but F 6>st C). So
A and B have no inf. We’ve seen that C 6≡st D. Since C 6>st D and there is
a gap between A and C, and since A >st C and A >st D, the only candidate
for a sup of C and D is A. However B >st C and B >st D, but B 6>st A
and B 6≡st A, so C and D have no sup.

To construct the c.e. sets A,B,C,D,E, F and G, we will use the methods
of embedding the above partial ordering as in the proof of Theorem 3.1, but
with additional requirements to ensure that there is a gap between A and C.
To do this, we will put restraint on A, as in the construction of a minimal
set in §5. The restraint functions will be of the form r(e, j, s), and we start
off with r(e, j,−1) = 0 for all e, j.

Stage s: To make B ≮st E. Let l(E, s) be the total number of possible
future entrants of E declared up to this point in the construction. Let
β1 < ... < βl(E,s) < nB

s be greater than any number mentioned thus far in
the construction. Enumerate nB

s into B, and declare that βi will enter B
when the i-th number less than nB

s enters E. There will be no restraint



THE SETTLING-TIME REDUCIBILITY ORDERING 11

imposed on B, and we will never again declare anything less than nB
s to be

eligible to enter E, so this will ensure that mB(nB
s ) > mE(nB

s ).

To make C ≮st F , respecting C <st A <st E and C <st B. Let l(F, s) be
the total number of possible future entrants of F declared up to this point
in the construction. Let wi(1 ≤ i ≤ l(F, s)), awi

j (1 ≤ i ≤ l(F, s), 0 ≤ j ≤ s),

bwi
j (1 ≤ i ≤ l(F, s), 0 ≤ j ≤ s), e

a
wi
j

k (1 ≤ i ≤ l(F, s), 0 ≤ j, k ≤ s), and nC
s

all be distinct numbers greater than any number mentioned thus far in the
construction. Moreover, the wi should all be less than nC

s ; the awi
j and bwi

j

should all be less than wi; and the e
a

wi
j

k should all be less than awi
j .

Enumerate nC
s into C, and declare that wi will enter C when the i-th

number less than nC
s enters F . There will be no restraint imposed on C,

and we will never again declare anything less than nC
s to be eligible to enter

F . This will ensure that mC(nC
s ) ≥ mF (nC

s ).
If at some later stage t, ϕj,t(s(wi, C)) ↓, for a j ≤ s, where s(wi, C)

denotes the stage when (if ever) wi was enumerated into C, then enumerate
bwi
j into B at stage t. This will help ensure that B >st C. We would also

like to enumerate awi
j into A, but A is subject to restraint, so we will deal

with this later in the construction.
If at some later stage t, ϕk,t(s(a

wi
j , A)) ↓, and if k ≤ s, then enumerate

e
a

wi
j

k into E at stage t. This will help ensure that E >st A.

To make G infinite, while respecting other requirements. Let g, cgi (0 ≤

i ≤ s), acg
i

j (0 ≤ i, j ≤ s), and e
a

c
g
i

j

k (0 ≤ i, j, k ≤ s) all be greater than any

number mentioned so far in the construction, with e
a

c
g
i

j

k < a
cg
i

j < cgi < g(0 ≤
i, j, k ≤ s).

Enumerate g into G. If at some later stage t, ϕi,t(s) ↓, with i ≤ s, then
enumerate cgi into C and into D at stage t. This will help ensure that
C >st G and D >st G. In this and later action we will continue to ensure
that something is enumerated into D only if at that same moment that same
number is enumerated into C (though not vice versa, because of the F ≯st C
requirement above).

If at some later stage t, ϕj,t(s(c
g
i , C)) ↓, with i ≤ s, then enumerate acg

i
j

into B and F at stage t. Since cgi was enumerated into both C and D,

enumerating acg
i

j into B will help ensure that B >st C, and B >st D, and

enumerating acg
i

j into F will help ensure that F >st D. We would also like

to enumerate acg
i

j into A, but A is subject to restraint, so we will deal with
this later in the construction.

If at some later stage t, ϕk,t(s(a
cg
i

j , A)) ↓, with k ≤ s, then enumerate e
a

c
g
i

j

k
into E at stage t. This will help ensure that E >st A.



