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Abstract Since the beginning of the XX-th century, it became increasingly
evident that information, besides matter and energy, is a major actor in the
life processes. Moreover, communication of information has been recognized
as differentiating living things from inanimate ones, hence as specific to the life
processes. Therefore the sciences of matter and energy, chemistry and physics,
do not suffice to deal with life processes. Biology should also rely on sciences
of information. A majority of biologists, however, did not change their mind
and continued to describe life in terms of chemistry and physics. They merely
borrowed some vocabulary from the information sciences. The first science
of information available to biological applications, semiotics, appeared at the
end of the XIX-th century. It is a qualitative and descriptive science which
stemmed from efforts of linguists and philosophers to understand the human
language and is thus mainly concerned with semantics. Applying semiotics to
biology resulted in today’s Biosemiotics. Independently, an explosive expan-
sion of communication engineering began in the second half of the XX-th
century. Besides tremendous progresses in hardware technology, it was made
possible by the onset of a science of literal communication: Information Theory
(Shannon, Bell Syst Tech J 27:379–457, 623–656, 1948). Literal communication
consists of faithfully transporting a message from a place to another, or from
an instant to another. Because the meaning of a message does not matter for its
transportation, information theory ignores semantics. This restriction enables
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defining information as a measurable quantity on which a mathematical theory
of communication is founded. Although lacking implementation means at
its beginning, information theory became later very successful for designing
communication means. Modern ones, like mobile phones, can be thought of
as experimentally proving the relevance and accuracy of information theory
since their design and operation heavily rely on it. Information theory is
plainly relevant to biological functions which involve literal communication,
especially heredity. This paper is intended to compare the two approaches. It
shows that, besides obvious differences, they have some points in common: for
instance, the quantitative measurement of information obeys Peirce’s triadic
paradigm. They also can mutually enlighten each other. Using information
theory, which is closer to the basic communication mechanisms, may appear
as a preliminary step prior to more elaborated investigations. Criticizing
genetics from outside, information theory furthermore reveals that the ability
of the template-replication paradigm to faithfully conserve genomes is but a
prejudice. Heredity actually demands error-correcting means which impose
severe constraints to the living world and must be recognized as biological
facts.

Keywords Biosemiotics · Error-correcting codes · Heredity ·
Information theory · Semantics

Introduction

Accounting for the exchange of signals of all kind (chemical, electrical, optical,
acoustical, . . . ) which occurs as an integral part of the life processes, at all scales
from the molecules to the ecosystems, biosemiotics happily complements
traditional biology. It is intended to fully take into account the communication
of information in the living world, which is more and more recognized as
differentiating it from the inanimate world, hence as fundamental in the life
processes. Communication plays indeed in the living world an essential rôle
which moreover is specific to life. It is not reducible to physics and chemistry
but what is communicated—information—is an entity of its own. Biology must
thus integrate the science of information. But there is no unified science of
information. Two such sciences are available: semiotics and information theory.
The former and oldest is at the origin of biosemiotics which can already gather
a number of experts. The second one has been extraordinarily successful in
engineering but very few people seriously try to apply it to life. The great
pioneer here is Yockey (1992, 2005).

Biosemiotics borrows its paradigms from the communication between hu-
mans and thus incurs the risk of anthropocentrism. The founding fathers
of semiotics lived well before the explosive expansion of communication
engineering in the second half of the XX-th century. The idea that functions of
abstract nature actually need a physical implementation was foreign to them.
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The only instances of such an implementation they thought of were mental,
i.e., involving the human brain, an organ of immense complexity which, a
century later, is still poorly understood despite much works and progresses.
The brain mechanisms were completely unknown when semiotics arised so
it could only develop as an abstract, speculative discipline deprived of the
support of experiments, except for mental ones.

By now, communication (and even communicating) machines have literally
invaded our lives. The progress of communication technology was made
possible not only by tremendous advances in the physical hardware, but also
because information theory, which originated in a reflection about commu-
nication technology, provided a sound theoretical basis for the design and
analysis of communication systems. Information theory lays emphasis on literal
communication and quantitative methods. Its development was made possible
thanks to a bold a priori position: to discard semantics. In the very first page of
the paper which founds information theory (Shannon 1948), Shannon wrote:

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design. (Shannon’s italics.)

