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Abstract

I provide an examination and comparison of modal theories for
underwriting different non-modal theories of sets. I argue that there
is a respect in which the ‘standard’ modal theory for set construction—
on which sets are formed via the successive individuation of powersets—
raises a significant challenge for some recently proposed ‘countabilist’
modal theories (i.e. ones that imply that every set is countable). I
examine how the countabilist can respond to this issue via the use
of regularity axioms and raise some questions about this approach.
I argue that by comparing them with the ‘standard’ uncountabilist
theory, a new approach that brings in arbitrariness rather than the
strict controls of forcing is desirable.

Introduction

A widespread idea in philosophy is that sets are more than merely ex-
tensional entities, but are somehow ‘formed’ from available objects. This
paper is concerned with articulating and comparing different accounts of
such methods of formation. Perhaps the ‘standard’ view of set-formation
is that, if we’re given some objects, we turn all possible subpluralities of
those objects into sets, and continue this operation forever. This has the
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effect of iterating the powerset operation and collecting together at limits.
Normally this view is regarded as in tension with countabilism (the posi-
tion that every set is countable) since Cantor’s Theorem implies that the
powerset of any set x is strictly larger than x.

This standard account has some attractive features that we’ll discuss
shortly. However some authors question the standard picture, arguing
that there are notions of set-formation that can support countabilism whilst
denying the powerset axiom.1 This raises the question of why the standard
picture is so attractive, and whether the countabilist can come up with a
similarly pleasing story. In this article I’ll do the following:

Main Aim. I’ll contrast the standard account with some countabilist modal
theories of set-construction, isolate some ‘good-making’ features, and ar-
gue that the uncountabilist currently retains an advantage over the count-
abilist.

I argue as follows: §1 sets up some of the basic non-modal axiom sys-
tems we’ll consider in the paper. §2 provides a presentation of the idea of a
modal theory for set-formation. §3 explains a modal theory for the standard
view, under which sets are formed via iterating the powerset operation,
and using union to collect together at limits. §4 examines a different modal
set theory due to Chris Scambler that ensures that every set is countable.
§5 provides a modal axiomatisation of the Steel-Maddy-Meadows multi-
verse and presents some results about this system (including that it can
interpret ZFC - Powerset + ‘Every set is countable’, as well as a certain
regularity axiom). §6 then presents a challenge for both the Scambler and
Steel-Maddy-Meadows potentialist conceptions regarding how they en-
sure that every set is a member of some stage. I suggest that future devel-
opments of countabilist modal set theory should focus less on forcing and
more on the idea of an arbitrary enumeration. §7 provides some concluding
remarks and raises some open questions.

1 Non-modal set theory

Later, we’ll use a modal theory of stages to motivate a non-modal theory of
sets. In this section, I’ll lay down some of these non-modal theories for
discussion later.

Since we’ll be interested in sets, we’ll want to consider the language of

1See, for example, [Scambler, 2021], [Builes and Wilson, 2022], [Scambler, MS], and
[Barton, Fb].
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set theory L∈ that has a single non-logical predicate ∈. Let’s now specify:

Definition 1. We will consider the following base theories in L∈:

(i) ZFC is standard Zermelo-Fraenkel set theory with the Axiom of Choice
rendered as the claim that every set can be well-ordered and the ax-
iom scheme of Replacement (but the Collection scheme—see below—
is not included in the axioms, though over the rest of ZFC is provable
from Replacement).

(ii) ZFC− is ZFC with the Powerset Axiom deleted.

(iii) ZFC− is ZFC− with the following Collection scheme added (for any
formula ϕ(x, y) in two free variables):

(∀a)
(
(∀x ∈ a)(∃y)ϕ(x, y) → (∃b)(∀x ∈ a)(∃y ∈ b)ϕ(x, y)

)
(i.e. If ϕ(x, y) defines a relation, and for some set a and for every
x ∈ a there is always a y ϕ-related to x, then there is a set z ‘collecting’
together at least one ‘ϕ-witness’ for every x ∈ a.)

(iv) Count is the axiom stating that all sets are countable.

It’s important to distinguish ZFC− from ZFC− since ZFC− has more
consequences (in the absence of Powerset, Collection and Separation have
strictly more consequences than Replacement alone).2 Generally speaking
we will be working with ZFC−, but we will here and there have cause
to mention ZFC−. Later, we will also discuss the use of some regularity
axioms for sets of reals, but since they are a little more involved we’ll avoid
stating them for now.

A central focus of this paper concerns justifications of Count on the
basis of modal theories of set construction. For foundational purposes,
it’s helpful to note the relationship between ZFC− + Count and second-
order arithmetic. This theory is couched in a language we shall denote
L2. This has two sorts of variables (in addition to the symbol ∈) the first
of which range over natural numbers (denoted with lower case variables
n,m,n0,n1, ...) and the second sort ranging over sets of natural numbers or,
equivalently, reals (these are denoted by upper-case variables X,Y ,Z...),
as well as symbols for 0, 1, +, ×, <. Second-order arithmetic (or SOA) is a
theory in L2 comprising the basic arithmetic axioms (e.g. the recursive

2See here [Zarach, 1996] and [Gitman et al., 2016].
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axioms for + and ×), the induction axiom, and a comprehension scheme.3

A folklore result shows that ZFC− + Count and SOA can each interpret the
other.4 We can thus move freely between SOA and ZFC− + Count, and
henceforth we’ll largely drop consideration of SOA, working solely in L∈.
However, it bears mentioning that so long as one has ZFC− + Count, one
could be working in SOA, if one so desired.

2 Modal set theory

Since we’re focused here on how sets get formed, it’s very natural to pro-
vide modal descriptions of set construction. Some suitably idealised agent
can be thought of building sets by:

(i) taking some starting sets, and

(ii) repeatedly applying some set-theoretic construction methods.

There are close links between the idea of forming sets using methods
of set-construction, and so called ‘iterative’ conceptions of set.5 These are
often given a stage-theoretic treatment (for example by axiomatising the
notion of stage directly), but I’ll take a modal approach here and speak
more generally about set-construction methods (I’ll discuss relationships
to iterative conceptions in due course).6 We’ll be examining theories that
use various modal operators, intended to axiomatise what can be ‘con-
structed’ using a particular ‘construction method’ over a given domain.
So, given some construction method m we’ll introduce [m] (the ‘necessity
operator for m’) and ⟨m⟩ (the ‘possibility operator for m’). [m]ϕ should
be read as ‘no matter how you do m, ϕ’, and ⟨m⟩ϕ should be read as ‘it
is possible to do m such that ϕ’. As is standard in modal logic we’ll take
one (in this case ⟨m⟩) to be primitive, and define [m]ϕ by [m]ϕ =df ¬⟨m⟩¬ϕ.
We’ll put aside how we interpret these modalities for now (in the end we’ll
handle them axiomatically and return to this philosophical question in §7).

3The details of SOA are available in [Simpson, 2009, p. 4, Def. I.2.4].
4Although the theorem is folklore, it is very nicely presented in §5.1 of Regula Krapf’s

PhD thesis [Krapf, 2017].
5See here [Barton, Fb].
6For stage-theoretic treatments, see [Boolos, 1971] and [Button, 2021a]. These have the

advantage of expressive power, but for the sake of providing easy interpretations of set
theory in L∈ (i.e. avoiding mentioning the stages), integrating better with the literature
potentialism (the idea that the universe of sets can ‘grow’), and keeping discussion more
general, I’ll take a modal approach. Thanks to Davide Sutto and Chris Scambler for some
discussion of this distinction.

4



For now, let’s see how one interprets our non-modal theories using a lan-
guage including the modal operators. This can be done with the following
device:

Definition 2. [Linnebo, 2013] The potentialist translation of a formula in L∈
into a language containing ⟨m⟩ is obtained by substituting every occurance
of ∃x by ⟨m⟩∃xϕ and every occurrence of ∀x by [m]∀xϕ.

In the context of set theory, we can think of the potentialist translation
of an existential quantification as telling us that we can get a set (using
m) such that ϕ, and a universal quantification as telling us that no matter
what sets we go on to form sets using m, all sets will be ϕ. Clearly, this is a
very natural translation for conceptions of set that depend on a notion of
set formation.

Modal axiomatisations of set theory are often set up against the back-
ground of plural logic, which allows us to talk about how, given some sets,
we can form new sets from old. This has new variables xx that range over
things in the plural (e.g. the books on my table), a binary relation symbol
≺ (where x ≺ xx is to be read as ‘x is one of the xx’), and has the expected
definition of well-formed formula. We’ll denote the language obtained by
adding these resources to L∈ by ‘L∈,≺’. We’ll routinely abuse singularisa-
tion and speak of ‘a plurality’ (as is standard in this field).

For our plural axioms (here we’re mostly following the presentation in
[Scambler, 2021]) we’ll take the following:

Definition 3. Plural logic (over set theory) has as axioms (we’ll give these
axioms informally, see [Linnebo, 2018, Ch. 12] for the formal details):

(i) A principle of extensionality for plurals (that if two pluralities xx and
yy comprise the same things, then anything that holds of the xx also
holds of the yy and vice versa).7

(ii) Additionally, impredicative plural logic has the following Impredica-
tive Comprehension Scheme:

∃xx∀y
(
y ≺ xx ↔ ϕ(y)

)
for any ϕ in L∈,≺ not containing xx free.