12 BARBARA F. CSIMA AND RICHARD A. SHORE

To make D ≮st C. Let l(C, s) be the total number of possible future
entrants of C declared up to this point in the construction. Let δi(1 ≤ i ≤
l(C, s)), awi

j (1 ≤ i ≤ l(C, s), 0 ≤ j ≤ s), e
a

wi
j

k (1 ≤ i ≤ l(C, s), 0 ≤ j ≤ s, 0 ≤

k ≤ s), nD
s , anD

s
j , (0 ≤ j ≤ s), e

a
nD

s
j

k , (0 ≤ j, k ≤ s) all be distinct numbers
greater than any number mentioned thus far in the construction. Moreover,
the δi should all be less than nD

s ; the aδi
j should all be less than δi; and the

e
a

δi
j

k should all be less than aδi
j . Also, the e

a
nD

s
j

k should all be less than the

a
nD

s
j which should all be less than nD

s .
Enumerate nD

s into both C and D, and declare that δi will enter both C
and D when the i-th number less than nD

s which is not of the form δm enters
C. There will be no restraint imposed on D, and we will never again declare
anything less than nD

s to be eligible to enter C (except for the δm which we
enumerate into C only if we simultaneously enumerate it into D). This will
ensure that mD(nD

s ) = mC(nD
s ). We have also maintained our rule that we

enumerate a number into D only if we simultaneously enumerate the same
number at the same moment into C.

If at some later stage t, ϕj,t(s(δi, D)) ↓ with j ≤ s, then enumerate aδi
j

into B and F at stage t. Since δi entered both C and D, enumerating aδi
j

into B will help ensure that B >st C, and B >st D, and enumerating aδi
j

into F will help ensure that F >st D. We would also like to enumerate aδi
j

into A, but A is subject to restraint, so we will deal with this later in the
construction. Similarly, if ϕj,t(s) ↓, enumerate anD

s
j into B and F at stage t.

If at some later stage t, ϕk,t(s(a
δi
j , A)) ↓, and if k ≤ s, then enumerate

e
a

δi
j

k into E at stage t. Similarly if ϕk,t(s(a
nD

s
j , A)) ↓, enumerate e

a
nD

s
j

k into E
at stage t. This will help ensure that E >st A.

To make A ≮st B. Let l(B, s) be the total number of possible future
entrants of B declared up to this point in the construction. Let αs

i (1 ≤ i ≤
l(B, s)), eα

s
i

j (1 ≤ i ≤ l(C, s), 0 ≤ j ≤ s), and nA
s all be distinct numbers

greater than any number mentioned thus far in the construction. Moreover,
the αi should all be less than nA

s , and the eαi
j should all be less than αi.

Enumerate nA
s into A (it was chosen to be greater than any number

mentioned so far, so in particular it is beyond all restraints.) When the i-th
number less than nA

s is enumerated into B we will declare that αs
i desires

to enter A, and this will remain the case until (if ever) αs
i is enumerated

into A. If for all i ≤ l(A, s), whenever αs
i desires to enter A, it is eventually

enumerated into A (perhaps at a later stage than it first desired to be), we
will have mA(nA

s ) ≥ mB(nA
s ), establishing that A 6<st B.



THE SETTLING-TIME REDUCIBILITY ORDERING 13

If at a later stage t, ϕj,t(s(αs
i , A)) ↓, enumerate eα

s
i

j into E at stage s.
This will help ensure that E >st A.

To make a gap between A and C. We start off with r̃(e, j) = r(e, j, s− 1)
for all e, j ∈ ω, and let R̃(j) = max{r̃(e, j) | e ≤ j}.

Suppose x is enumerated into We,s. If x < r̃(e, j) for any j, reset r̃(e, j) =
x for all such j. Otherwise, let j be least such that r̃(e, j) = 0, and reset
r̃(e, j) = x.

Now, perform the following loop. Suppose ϕi,s(s(x,C)) ↓ for some i, s
such that ax

i was appointed. If ax
i > R̃(i), enumerate ax

i into As. For
all e, j with ax

i < r̃(e, j), reset r̃(e, j) = 0. We define p̃(t), the priority
for nA

t to act, by induction. Let p̃(0) = 0. Let p̃(t + 1) = p̃(t) if there
is some αt

k that desires to be enumerated such that αt
k ≤ R̃(p̃(t)), and let

p̃(t+1) = p̃(t)+1 otherwise. If αt
k desires to be enumerated and αt

k > R̃(p̃(t))
then enumerate αt

k into As, and for all e, j with αt
k < r̃(e, j), reset r̃(e, j) = 0.

