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This paper introduces several new classes of mathematical structures that have close con-

nections with physics and with the theory of dynamical systems. The most general of

these structures, called generalized stochastic systems, collectively encompass many impor-

tant kinds of stochastic processes, including Markov chains and random dynamical systems.

This paper then states and proves a new theorem that establishes a precise correspondence

between any generalized stochastic system and a unitarily evolving quantum system. This

theorem therefore leads to a new formulation of quantum theory, alongside the Hilbert-space,

path-integral, and quasiprobability formulations. The theorem also provides a first-principles

explanation for why quantum systems are based on the complex numbers, Hilbert spaces,

linear-unitary time evolution, and the Born rule. In addition, the theorem suggests that

by selecting a suitable Hilbert space, together with an appropriate choice of unitary evolu-

tion, one can simulate any generalized stochastic system on a quantum computer, thereby

potentially opening up an extensive set of novel applications for quantum computing.

I. INTRODUCTION

In the development of physical theories, it sometimes turns out that existing definitions are too

conceptually limiting, and that more flexible definitions are needed. Working with more flexible

definitions at a higher level of abstraction or generality may make it easier to discover new connec-

tions or prove new theorems, which would then also apply down at the lower level of the original

definitions.

This paper will argue that by appropriately generalizing standard definitions of dynamical

systems, one can obtain novel classes of mathematical structures that encompass an extensive

array of physically important models. As with a traditionally defined dynamical system, each such

mathematical structure describes a physical system moving deterministically or stochastically along

some trajectory in a configuration space, albeit with a more general set of laws than according to

standard definitions. (For pedagogical treatments of the standard theory of dynamical systems,

see, for instance, [1–3].)

This paper also states and proves a new theorem showing that despite being based on trajecto-

ries in configuration spaces, the newly introduced class of generalized stochastic systems actually

includes all quantum systems. As a consequence, this stochastic-quantum theorem offers a more

conceptually transparent way to understand quantum systems, with superpositions no longer re-

garded as literal blends of physical states. The theorem also provides a first-principles explanation
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for features of quantum theory that are usually taken to be axiomatic, including Hilbert spaces

over the complex numbers, linear-unitary evolution, and the Born rule.

Seen from another point of view, this stochastic-quantum correspondence yields an alterna-

tive way to formulate quantum theory, in the language of trajectories unfolding stochastically

in configuration spaces. This alternative formulation is distinct from the traditional Hilbert-space

formulation [4, 5], the path-integral formulation [6–8], and the quasi-probability formulation [9, 10].

From a more practical perspective, turning this stochastic-quantum correspondence around

suggests that unitarily evolving quantum systems can be put to work simulating a very broad class

of non-Markovian stochastic processes, thereby potentially opening up an extensive suite of new

applications for quantum computers.

Section II begins by defining deterministic generalizations of dynamical systems, followed by

the introduction of important distinctions between indivisible, divisible, and Markovian dynamics.

Section III provides a generalized definition of a system with stochastic laws, shows how to represent

such a generalized stochastic system in the formalism of linear algebra, describes connections

between this work and the existing research literature, defines the relationship between a composite

system and its subsystems, and introduces the crucial notion of a unistochastic system. Section IV

states the stochastic-quantum theorem, whose proof is this paper’s primary goal, and then discusses

some important corollaries and provides a simple example of the theorem in practice. Section V lays

out the theorem’s proof, which entails explicitly constructing the claimed correspondence between

stochastic systems and quantum systems along the way. Section VI concludes the paper with a

brief discussion of future

II. DETERMINISTIC SYSTEMS

A. Generalized Dynamical Systems

Dynamical systems are abstract mathematical structures that usefully model many deterministic

physical processes. According to the standard definition [1–3], a dynamical system consists of a

map representing some kind of evolution law that can be repeatedly applied to the elements of

some set of states. A dynamical system is usually assumed to be divisible, in the sense that one can

‘divide up’ its evolution law over any time duration into well-defined evolution laws that describe

intermediate time durations. The more general case would be an indivisible dynamical system that

might lack this feature.

The terms ‘divisible’ and ‘indivisible’ for dynamical laws are remarkably new. The terminology

appears to be due to Wolf and Cirac, who introduced it in a 2008 paper [11] on quantum channels.1

To accommodate the eventual possibility of indivisible evolution, this paper will define a gen-

eralized dynamical system to mean a tuple of the form

(X , T , f) (1)

1 Note that this terminology is unrelated to the much older concept of infinite divisibility, which refers to a probability
distribution that can be expressed as the probability distribution of a sum of any integer number of independent
and identically distributed random variables.
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that consists of the following data.

• The symbol X denotes a set that will be called the generalized dynamical system’s state

space (or phase space), and whose individual elements i ∈ X denote the system’s (allowed)

states.

• Note that X may or may not be a finite set, and it may or may not involve additional

structure in its definition, such as measure-theoretic structure or a vector-space structure.

For the purposes of this paper, no such additional structure will be specified or assumed.

More broadly, for reasons of brevity and simplicity, this paper will entirely set aside measure-

theoretic considerations that arise for the case of uncountable sets.

• The symbol T denotes a set of times t ∈ T , where T may or may not be isomorphic to a

subset of the real line R under addition.

• The symbol f denotes a map

f : X × T → X (2)

that will be called the system’s dynamical map. This dynamical map f takes as inputs any

state i and any time t, and outputs a state f(i, t) ∈ X :

i, t 7→ f(i, t) ∈ X [for all i ∈ X , t ∈ T ]. (3)

• Fixing the time t turns f into a time-dependent dynamical map

ft : X → X (4)

defined by

i 7→ ft(i) ≡ f(i, t) [for all i ∈ X ]. (5)

• Without any important loss of generality, the set of times T will be assumed to include an

element denoted by 0 and called the initial time. It will be further assumed that at the

initial time 0, the time-dependent dynamical map ft trivializes to the identity map idX on

X :

f0 = idX , or f0(i) = i [for all i ∈ X ]. (6)

• One can regard the argument i appearing in the expression ft(i) as an initial state of the

system at the initial time 0, with the time-dependent dynamical map ft then describing the

evolution of that state i from the initial time 0 to the time t.
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• Given a fixed state i, the set of states

{ft(i) | t ∈ T } ⊂ X (7)

describes the orbit, or trajectory, of the initial state i through the system’s state space X
according to the dynamical map f .

In many applications, one takes the set of times T to be a semigroup, meaning that the defini-

tion of T includes an associative binary operation ⋆ (which is often denoted instead by + in the

commutative case):

t, t′ 7→ t ⋆ t′ ∈ T
[
for all t, t′ ∈ T

]
, (8)

(t ⋆ t′) ⋆ t′′ = t ⋆ (t′ ⋆ t′′)
[
for all t, t′, t′′ ∈ T

]
. (9)

One usually also takes the initial time 0 to be the identity element under this binary operation,

0 ⋆ t = t ⋆ 0 = t [for all t ∈ T ], (10)

in which case T becomes a monoid, meaning a semigroup with an identity element. If, furthermore,

every time t has an inverse t′ such that t ⋆ t′ = t′ ⋆ t = 0, then T becomes a group.