7I’m suppressing some subtleties here about how one formulates the extensionality
axiom, see [Roberts, 2022] for details.
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(iii) Predicative plural logic does not contain the Impredicative Compre-
hension Scheme but rather has the following Predicative Compre-
hension Scheme:

∃xx∀y
(
y ≺ xx ↔ ϕ(y)

)
for any ϕ in L∈,≺ not containing xx free and not containing any plural
quantifiers.

Plural logic has perhaps become the de facto standard in discussions of
modal set theory. For the sake of integrating with the literature, I’ll follow
this convention, but really any extensional second-order entities would
do. All we need is some device that lets us talk about extensional non-set-
like entities of some world, and how they can (or can’t) be formed into sets.
This bears emphasising, since some authors (e.g. [Roberts, MS]) regard the
use of plural resources as problematic for some of the views we’ll discuss
shortly. The reader who feels queasy is invited to paraphrase away all
plural talk in favour of an interpretation of second-order variables more
congenial to the present context.

As we’ll see, by giving us a picture of how sets are formed, modal
set theories allow us (via the potentialist translation) to motivate ‘good’
non-modal theories of sets, and do so in a ‘good’ way. But what are the
desiderata on being such a ‘good’ modal theory? To see some, let’s turn to
an exemplary case.

3 The standard ‘uncountabilist’ picture

Later, we’ll discuss modal set theories that are forcing-based and countabilist
in nature. First though, it will be helpful to get the standard uncountabilist
approach on the table, in order to see why it’s such a good conception of set.
I’ll identify four desiderata (Naturalness, Paradox Diagnosis, Interpreta-
tion, and Capture) that I’ll explain as we work through one axiomatisation
of the standard picture and some of its features.

First, let’s get a rough description of the standard picture on the table,
using our now available plural and modal resources. This accounts of sets
takes it that we can start with the empty set. Then given some sets xx,
we can form every possible subplurality of xx into a set. Effectively, we
are forming sets by iterating the powerset operation. We keep doing this,
and whenever we hit a limit, we collect together all sets we’ve previously
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formed (effectively bundling all our previous applications of powerset to-
gether via union). So our starting sets are none, and our set-construction
methods are powerset and union.

An axiomatisation corresponding to this idea has been provided by
Øystein Linnebo. We’ll quickly state the axioms, and then discuss them
individually after. We introduce a modal operator ♢ into L≺,∈ to form the
language L ♢

≺,∈. We then consider the following axioms:

Definition 4. [Linnebo, 2013], [Linnebo, 2018] (here we follow [Scambler, 2021]’s
presentation) Lin is the following theory in L ♢

∈,≺:

(i) Classical first-order predicate logic.

(ii) Impredicative plural logic.

(iii) Classical S4.2 with the Converse Barcan Formula added.8

(iv) The Axiom of Foundation (rendered as normal using solely resources
from L∈).9

(v) Extensionality (again using solely resources from L∈).

(vi) Modal Collapse. The principle that any things (at a stage) could form
a set:

□∀xx♢∃y□∀x(z ∈ y ↔ z ≺ xx)

(vii) Stability axioms for ≺ and ∈ (these mirror the necessity of identity/distinctness):10

• x ∈ y → □(x ∈ y)

• x ̸∈ y → □(x ̸∈ y)

• x ≺ yy → □(x ≺ yy)

• x ̸≺ yy → □(x ̸≺ yy)

(viii) Two principles of plural definiteness:

8Normally the Converse Barcan Formula comes for free (one must take steps to block
it), see [Linnebo, 2018] (p. 207). I’ve added it for the sake of explicitness and making the
‘growing domains’ conception of potentialism clear. I’ll make no further mention of this
complication.

9Another nice option here is to use ∈-induction. Thanks to Øystein Linnebo for some
discussion of this point.

10It should be noted that a choice point here concerns whether to use the quantified
or free-variable, forms of these axioms, since the free-variable versions seem stronger.
Thanks to Chris Scambler for some discussion of this point.
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• Plural Membership Definiteness is given by the following scheme:

(∀x ≺ yy)□ϕ(x) → □(∀x ≺ yy)ϕ(x)

• Subplurality Definiteness: Say that xx ⪯ yy holds just in case
the xx are a subplurality of the yy, i.e. for every x such that
x ≺ xx we have x ≺ yy. Then the Subplurality Definiteness
scheme states that:

(∀xx ⪯ yy)□ϕ(xx) → □(∀xx ⪯ yy)ϕ(xx)

(ix) Modal Infinity. The axiom that there could be some things compris-
ing all and only the possible natural numbers.

(x) Modal Powerclass. The axiom that there could be some things that
are all and only the possible subsets of a given set.

(xi) Modal Replacement. Every potentialist translation of the Replace-
ment Scheme of ZFC.

(xii) Plural Choice. A plural version of the Axiom of Choice ‘For any
pairwise-disjoint non-empty sets xx, there are some things yy that
comprise exactly one element from each member of the xx’.11

The stability axioms capture the claim that a set or plurality cannot
‘change their mind’ about whether they contain a certain set. The plural
definiteness axioms deserve some mention, since they will be disagreed
upon by some of the axiomatisations we consider: Plural Membership
Definiteness axiomatises the claim that pluralities cannot pick up mem-
bers, and Subplurality Definiteness axiomatises the claim that a plural-
ity cannot pick up subpluralities. Modal Collapse, in combination with
Modal Powerclass, axiomatises the formation of sets via the powerset op-
eration: Given that we are at some stage of the process, we can form ev-
ery possible subset of a set into a set. Modal Replacement ensures that we
can continue this transfinitely, collecting together at limits. I think that
these observations serve to indicate that there’s a reasonable conception
of a process of set formation in play. This, I think, suggests the following
desideratum on a modal set theory:

11Strictly speaking Linnebo does not include AC, but I’m happy to throw it in. Some
other authors (e.g. [Studd, 2013]) do so. Nothing hangs on it for the results we have here,
other than the fact that if Lin is run without a form of AC, the that gets interpreted will
also not include AC (it will be ZF rather than ZFC).
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Naturalness. The modal axioms provided should be reasonably ‘natural’
and not ad hoc in nature; there should be clear notions of set-construction
method that motivate the axioms.

Of course the extent to which a modal set theory is natural and/or not
ad hoc will likely be somewhat imprecise and a matter of degree.12 Whilst
a full defence of the naturalness of Lin will have to wait for another time,
I’m happy to proceed with the assumption that Lin is reasonably natural
for now (readers should consult [Linnebo, 2010] and [Linnebo, 2013] for a
more thorough—though not uncontroversial—argument to this effect).

There is one small wrinkle regarding Lin and Naturalness that should
be noted before we proceed. Though the modal set theory Lin axiomatises
an uncountabilist conception of set—we can form the powerset of a given
set—the axiomatisation does not exactly correspond to the formation of the
universe via powersets and union. To see this, one can (with a little work)
obtain a Kripke model for Lin from the Lα of a model of ZFC.13 However,
we don’t get the full powerset when moving from Lα to Lα+1 (since the car-
dinality of Lα and Lα+1 are the same for any α). If one wishes to smooth
over this wrinkle, one can use bimodal operators (as in [Studd, 2013] and
[Button, 2021b]) to enforce the immediate collapse of every possible subplu-
rality of a world into a set. For the sake of simplicity in the frames we’ll
consider, I’ll stick with Lin, but we could run the same points using Button
or Studd’s systems too. As we’ll see shortly, there’s a very natural Kripke
model for Lin corresponding to the formation of the sets via powerset and
union, the reader who wishes for this to be enforced is welcome to read
this article with Button or Studd’s bimodal axiomatisations in Lin’s stead,
the main philosophical points of this article will remain unchanged if this
route is taken.

A different good-making feature of Lin, is that it tells us why problem-
atic classes don’t exist as sets. New sets can always be formed over a world
by collapsing pluralities that exist there. This includes the Russell plural-
ity of all non-self-membered sets at a particular world which never has a
set coextensional with it at a world. Which conditions do and do not form
sets is handled on this basis—every formula whose elements are available

12Questions remain, for example, about how to motivate Foundation and its relation-
ship to ∈-induction. Thanks to Davide Sutto and Øystein Linnebo for some discussion of
this point.

13Sketch. Work within a model M |= ZFC. Let worlds be of the form (Lα,PL(Lα)),
where Lα provides the first-order domain and PL(Lα) provides the second-order (plural)
domain, and let (Lα,PL(Lα)) access (Lβ ,PL(Lβ)) iff α ≤ β. It’s now relatively easy to
check that this Kripke model satisfies Lin.
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at some world defines a set, but those that have satisfiers unbounded in
the worlds cannot. We thus have another desideratum:

Paradox Diagnosis. A given modal set theory T♢ should yield a criterion
(on the basis of the construction methods allowed) of which conditions
do and do not define sets, and in particular why the usual problematic
conditions do not define sets.

So Lin is reasonably Natural and provides a Paradox Diagnosis. Let’s
now turn to Interpretation, which concerns how much non-modal math-
ematics we can squeeze out of our modal theory under the potentialist
translation. And Lin performs well here:

Theorem 5. [Linnebo, 2010], [Linnebo, 2013] If ϕ♢ is the potentialist trans-
lation of a sentence ϕ in L∈, then ZFC proves ϕ iff Lin proves ϕ♢.