If anything is enumerated, repeat the loop. Otherwise end the loop and set
r(e, j, s) = r̃(e, j) for all e, j, and p(t, s) = p̃(t) for all t.

Note that as in the minimal set construction, the only way that r(e, j, s)
can increase as a function of s is if the restraint is injured by enumeration
into A during a loop and set to 0, and then reset to a larger number in a
later stage. That is, we have r(e, j, s + 1) ≤ r(e, j, s) unless r(e, j, s) = 0.
Also, if r(e, j, s + 1) > r(e, j, s) = 0, then this was because r(e, j, s + 1)
was enumerated into We,s+1. Hence for any e, j ∈ ω, lims r(e, j, s) < ∞ or
lim sups r(e, j, s) = ∞.

This completes the construction.
The facts that E >st A, E ≯st B, B >st C, B >st D, F ≯st C, F >st D,

C ≯st D, C >st G, and D >st G, follow exactly as in the embedding of
the partial ordering in Theorem 3.1. We also easily see that A ≯st B since
E >st A and E ≯st B, and that D ≯st C since F >st D and F ≯st C.

It remains to show that there is a gap between A and C, A ≮st B,
A >st D, and A >st C. Note that since we only enumerate into D if the
same number is enumerated into C at the same moment, mC(x) ≥ mD(x)
for all x, so once we show A >st C, we immediately also have A >st D.

Lemma 6.3. A >st C.

Proof. It suffices to show that for all i, if ϕi is total then there exists an m
such that whenever ax

i > m and ϕi,s(s(x,C)) ↓ then there is a stage t ≥ s
where ax

i is enumerated into A.
For e ≤ i, let r(e, i) = lim sups r(e, i, s). Let R(i) = max{r(e, i) | r(e, i) <

∞ ∧ e ≤ i}. Suppose ax
i > R(i), and suppose ϕi,s(x) ↓. For t ≥ s, let

b(t) = min{r(e, i, t) | r(e, i, t) > 0 ∧ r(e, i) = ∞∧ e ≤ i}. We wish to show
that there is a stage t ≥ s such that b(t) is undefined, and hence ax

i would be
enumerated into At. The function b(t) cannot increase without first being
undefined. So we may assume for a contradiction that b = limt b(t) exists.
Let t1 be such that b = r(e, i, t1) with r(e, i) = ∞, e ≤ i, and b(t) = b for



14 BARBARA F. CSIMA AND RICHARD A. SHORE

all t ≥ t1. Since lim supt r(e, i, t) = ∞, there is some number less than b
enumerated into A at a stage t2 > t1. But then b(t2) is undefined. �

Lemma 6.4. A 6<st B.

Proof. First note that the value of p(t, s) can only change finitely often as s
increases (since there are finitely many αt′

i with t′ ≤ t, and each can desire
to enter A and be enumerated at most once). Thus p(t) = lims p(t, s) exists
for all t. Note also that p is nondecreasing. We show by induction on n that
there exists a tn = max{t | p(t) = n}. Let t−1 = −1. Let t > tn−1 be least
such that all αt

i > R(n), where R(n) = max{r(e, n) | r(e, n) <∞∧ e ≤ n},
as in Lemma 6.3. Then, as in the proof of Lemma 6.3, any αt

i that desires
to enter A will eventually be enumerated into A unless p(t, s) > n for a.e.
s. But this can only happen if there is some t′ with tn−1 < t′ < t such that
every αt′

i that desires to enter A eventually does. Hence tn exists, indeed
tn−1 < tn ≤ t.

By definition of tn, every αtn
i which desires to enter A eventually does,

hence for all n, mA(nA
tn) ≥ mB(nA

tn). Thus A 6<st B. �

Lemma 6.5. For all e, if We >st C, then A 6>st We.

Proof. Case 1: For all j ≥ e, lims r(e, j, s) < ∞. Let xj = lims r(e, j, s).
Then either We is finite, or there exist infinitely many j such that xj < xj+1,
and for all j, me(xj) ≤ mA(xj) and hence A ≯st We.