B. Divisible Dynamical Systems

In the most general case, a generalized dynamical system will not provide a way to evolve a

system from a non-initial time t′ ̸= 0 to another time t. A generalized dynamical system will also

generically lack any means of ‘dividing up’ the evolution from 0 to t ̸= 0 into well-defined forms of

evolution over intermediate time durations between 0 and t (even assuming that the set of times T
has a notion of ordering). To make contact with the kinds of dynamical systems considered more

widely in the research literature, it will therefore be necessary to introduce a somewhat less general

class of mathematical structures.

This paper will define a divisible dynamical system to be a tuple of the form

(X , T , g). (11)

• Here X is a state space and T is a set of times forming a monoid, whose identity element 0

plays the role of an initial time, as usual.

• The symbol g denotes a map

g : X × T 2 → X (12)

that will be called the divisible dynamical system’s transition map. This transition map g
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takes as inputs any state i and any pair of times t, t′, and outputs a state g(i, (t, t′)) ∈ X :

i, t, t′ 7→ g
(
i,
(
t, t′

))
∈ X (13)[

for all i ∈ X , t, t′ ∈ T
]
.

The transition map g here should be understood as describing the evolution or transition of

the state i at the time t′ to the state g(i, (t, t′)) at the time t.

• Fixing two times t, t′ turns g into a time-dependent transition map

gt←t′ : X → X (14)

defined by

i 7→ gt←t′(i) ≡ g
(
i,
(
t, t′

))
(15)

[for all i ∈ X ].

This time-dependent transition map will be required to trivialize to the identity map idX on

X when t′ = t,

gt←t = idX [for all t ∈ T ], (16)

or gt←t(i) = i [for all i ∈ X , t ∈ T ],

as well as satisfy the divisibility condition

gt←t′′ = gt←t′ ◦ gt′←t′′ (17)[
for all t, t′, t′′ ∈ T

]
,

where ◦ denotes function composition. The divisibility condition means that the time-

dependent transition map gt←t′′ factorizes or ‘divides up’ into a part gt′←t′′ that carries

out the evolution from t′′ to t′, followed by a part gt←t′ that carries out the evolution from

t′ to t.

• Choosing the time t′ in the time-dependent transition map gt←t′ to be the initial time 0

naturally defines a time-dependent dynamical map (4),

ft ≡ gt←0 [for all t ∈ T ], (18)

which then also defines an overall dynamical map f : X ×T → X according to f(i, t) ≡ ft(i).

The trivialization condition g0←0 = idX from (16) ensures that ft satisfies the corresponding

trivialization condition f0 = idX in (6). It follows that every divisible dynamical system

is, in particular, a generalized dynamical system, one that includes the additional structure

that corresponds to having a transition map g.



6

• Meanwhile, setting t′′ = 0 in the divisibility condition (17) on the transition map g yields

the subsidiary divisibility condition

ft = gt←t′ ◦ ft′
[
for all t, t′ ∈ T

]
, (19)

which means that the time-dependent dynamical map ft ‘divides up’ into a part ft′ that

carries out the evolution from the initial time 0 to t′, followed by a part gt←t′ that carries

out the evolution from t′ to t.

• It also follows from the subsidiary divisibility condition (19), together with the trivialization

condition f0 = idX in (6), that the time-dependent dynamical map ft has a well-defined

inverse f−1t given by

f−1t = g0←t [for all t ∈ T ]. (20)

That is, a divisible dynamical system’s time-dependent dynamical maps ft are invertible.2

C. Markovian Dynamical Systems

A divisible dynamical system will be called memoryless, or Markovian, if it has the special

property

gt⋆t′←t′ = gt←0

[
for all t, t′ ∈ T

]
. (21)

Equivalently, using ft ≡ gt←0 from (18), one can write this special property as

gt⋆t′←t′ = ft
[
for all t, t′ ∈ T

]
. (22)

It then follows immediately from the subsidiary divisibility condition (19) that the dynamical map

f : X × T → X gives a semigroup action of the set of times T on the state space X , in the sense

that the semigroup operation ⋆ on T is mapped to function composition:

ft⋆t′ = ft ◦ ft′
[
for all t, t′ ∈ T

]
. (23)

This equation is an example of Markovianity, or a Markov property. Roughly speaking, a Markov

property implies that time evolution depends only on duration, and not on history.

Notice that the Markov property (23) is phrased directly in terms of a dynamical map f , so

it can be imposed on a generalized dynamical system (X , T , f), without any need to invoke a

transition map g. In that case, it also follows that there is no longer a meaningful distinction

between a generalized dynamical system (X , T , f) and a divisible dynamical system (X , T , g). As

2 If the set of times T has a well-defined ordering relation, and if one modifies the definition of a divisible dynamical
system (X , T , g) by restricting the transition map (12) so that gt←t′ is only defined when t′ comes before t according
to that ordering relation, then the arguments leading to (20) will break down. In that case, the time-dependent
dynamical maps ft will not necessarily have inverses.
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such, if the Markov property (23) is imposed, then the resulting mathematical structure will simply

be called a Markovian dynamical system.

What most references call a ‘dynamical system’ corresponds to what this paper would call a

Markovian dynamical system. That is, a dynamical system, without any further qualifiers, is a

tuple (X , T , f) for which X is a state space, T is a set of times forming a monoid, and f : X×T → X
is a dynamical map satisfying the Markov property (23). It follows that a generalized dynamical

system (1), as befits its name, really is a generalization of the kinds of dynamical systems that are

usually considered in textbooks, in the research literature, and in many applications.

In the most general cases, however, generalized dynamical systems will not satisfy the Markov

property (23). Nor will it necessarily be possible to obtain a given generalized dynamical system

(X , T , f) by starting with a divisible dynamical system (X , T , g) and then defining a dynamical

map f according to ft ≡ gt←0 for all times t, as in (18). Indeed, in light of the inversion formula

(20), the absence of any inverse time-dependent dynamical maps f−1t would present an immediate

obstruction to deriving a dynamical map f from a transition map g.

A generalized dynamical system (X , T , f) that cannot be derived from a divisible dynamical

system (X , T , g) will lack the structure needed to divide up its time evolution into intermediate

durations, and will therefore be called an indivisible dynamical system.

III. STOCHASTIC SYSTEMS

A. Generalized Stochastic Systems

This paper will be primarily concerned with a mathematical structure that replaces the deter-

ministic behavior of a generalized dynamical system (1) with probabilistic, or stochastic, behavior.

A generalized stochastic system will be defined to mean a tuple of the form

(C, T ,Γ, p,A) (24)

that consists of the following data.

• The symbol C will denote a set called the system’s configuration space, and the elements of C
will be called the system’s (allowed) configurations. Configurations and configuration spaces

will play an analogous role for generalized stochastic systems that states and state spaces

play for generalized dynamical systems.

• The reason for switching the terminology from ‘states’ to ‘configurations’ is conceptual. In

applications of the theory of dynamical systems to physical situations, such as in classical

Hamiltonian mechanics, the notion of a ‘state’ is often taken to include rates of change or

momenta in addition to configurations, because defining a ‘state’ in that way can make it

possible to obtain deterministic laws in the form of first-order differential equations. For a

generalized stochastic system, by contrast, the system’s probabilistic laws may mean that

rates of change and momenta are not well-defined in the absence of specifying a trajectory.
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In that case, the only available notion of a ‘state’ is limited to the more rudimentary notion

of a ‘configuration.’