This means that from within Lin we can prove the potentialist trans-
lation of any theorem of ZFC. In this way, we could just work with the
non-modal theory if we wanted, acknowledging that the modal theory
and potentialist translation is available any time we wish to look at how
the sets get formed. This suggests the following desideratum on modal set
theories:

Interpretation. A modal set theory T♢ should interpret a ‘good’ non-
modal theory of sets T under the potentialist translation.

Again, Interpretation might not be as hard-and-fast a desideratum
as we might like. Clearly, for example, the notion of a ‘good’ theory
(as already remarked) might be something of a tricky notion to analyse.
Moreover, it’s not clear that it’s necessary to adopt the potentialist trans-
lation for interpreting a non-modal theory of sets, and we might con-
sider what theories can be interpreted under different translations (see
[Brauer et al., 2021] for an alternative). Thankfully, all the theories consid-
ered in this paper will interpret reasonably nice non-modal theories under
the usual potentialist translation, and so I’ll set this complication aside
(despite its interest).

We can now move on to the final desideratum that I’ll consider, namely
Capture. In short: Given a model of the non-modal theory (in this case
ZFC) we can find a natural Kripke frame for our modal theory (in this case
Lin) that contains all the sets. Thus, not only does Lin allow us to motivate
a nice non-modal theory, but there is also a kind of ‘reversal’ from the
non-modal theory to the modal one:
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Theorem 6. [Linnebo, 2013] Let M be a transitive model of ZFC. We define
the following Kripke-frame KM

Lin for Lin:

• Worlds are pairs of the form (V M
α ,V M

α+1), where V M
α provides the first

order domain and V M
α+1 provides the second-order (plural) domain

(with ≺ interpreted by ∈).

• Accessibility is given by (Vα,Vα+1) ≤M
Lin (Vβ,Vβ+1) iff α ≤ β

Then KM
Lin is an M -proper-class-sized Kripke frame validating S4.3.

This shows us that not only can we get the axioms of our favoured non-
modal theory from Lin, but we also get worlds for Lin from said non-modal
theory. This point can be strengthened by the following observation:

Theorem 7. (ZF) For every set x there is an ordinal α such that x ∈ Vα.

Thus, the model KM
Lin isn’t just any model of Lin (which would be enough

to witness equal consistency strength with ZFC), but also M thinks that ev-
ery set lives in a world of KM

Lin.14 Theorems 6 and 7 collaborate to ensure
that given any transitive model M of the non-modal theory (in this case
ZFC) there’s a canonical way to recover a model of Lin such that every set
in M is a member of (the first-order domain of) some world.

I think this point has been perhaps somewhat overlooked in the liter-
ature, but it’s an important part of explaining why the standard view is
so philosophically satisfying. Let’s therefore identify the following addi-
tional desideratum:

Capture. Not only should our modal theory T♢ motivate a good non-
modal theory T, but given a transitive model M |= T we should have a
general way of extracting a Kripke frame KM

T♢ |= T♢ from M such that for
every x ∈ M there is a world W ∈ KM

T♢ such that x ∈ W .15

Remark 8. Why restrict to transitive models? Since all the theories I con-
sider take sets to be well-founded, and because it makes the metamath-
ematical details cleaner, I’ll focus my attention on transitive models. I’ll
leave it open whether the results below can be conducted in ill-founded
and/or non-transitive settings. Clearly though, the Capture relationship
also holds between Lin and ZFC in the non-transitive setting too.

14In other modal set theories (e.g. [Studd, 2013] and [Button, 2021b]) this is put in as
an axiom, sometimes called Stratification.

15I’ll routinely abuse notation and use W ∈ K to say that W is a world of K.
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Summing up: I think that Lin (and indeed other uncountabilist modal
set theories) provides a good modal theory of set construction, and this is
witnessed by Naturalness, Paradox Diagnosis, Interpretation, and Cap-
ture. In the rest of the paper, I’ll examine how close countabilists can get to
such a satisfying modal set theory.

4 Scambler’s countabilist modal set theory

A countabilist theory has been provided recently by Chris Scambler (see
[Scambler, 2021], [Scambler, MS]). He starts with the background of L ♢

≺,∈
but adds two modal operators ⟨v⟩ and ⟨h⟩. ⟨v⟩ corresponds to ‘vertical’
modality—turning available pluralities into sets. In this respect is some-
what similar to Lin. However it also allows ⟨h⟩; a ‘horizontal’ modality
and involves adding in forcing generics. Call this language L ♢,⟨h⟩,⟨v⟩

∈,≺ . In
this context, the general ♢ can be thought of as ‘possible in either ⟨v⟩ or
⟨h⟩’. He then provides the following axioms:16

Definition 9. Sca consists of the following axioms in L ♢,⟨h⟩,⟨v⟩
∈,≺ (again

I’ll focus on giving more informal statements, the reader should go to
[Scambler, 2021] for the formal details):17

(i) Classical first-order logic.

(ii) Impredicative plural logic.

(iii) Classical S4.2 with the Converse Barcan Formula for every modality.

(iv) Plural Membership Definiteness

(v) The necessity of distinctness and stability axioms for ≺ and ∈.

(vi) Foundation. The Axiom of Foundation (the standard one from ZFC).

(vii) Extensionality. Extensionality for sets (again, no different from ZFC).

(viii) Weakening Schemas. ⟨h⟩ϕ → ♢ϕ and ⟨v⟩ϕ → ♢ϕ, for every ϕ.

(ix) Vertical collapse. ⟨v⟩∃y□∀z(z ∈ y ↔ z ≺ xx).

16See [Scambler, 2021, p. 1091].
17Scambler uses the term ‘M’ (for Meadows) to denote Sca, as he takes inspiration

for his view from [Meadows, 2015]. As we’ll see below, Meadows’ work (drawing on
[Steel, 2014]) is slightly different (he considers proper class models), therefore I’ve chosen
‘Sca’.
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(x) Modal Infinity. The axiom that there could vertically be some
things that necessarily comprise all and only the natural numbers:
⟨v⟩∃xx□∀y(y ≺ xx ↔ ‘y is a natural number’).

(xi) Vertical Modal Powerclass. The axiom that its vertically possible to
have some things that are vertically necessarily all the subsets of a set:
∀z⟨v⟩∃xx[v]∀y(y ≺ xx ↔ y ⊆ z).

(xii) Possible Generics. The axiom ‘If P is a forcing partial order and dd
is some dense sets of P, then it’s horizontally possible that there is a
filter meeting each dense set that is one of the dd’.

(xiii) Choice. The plural version of the Axiom of Choice ‘For any
pairwise-disjoint non-empty sets xx, there are some things yy that
comprise exactly one element from each member of the xx’.18

(xiv) Modal Collection, Separation, and Replacement. Potentialist trans-
lations of the axiom schemas of Collection, Separation, and Replace-
ment under each modality.19

A full defence of the Naturalness of Sca and its underlying idea is avail-
able in [Scambler, 2021], but a few words will help to facilitate a contrast
with the picture we’ll examine in §5. The thought behind Scambler’s ax-
iomatisation is that we have two kinds of operation, in addition to the
union operation that allows collecting together already constructed sets.
One (that we might call Reify!) takes the pluralities of a given model and
reifies them into sets. Another (call it Generify!) takes a given forcing
partial order at a stage and throws in a generic filter for that partial order.
Starting with no sets, we build up stages until we reach Vω. Given different
conceptions of classes for Vω, we can start to form them into sets, but we
could also throw in forcing generics.20

As well as providing us with a picture of how sets are generated, we
also get Paradox Diagnosis. All the usual paradoxical conditions don’t
form sets, since we could always reify more pluralities (e.g. the Russell
plurality) into sets. However, some other conditions are also shown to not

18Scambler throws this in with the plural logic, but we’ll keep it separate.
19Strictly speaking, Replacement is redundant given Separation and Collection. The

reason to separate these out is that Collection and Separation are strictly stronger than
Replacement when Powerset is removed (see [Zarach, 1996] and [Gitman et al., 2016]).
[Scambler, 2021] works only with the potentialist translations of Replacement, I’ll discuss
this fact in due course.

20Some readers may feel a little unease at the idea that forcing provides a legitimate
process of set-formation. I’ll address this in due course.
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have corresponding sets. For instance, since any set can be made count-
able using forcing, the class of all possible hereditarily countable sets can-
not form a set—in this context Cantor’s Theorem shows that there could
always be more subsets of a given set.

We should identify some points of difference between the Scambler’s
theory and Lin. Note that Subplurality Definiteness has to fail; since sets
can pick up subsets at additional worlds (say if we introduce one by forc-
ing), we cannot have all possible subpluralities at a world. Some (e.g.
[Roberts, MS]) see this as an objection to the use of pluralities in this con-
text. I’m willing to see it as a necessary consequence of Scambler’s theory
that some views about the nature of the second-order variables are off the
table, rather than an objection per se.

Another point to be made is that the process of set formation is non-
functorial. This arises as a result of Generify!—for several kinds of forcing,
there are many generics one could add. Take the addition of a single Co-
hen real, for example. Given a structure M over which we can add such
reals, there are always non-interdefinable Cohen reals G and H , and so
there is a choice to be made about which to add. We can also get dense-
ness in the ordering. Start by identifying that for any Cohen real G, there
is a Cohen-generic real H from which G can be defined but not vice versa.
Moreover, if G is definable from H but not vice versa, there is also a generic
I that (i) G is definable from I , (ii) I is not definable from G, and (iii) I is
definable from H . Thus, given any two single-Cohen-real forcing exten-
sions M [G] and M [H] there is also a dense ordering of M [I] between them.