Just like a messenger has not to know about the message he/her carries,
a communication system ignores meaning and should operate regardless of
the particular message it has to transmit. Replacing in the above quotation
the word ‘point’ which refers to a location in space with the word ‘instant’
moreover extends its relevance to communication in time, hence to heredity.

Two Contrasting Sciences

It is hard to imagine that two sciences of communication could be based on
such opposite postulates. For semiotics, semantics is the essence of communi-
cation and thus its main object; if not overlooked, literal communication is
a trivial matter which deserves no special interest. For information theory,
semantics must be discarded as irrelevant to the engineering problem of
communication, which merely consists of making the transmitted message
available to its destination. It is a necessary step in any communication
however not the ultimate one. Information theory may thus be considered
as the prerequisite to further refinements accounting for semantics. It may
be thought of as an unavoidable intermediate in the path from conventional
biology towards biosemiotics.
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Table 1 Main features of semiotics and information theory

Semiotics Information theory

Beginning End of XIX-th century Shannon (1948)
de Saussure, Peirce

Originated in Philosophy and Linguistics Engineering
Concerned with Semantic communication Literal communication
Difficulty Intrinsically difficult as facing Basically easier as discarding

semantic problems semantics
Style Descriptive and qualitative Mathematical and quantitative
Impact on the Foreign to implementation Useful in designing devices,

physical world systems and processes
Knowledge of borders Found absolute limits for

possible communication

The main features of semiotics and information theory have been gathered
in Table 1. Each of its lines points out a feature about which they disagree and
the remainder of this paper will elaborate on these contrasts, trying to show
what benefits information theory can bring to biology.

What Engineering can Bring to Biology

Reviewing in Benner (2008) a book by Regis (2008), Steven Benner wrote:

“Because building something requires a deep understanding of its parts
[and of their mutual relationship], synthesis also stops scientists from
fooling themselves. Data are rarely collected neutrally during analyses
by researchers, who may discard some, believing the data to be wrong if
they do not meet their expectations. Synthesis helps manage this problem.
Failures in understanding mean that the synthesis fails, forcing discovery
and paradigm change in ways that analysis does not.” (The phrase in
brackets has been added by me.)

Synthesis being the engineers’ job, this remark is an excellent plea for a close
collaboration of biologists and engineers. It is originally intended to genetic
engineering but actually applies to any instance where nature and engineers
are faced with the same problems. It puts in the forefront the necessary
implementation of biological functions. Indeed, assuming the existence of some
biological function without caring about how it is implemented pertains to
wishful thinking. The engineering approach advocated in the above quotation
should avoid it. Besides a renewed understanding of biological facts, another
benefit of an engineering approach regards methodology: it makes possible
quantitative assessments.

Communication engineering benefits from the theoretical framework of
information theory. Literal communication of sequences of symbols (‘literal’
meaning that semantics is ignored) is actually a mathematical problem, and
information theory is just that branch of mathematics which deals with it.

Information theory can bring to biology its concepts and methods as well
as its results. Maybe its most important concept is that of channel capacity,
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proven to set an impassable limit to any communication. Information theory
actually proves that communication without errors (more precisely, with an
arbitrarily small error rate) is possible over a channel despite the errors which
affect it, provided the information rate is less than the channel capacity, a
quantity which decreases as the channel error rate increases. However, the
very means which enable ‘errorless’ communication hinder any communica-
tion at all beyond the channel capacity. Both the possibility of ‘errorless’
communication below the capacity and its impossibility above it, although
rather counterintuitive, are fully confirmed by the engineers’ experience,
besides being theoretically proven.

As an engineering discipline, information theory had a tremendous impact
on the communication techniques. It established the limits of what is possible,
and the engineers strove for approaching them. We briefly summarize the
parallel development of information theory and communication engineering
in the next section.