• For the purposes of this paper, C will be assumed to be a finite set, with some (possibly

very large) number N of elements denoted by 1, 2, 3, . . . , N , and labeled abstractly by Latin

letters i, j, . . . . By an abuse of notation, the symbol C will sometimes be used to refer to the

generalized stochastic system as a whole.

• The symbol T will again denote a set of times, including a time 0 that will be called the

system’s initial time.

• The symbol Γ will denote a map

Γ : C2 × T → [0, 1] ⊂ R (25)

that will be called the system’s stochastic map, where [0, 1] denotes the closed unit interval

0 ≤ x ≤ 1. Each value of this stochastic map will be labeled as

Γij(t) ≡ Γ((i, j), t) (26)

[for all i, j ∈ C, t ∈ T ],

and will be called the conditional probability or transition probability p(i, t|j, 0) for the system
to be in its ith configuration at the time t, given that the system is in its jth configuration

at the initial time 0:

Γij(t) ≡ p(i, t|j, 0) ∈ [0, 1] (27)

[for all i, j ∈ C, t ∈ T ].

• The stochastic map Γ will be required to satisfy the standard normalization condition

N∑
i=1

Γij(t) =

N∑
i=1

p(i, t|j, 0) = 1 (28)

[for all j ∈ C, t ∈ T ],

as well as the initial condition

Γij(0) ≡ δij ≡

1 for i = j,

0 for i ̸= j,
(29)

where δij is the usual Kronecker delta.

• The symbol p will denote a map

p : C × T → [0, 1] ⊂ R (30)
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that will be called the system’s probability distribution. Each value of this map will be labeled

as

pi(t) ≡ p(i, t) ∈ [0, 1] (31)

[for all i ∈ C, t ∈ T ],

and will be called the standalone probability for the system to be in its ith configuration at

the time t.

• Only the standalone probabilities p1(0), . . . , pN (0) at the initial time 0 will be taken to be

freely adjustable, subject to the standard normalization condition

N∑
j=1

pj(0) = 1. (32)

The standalone probabilities at every other time t will be assumed to be defined by the

following Bayesian marginalization condition:

pi(t) ≡
N∑
j=1

Γij(t)pj(0) (33)

=
N∑
j=1

p(i, t|j, 0)pj(0)

[for all i ∈ C, t ∈ T ].

The normalization condition (28) on the stochastic map Γ and the normalization condition

(32) on the standalone probabilities at the initial time 0 then together ensure that the

probability distribution p satisfies the standard normalization condition more generally:

N∑
i=1

pi(t) = 1 [for all t ∈ T ]. (34)

• Note that the definition of the stochastic map Γ is independent of the choice of standalone

probabilities p1(0), . . . , pN (0) at the initial time 0. That is, Γ can be freely adjusted indepen-

dently of those initial standalone probabilities. Importantly, the Bayesian marginalization

condition (33) therefore defines a linear relationship between the standalone probabilities

p1(0), . . . , pN (0) at the initial time 0 and the standalone probabilities p1(t), . . . , pN (t) at any

other time t. In the work ahead, it will be argued that this linear relationship is ultimately

responsible for the linearity of time evolution in quantum theory.

• The stochastic map Γ will not be assumed to have anything like a Markov or divisibility

property. More precisely, no assumption will be made that given any pair of times t, t′, there
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will exist a time t′′ such that the following Markov property holds:

Γij(t) =
N∑
k=1

Γik

(
t′′
)
Γkj

(
t′
)

(35)

[for all i, j ∈ C].

Nor will it be assumed that Γ satisfies even the weaker divisibility condition that for any pair

of times t, t′, there exists a set of real-valued, non-negative quantities Xik ≥ 0 for which3

N∑
i=1

Xij = 1 and Γij(t) =

N∑
k=1

XikΓkj

(
t′
)

(36)

[for all i, j ∈ C].

That is, a generalized stochastic system will generically be non-Markovian and indivisible,

in a sense that parallels the notion of indivisibility for a generalized dynamical system, as

introduced earlier in this paper.

• This notion of non-Markovianity represents a distinct way to generalize the Markovian case,

as compared with most forms of non-Markovianity described in textbooks and in the research

literature. According to those more traditional forms of non-Markovianity, one assumes that

the set of times T has an ordering relation, and one further assumes the existence of higher-

order conditional probabilities p(i, t|j1, t1; j2, t2; . . . ) that are conditioned on arbitrarily many

times t1, t2, . . . . From that more traditional standpoint, the system is Markovian if and

only if the latest conditioning time t1 always screens off all the earlier conditioning times

t2, . . . , so that p(i, t|j1, t1; j2, t2; . . . ) = p(i, t|j1, t1). The definition of a generalized stochastic

system presented in this paper does not assume the existence of such higher-order conditional

probabilities in the first place.

• The symbol A will denote a commutative algebra of maps of the form

A : C × T → R (37)

under the usual rules of function arithmetic, and will be called the system’s algebra of random

variables. The individual values of each random variable A ∈ A will be labeled as

ai(t) ≡ A(i, t) ∈ R [for all i ∈ C, t ∈ T ]. (38)

Each such value ai(t) will be called the magnitude of the random variable A when the

system is in its ith configuration at the time t. No assumption will be made here that these

magnitudes are all distinct, even at any fixed time t.

3 Note that if the quantities Γkj(t
′) are regarded as forming an N × N stochastic matrix, a term to be defined

shortly, then the inverse matrix, if it exists, will always have negative entries unless both matrices are permutation
matrices. It follows that one cannot safely define the non-negative quantities Xij by invoking inverse matrices.
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• For the purposes of this paper, the algebra of random variables A will always be taken to

be maximal, in the sense of containing every well-defined map of the form (37).

• Fixing the time t, the expectation value ⟨A(t)⟩ of a random variable A will denote its statis-

tical average according to the probability distribution p at the time t:

⟨A(t)⟩ ≡
N∑
i=1

ai(t)pi(t). (39)

B. Ingredients from Linear Algebra

Given a generalized stochastic system (C, T ,Γ, p,A), with C a configuration space of finite

integer size N , it will be convenient to introduce some formalism from linear algebra.

• Fixing the time t, let p(t), called the system’s (time-dependent) probability vector, denote

the N × 1 column vector whose ith entry is the ith standalone probability pi(t):

p(t) ≡


p1(t)
...

pN (t)

. (40)

• Again fixing the time t, let Γ(t), called the system’s (time-dependent) transition matrix,

denote the N × N matrix for which the entry in the ith row, jth column is the transition

probability Γij(t) ≡ p(i, t|j, 0):

Γ(t) ≡


Γ11(t) Γ12(t)

Γ21(t)
. . .