One might be tempted to object to the Naturalness of this way of form-
ing the sets via Reify! and Generify! on these grounds. This is especially
so if one is attracted to modal theories as particular versions of the iterative
conception—there is no sense of iterating a determinate operation to yield
the universe here.21 Moreover even if we allow an indeterminate construc-
tion methods (i.e. ones that are non-functorial), the natural accessibility
relations we might come up with are non-well-founded. This contrasts
sharply with the situation in which powerset and union are our only set-
construction methods. There we can think of construction along the Vα as
a perfectly determinate and well-founded.

I don’t take this objection to be knock-down against the advocate of
modal theories like Sca. I think that one can see this from the consider-
ation of simpler modal construction cases that share many features with
forcing. Let’s suppose that we’re given a finite line segment l ⊂ R. I
have a single construction method Extend! that allows me to extend l in

21[Brauer, MS] also makes some points along these lines.
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a single direction. Now I could extend l left, or I could extend l right.
Moreover, if I extend l left, I don’t get what I get if I extend l right (I’m
assuming an identity criterion on lines here where l1 and l2 have to com-
prise exactly the same points to be identical). And any time I extend l in
one of the two directions to a line l′, there’s a dense ordering of smaller
lines that I could have extended to (with length greater than l but smaller
than l′). Clearly, however, this is a reasonable description of a modal line-
construction method, just one that is non-functorial. So it is for the sets
under Sca.

I thus think that when we use forcing, there’s still a good notion of
‘set-construction method’ in play. In particular, the idea that we can al-
ways run through any family of dense sets, successively hitting each one
by extending our previous choices, and get something in the end exactly
corresponds to the production of a generic. I’ll leave it open whether we
can view these set-construction methods as feeding in to some form of the
‘iterative conception’, and I acknowledge that something is given up when
we do so. It’s an interesting question whether there are natural count-
abilist conceptions that are functorial (or at least well-founded), but not
one I’ll address here.

Some remarks are also in order regarding the potentialist translations
of Separation, Replacement, and Collection. Modal Separation is very
natural, capturing the idea that if we have some set at some stage, and
some condition, we should be able to separate out the satisfiers of this
condition. In this respect it is not different from the ‘standard’ ZFC context
(though some extra care is needed, see [Roberts, MS]). Modal Replace-
ment, however, is a little more controversial. Since we can assume with-
out loss of generality that the domain of the relevant function is count-
able (since we may collapse it using forcing) we are effectively asking
that any ω-sequence of possibilia can be brought together into a single
world (where then non-modal Replacement within that world will yield
our desired set for the potentialist translation). In this respect, Modal Re-
placement functions in this context a bit like a ‘super-.2’ axiom (ω.2, if you
will).22 I think that it’s reasonable to assert this axiom. In any case, when
comparing Sca with Lin, we should note that Lin also requires a version of
Modal Replacement. Moreover, in the Lin-context, Modal Replacement
asserts that very many—i.e. lots more than countably-many—possibilia
can be brought together.23

22I thank Øystein Linnebo for some discussion of this point.
23It should be noted at this point that one can motivate Modal Replacement on the

basis of reflection-style ideas over the other axioms of Lin, but since the discussion of
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Modal Collection is more controversial, though I think a case can be
made for its naturalness. Where Powerset fails, Collection ceases to be
equivalent to Replacement (one can prove more from Collection and Sep-
aration). Moreover, though not included in [Scambler, 2021] or [Scambler, MS],
it is desirable to have Modal Collection for mathematical reasons. There’s
a long list of such reasons, but (to pick an especially salient one) you need
Collection to get the Łoś Theorem for ultrapowers to work (see [Zarach, 1996]
and [Gitman et al., 2016] for discussion). But what does it say in this con-
text? Let’s present a statement of the potentialist translation of Collection:

Definition 10. Let ϕ♢(x, y) be the potentialist translation of a formula ϕ(x, y)
in L∈ defining a relation. The modalised collection scheme (or just Modal
Collection) asserts (for each such ϕ) that:

□∀a(□∀x(x ∈ a → ♢∃yϕ♢(x, y)) →
♢∃b□∀x(x ∈ a → ♢∃y(y ∈ b ∧ ϕ♢(x, y))

Note here that the relation ϕ♢ might define a modally unbounded proper
class over any particular given x (i.e. there might be an x for which there
is no world containing all y such that ϕ♢(x, y) holds). In this way a given
set a and ϕ♢ are providing a parameterised family of classes, with each x ∈
a providing the indices. Modal Collection is thus essentially choice-like;
even in the case where for some xs the class of possible y such that ϕ♢(x, y)
is ‘modally smooshed’ across all the worlds, it’s still possible to get a set
which picks at least one element from each ‘member’ of this parameterised
class.

Again, I want to note a degree of parity with Lin here. There is substan-
tial debate to be had about how AC might be justified on the basis of modal
set theory, one that I won’t enter into here. But, formally speaking, you get
as much choice in the non-modal theory as you’re willing to throw in, and
AC has to be written in (either in the axioms of Lin or the plural logic). A
similar situation holds here. Though we get set AC for free in Sca (after all,
we have the modal translation of Count), stronger forms of choice that we
want for many kinds of mathematical construction need to be added.

I thus think that whilst there are questions of justification to be ad-
dressed for Sca, it nonetheless performs fairly well with respect to Natu-
ralness, and is at least not clearly worse than Lin. Certainly if it is worse
off, it’s not substantially so. Let’s now move on to Interpretation. We’ve
already discussed the fact that Sca interprets Count under the potentialist
translation. We can, in fact, go much further:

reflection-style axioms for Sca would take us a little far afield, I’ll suppress this detail.
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Theorem 11. [Scambler, 2021] Sca interprets ZFC− + Count under the po-
tentialist translation using ♢.

ZFC− + Count is a reasonably good theory for doing mathematics. How-
ever, as several authors have argued, the absence of Powerset makes it de-
sirable to have contexts in which ZFC is true, even if strictly speaking there
are no uncountable sets.24 Since Sca includes all the axioms of Lin for ⟨v⟩,
we can prove:

Fact 12. [Scambler, 2021] Sca interprets ZFC using the potentialist transla-
tion with the ⟨v⟩ modality.

So if we restrict to the ⟨v⟩ modality, we have models of ZFC. We should
want more, however. The potentialist translation (standardly conceived)
makes no mention of ⟨v⟩. There is no guarantee that we can ‘see’ the ZFC-
contexts using the broader modality ♢. Can we do better than restricting?

Here we find a use for regularity properties for sets of reals, which will
allow us to derive consequences for both Interpretation and Capture. Re-
cently Scambler has mobilised such regularity properties (using work of
Solovay and Taranovsky)25 in satisfying Interpretation. Let’s start with
the following definition:

Definition 13. We say that a class of reals (possibly defined by a formula in
the ZFC− + Count context) is perfect iff it closed and has no isolated points.26

We can further define:

Definition 14. We say that a (definable) class of reals has the perfect set
property iff it is either countable or contains a perfect subclass.

We can then finally define:

Definition 15. The
˜
Π1

1-Perfect Set Property (
˜
Π1

1-PSP) is the schema asserting
that every

˜
Π1

1-definable (i.e. definable with parameters from a Π1-formula
of second-order arithmetic) class of reals has the perfect set property.

24See [Arrigoni and Friedman, 2013], [Builes and Wilson, 2022], [Scambler, 2021],
[Scambler, MS], [Barton, Fa], and [Barton and Friedman, MS] (among several others).

25See [Solovay, 1974] and [Taranovsky, 2004].
26We should note that the notion of being perfect depends on the reals forming a Polish

space. Note also that since the reals and the hereditarily countable can be thought of as
coding one another, you can basically think of the reals as the universe of sets for the
countabilist.
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How do these regularity properties help the countabilist? As [Scambler, MS]
notes, the

˜
Π1

1-PSP has consequences for the existence of models of the form
L[x] satisfying ZFC.27 In particular:

Theorem 16. [Solovay, 1974] Let RL[x] denote the class of y such that L[x]
thinks that y is a real number. The

˜
Π1

1-PSP is equivalent to the claim that
‘For every real x, RL[x] is countable’.

Solovay’s proof is conducted against the background of ZFC, but it
works in the ZFC− context too (see [Taranovsky, 2004]). We can now point
to an observation made by Dmytro Taranovsky:

Theorem 17. [Taranovsky, 2004] Over ZFC− + Count, the
˜
Π1

1-PSP implies
(indeed is equivalent to) the schema asserting that L[x] satisfies ZFC for
every real x.

Thus, if we could prove the modal translations of the
˜
Π1

1-PSP in Sca,
we would be able to ‘see’ the fact that ZFC holds in inner models, just
using the potentialist translation under the ‘broad’ ♢ (i.e. without having
to restrict to ⟨v⟩). And, indeed, this is the case:

Theorem 18. [Scambler, MS] Sca proves the potentialist translations of the

˜
Π1

1-PSP, and hence the potentialist translations of ‘For every real x, L[x] |=
ZFC’.