Case 2: There is some j such that lim sups r(e, j, s) = ∞. Let j be
the least such, let r = max{r(e, i, s) | i < j}, and let s′ be such that for
any αt

i ∈ A with t ≤ te we have αt
i ∈ As′ . By our conventions, if ϕi is

not total, then it converges on only finitely many x. Hence the function
f(x) = (µs)[(∀i ≤ j)ϕi(x) ↓→ ϕi,s(x) ↓] is computable. Let y > r be any
entrant of C, and let x be the last entrant of We less than or equal to y. If
in addition x ≥ r and x entered We after stage s′, we will have x = r(e, k, s)
for some s > s′ and some k ≥ j. Then, since lim supt r(e, j, t) = ∞, we know
that r(e, j, s) ≤ r(e, k, s) = x will be injured. The only reason this would
happen is because some ϕi converged on the stage when something less than
or equal to y was enumerated into C. Thus f(mC(y)) > s = me(y). Since
there are infinitely many such y, we see that We ≯st C. �

Hence the sets A,B,C,D,E, F, and G have the required properties. �

7. Super Domination

To help simplify proofs in differential Geometry, Nabutovsky and Wein-
berger asked whether there exits a sequence {Ai} of c.e. sets such that

(∀ computable f)(∀n)(∀∞x)[mAi(x) > f(mAi+1(nx))]

Csima answered this question in her thesis [1] as follows.

Definition 7.1. Let g be a computable function. For c.e. sets A and B we
say A >g−st B if for all computable functions f , for almost every x,



THE SETTLING-TIME REDUCIBILITY ORDERING 15

mA(x) > f(mB(g(x))).

Theorem 7.2. For any computable g, there exists a sequence {Ai} of c.e.
sets such that

Ai >g−st Ai+1

This answered the question of Nabutovsky and Weinberger using g(x) =
x2.

However, this also raised the question of whether there are sets A and B
such that A >g−st B for all computable g.

Definition 7.3. For c.e. sets A and B we say A strongly settling time
dominates B, A >sst B, if for all computable functions f and g, for almost
every x,

mA(x) > f(mB(g(x))).
Equivalently, A >sst B if A >g−st B for all computable g. The associated

strict partial ordering on c.e. sets is denoted by Esst.

Note 7.4. For c.e. sets A and B, A >sst B if and only if, for all strictly
increasing computable functions f and g, for almost every x,

mA(x) > f(mB(g(x))).

Proof. If f is computable, then there is a strictly increasing computable
function f∗ with f(x) ≤ f∗(x). Note that for f and g computable, B c.e.,
f(mB(g(x))) ≤ f∗(mB(g(x))) ≤ f∗(mB(g∗(x))). �

We will follow the conventions that if ϕ is a partial computable function,
then if ϕ(n) ↓ at stage s then ϕ(n) < s, and for all m < n, ϕ(m) ↓≤ ϕ(n).

Clearly <sst implies <st, moreover, it is invariant under computable per-
mutations and so remedies that “defect” in Est. In fact, it respects not only
1-reducibility but even wtt-reducibility.

Theorem 7.5. The <sst ordering is well defined on wtt degrees. In fact,
it respects wtt-reducibility in the sense that if A ≤wtt B <sst C or A <sst

B ≤wtt C then A <sst C.

Proof. We make use of the following lemma from Csima-Soare [2].

Lemma 7.6. Suppose A ≤wtt B, with use bounded by h. Then there is a
strictly increasing computable function p such that

(∀x)[mA(x) ≤ p ◦mB(h(x)) ].

Lemma 7.7. Let A, B, and C be c.e. sets with enumerations {As}s∈ω,{Bs}s∈ω,
and {Cs}s∈ω, respectively. If A ≤wtt B with use bounded by h, and B <sst C
then A <sst C.



16 BARBARA F. CSIMA AND RICHARD A. SHORE

Proof. We wish to show that for all strictly increasing computable func-
tions f and g, for a.e. x, f(mA(g(x))) < mC(x). By Lemma 7.6, there is
a strictly increasing function p such that for all x, mA(x) ≤ p(mB(h(x))).
So for all x, f(mA(g(x))) ≤ f(p(mB(h(g(x))))). Since B <sst C, we have
p(f(mB(h(g(x))))) < mC(x) for a.e. x. So for a.e. x, f(mA(g(x))) < mC(x),
as desired. �

Lemma 7.8. Let A, B, and C be c.e. sets with enumerations {As}s∈ω,{Bs}s∈ω,
and {Cs}s∈ω, respectively. If A <sst B and B ≤wtt C then A <sst C.