ΓNN (t)



=


p(1, t|1, 0) p(1, t|2, 0)

p(2, t|1, 0) . . .

p(N, t|N, 0)

. (41)

It follows that for any time t, the transition matrix Γ(t) is a (column) stochastic matrix in the

mathematical sense, meaning that its entries are all non-negative real numbers,

Γij(t) ≥ 0 [for all i, j ∈ C, t ∈ T ], (42)

and that its columns each sum to 1, as required in (28). The initial condition (29) on the stochastic

map Γ then becomes the statement that the transition matrix Γ(0) at the initial time 0 is just the
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N ×N identity matrix 1:

Γ(0) = 1 ≡


1 0

0
. . .

1

. (43)

Observe that the Bayesian marginalization condition (33) naturally takes the form of matrix mul-

tiplication:

p(t) = Γ(t)p(0) [for all t ∈ T ]. (44)

C. Connections with Other Constructions

There is a definite sense in which a generalized stochastic system (C, T ,Γ, p,A), as introduced in

(24), provides a probabilistic extension of a generalized dynamical system (X , T , f), as introduced

in (1). Indeed, if the stochastic map Γ : C2 × T → [0, 1] from (25) outputs only the trivial

probabilities 1 and 0, then Γ is effectively deterministic. In that case, one can naturally set X ≡ C
and define a dynamical map f : X × T → X according to

f(j, t) = i if and only if Γ((i, j), t) = 1 (45)

[for all i, j ∈ X , t ∈ T ].

A generalized stochastic system also naturally generalizes a mathematical structure called a

stochastic dynamical system, or random dynamical system [12, 13].

• The definition of a random dynamical system starts with what this paper would call a

generalized dynamical system (X , T , f), with T a monoid, and replaces the single dynamical

map f with a probabilistic family or ensemble of dynamical maps {fω |ω ∈ Ω} that are

indexed by a point ω in some sample space Ω. That is, a randomly sampled point ω in Ω

picks out an entire dynamical map fω, as a whole.

• For any randomly sampled point ω and any fixed time t, one can define a map

fω,t : X → X (46)

by

i 7→ fω,t(i) ≡ fω(i, t) [for all i ∈ X ]. (47)

A random dynamical system is then assumed to satisfy an initial condition that generalizes

(6),

fω,0 = idX [for all ω ∈ Ω], (48)
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as well as a Markov property that generalizes (23),

fω′,t⋆t′ = fθ(ω′,t′),t ◦ fω′,t′ (49)[
for all ω′ ∈ Ω, t, t′ ∈ T

]
.

Here θ : Ω×T → Ω is a map that is part of the definition of the random dynamical system,

and specifies a deterministic rule for updating the sample point ω′ and the dynamical map

fω′ to accommodate replacing the original initial time 0 with the effectively new initial time

t′. That is, θ is necessary to account for any (purportedly deterministic) evolution in the

underlying source of randomness itself.

• It follows from the foregoing definitions that the conditional probability p(i, t|j, 0) for the

system to be in its ith state at the time t, given that the system is in its jth state at the

initial time 0, is obtained by adding up the probabilities for all the points ω in the sample

space Ω whose corresponding dynamical maps fω take the state j at the initial time 0 and

yield the state i at the final time t:

p(i, t|j, 0) = probability({ω ∈ Ω | fω,t(j) = i}) (50)

[for all i, j ∈ X , t ∈ T ].

• Notice that a random dynamical system assigns a well-defined probability to any set of

dynamical maps {fω |ω ∈ Ω′} that corresponds to a measurable subset Ω′ of the sample

space Ω. Thus, after fixing a state j at the initial time 0, a random dynamical system

assigns a well-defined probability to any set of trajectories of the form {{fω,t(j) | t ∈ T } |ω ∈
Ω′}. (The nested subset notation here is just intended to make clear that this expression

refers to an indexed set of indexed sets.) In particular, by generalizing the right-hand

side of (50) to impose more conditions on the system’s dynamical maps, one can define

conditional probabilities p(i1, t1; i2, t2; . . . |j, 0) that involve arbitrarily many times. Random

dynamical systems therefore contain far more information than the generalized stochastic

systems defined in this paper, meaning that a generalized stochastic system indeed represents

a less constrained, more general kind of mathematical structure.

In a sense, the absolutely most general kind of stochastic mathematical structure is a stochastic

process, which essentially requires only the specification of a state space X , a set of times T , an

initial probability distribution p, and a set of one or more time-dependent random variables A.

(See [14–17] for textbook treatments.) Importantly, the definition of stochastic process lacks the

specification of a dynamical law. By requiring a dynamical law in the form of a stochastic map Γ,

a generalized stochastic system (C, T ,Γ, p,A) is not quite as general as a stochastic process, but

will still be general enough to encompass a large class of physical and mathematical models.

In particular, one can regard any Markov chain as a special case of a generalized stochastic

system. The starting place is to assume that the set of times T is isomorphic to the integers,

T ∼= Z, with each time t = n δt an integer number n ∈ Z of steps of some fixed, elementary time
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scale δt. One then further assumes that for each integer n, the time-dependent transition matrix

Γ(n δt) originally defined in (41) can be expressed as the nth power of the transition matrix Γ(δt)

that implements the evolution for just the first time step δt:

Γ(n δt) = [Γ(δt)]n [for all n ∈ Z]. (51)

More broadly, a generalized stochastic system can therefore be understood as a kind of non-

Markovian generalization of a Markov chain.

As this paper will also show, the class of generalized stochastic systems essentially includes all

quantum systems as well.

D. Composite Systems and Subsystems

Introducing a notation of primes and tildes now to distinguish between specific generalized

stochastic systems, a generalized stochastic system
(
C̃, T̃ , Γ̃, p̃, Ã

)
will be called a composite system

if its configuration space C̃ is naturally expressible as a nontrivial Cartesian product of two sets C
and C′:

C̃ = C × C′. (52)

A composite system has the following salient features.

• Letting N denote the size of C, and letting N ′ denote the size of C′, the composite system’s

configuration space C̃ has size Ñ ≡ NN ′.

• Labeling the elements of C by unprimed Latin letters i, j, . . . , and labeling the elements of C′

by primed Latin letters i′, j′, . . . , the composite system’s stochastic map Γ̃ : C̃2 × T̃ → [0, 1]

has individual values that will be denoted by

Γ̃ii′,jj′(t) ≡ Γ̃
(((

i, i′
)
,
(
j, j′

))
, t
)

≡ p̃
((
i, i′

)
, t|

(
j, j′

)
, 0
)

(53)

[for all i, j ∈ C, i′, j′ ∈ C′, t ∈ T̃ ].

The normalization condition (28) on the stochastic map Γ̃ takes the form

N∑
i=1

N ′∑
i′=1

Γ̃ii′,jj′(t) = 1 (54)

[for all j ∈ C, j′ ∈ C′, t ∈ T̃ ].

• The composite system’s probability distribution p̃ : C̃ × T̃ → [0, 1] has individual values at
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any fixed time t that will be denoted by

p̃ii′(t) ≡ p
((
i, i′

)
, t
)

(55)

[for all i ∈ C, i′ ∈ C′, t ∈ T̃ ].