Scambler takes this to show that Sca can do the work of the ‘usual’ ZFC-
based foundations, but within inner models rather than the universe. If we
accept that inner models are acceptable interpretations for mathematics,
then Sca also satisfies Interpretation. I am sympathetic to this point of
view, but acknowledge that there’s more to be said about whether such
inner model interpretations are satisfactory.28 I do not have enough space
to adjudicate this debate here, suffice to say that there are at least very nice
models satisfying ZFC on the picture provided by Sca. What I do want to
do is to identify that this has further consequences for Sca, in particular
that Sca can provide a version of a Capture theorem.

This fact is in fact implicit in the proof that [Scambler, MS] provides for
the consistency of Sca relative to ZFC− +

˜
Π1

1-PSP:

27I am very grateful to Chris Scambler for several discussions regarding the issues
around

˜
Π1

1-PSP, [Solovay, 1974], and [Taranovsky, 2004], as well as his [Scambler, 2021]
and [Scambler, MS].

28See [Barton, Fa], [Barton, Fb], and [Barton and Friedman, MS] for some further dis-
cussion of this point.

18



Theorem 19. [Scambler, MS] There is an interpretation (preserving theo-
remhood) from Sca to ZFC− + Count +

˜
Π1

1-PSP.

Scambler employs these results in the service of showing (i) that Sca is
consistent relative to ZFC, and (ii) there is no loss of interpretive power
compared to the usual ZFC-picture. Indeed, because of the interpreta-
tion of Sca into ZFC− + Count +

˜
Π1

1-PSP, we know that Sca has exactly the
same consistency strength as ZFC.29 However, it does more, in particular
it shows that Capture is satisfiable under Sca.

Fact 20. Not only does Sca prove the potentialist translations of ZFC− +
Count +

˜
Π1

1-PSP (call this T) but given a transitive model M of T we can
uniformly recover a Kripke model KM

Sca from M such that for every x ∈ M ,
there is a W ∈ KM

Sca such that x ∈ W .

Proof. The relevant Kripke model KM
Sca is just given by Scambler’s inter-

pretation from [Scambler, MS]. We have:

• Worlds are pairs (t, r) where t is a transitive set and r is a real such
that t ∈ L[r].

• Accessibility:

– (t1, r1) ⟨v⟩-accesses (t2, r2) iff r1 = r2 and t1 ⊆ t2.

– (t1, r1) ♢-accesses (t2, r2) iff t1 ⊆ t2 and r1 is constructible from
r2.

– (t1, r1) ⟨h⟩-accessing (t2, r2) can be given the same clauses as ♢.

Remark 21. Before going through the proof, we pause to give the reader
a feel for what’s going on with the construction of this Kripke model.30

Effectively the transitive set t is our first-order domain, and r (via L[r])
specifies how t will grow using the vertical modality—we iterate the L[r]-
powerset operation (i.e. r provides a conception of Reify! forever over t).
Note that for this reason, we may have (t, r1) and (t, r2) as different worlds,
not because the first-order domain is different, or even the second-order
domain is different, but rather because far in the vertical future L[r1] differs
from L[r2]. Formally speaking, we can handle horizontal modality using
the same clauses as ♢, but if one wants a distinctive modality one could

29See [Taranovsky, 2004] for a proof that ZFC− +
˜
Π1

1-PSP and ZFC have the same con-
sistency strength. The reversal is obtained by noting that given a model of ZFC, ZFC− +
Count +

˜
Π1

1-PSP holds in the Col(ω,< Ord) class forcing extension.
30Thanks to Chris Scambler for some discussion of his construction.
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easily specify that (t1, r1) ⟨h⟩-accesses (t2, r2) iff r1 is constructible from r2
and t1 ⊆ t2 and the ordinal height of t1 is the same as that of t2 (recalling
that this latter notion is well-defined since both t1 and t2 are transitive).

On to the proof of Fact 20: [Scambler, MS] already shows that KM
Sca sat-

isfies Sca. We can thus proceed directly to showing that any set in M is
a member of some world of KM

Sca. Start by taking some arbitrary y ∈ M .
Since M is transitive and models T, there is a transitive set x such that
y ∈ x ∈ M (e.g. the transitive closure of {y}). But we also know that
(x,x) is a world of KM

Sca, since L[x] |= ZFC (by
˜
Π1

1-PSP) and x ∈ L[x] for
any particular real x (a standard fact about constructibility). Thus there is
a world of KM

Sca containing y (namely (x,x)), and since the choice of y was
arbitrary, every y ∈ M is contained in some world of KM

Sca.

We thus get Capture too—given a transitive model of the non-modal
theory supported by the modal conception of the stages, we can always
extract a Kripke model for Sca where every set lives.

So, to review, Sca (with it’s idea of using Reify! and Generify!) pro-
vides a Natural modal theory of sets, that is able to give Paradox Diagno-
sis, Interpret mathematics, and provide a Capture theorem. Later (§6) I’ll
examine just how good this Capture-theorem is, contrasting the situation
in Sca with that of Lin. For now, we’ll examine a modal set theory that uses
solely Generify! (though starting from a great many sets).

5 Modalising Steel’s multiverse

In this section, I’ll explain how to provide a modal set theory similar to
Steel’s multiverse. We’ll show that this interprets ZFC− + Count +

˜
Π1

1-PSP,
and discuss it with respect to Naturalness, Paradox Diagnosis, Interpre-
tation, and Capture.

In [Steel, 2014], John Steel proposes a two-sorted but non-modal theory
with variables for sets x0,x1, ... and variables for universes W0,W1, ... with
the following axioms:31

Definition 22. Steel’s Multiverse Axioms are as follows:

(i) The axiom scheme stating that if W is a world, and ϕ is an axiom of
ZFC, then ϕ holds at W .

(ii) Every world is a transitive proper class.

31Here I follow the presentation in [Maddy and Meadows, 2020].
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(iii) If W is a world and P is a forcing partial order in W , then there is a
universe W ′ containing a generic for W .

(iv) If U is a world, and U can be obtained by forcing over some world
W , then W is also a world.

(v) If U and W are worlds then there are G and H that are generic over
them such that U [G] = W [H].

Steel wants to use his theory to isolate the determinate part of set
theory, regarding some sentences (like CH) as indeterminate ‘pseudo-
questions’ [Steel, 2014, p. 154]. Further analysis of Steel’s project on its
own terms is provided by [Maddy and Meadows, 2020]. However, we
might instead use the multiverse axioms as inspiration for a modal the-
ory of sets. Whilst this idea is anathema to the project proposed by Steel,
Maddy, and Meadows, it’s interesting that one can extract such a modal
theory from their ideas. On this conception, we form sets by starting with
proper-class models of ZFC, and then use forcing as our single set-forming
operation. We provide the following modal formulation:

Definition 23. SteMMe (for Steel-Maddy-Meadows) comprises the follow-
ing axioms in L ♢

≺,∈:

(i) Classical first-order logic.

(ii) Predicative plural logic.

(iii) Classical S4.2 with the Converse Barcan Formula for ♢.

(iv) The necessity of distinctness and stability axioms for ∈ and ≺.

(v) Plural Membership Definiteness.

(vi) The Ordinal Definiteness Schema: This is the schema of assertions
of the form ∀x

(
‘x is an ordinal’ → □ϕ(x)

)
→ □∀y

(
‘y is an ordinal’ →

ϕ(y)
)

(vii) The necessitation of every axiom of first-order ZFC.

(viii) Possible Set-Generics. The axiom ‘If P is a forcing partial order and
D is a set of dense sets of P, then it’s possible that there is a filter
meeting each dense set that is a member of D’.
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(ix) Modal Separation, Replacement, and Collection. The potentialist
translations of every instance of the Separation, Replacement, and
Collection schemas.32

Let’s take each of the desiderata of Naturalness, Paradox Diagnosis,
and Capture in turn.

Naturalness. The idea of the SteMMe is to take some proper-class-sized
model of ZFC as our starting sets and Generify! as our sole way of form-
ing new sets from old. There is no Reify! operation. Much of the choice
of logic (e.g. (i)–(iii)) is the same as in the case of Sca, we want to talk
about pluralities and sets, which ones can and can’t form sets, and how
a domain can grow (hence the Converse Barcan Formula, which in any
case is provable in this context). I adopt predicative plural logic since we
will only need to talk about definable classes and it will make some of the
model-theoretic analysis easier later, I leave it open how one might mod-
ify the approach to make the underlying plural logic impredicative. .2,
though it does not guarantee the directedness of the corresponding frame,
as before axiomatises the idea that any two possibilities can be brought
together, in line with Steel’s Amalgamation axiom. Stability axioms and
Plural Membership Definiteness are required again to ensure that neither
∈ nor ≺ (nor subplurality-hood) can behave badly as new sets come into
existence. The Ordinal Definiteness Schema essentially posits the Barcan
Formula for the ordinals, axiomatising the principle that the ordinals can’t
get longer. This captures the idea that our stages are all proper-class-sized
and we add the necessitation of first-order ZFC to capture the idea that ZFC
holds in each of these proper class models. Possible Set Generics is moti-
vated by the idea that our operation of set-formation is forcing. The points
about Modal Separation, Modal Replacement, and Modal Collection are
exactly the same as in Sca. Modal Separation is natural given worldly
Separation. Since any set can be collapsed, we can assume without loss
of generality that the domain of any function is countable, and so Modal
Replacement functions like a super-.2 or ω.2 axiom Since any set can be
made countable, the potentialist translation of AC is free, but we have to
write in the ‘choice-like’ Modal Collection scheme.