Proof. We wish to show for all strictly increasing computable functions f
and g, for a.e. x, f(mA(g(x))) < mC(x). By Lemma 7.6, there is a strictly
increasing function p such that for all x,mB(x) ≤ p(mC(x)). SinceA <sst B,
p(f(mA(h(x)))) < mB(x) for a.e. x. Now since p is strictly increasing, this
gives f(mA(g(x))) < mC(x) for a.e. x as desired. �

These two lemmas show that <sst respects wtt-reducibility and so is well
defined on the wtt-degrees. �

We first show that the relation <sst is nontrivial.

Theorem 7.9. There exist c.e. sets A and B such A >sst B and B is
noncomputable.

Proof. We construct A and B to meet the requirements:
R〈i,j〉: ϕi and ψj total ⇒ (∀∞x)mA(x) > ϕi(mB(ψj(x))).
Ne: B 6= Φe.
Let Γl be spread out so that between Γl and Γl+1 there are guards [i, j, k]l

for 0 ≤ i, j, k ≤ l.
We will have numbers xs

0 < xs
1 < ... which may be enumerated into B for

the sake of Ne.
Stage 0: Begin with x0

m = m.
Stage s + 1: For the least e for which Φe(xs

e) ↓= 0 for some as yet
unsatisfied Ne, enumerate xs

e into B and declare Ne satisfied.
If ψj converges on Γl+2 for some l ≥ j for the first time at this stage,

reset all xs+1
e to be greater than s + 1 for unsatisfied e ≥ l. Declare that

the [i, j, 0]l will enter A if ϕi(s + 1) ↓. Let t1 < ... < tn denote the stages
greater than s when something less than or equal to s + 1 enters B. Note
that n ≤ l. If we find at a later stage that ϕi(tk) ↓, enumerate [i, j, k]l of A
at that stage.

Lemma 7.10. lims→∞ xs
e <∞.

Proof. xs+1
e 6= xs

e only if some ψj converged on Γl+2 for the first time at
stage s, with j ≤ l ≤ e. This can only happen finitely often. �

Lemma 7.11. The Ne are satisfied.

Proof. Immediate since the xs
e reach a limit. �

Lemma 7.12. The R〈i,j〉 are satisfied.



THE SETTLING-TIME REDUCIBILITY ORDERING 17

Proof. Suppose ϕi and ψj are total.
It suffices to show that for a.e. x, whenever some y ≤ ψj(x) is enumerated

into B at a stage s then some z ≤ x is enumerated into A at a stage t ≥ ϕi(s).
Suppose Γl+1 ≤ x < Γl+2 for some l ≥ max{i, j}. By our conventions,

ψj(x) ≤ ψj(Γl+2). At the stage when ψj(Γl+2) ↓, we appointed markers
[i, j, k]l < Γl+1 ≤ x ready to enter A, one for each possible future entrant of
B below ψj(Γl+2), and one in case there were no future entrants. �

�

Proof. Thus B is noncomputable and A >sst B as required. �

We now answer the question raised about <sst in [2] that asks, in this
stronger ordering, for the descending sequence requested by Weinberger and
Nabutovsky for their work in differential geometry. In fact, we prove a bit
more.

Theorem 7.13. Let P be a computable partial ordering on N with no infinite
ascending sequence. There exists a computable sequence {An} of c.e. sets
such that if m <P n then Am <sst An.

Proof. We must meet the following requirements:
R
〈m,n〉
〈i,j〉 : m <P n, ϕi and ψj total ⇒ (∀∞x)mAn(x) > ϕi(mAm(ψj(x))).

As in the previous theorem, we will be using markers and guards to help
construct the sets. For each set An that we build, we will use moveable
markers Γn

l with l ≥ n, and between each Γn
l and Γn

l+1 there will be guards
of the form [i, j, k]nl with 0 ≤ i, j ≤ l, 0 ≤ k < gn(l) to aid in meeting
the R requirements. Thus the number of guards between markers will be
(l+1)2gn(l), where gn(l) will be a uniformly computable function depending
on P . The markers and their guards will be moved at most finitely often,
and the only possible entrants of An will be the guards and markers. We
will maintain that if k < n then Γn

k < Γn
l .