The normalization condition (34) on the probability distribution p̃ takes the form

N∑
i=1

N ′∑
i′=1

p̃ii′(t) = 1 [for all t ∈ T̃ ], (56)

and the Bayesian marginalization condition (33) becomes the definition

p̃ii′(t) ≡
N∑
j=1

N ′∑
j′=1

Γ̃ii′,jj′(t)p̃jj′(0) (57)

[for all i ∈ C, i′ ∈ C′, t ∈ T̃ ].

Given a composite system (C̃, T̃ , Γ̃, p̃, Ã) with configuration space C̃ = C × C′, as in (52), the

composite system’s set of times T̃ trivially defines two sets of times T and T ′ according to

T ≡ T ′ ≡ T̃ . (58)

Meanwhile, the composite system’s probability distribution p̃ defines two probability distributions

p : C × T → [0, 1] and p′ : C′ × T ′ → [0, 1] according to the respective marginalization formulas

pi(t) ≡
N ′∑
i′=1

p̃ii′(t) [for all i ∈ C, t ∈ T ], (59)

p′i′(t) ≡
N∑
i=1

p̃ii′(t) [for all i′ ∈ C′, t ∈ T ′]. (60)

These two probability distributions p and p′ do not necessarily turn C and C′ into generalized

stochastic systems of their own, in the sense of (24), due to the generic lack of well-defined stochastic

maps Γ : C2×T → [0, 1] and Γ′ : C′2×T ′ → [0, 1]. Indeed, in place of the Bayesian marginalization

condition (33), one instead has the relations

pi(t) ≡
N ′∑
i′=1

N∑
j=1

N ′∑
j′=1

Γ̃ii′,jj′(t)p̃jj′(0) (61)

[for all i ∈ C, t ∈ T ],

p′i′(t) ≡
N∑
i=1

N∑
j=1

N ′∑
j′=1

Γ̃ii′,jj′(t)p̃jj′(0) (62)

[for all i′ ∈ C′, t ∈ T ′].
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The two sets C and C′ will be called the configuration spaces of subsystems of the composite system

(C̃, T̃ , Γ̃, p̃, Ã).

E. Unistochastic Systems

Recall that an N ×N matrix U with complex-valued entries is called unitary if it satisfies

U †U = UU † = 1. (63)

Here † denotes the adjoint operation, meaning complex conjugation combined with the transpose

operation.

A stochastic matrix X is called unistochastic if each of its entries Xij is the modulus-squared

|Uij |2 of the corresponding entry Uij of a unitary matrix U :

X =


X11 X12

X21
. . .

XNN

 =


|U11|2 |U12|2

|U21|2
. . .

|UNN |2

. (64)

The study of unistochastic matrices was initiated in a 1954 paper [18] by Horn, who originally

called them ‘ortho-stochastic matrices.’ Unistochastic matrices were given their modern name in

1989 by Thompson [19, 20], and today orthostochastic matrices refer to the special case in which

U can be taken to be a real orthogonal matrix, meaning a unitary matrix with entries that are all

real-valued.

Every unistochastic matrix is doubly stochastic, or bistochastic, meaning that its columns and

rows each sum to 1.4 All 2× 2 doubly stochastic matrices are unistochastic,5 but this equivalence

does not extend beyond the 2 × 2 case.6 Again beyond the 2 × 2 case, not every unistochastic

matrix is orthostochastic.7

A generalized stochastic system (C, T ,Γ, p,A) whose stochastic map Γ defines a unistochastic

matrix Γ(t) at every time t will be called a unistochastic system. One of the main goals of this

paper will be to establish that the study of generalized stochastic systems essentially reduces to

the study of unistochastic systems, which will also turn out to correspond to unitarily evolving

quantum systems.

4 Proof:
∑

i |Vij |2 =
∑

i VijVij =
[
V †V

]
jj

= 1 and
∑

j |Vij |2 =
∑

j VijVij =
[
V V †

]
ii

= 1, where bars denote

complex conjugation. QED
5 Proof: Every 2 × 2 doubly stochastic matrix is of the form

(
x 1−x

1−x x

)
, where 0 ≤ x ≤ 1, and the matrix( √

x −
√
1−x√

1−x
√
x

)
is easily seen to be unitary. QED

6 For example, the 3× 3 doubly stochastic matrix 1
2

(
0 1 1
1 0 1
1 1 0

)
is provably not unistochastic.

7 For example, the 3 × 3 matrix 1√
3

(
1 1 1
1 z z2

1 z2 z

)
is unitary for z = exp(2πi/3), so the 3 × 3 matrix 1

3

(
1 1 1
1 1 1
1 1 1

)
is

unistochastic. But this unistochastic matrix is not orthostochastic, because there does not exist a set of three
mutually orthogonal 3× 1 column vectors that feature only 1s and −1s as entries.
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IV. THE STOCHASTIC-QUANTUM THEOREM

A. Statement of the Theorem

With all these preliminaries now in place, this paper’s next major goal will be to prove the

following theorem, which is a new result.

The Stochastic-Quantum Theorem

Every generalized stochastic system
can be regarded as a subsystem of a

unistochastic system.

(65)

Remarkably, to study the class of generalized stochastic systems, this theorem implies that it

suffices to restrict one’s attention to the subclass of unistochastic systems.

B. Corollaries of the Theorem

The proof of the stochastic-quantum theorem (65) will involve the construction of a represen-

tation of the given generalized stochastic system in the formalism of Hilbert spaces, and will show

that every generalized stochastic system corresponds to a unitarily evolving quantum system on

a Hilbert space. This paper will therefore establish an important new correspondence between

generalized stochastic systems and quantum systems, and thereby turn some of the puzzling ax-

iomatic ingredients of quantum theory—the complex numbers,8 Hilbert spaces, linear-unitary time

evolution, and the Born rule in particular—into the output of a theorem.

One can also read this stochastic-quantum correspondence in the other direction, as the state-

ment that all generalized stochastic systems can be modeled in terms of unitarily evolving quantum

systems. From this perspective, unitarily evolving quantum systems actually represent the most

general way to model a system with stochastic dynamical laws.

C. A Simple Example

The notion of embedding a generalized stochastic system into a unistochastic system does not

always require an elaborate construction. As a simple example, consider a discrete Markovian

dynamical system (X , T , f) whose state space X has some finite size N , whose set of times T is

isomorphic to the integers Z under addition, and whose dynamical map f : X × T → X satisfies

the appropriate version of the Markov property (23):

ft+t′ = ft ◦ ft′
[
for all t, t′ ∈ T ∼= Z

]
. (66)

8 Time-reversal transformations for quantum systems are carried out by anti-unitary operators, which take the
general form V K, where V is unitary and K is an abstract operator that carries out complex-conjugation. By
definition, K2 = 1 and Ki = −iK, where i ≡

√
−1 is the imaginary unit. One can therefore show that i, K, and

iK generate a Clifford algebra called the pseudo-quaternions [21]. As a consequence, there is a sense in which
quantum systems are actually defined over the pseudo-quaternions, rather than merely over the complex numbers.
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Based on these definitions and assumptions, it follows from the Markov property and the trivial-

ization condition f0 = idX from (6) that the time-dependent dynamical map ft is invertible for

any time t ∈ T , with inverse given by

f−1t = f−t [for all t ∈ T ∼= Z]. (67)

Markovian dynamical systems of this kind provide a discretization of many of the kinds of deter-

ministic, time-reversible physical systems that show up in classical physics.