Information Theory and Communication Engineering

Two events of capital importance for the future of communication engineering
occurred simultaneously at the same place: in 1948, at the Bell Telephone
Laboratories, Claude Shannon published ‘A mathematical theory of commu-
nication’ (Shannon 1948); and John Bardeen, William Shockley and Walter
Brattain invented the transistor. The technological developments based on
the second event, i.e., the semi-conductor technology, provided means to
implement solutions to communication problems having their origin in the
first. It turns out that the information-theoretic solutions to communication
problems are the more efficient, the more complex. The progress of semi-
conductor technology resulted in devices becoming at the same time more and
more tiny and more and more complex. By now, 60 years after the transistor
invention, a silicon chip of a few square centimetres can bear about a billion
transistors. The tremendous evolution of semi-conductor technology towards
increasing complexity perfectly fitted the needs of communication engineering
for implementing solutions inspired by information theory. Information theory
especially led to the development of very sophisticated error-correcting codes
which reliable and inexpensive devices can by now implement. They actually
invaded our daily life: computer memories, mobile phones, CD, DVD, digital
television . . . However, they remain invisible and very few people are aware
of the enormous complexity which subtends electronic objects of daily use.
With their trend towards complexity and small size, electronic devices tend
to mimic biological devices. Just like we are unaware of the physiological
processes which keep us alive, we are less and less conscious of the complexity
of the electronic objects which we routinely use. Most of us completely ignore
how they work. Moreover, explaining their operation often needs advanced
concepts, mainly borrowed from information theory.

Information theory originated in Shannon’s paper (Shannon 1948). It gave
rise to a new science but, according to an approach almost unique in his-
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tory, this paper also constitutes a complete treatise of the nascient science.
Theoretical developments were nevertheless needed to confirm Shannon’s
statements, especially as regards the mathematical rigour of his proofs, but
little was left to Shannon’s successors for deepening and expanding informa-
tion theory. One of the most important theoretical events in this respect has
been the introduction of the algorithmic information theory, Kolmogorov and
Chaitin around 1965, see Chaitin (2005), which, at variance with Shannon’s,
does not rely on probabilities. If Shannon left comparatively little to be done
on the theoretical side, his papers prompted countless, entirely unexpected ap-
plications in the field of source- and channel coding. Source coding consists of
replacing an initial message by a shorter but fully equivalent one. Channel cod-
ing aims at protecting an initial message against transmission errors; it neces-
sarily introduces redundancy, i.e., replaces the original message by a longer
one. Then within certain limits errors in the encoded message do not hinder
recovering the initial one. As regards source coding, the Huffman algorithm
asymptotically achieved the theoretical limit stated by information theory,
namely, the source entropy, as early as 1952. Other efficient source coding
algorithms were found later (arithmetic coding, Lempel-Ziv algorithm, . . . ).
In sharp contrast, while information theory also stated the limit of what is
possible as regards channel coding, namely, the channel capacity, no practical
means to closely approach it were found during decades although it has been
perceived as a challenge by thousands of mathematicians and engineers and
thus prompted intense researches. The goal was not achieved earlier than
1993 when the invention of turbocodes by Berrou and Glavieux (Berrou et
al. 1993; Berrou and Glavieux 1996; Guizzo 2004) provided practical means
to communicate at information rates close to the channel capacity, hence
experimentally proving the relevance of Shannon’s channel coding theorem.

Is Literal Communication a Trivial Problem?

Is literal communication so trivial a problem? As defined in Shannon’s quo-
tation of “Introduction”, it simply consists of making the transmitted message
available to its destination. The message is generated at a distance (in space
and/or time) from the destination so it needs be transported. Transporting the
message generally needs its transformation by source- and/or channel coding.
It can actually be transformed into an infinity of equivalent messages which
possibly differ as regards their physical support, the size of the alphabet in use,
and coding operated on the original message. Hence an information must be
seen as an equivalence class with respect to all such transformations.

As an example, the sequence of Latin letters:

Information theory discards semantics (1)

and the binary sequence
1001001 1101110 1100110 1101111 1110010 1101101 1100001 1110100 1101001
1101111 1101110 0100000 1110100 1101000 1100101 1101111 1110010 1111001
0100000 1100100 1101001 1110011 1100011 1100001 1110010 1100100 1110011
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0100000 1110011 1100101 1101101 1100001 1101110 1110100 1101001 1100011
1110011
share the same information, since the latter just resulted from transforming
sequence (1) using the ASCII (American Standard Code for Information
Interchange) ‘code’ which is currently used in computer memories. Each Latin
letter is replaced by a 7-bit1 word according to a one-to-one correspondence.