Each marker Γn
l will have priority 〈n, l〉. So if some ψj(Γn

l+2) ↓ for j ≤ l,
markers of the form Γm

k with 〈m, k〉 > 〈n, l〉 and m <P n will be moved.
This means that each marker will be moved only finitely often, so eventually
will settle down. Also, each marker Γn

l will only have finitely many markers
(and hence finitely many possible entrants of sets) that it can’t move, and
so (since it knows about them in advance) can ensure that there are enough
guards between Γn

l and Γn
l+1 to accommodate them.

We now define a computable function h(〈m, k〉) bounding the number of
times marker Γm

k might be moved. We let h(〈m, k〉) = 0 if m 6<P n for all
〈n, l〉 < 〈m, k〉, since in such a situation Γm

k will never be moved. We then
inductively define

h(〈m, k〉) =
∑

〈n,l〉<〈m,k〉∧m<P n

(h(〈n, l + 2〉) + 1)(l + 1),



18 BARBARA F. CSIMA AND RICHARD A. SHORE

since the marker Γm
k can be moved only if ψj(Γn

l+2) ↓, where j ≤ l, 〈n, l〉 <
〈m, k〉 and m <P n. Note that h is computable since P has no infinite
ascending chain.

Now that we have h(〈m, k〉), we are ready to define the uniformly com-
putable gn(l). The function gn(l) represents the total number of possible
entrants of higher priority that can’t be moved when a convergence on Γn

l+2
is observed, plus the number of times Γn

l+2 might move. For each Γm
k that

can’t be moved, there are (k + 1)2gm(k) possible entrants, and Γm
k might

move h(〈m, k〉) many times. Note that if 〈m, k〉 = 〈n, l〉 then m = n and
m 6<P n. So we inductively define

gn(l) = h(〈n, l + 2〉) +
∑

〈m,k〉<〈n,l〉 and m<P n

((k + 1)2gm(k))h(〈m, k〉).

Stage 0: Spread out the markers Γn
l such that there is room for the

(l + 1)2gn(l) many guards of the form [i, j, k], 0 ≤ i, j ≤ l, 0 ≤ k < gn(l)
between Γn

l and Γn
l+1. Also ensure that all markers and guards are distinct,

so at most one ψj(Γn
l+2) ↓ at any given stage.

Stage s + 1: If, for j < l, ψj,s(Γn
l+2[s]) ↓, but ψj,s−1(Γn

l+2[s]) ↑, we say
(n, l, j) receives attention at stage s + 1. Reset all Γm

k with 〈m, k〉 > 〈n, l〉
and m <P n which have already been defined, and their corresponding
guards, to all be greater than s+ 1. That is, if a marker Γm

k is moved, the
guards between Γm

k−1 and Γm
k should all be moved. They should be moved

far enough that all the various markers and guards are on distinct numbers
not yet enumerated.

Let a be the number of previous stages where (n, l, j) received attention.
Note that 0 ≤ a < h(〈n, l + 2〉). Declare that the [i, j, a]nl will enter An if
ϕi(s + 1) ↓. That is, at the stage t when ϕi(s + 1) converges, enumerate
[i, j, a]nl [t] into An.

General Declaration: Recall that gn(l)− h(〈n, l+ 2〉) represents the total
number of possible entrants of higher priority that can’t be moved when
a convergence on Γn

l+2 is observed. Let s1 < ... < sr denote the stages,
s, with the following property. There is some j ≤ l and t < s such that
ψj,t(Γn

l+2[t]) ↓= ψj,s(Γn
l+2[s]) ↓, Γn

l+2[t] = Γn
l+2[s], and something of the form

[a, b, c]mk less than ψj(Γn
l+2[s]) enters Am,s for some 〈m, k〉 < 〈n, l+2〉, m <P

n. Note that r ≤ gn(l) − h(〈n, l + 2〉). If we find at some stage t′ that for
some i ≤ l, ϕi(sk) ↓, enumerate [i, j, h(〈n, l + 1〉) + k − 1]nl [t′] into An at
stage t′.

Lemma 7.14. The Γn
l reach a limit.

Proof. We have already computed that Γn
l can move at most h(〈n, l〉) times.