In the service of providing a picture behind SteMMe to substantiate
Naturalness, let’s show some easy facts:

Lemma 24. SteMMe implies that the plurality of all ordinals cannot form a
set.

32Again, there are redundancies here, but we separate them out in order to aid philo-
sophical discussion.
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Proof. Suppose otherwise. This would then be a transitive set well-ordered
by the membership relation. Then use Ordinal Definiteness to get (per
impossibile) that the ordinals form a set at the actual world.

This then implies:

Corollary 25. SteMMe implies that Modal Collapse fails.

Proof. The plurality of all ordinals witnesses the failure of Modal Col-
lapse.

These indicate a sense in which SteMMe is different from both Lin and
Sca; there are pluralities at every world who cannot be Reified! into sets.
This vindicates further the idea that we’re working with proper class mod-
els of ZFC.33

We can also note a fact about the way subsets (and corresponding sub-
pluralities) can be added:

Fact 26. SteMMe implies that Subplurality Definiteness fails.

Proof. By Possible Generics, there could be a generic for the (currently ex-
isting) dense sets that doesn’t currently exist. Note also that by Predicative
Comprehension at any world, the following Plurality Correspondence
principle holds:

□∀x∃yy∀z(z ≺ yy ↔ z ∈ x)

This asserts that necessarily there’s a plurality co-extensional with any
set x, and is a consequence of Predicative Comprehension by considering
the formula (in the parameter x̄ for x) ‘y ∈ x̄′. Using Plurality Correspon-
dence, we can then immediately infer that there could be a subplurality of
a plurality that doesn’t currently exist (namely the plurality corresponding
to our generic G).

We thus not only have a vindication of the idea that our worlds are
proper classes containing very possible ordinal, but also that they can be
expanded by forcing. SteMMe thus fills in the logical space in modal set
theories. Lin is a solely height potentialist theory, but width actualist in

33This has the result that this conception runs counter to many ‘height potential-
ist’ modal set theories (e.g. all of [Linnebo, 2010], [Linnebo, 2013], [Studd, 2013], and
[Scambler, 2021] do not support this idea). Many will take this to be an objection, but I
think that it highlights an interesting sense in which you can ‘calibrate’ what’s allowed
along different dimensions. I leave it open whether this opens the advocate of SteMMe to
revenge worries in the manner described by [Studd, 2013] and [Linnebo, 2010].
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that we can get a set of all possible subsets of a given set. Sca is both
height potentialist and width potentialist. And SteMMe is height actualist
but width potentialist. I think therefore that there’s a reasonably Natural
picture behind SteMMe. Before we continue, I’d like to forestall a few ob-
jections.

First, one might object that neither Sca nor Lin depends on there being
very many sets to start with. We could start with our initial domain just
containing the empty set and go from there, whereas SteMMe contains the
necessitation of ZFC. One might worry here that if we’re explaining how
the sets are ‘built up’, we shouldn’t start with many sets. Every house so
to speak, has to start from the first brick—you can’t build a good house if
you assume that the foundations are already laid.

There’s a few responses to be made here. First, both Lin and Sca write
in a modal existence assumption; both assert the possible existence of a
set of all possible natural numbers (i.e. Modal Infinity). There is always
going to be a jump in size at some point. And, we could make modifica-
tions to SteMMe to allow it to start with no sets, but will result in a more
finnicky axiomatisation. For example, we might just assert that ZFC is pos-
sible (rather than necessary), and then conditionalise our other axioms on
the existence of an infinite set (e.g. the necessitation of ZFC could be re-
placed by □(‘There is an infinite set’ → ϕ) for every axiom ϕ of ZFC.). The
core idea would then be the same—we might start with the empty set—
but as soon as you’ve got an infinite set you jump to some proper class
model of ZFC. I thus think that this difference is one of degree rather than
kind, and doesn’t particularly affect SteMMe’s Naturalness.

A related worry concerns the autonomy of SteMMe.34 For both Sca and
Lin, beliefs about the vertical modality licence the truth of ZFC for that
modality. But what recourse does the advocate of SteMMe have for believ-
ing the truth of the necessitation of ZFC?

In response, one might point to the experience that set theorists have of
working within inner models and moving between them. This motivates
the idea that there’s a coherent conception or intuition to be captured, and
this is SteMMe’s role. Steel chooses to do so with a non-modal framework,
but it is interesting that this intuition can be captured modally too.

This idea has some affinity with the strategy of biting the autonomy
bullet. One might piggy back of the height potentialist motivation for ZFC
given by Sca. In a way, SteMMe functions very like a theory on which
the vertical modality of Sca has been ‘factored out’—we look at all the
ways that ZFC can be true under ⟨v⟩, and then, kicking away the modal

34I thank Ethan Brauer for pressing this point.

24



ladder, view the necessitation of ZFC as true. Some houses are built brick-
by-brick, but other perfectly good houses can be built by slotting prefab-
ricated structures together. Shortly, we’ll see that this view can be some-
what mathematically vindicated; SteMMe shares several formal features
with Sca (in particular interpreting ZFC− + Count +

˜
Π1

1-PSP under the po-
tentialist translation).

Paradox Diagnosis is an interesting problem. SteMMe certainly tells us
that many conditions do not define sets. The collection of all countable
sets, for example will not be available at any world. However, there is a
puzzle in that the plurality of all possible ordinals doesn’t form a set, but
does exist at every world. What’s going on here?

The point is that we only have Generify! as our sole set-construction
method. The explanation for why the ordinals do not form a set is that
although they may be an ‘available’ plurality, we do not get enough set-
forming pressure from Generify! to ossify them into a set. For a modal set
theory what pluralities can be formed as sets is dependent upon a calibra-
tion between the pluralities available and the strength of our set-forming
methods. SteMMe buys a great many available sets (indeed proper-class
many!) at the price of a relatively weak set-forming operation. Some
folks (e.g. friends of Modal Collapse) will no doubt find this unappeal-
ing, but I find it rather interesting that you can trade availability and set-
construction methods against one another whilst only partially, if at all,
compromising Naturalness.

Interpretation. Can we get a nice non-modal theory using SteMMe?
The answer is yes:

Fact 27. SteMMe interprets ZFC− + Count under the potentialist translation.

Proof. (Infinity) We have to show that ♢∃x(∅ ∈ x ∧□∀y(y ∈ x → {y} ∈ x).
Since we have the axiom of infinity at each world, we know that ♢∃x(∅ ∈
x ∧ ∀y(y ∈ x → {y} ∈ x)). By the stability of membership, we can then
infer ♢∃x(∅ ∈ x ∧□∀y(y ∈ x → {y} ∈ x)).

(Count) Is immediate given Possible Generics, necessarily any x can be
made countable using forcing.

(The Axiom of Choice) Follows immediately (and cheaply) from
Count.

(Foundation) Holds by using the necessitation of foundation at every
world.

(Extensionality) We need to show □∀x□∀y□∀z((z ∈ y ↔ z ∈ x) → x =
y). Immediate using the T axiom and extensionality at any given world.

(Pairing) Here we need to show □∀x□∀y♢∃z□∀p(p ∈ z ↔ (p = x∨ p =
y)). Suppose that we have some arbitrary set x at some world w1. Then,
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by Converse Barcan, necessarily if some y exists at a world w2 accessible
from w1, x also exists at w2 too. We can then use pairing at w2 containing
both x and y to get the possible existence of the pair set {x, y}.

(Union) Union requires □∀x♢∃y□∀z(z ∈ y ↔ ♢∃p(z ∈ p ∧ p ∈ x)).
Suppose we have some x. Then we can just use the standard axiom of
union at that world (plus the fact that the set can’t pick up members) to
get the required possible p.

(Separation and Collection) Are just handled because we included the
relevant potentialist translations in SteMMe, Replacement then follows for
free.

Can we hope for more? One such hope is that we might be able to
prove the potentialist translations required for Replacement and Collec-
tion without assuming them (after all, we have the unbounded tower of
ordinals to use at every world). Unfortunately I think that this is an un-
likely possibility, and since this matter is somewhat orthogonal to matters
at hand, I relegate these observations to a footnote.35 However we can
show:

Fact 28. SteMMe proves the potentialist translations of the
˜
Π1

1-PSP.

Proof. The proof of this is not deep and we roughly just copy the Scambler-
Solovay-Taronovsky ideas into the SteMMe context. Essentially the same
technique works as in [Scambler, MS], but without any need to check some
of the absoluteness facts related to the ⟨v⟩ modality. Using the Taranovsky
and Solovay results, all we need to show is that SteMMe proves the poten-
tialist translations of ‘For every real x, RL[x] is countable’. So, take any pos-
sible real x under SteMMe (in fact any possible set will do, since SteMMe
satisfies the potentialist translation of Count any set can be thought of as a
real). Since we know by assumption that ZFC holds at any world in which
x exists, then it is a standard fact about constructibility that L[x] satisfies
ZFC and thus RL[x] exists. We then use Possible Generics to collapse RL[x]

to be countable. Since the choice of x was arbitrary, this holds for any pos-
sible set x. The only thing to check is that RL[x] is the same across worlds

35I lack formal proofs of independence, but here are my reasons for doubt. Start by
fixing a model M of ZFC− + Count. Replacement. Suppose M also thinks that 0♯n (i.e. 0
with n-many sharps after it) exists for every n ∈ N. Let worlds be of the form L[0♯n,G]
for each n and G either empty or generic over L[0♯n] for some P ∈ L[0♯n] (with the second-
order domain handled by the definable classes over a given world). Then the function
mapping n to 0♯n is a legitimate (modally definable!) function whose domain is a set
(namely N) but whose range is not a set at any world. Collection seems dubious to me
since there are models of SOA satisfying AC but not DC (see [Friedman et al., F]).
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containing x, but this holds in virtue of the absoluteness of the construc-
tion of L[x] (it is absolute between transitive models of ZFC with the same
ordinals).