Letting δt be the elementary duration of a single time step, and letting n ∈ Z denote an integer

number of time steps, the system’s specific state i at the time t = n δt can be identified as an N×1

column vector with a 1 in its ith entry and 0s in all its other entries. Moreover, the time-dependent

dynamical map fn δt can be expressed as the nth power of a fixed permutation matrix Σ, meaning

a matrix consisting of only 1s and 0s, with a single 1 in each row and in each column.

Every permutation matrix is unitary, and is also unistochastic, because computing the modulus-

squares of 1s and 0s gives back 1s and 0s. Hence, a discrete Markovian dynamical system defined in

this way is already a unistochastic system, and therefore trivially satisfies the stochastic-quantum

theorem (65).

Interestingly, there exists an analytic interpolation of this discrete-time unistochastic system

that yields a corresponding continuous-time unistochastic system, at the cost of introducing non-

trivial stochasticity into the intervals between the discrete time steps. This new unistochastic

system is based on a time-dependent unistochastic matrix Γ(t) whose entries are the modulus-

squares of the corresponding entries of the N × N unitary time-evolution operator defined by

U(t) ≡ Σt/δt, and therefore satisfies Γ(n δt) = Σn for any integer n. One can even go on to define

an N ×N self-adjoint Hamiltonian H as the infinitesimal generator of U(t), so there is ultimately

a Schrödinger equation underlying this system.9

V. THE HILBERT-SPACE REPRESENTATION

A. The Time-Evolution Operator

To commence the proof of the stochastic-quantum theorem (65), one starts with a given gener-

alized stochastic system (C, T ,Γ, p,A). The non-negativity (42) of the system’s transition proba-

bilities, Γij(t) ≥ 0, means that each transition probability can be written as the modulus-squared

of a (non-unique) complex number Θij(t):

Γij(t) = |Θij(t)|2 [for all i, j ∈ C, t ∈ T ]. (68)

9 To define the unitary matrix Σt/δt, one starts by using the fact that every permutation matrix is also unitary to
write the permutation matrix Σ as V †DV for some unitary matrix V and some diagonal matrix D, where the
entries of D are the eigenvalues of Σ. Because Σ is unitary, its eigenvalues are all phase factors exp(iθm), where
m = 1, . . . , N , and where each phase θm is a real number. Setting all the eigenvalues to the power t/δt, so that
they each take the new form exp(iθmt/δt), one ends up with the matrix Σt/δt ≡ V †Dt/δtV , which is still unitary
and now depends analytically on the time parameter t. The quantum-theoretic Hamiltonian matrix H for this
system then has energy eigenvalues defined by Em ≡ −ℏθm/δt for m = 1, . . . , N , and is diagonalized by the same
unitary matrix V that diagonalizes Σ.
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For each fixed time t, the complex numbers Θij(t) collectively form their own N×N matrix, which

will be called the system’s time-evolution operator Θ(t):

Θ(t) ≡


Θ11(t) Θ12(t)

Θ21(t)
. . .

ΘNN (t)

. (69)

(As a concession to terminological conventions, the terms ‘matrix’ and ‘operator’ will be used

more-or-less interchangeably in what follows.)

The normalization condition (28) on the system’s transition matrix Γ(t) then becomes the

summation condition

N∑
i=1

|Θij(t)|2 = 1 [for all j ∈ C, t ∈ T ], (70)

which can roughly be regarded as a generalization of a unitarity constraint. In keeping with the

initial condition Γ(0) = 1 from (43), the time-evolution operator Θ(0) at the initial time 0 will be

taken to be the N ×N identity matrix 1:

Θ(0) ≡ 1 ≡


1 0

0
. . .

1

. (71)

B. The Hilbert Space

The time-evolution operator Θ(t) acts on an N -dimensional Hilbert space H defined as the space

CN of N×1 column vectors with complex-valued entries, together with the standard inner product

v†w for all v, w ∈ CN :

H ≡ CN . (72)

The standard orthonormal basis e1, . . . , eN is defined by

e1 ≡

 1
0
...
0
0

, . . . , eN ≡

 0
0
...
0
1

. (73)

These vectors are labeled as ei, where each value of i = 1, . . . , N denotes a configuration in the

system’s configuration space C, so this basis will be called the system’s configuration basis.

There exists an associated set of rank-one projectors P1, . . . , PN defined by

Pi ≡ eie
†
i = diag(0, . . . , 0, 1

↑
ith entry

, 0, . . . , 0) [for all i ∈ C]. (74)
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These configuration projectors P1, . . . , PN form a projection-valued measure (PVM) [22, 23], mean-

ing that they satisfy the conditions of mutual exclusivity,

PiPj = δijPi [for all i, j ∈ C], (75)

with δij again the usual Kronecker delta, and completeness,

N∑
i=1

Pi = 1, (76)

with 1 again the N ×N identity matrix.

C. The Dictionary

It follows from a short calculation that the relationship Γij(t) = |Θij(t)|2 in (68) can be expressed

in terms of a matrix trace as

Γij(t) = tr
(
Θ†(t)PiΘ(t)Pj

)
(77)

[for all i, j ∈ C, t ∈ T ].

This ‘dictionary’ essentially translates between the theory of generalized stochastic systems, as

expressed by the left-hand side, and a corresponding Hilbert-space representation, as expressed

by the right-hand side. This equation will turn out to form the core of a stochastic-quantum

correspondence that will play a crucial role in the proof of the stochastic-quantum theorem.

D. The Density Matrix

Inserting the dictionary (77) into the Bayesian marginalization condition (33) yields the follow-

ing equation:

pi(t) = tr(Piρ(t)) [for all i ∈ C, t ∈ T ]. (78)

Here ρ(t), which will be called the system’s density matrix, is anN×N time-dependent, self-adjoint,

unit-trace, generically non-diagonal matrix defined for any fixed time t by

ρ(t) ≡ Θ(t)ρ(0)Θ†(t), (79)

where its value at the initial time 0 is the following N ×N diagonal matrix:

ρ(0) ≡
N∑
j=1

pj(0)Pj ≡


p1(0) 0

0
. . .

pN (0)

. (80)
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Importantly, one sees from this analysis that the linearity of the Bayesian marginalization condition

(33) underlies the linearity of the relationship (79) between the system’s density matrix ρ(0) at the

initial time 0 and its density matrix ρ(t) at other times t.

For any fixed time t, one can similarly express the expectation value (39) of a random variable

A as

⟨A(t)⟩ = tr(A(t)ρ(t)). (81)

Here A(t) denotes the N ×N diagonal matrix

A(t) ≡
N∑
i=1

ai(t)Pi ≡


a1(t) 0

0
. . .

aN (t)

. (82)

Observe, in particular, that the magnitudes a1(t), . . . , aN (t) of the random variable A become the

eigenvalues of the N ×N matrix A(t).

Notice also that the formula for the standalone probability pi(t) in (78) and the formula for the

expectation value ⟨A(t)⟩ in (81) are both special cases of the Born rule.