�

Lemma 7.15. The R〈m,n〉
〈i,j〉 are satisfied.

Proof. Suppose ϕi and ψj are total and m <P n.



THE SETTLING-TIME REDUCIBILITY ORDERING 19

It suffices to show that for a.e. x, whenever some y ≤ ψj(x) is enumerated
into Am at a stage s then some z ≤ x is enumerated into An at a stage
t ≥ ϕi(s).

Suppose Γn
l+1 ≤ x < Γn

l+2 for some l ≥ max{i, j}. By our conventions,
ψj(x) ≤ ψj(Γn

l+2). Suppose y ≤ ψj(x) was enumerated into Am at stage
s. Then y ≤ ψj(Γn

l+2). Case 1: y ≤ ψj,s(Γn
l+2[s]) ↓. In this case, a marker

[i, j, k]nl [t] < Γn
l+1[t] ≤ Γn

l+1 ≤ x was enumerated into An at the stage t when
ϕi(s) converged. Case 2: ψj,s(Γn

l+2[s]) ↑ or y > ψj,s(Γn
l+2[s]) ↓. In this case,

there must have been a stage t > s such that y ≤ ψj,t(Γn
l+2[t]) ↓, and at

stage t, we would have had a number [i, j, a]nl [t′] ≤ Γn
l [t′] ≤ Γn

l ≤ x which
would be enumerated into An at the stage t′ when ϕi(t) converged, which
by our conventions was after the stage when ϕi(s) converged. �

This completes the proof of the theorem. �

Now although Theorem 7.13 is phrased in terms of a partial ordering P ,
we have not done anything to preserve the nonordering facts in P . Thus
essentially what is proven is that every countable linear ordering with no
infinite ascending sequences (i.e. those of the form α∗ for a countable ordinal
α) can be embedded in Esst. We expect that further work along these lines
should extend the result to all linear orderings. Adding the requirements
to preserve nonorder needs additional types of arguments. We might also
expect that the stronger result that makes Ai �T Aj if i ≮P j and i 6= j is
also true. Csima and Soare do this for the linear ordering Z in [2] and a tree
argument should produce the same extension of Theorem 3.1 embedding
every countable ordering in Est. We thus close with a conjecture.

Conjecture 7.16. For every countable partial ordering P there is an em-
bedding into the c.e. sets taking i ∈ P to Ai that is order preserving with
respect to both <sst and <T , i.e. if i <P j, then Ai <sst Aj (and so, a
fortiori, Ai ≤T Aj) and if i ≮P j and i 6= j, then Ai �T Aj (and so, a
fortiori, Ai ≮sst Aj). (Note that if i 6= j, then either i ≮P j or j ≮P i and
so Ai 6≡TAj .)

References

[1] B. F. Csima, Applications of Computability Theory to Prime Models and Differential
Geometry, Ph.D. thesis, The University of Chicago, 2003.

[2] B. F. Csima and R. I. Soare, Computability Results Used in Differential Geometry,
Journal of Symbolic Logic, to appear.

[3] A. Nabutovsky and S. Weinberger, The Fractal Nature of Riem/Diff I, Geometrica
Dedicata 101 (2003), 1–54.

[4] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-
Hill, New York, 1967.

[5] R. I. Soare, Recursively Enumerable Sets and Degrees: A Study of Computable Func-
tions and Computably Generated Sets, Springer-Verlag, Heidelberg, 1987.

[6] R. I. Soare, Computability theory and differential geometry, Bull. Symb. Logic 10
(2004), 457–486.



20 BARBARA F. CSIMA AND RICHARD A. SHORE

[7] R. I. Soare, Computability Theory and Applications, Springer-Verlag, Heidelberg, to
appear.

[8] S. Weinberger, Computers, rigidity and moduli. The large scale fractal geometry of
Reimannian moduli space, M.B. Porter Lectures, Princeton UNiversity Press, Prince-
ton NJ, 2005.

Department of Pure Mathematics, University of Waterloo, Waterloo, ON,
Canada N2L 3G1

URL: www.math.uwaterloo.ca/∼csima
E-mail address: csima@math.uwaterloo.ca

Department of Mathematics, Cornell University, Ithaca NY 14853
URL: http://www.math.cornell.edu/∼shore/
E-mail address: shore@math.cornell.edu