We thus have Interpretation, at least up to the same level as given by
Sca. What now of Capture?

Theorem 29. Suppose M |= ZFC− + Count +
˜
Π1

1-PSP. Then we can con-
struct a Kripke model KM

SteMMe of SteMMe such that for every x ∈ M there
is a W ∈ KM

SteMMe such that x ∈ W ,

Proof. For any structure X , let Def(X) be the ‘definable powerset’ of X
(i.e. the the collection of all {y|X |= ϕ(y)} for some formula ϕ in one free
variable in the language of X , possibly with parameters from X). Our
Kripke model KM

SteMMe = (WM ,≤M) will be as follows:

• Worlds: WM = {((L[x])M ,Def((L[x])M))|x ∈ M}, i.e. worlds consist
of pairs of the form ((L[x])M ,Def((L[x])M)). From now on, we will
suppress the superscript relativising L[x] to M .

• Accessibility: ≤M
SteMMe can be defined as follows:

(L[x],Def(L[x])) ≤M
SteMMe (L[y],Def(y)) iff L[x] ⊆ L[y]

Effectively, we let the first-order domain of the worlds be proper class
models of the form L[x] and the second-order domain over each world is
composed of the first-order-definable subclasses of L[x]. We get predica-
tive plural logic over any world since it is always satisfied by the definable
subclasses of any world (with ≺ interpreted by ∈). Note that this requires
the use of higher-order resources over M (e.g. an ambient set-theoretic
background) but this is standard when handling M -proper classes. The
reader who doesn’t like the use of higher-order resources can think of
each class as coded by the formula (in some set-parameters) defining it.
We’ll discuss the possibility of getting impredicative plural logic below (in
Remark 30). From now on, we’ll suppress the consideration of the second-
order part of the models (i.e. Def(L[x]) for each x).

S4 is trivial for any frame which is a preorder. To show that the .2
axiom holds, we’ll show the frame is directed. If L[x] is a world and L[y]
is a world, then L[x, y] is also a world accessed by both L[x] and L[y]. We
just need to show that there’s a single real r such that L[r] = L[x, y]. But
this can be obtained by ‘winding x into y’ (i.e. put x onto all even bits of
r and y onto all odd bits of r). The Converse Barcan formula is free given
that domains only grow. The necessity of distinctness and stability axioms
for ≺ and ∈ are handled by the nature of set membership in M .
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Plural Membership Definiteness holds since Def(L[x]) is extensional,
so clearly can’t pick up members.

The Ordinal Definiteness Schema is immediate, since the (set) ordi-
nals of each world are the same.

Necessitation of the ZFC axioms. These follow from the fact that the

˜
Π1

1-PSP in M implies that L[x] is a model of ZFC for every real x.
Possible Set Generics. If L[x] is a world of KM

SteMMe, and P is a notion of
forcing in L[x], then the family D of all dense sets for P in L[x] is countable
in M (since M satisfies Count). By the usual Rasiowa–Sikorski Lemma in
M , there is thus a G ∈ M intersecting every member of D. We then note
that there is some r ∈ M such that L[r] = L[x,G] (using the previous
technique of winding x into G) with L[r] |= ZFC (by

˜
Π1

1-PSP) and such that
G ∈ L[r], with L[x] ⊆ L[r].

The Modal Separation and Modal Collection are handled by noting
that any instance of ♢∃xϕ(x) and □∀xϕ(x), the claims that ‘There is a real x
such that L[x] |= ϕ’ and ‘For every real x, L[x] models ϕ’ are each (schemat-
ically) definable in M . Therefore Modal Separation and Modal Collection
hold in KM

SteMMe in virtue of the the fact that there will be a set y for Collec-
tion/Separation in M using the relevant formulae, and then L[y] will be a
world of KM

SteMMe containing y (using
˜
Π1

1-PSP).

Remark 30. A nearby theorem is available when we allow impredicative
comprehension. If we work against the background of ZFC, and we con-
sider some M |= ZFC− + Count +

˜
Π1

1-PSP, and Ord(M) is inaccessible in
L[x] for every real x ∈ M , then one can get impredicative comprehension
too by letting worlds be ((L[x])M ,PL[x]((L[x])M)). The problem with this
move is that we depend on a strong higher-order background (ZFC) over
M to interpret the impredicative comprehension, and so I prefer to work
against the background of predicative plural logic (for that, we just need
definable powersets over M , and thus the construction can work perfectly
well in ZFC−). It’s an open question whether a theory like Kelley-Morse
class theory minus powerset (KM−) could produce the required models
using impredicative plural logic in SteMMe.

So, we are now in a very similar situation with respect to SteMMe as
we were with Sca. In fact, many of the results from Sca can be easily im-
ported to the current context, avoiding the complications raised by the ⟨v⟩
operator. Still, the fact that we have a forcing potentialist but height actual-
ist theory that fairs reasonably-well with respect to Naturalness, Paradox
Diagnosis, Interpretation, and Capture is interesting.

I think that countabilist modal set theories like Sca and SteMMe deserve
consideration as viable for providing mathematical foundations. Before I
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conclude, however, I want to linger on the issue of Capture a little longer.
Though Capture-theorems can be provided for all the theories considered
here, I think that the standard view and Lin are actually in slightly better
shape in that their Capture-theorem is more satisfying. As we’ll see, I
think that this suggests some important points for countabilist modal set
theories moving forward.

6 Capturing Capture?

Whilst we do have Naturalness, Paradox Diagnosis, Interpretation, and
Capture for each of the theories considered, I do want to raise a worry
for advocates of both Sca and SteMMe (and thus, in a sense, advocates of
forcing potentialism more widely), regarding the ‘satisfaction’ of Capture.
The important point is the following: If we look at how Capture is satisfied
in each case, we can see that forcing had a very minimal role. Really, we
just used it to to get Count and

˜
Π1

1-PSP—forcing does not really appear in
the specification of the relevant Kripke models. Count gets us the fact that
any set can be coded by a real, and the

˜
Π1

1-PSP guarantees that given a real
x, L[x] satisfies enough set theory to get us a world containing x for our
Kripke frame for Sca/SteMMe.

An example might be instructive here; for this we’ll consider the case
of sharps (or just ♯s). Suppose we have a model M that satisfies ZFC− +
Count +

˜
Π1

1-PSP. Suppressing the details, 0♯ is an object that can be coded
as a real, and allows us to define a non-trivial elementary embedding j :
L → L. This idea can be iterated, 0♯♯ for instance, can also be coded as
a real, and allows us to define an embedding j : L[0♯] → L[0♯], and we
can consider 0♯♯♯ and so on. Let’s let 0♯n denote the real (if it exists) that
results from adding n many sharps after 0 (so, 0♯0 = ∅, 0♯1 = 0♯, 0♯5 = 0♯♯♯♯♯

etc.). An interesting fact is that 0♯n+1 cannot be gotten from 0♯n using known
forcing technology (this is a quick consequence of the fact that the standard
forcing construction cannot result in a consistency-strength increase, and
over ZFC− + Count +

˜
Π1

1-PSP, ‘0♯n+1 exists’ always has a higher consistency
strength than ‘0♯n exists’). Now suppose in fact that M also satisfies ‘For
every n, 0♯n exists’. Here we’ll have L[0♯n+1] providing enumerations of
many L[0♯n]-uncountable sets (and indeed thus providing L[0♯n]-generics
for many forcings P ∈ L[0♯n]). But moving between L[0♯n] and L[0♯m] for
n < m has nothing really to do with forcing, and everything to do with
the new (highly arbitrary) enumerations added by 0♯m. Indeed, when one
thinks about the forcing construction, it is quite a limited and controlled way
of adding enumerations.
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This has the consequence that accessibility of our Kripke frames
does not exactly match up with the informal construction methods we
started out with in motivating our modal theory. For instance, given
a model M satisfying ZFC− + Count +

˜
Π1

1-PSP, we have in KM
SteMMe that

(LM ,Def(LM)) ≤M
SteMMe ((L[0♯])M ,Def((L[0♯])M)). But there’s no way of

getting from LM to (L[0♯])M using forcing. Similarly, in KM
Sca we have

(Lω+1, ∅) ≤M
Sca (Lω+1[0♯], 0♯), but no way from getting from (Lω+1, ∅) to

(Lω+1[0♯], 0♯) by forcing, and if we grow (Lω+1, ∅) vertically it will stay
within L and never pick up 0♯ (even if we subsequently force). Contrast
this with the case of the standard view and its twin operations of powerset
and union. Over any transitive model M |= ZFC, in KM

Lin if V M
α ≤M

Lin V M
β ,

then there is always (according to M ) some way of getting from V M
α to V M

β

by iterating powerset and collecting together at limits.
So: Not only do we get a Capture theorem for Lin and the standard

view, we get one that is very satisfying with accessibility exactly match-
ing the informal set construction methods described. But neither Sca nor
SteMMe (as I’ve presented them) has this feature. I contend that it is exactly
the fact that the powerset encodes the idea of an arbitrary subset that lets
any set by constructed by iterating powerset far enough.