E. An Aside on ‘Classical Wave Functions’

Pausing for a moment, recall the smooth unistochastic interpolation of a discrete Markovian dy-

namical system described in Subsection IVC. For that system, the unitary time-evolution operator

U(t) ≡ Σt/δt trivializes to a permutation matrix Σn at every integer time step n δt. It follows that

the system’s density matrix ρ(t), as defined in terms of its initial value ρ(0) from (79), reduces to

a diagonal matrix ρ(n δt) at each integer time step. Taking the square root of each of its diagonal

entries p1(n δt), . . . , pN (n δt), and allowing for arbitrary phase factors, one obtains a ‘classical wave

function’ with components Ψ1(n δt), . . . ,ΨN (n δt) satisfying |Ψi(n δt)|2 = pi(n δt) and capturing

precisely the same information as the diagonal density matrix ρ(n δt).

This classical wave function is the starting place for a representation of classical deterministic

physics known popularly as the ‘Koopman-von Neumann’ formulation, due to its superficial resem-

blance to work by Koopman [24] and von Neumann [25, 26] in the 1930s. However, as pointed

out explicitly in [27], Koopman and von Neumann were actually using Hilbert spaces to represent

observables, rather than to represent probability distributions. The formulation of classical physics

in terms of ‘classical wave functions’ is more properly due to Schönberg [28], Loinger [29], Della

Riccia and Wiener [30], and Sudarshan [31].

F. The Kraus Decomposition

Returning to the proof, and fixing the time t, and letting β denote an integer from 1 to N

that will play a conceptually different role from a configuration index, let Kβ(t) denote the N ×N
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matrix whose βth column agrees with the βth column of the time-evolution operator Θ(t), with 0s

in all its other entries. That is, the entry in the ith row, jth column of Kβ(t) is given by

Kβ,ij(t) ≡ δβjΘij(t) [for all β, i, j ∈ C, t ∈ T ]. (83)

It follows from the summation condition (70) on Θ(t) that these new matrices satisfy the Kraus

condition:

N∑
β=1

K†β(t)Kβ(t) = 1 [for all t ∈ T ]. (84)

Moreover, one can write the dictionary (77) as

Γij(t) =

N∑
β=1

tr
(
K†β(t)PiKβ(t)Pj

)
(85)

[for all i, j ∈ C, t ∈ T ],

and one can express the time-evolution rule (79) for the system’s density matrix as

ρ(t) =
N∑

β=1

Kβ(t)ρ(0)K
†
β(t). (86)

The matrices K1(t), . . . ,KN (t) are therefore Kraus operators [32], and (86) gives a Kraus decom-

position of ρ(t).

Abstracting these results, one obtains a completely positive trace-preserving map, or quantum

channel,

Et : CN×N → CN×N , (87)

defined on the algebra CN×N of N ×N matrices over the complex numbers according to

X 7→ Et(X) ≡
N∑

β=1

Kβ(t)XK†β(t). (88)

G. Dilation

By the Stinespring dilation theorem [33, 34], the quantum channel (87) can be purified, meaning

made into a form of unitary time-evolution. Specifically, for some integer Ñ in the bounded interval

N ≤ Ñ ≤ N3, (89)
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there exists an Ñ × Ñ unitary matrix Ũ(t) on a potentially enlarged or dilated Hilbert space

H̃ ≡ CÑ (90)

such that the dictionary (77) can be written as10

Γij(t) = tr
(
tr′

(
Ũ †(t)[Pi ⊗ 1

′]Ũ(t)[Pj ⊗ P ′j′ ]
))

(91)

[for all i, j ∈ C, t ∈ T ].

The formula (91) involves a number of ingredients.

• The dilated Hilbert space H̃ is defined as the tensor product

H̃ ≡ H ⊗H′, (92)

where H ≡ CN is the system’s original Hilbert space (72), and where

H′ ≡ CN ′ (93)

is an ancillary Hilbert space whose dimension N ′ satisfies Ñ = NN ′ ≤ N3. That is, N ′ is

an integer lying in the bounded interval

1 ≤ N ′ ≤ N2. (94)

• The first trace tr(· · · ) in (91) denotes the partial trace over just the original Hilbert space

H, and the second trace tr′(· · · ) similarly denotes the partial trace over the ancillary Hilbert

space H′.

• Importantly, for each fixed time t, Ũ(t) is an Ñ × Ñ unitary matrix that reduces to the

Ñ × Ñ identity matrix Ũ(0) = 1̃ at the initial time 0.

• The symbol 1′ denotes the N ′ ×N ′ identity matrix on the ancillary Hilbert space H′.

• Letting e′1, . . . , e
′
N ′ denote the standard orthonormal basis for the ancillary Hilbert space H′,

in analogy with the configuration basis (73) for the system’s original Hilbert space H, and

letting the primed Latin letters i′, j′, . . . each denote an element of an ancillary configuration

10 From the starting assumptions presented here, one can sketch the following proof: Given N ×N Kraus matrices
Kβ(t), with β = 1, . . . , N , define an N3 × N2 matrix Ṽ (t) according to Ṽ(iβm)(jl)(t) ≡ Kβ,ij(t)δlm, treating

(iβm) as the first index of Ṽ (t) and treating (jl) as its second index. One can show that this matrix satisfies
Ṽ †(t)Ṽ (t) = 1N2×N2 , so it defines a partial isometry, which can always be extended to a unitary N3 ×N3 matrix
Ũ(iβm)(ja)(t) by adding N3 − N2 additional columns that are mutually orthogonal with each other and with the

previous N2 columns already in Ṽ (t), where the new index a runs through N2 possible values. These additional
columns can always be chosen so that at the initial time 0, where V (0) = 1 is the N × N identity matrix, they
make Ũ(0) coincide with the N3 × N3 identity matrix. The last step is to show that Ũ(t) satisfies (91), whose
right-hand side reduces to

∑
β,m |Ũ(iβm)(jj′)(t)|2 =

∑
β |Kβ,ij(t)|2. QED
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space C′ consisting of the integers from 1 to N ′, the symbol P ′i′ denotes the rank-one projector

P ′i′ ≡ e′i′e
′†
i′ = diag(0, . . . , 0, 1

↑
i′th entry

, 0, . . . , 0) (95)

[
for all i′ ∈ C′

]
,

which is an N ′ × N ′ diagonal matrix with a 1 in its i′th diagonal entry and 0s in all its

other entries. These projectors form a projection-valued measure (PVM) on H′ satisfying
the conditions of mutual exclusivity,

P ′i′P
′
j′ = δi′j′P

′
i′

[
for all i′, j′ ∈ C′

]
, (96)

and completeness,

N ′∑
i′=1

P ′i′ = 1
′. (97)

• Note that the left-hand side of (91) is insensitive to the specific choice of j′ ∈ C′ on the

right-hand side.

Extending the foregoing construction, and fixing the time t, one obtains an Ñ × Ñ transition

matrix given by the new dictionary

Γ̃ii′,jj′(t) ≡ t̃r
(
Ũ †(t)P̃ii′Ũ(t)P̃jj′

)
(98)[

for all i, j ∈ C, i′, j′ ∈ C′, t ∈ T
]
.