What the countabilist needs is something that has the level of ‘arbi-
trariness’ that is enjoyed by the powerset operation. My suggestion is
that in the specification of how sets are formed for the countabilist, the
focus should be on arbitrary enumerations rather than forcing. And non-
forcing-based enumerations (e.g. the various 0♯n, or more generally x♯ for
any real x) can be thought of as arising out of arbitrary enumerations. But
this is just to specify the germ of an idea for future study, rather than any-
thing fully worked out.36

This isn’t to say that forcing doesn’t play an important philosophical
role for the countabilist. The idea of forcing corresponds to a very natural
set-construction idea—if you give me any family of dense sets for some
forcing partial order, and I can run through them all, successively meeting
each one extending my previous choices, and get something at the end,
I’ll have produced a generic for that family. The idea that this can be done
for any family is already sufficient to conflict with the with the Powerset
Axiom, putting aside whether fully arbitrary enumerations exist.

I therefore think that the forcing construction plays a similar philo-
sophical role for the countabilist as the definable powerset operation (i.e.
the operation of taking all sets definable over a structure) does for height-

36A possible line of inquiry would be to use the system of [Brauer, MS] (and in partic-
ular his use of free choice sequences) in making this idea precise.
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potentialist modal set theories (which may be uncountabilist). Kanamori
writes:

As the importance of the construction of L was gradually di-
gested, the sense it promoted of a cumulative hierarchy re-
verberated to become the basic picture of the universe of sets.
[Kanamori, 2007, p. 173]

The point is that the definable powerset operation can be thought of
as a way of iterating a very controlled and concrete height-potentialist set-
construction method. Forcing plays a similar role for the countabilist—it
can be used as a tool for adding enumerations in a very concrete and well-
behaved way. This might motivate you to believe that every set can be
made countable. But when we want to start considering the full power of
set theory to generate arbitrary sets, this control is going to have to drop
away.

7 Conclusions and open questions

In this article, I’ve compared and contrasted three modal set theories with
respect to Naturalness, Paradox Diagnosis, Interpretation, and Capture.
I’ve argued that whilst width potentialist theories like Sca and SteMMe are
also able to fulfil these requirements, their Capture-theorem is a little un-
satisfying as it stands. I think that this highlights the following important:

Challenge. Provide a modal set theory that implies both Count in the
non-modal theory (or at least width potentialism) but satisfies Capture in
a more pleasing fashion.

This is the most pressing challenge for the countabilist. However I
think there are also some important other further questions.

First, we might ask how far we can go with Interpretation. Since we
can use Lin to interpret any sentence of ZFC via the potentialist translation,
it’s easy to augment Lin with axioms that have a higher degree of inter-
pretative power by adding the potentialist translations of your favourite
first-orderisable large cardinal axioms. Whilst there are some questions
for how to motivate these axioms on modal grounds—higher-order ax-
ioms like reflection principles seem difficult—so long as we stay within
the domain of first-order axiomatisation and (probable) consistency with
ZFC there’s no obstacles here (e.g. we could add the potentialist transla-
tions of ‘There is measurable cardinal’, ‘There is a proper class of Woodin
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cardinals’ etc.). This strategy is not available to the countabilist since they
think the Powerset Axiom is false. We therefore ask:

Question 31. Are there well-motivated countabilist modal-set-theoretic
principles that result in a higher degree of interpretive power?

There is already some work in this direction. One promising strategy
is to appeal to axioms of definable determinacy, many of which can be for-
mulated in ZFC− + Count, and imply the existence of large cardinals in
inner models. For example

˜
Π1

1-Determinacy is enough to guarantee ‘For
every real x, x♯ exists’ and Projective Determinacy (PD) implies that there
are Woodin cardinals in inner models. Moreover, if PD holds we would
obtain a high degree of theoretical completeness for our axiomatisation—
there are no known sentences independent of ZFC− + Count + PD other
than Gödel-style diagonal sentences (see [Welch, 2017]). In principle, we
could just throw in the potentialist translations of determinacy axioms,
but this strikes me as a philosophically unsatisfying solution. There are
other possible directions, [Barton and Friedman, MS] for example propose
an axiom (based on ideas of absoluteness) that guarantees the existence of
0♯ but conflicts with low levels of determinacy.

A different suggestion, especially germane to Sca and SteMMe, is to
consider adding large cardinals in inner models. This is suggested, for in-
stance, by Steel who writes (regarding his second-order axiomatisation):

The central role of the theories axiomatized by large cardinal
hypotheses argues for adding such hypotheses to our frame-
work. The goal of our framework theory is to maximize inter-
pretative power, to provide a language and theory in which all
mathematics, of today and of the future so far as we can antici-
pate it today, can be developed. [Steel, 2014, p. 165]

Taking inspiration from Steel, we can define:

Definition 32. Let W be the claim that ‘There is a proper class of Woodin
cardinals’ (or some other suitable first-order-isable statement) rendered in
L∈. Let the theory SteMMe+ be the result of adding the necessitation of W
to SteMMe and let Sca+ be the result of adding the ⟨v⟩-potentialist transla-
tion of W to Sca.

The idea for SteMMe+ and Sca+ is thus that we’ve got many (i.e. a
proper class of) Woodin cardinals in inner models. I’ll leave it open at this
stage whether such an axiom can be easily motivated. But we might then
ask:
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Question 33. Is there a significant increase in what can be interpreted un-
der the potentialist translation using either Sca+ or SteMMe+ as compared
to Sca and SteMMe?37

Our next question concerns the relationship between ‘iterative concep-
tions’ and modal set theories. As we noted, both KM

Sca and KM
SteMMe have

non-well-ordered (and indeed non-well-founded) accessibility relations.
We therefore ask:

Question 34. Can we extract ‘iterative conceptions’ from the ‘set-
construction methods’ axiomatised by Sca and SteMMe? What about
countabilist theories more widely?

The final question I wish to pose links to the topic of this special issue.
Though I have referred to height- and width-potentialist modal set theo-
ries, I have deliberately remained agnostic throughout whether we should
think that there is, at the end of the day, a maximal and definite domain of
set theory. We might, for instance, view these modal set theories as merely
descriptive; they provide a modal description of a definite and maximal
universe of set theory. However we might also view them as showing
us that the universe of sets is indefinitely extensible inherently potential
in nature. My agnosticism has not been shifted by consideration of these
issues, and so I ask:

Question 35. Do these modal set theories suggest a potentialism about the
subject matter of set theory? If yes, how different are height- and width-
potentialism?

References

[Arrigoni and Friedman, 2013] Arrigoni, T. and Friedman, S.-D. (2013).
The Hyperuniverse Program. Bulletin of Symbolic Logic, 19:77–96.

[Barton, Fa] Barton, N. (Fa). Is (un)countabilism restrictive? To appear
in the Journal of Philosophical Logic. Pre-Print: https://philpapers.
org/rec/BARIUR.

37One might be tempted to try infer PD from the fact that PD holds at every world
(the latter we know by the Martin-Steel theorem). The problem is that since the R of
any world is countable, and we know determinacy holds for countable sets of reals, we
already know PD for such sets without any large cardinals. It’s unclear to me how to get
extra juice from the large cardinals beyond their worldly consequences. A different hope
would be to proceed via the equivalence with the existence of the relevant mice, but this
strategy remains opaque to me.

33

https://philpapers.org/rec/BARIUR
https://philpapers.org/rec/BARIUR


[Barton, Fb] Barton, N. (Fb). Iterative Conceptions of Set. Cambridge Uni-
versity Press. To appear as part of the Elements series. Preprint: https:
//philpapers.org/rec/BARICO-5.

[Barton and Friedman, MS] Barton, N. and Friedman, S. (MS). Count-
abilism and maximality principles. Manuscript under review. Preprint:
https://philpapers.org/rec/BARCAM-5.

[Boolos, 1971] Boolos, G. (1971). The Iterative Conception of Set. The Jour-
nal of Philosophy, 68(8):215–231.

[Brauer, MS] Brauer, E. (MS). What is forcing potentialism? Manuscript
under review.

[Brauer et al., 2021] Brauer, E., Linnebo, O., and Shapiro, S. (2021). Di-
vergent Potentialism: A Modal Analysis With an Application to Choice
Sequences. Philosophia Mathematica, 30(2):143–172.

[Builes and Wilson, 2022] Builes, D. and Wilson, J. M. (2022). In defense
of countabilism. Philosophical Studies, 179(7):2199–2236.

[Button, 2021a] Button, T. (2021a). Level Theory Part 1: Axiomatizing the
bare idea of a cumulative hierarchy of sets. The Bulletin of Symbolic Logic,
27(4):436–460.

[Button, 2021b] Button, T. (2021b). Level theory, part 2: Axiomatizing the
bare idea of a potential hierarchy. Bulletin of Symbolic Logic, 27(4):461–
484.

[Friedman et al., F] Friedman, S.-D., Gitman, V., and Kanovei, V. (F). A
model of second-order arithmetic satisfying AC but not DC. Journal of
Mathematical Logic.

[Gitman et al., 2016] Gitman, V., Hamkins, J. D., and Johnstone, T. A.
(2016). What is the theory ZFC without power set? Mathematical Logic
Quarterly, 62(4-5):391–406.

[Kanamori, 2007] Kanamori, A. (2007). Gödel and set theory. The Bulletin
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