Here the trace is now over the dilated Hilbert space H̃, and

P̃ii′ ≡ Pi ⊗ P̃i′
[
for all i ∈ C, i′ ∈ C′

]
(99)

defines a rank-one projector on H̃.

Unfolding the notation, the dilated dictionary (98) reduces to the statement that

Γ̃ii′,jj′(t) = |Ũii′,jj′(t)|2 (100)[
for all i, j ∈ C, i′, j′ ∈ C′, t ∈ T

]
.

That is, each entry Γ̃ii′,jj′(t) of the Ñ × Ñ transition matrix Γ̃(t) is the modulus-squared of the

corresponding entry Ũii′,jj′(t) of an Ñ × Ñ unitary matrix Ũ(t). Again, a stochastic matrix with

this special feature is called a unistochastic matrix.

H. The Dilated Generalized Stochastic System

One can now define a dilated generalized stochastic system (C̃, T̃ , Γ̃, p̃, Ã) in the following way.
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• Let the dilated system’s configuration space C̃ be defined as the Cartesian product

C̃ ≡ C × C′, (101)

where C is the original system’s configuration space, with N elements labeled by unprimed

Latin letters i, j, . . . , and where C′ is the configuration space of an ancillary subsystem, with

N ′ elements labeled by primed Latin letters i′, j′, . . . .

• Let the dilated system’s set of times T̃ be the original system’s set of times T :

T̃ ≡ T . (102)

• Let Γ̃ : C̃2 × T̃ → [0, 1] be the stochastic map defined according to the dilated dictionary

(100). Then for each fixed time t, the Ñ × Ñ matrix Γ̃(t) is unistochastic. Moreover, by

construction, Γ̃(t) satisfies the marginalization condition

N ′∑
i′=1

Γ̃ii′,jj′(t) = Γij(t) (103)

[
for all i, j ∈ C, j′ ∈ C′, t ∈ T

]
,

where, as in (91), the value of j′ ∈ C′ is irrelevant.

• Let the map p̃ : C̃ → [0, 1] be the probability distribution defined by

p̃ii′(t) ≡
N∑
j=1

Γ̃ii′,jj′(t)pj(0) (104)

[
for all i ∈ C, i′, j′ ∈ C′, t ∈ T

]
.

It follows from the marginalization condition (103), together with the Bayesian marginaliza-

tion condition (33), that

N ′∑
i′=1

p̃ii′(t) = pi(t) [for all i ∈ C, t ∈ T ], (105)

as in (59).

• Let the algebra Ã of random variables be the set of all maps of the form Ã : C̃ × T̃ → R.

These results establish that (C̃, T̃ , Γ̃, p̃, Ã) is a composite unistochastic system, and that the orig-

inal generalized stochastic system (C, T ,Γ, p,A) can be regarded as one of its subsystems. This

conclusion completes the proof of the stochastic-quantum theorem (65). QED
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I. The Corresponding Quantum System

Corresponding to the dilated unistochastic system (C̃, T̃ , Γ̃, p̃, Ã) is a quantum system based on

a Hilbert space H̃ of dimension Ñ ≤ N3, with linear-unitary time evolution encoded in the unitary

time-evolution operator Ũ(t).

Unistochastic matrices are not generally orthostochastic, meaning that they are not guaranteed

to be expressible in terms of real orthogonal matrices. As a consequence, if one is given a generalized

stochastic system whose N × N transition matrix Γ(t) is already unistochastic, then there is no

guarantee that the corresponding N × N unitary time-evolution operator U(t) can be assumed

to be a real orthogonal matrix. The stochastic-quantum correspondence therefore implies that in

order to provide Hilbert-space representations for the most general kinds of generalized stochastic

systems, the complex numbers C will be an important feature of quantum theory.

Whether in that case or more generally, of course, one is always free to start with an N × N

time-evolution operator Θ(t) in (68) whose individual entries are all real. With that choice, the

Ñ × Ñ unitary time-evolution operator Ũ(t) obtained from the Stinespring dilation theorem will

likewise be real, and will therefore be an orthogonal matrix.

However, it is important to keep in mind that from the point of view of the stochastic-quantum

correspondence, a generalized stochastic system’s Hilbert-space representations are convenient fic-

tions, and so one is entirely free to assume that they involve the complex numbers anyway. Assum-

ing that a given choice of Hilbert-space representation is defined over the complex numbers, rather

than merely over the real numbers, allows one to take advantage of the spectral theorem, eigen-

vectors of the time-evolution operator Ũ(t), and anti-unitary operators. Assuming appropriate

smoothness conditions in time, one can further make use of a self-adjoint Hamiltonian H̃(t) with

real-valued energy eigenvalues, as well as the Schrödinger equation. To the extent that these math-

ematical constructs are often taken by textbooks to be indisputable features of quantum systems,

the complex numbers become an avoidable part of quantum theory.11

VI. DISCUSSION AND FUTURE WORK

The unitarily evolving quantum system that lies on the other side of the stochastic-quantum

correspondence is not limited to a commutative algebra of observables represented by operators

that are diagonal in the configuration basis.

Indeed, as explained in other work [35], one can model the quantum measurement process of

an observable represented by an arbitrary self-adjoint operator in terms of a unistochastic system

that contains a subject system, a measuring device, and an environment, all as explicitly defined

subsystems. By taking the measuring device’s allowed configurations to correspond to definite

readings of outcomes, and by taking the overall unistochastic system’s transition matrix to be based

11 Even if one assumes that a given choice of Hilbert-space representation is defined over the complex numbers, one
can always double the dimension of the Hilbert space from N to 2N and represent the imaginary unit i ≡

√
−1 by

the 2× 2 real matrix ( 0 −1
1 0 ), in which case all N ×N unitary matrices become 2N × 2N real orthogonal matrices.

Interestingly, one can then also represent the complex-conjugation operation K needed for anti-unitary operators
as a 2×2 real matrix ( 0 1

1 0 ). However, this approach still ultimately preserves the algebraic structure of the complex
numbers in the Hilbert space, in the sense that they will correspond to a subalgebra of matrices on the overall
Hilbert space that commute with the Hamiltonian and all the system’s observables. Hence, this approach does not
truly eliminate the complex numbers from the Hilbert-space formalism of quantum theory.
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on precisely the type of unitary time-evolution operator employed in standard textbook treatments

of the measurement process, one inevitably finds that the measuring device ends up in one of its

measurement-reading configurations with a stochastic probability given by the general form of

the Born rule. Hence, in principle, one has access to a quantum system’s entire noncommutative

algebra of observables.

With the stochastic-quantum correspondence in hand, one can refer other exotic features of

quantum systems back to their associated generalized stochastic systems to give those features

a more physically transparent interpretation. For example, as shown in [35], interference and

entanglement can be understood as artifacts of the generic indivisibility of a generalized stochastic

system’s dynamics. (It is also shown in [35] how this interpretative framework navigates the various

no-go theorems that have appeared in the research literature over the past century.)

This overall approach to quantum foundations therefore sheds new light on some of the strangest

features of quantum theory, in addition to suggesting novel applications of quantum computers.

This approach might even provide a helpful stepping stone for the development of self-consistent

generalizations of quantum theory itself.
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