The binary sequence
10010011 11011101 11001100 11011110 11100100 11011011 11000011 11101000
11010010 11011110 11011101 01000001 11101000 11010001 11001010 11011110
11100100 11110011 01000001 11001001 11010010 11100111 11000110 11000011
11100100 11001001 11100111 01000001 11100111 11001010 11011011 11000011
11011101 11101000 11010010 11000110 11100111
also bears the same information as sentence (1) since an 8-th bit has been
appended to each of the 7-bit words of the previous binary sequence, equal
to the sum modulo 2 of its bits thus making the total number of ‘1’s even. This
may be thought of as a rudimentary means of error control: if an error affects a
symbol in a 8-bit word, the number of ‘1’s becomes odd so counting the ‘1’s in
each word enables detecting a single-symbol error. Of course, the first binary
sequence could be transformed by sophisticated error-correcting codes into an
equivalent one made resilient to errors (up to a limit) and bearing again the
same information.

As a counterexample, the sentence:

La théorie de l’information exclut la sémantique (2)

is a French translation of the English sequence (1). Although it looks close to
it, articles and a preposition have been appended to comply with the French
grammar and the word order is different, so sentence (2) does not bear the
same information as (1). However, both sentences share the same meaning.

These remarks will be further developped in “Information and its Relation-
ship to Semantics”.

On Semantic Communication

Ignoring semantics, information theory only deals with (literal) informations
as just defined. Exclusion of semantics is a strength, by no means a weakness,
of information theory. Semantics depends on interpretation rules, which them-
selves belong to the semantic field. Therefore, a text written in any language,
say English, can state that it changes the meaning of the words. Imagine a
text which tells that, from now on, the word ‘table’ will be used in order to
mean ‘point’ and the word ‘chair’ to mean ‘straight line’. Then, the nonsensical
sentence ‘one and only one chair passes through two tables’ becomes an axiom
of Euclidean geometry (interestingly, this example is borrowed from the great

1We systematically use the acronym ‘bit’ to designate a binary digit and the word ‘shannon’,
abbreviated as ‘Sh’, for the binary unit of information, originally named ‘bit’ by Shannon.
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mathematician David Hilbert, not from a linguist). Similarly, during World
War II, the BBC broadcast apparently nonsensical messages intended to the
Resistance fighters, to whom they were indeed very meaningful. Such remarks
suffice to make the concept of meaning extremely difficult to use in a scientific
context. The information-theoretic concept of information does not suffer
the same basic weakness, although it restricts of course the semantic content
of the word ‘information’. Discarding semantics from the very beginning,
information theory has cut the Gordian knot.

There is, however, a scientific domain where using the concept of meaning
suffers less difficulties and this exception, interestingly, is biology. We may
indeed reasonably assume that nature does not intend to fool researchers while
such an intent cannot be excluded in human communication.2 Due to the
assumed non-malignancy of nature, a kind of comparatively crude semiotics
can be successfully used in biology, free from the endless semantic subtleties
that characterize human communication and interaction. For instance, the ge-
netic ‘code’3 definitely establishes a correspondence between the 3-nucleotide
codons of messenger RNA and the amino-acids in proteins so we may say
unambiguously, e.g., that the meaning of the codon UAC is the amino-acid
thyrosine.

The remark that taking semantics into account increases the difficulty of
communication problems, even if malignancy can be excluded, clearly estab-
lishes a hierarchy of difficulty between semiotics and information theory. The
former is clearly more difficult than the latter. The logical order for applying
these sciences to biology would thus be to begin with the latter, which is
basically simpler. Then, but only then, could problems involving semantics be
attacked. Unfortunately, the historical order has been the reverse. In cruder
words, biology has put the cart before the horse.

Information and its Relationship to Semantics

Shannon and the pioneers of information theory had an empirical approach
since they did not attempt defining information, nor explicating its connection
with semantics. They just proposed means for its quantitative measurement.
We try here rather naïvely to define information, hopefully shedding some
light on the relationship of information and semantics. These remarks are
personal and do not express any consensus among information theorists.

Let us consider a digital message, i.e., a sequence of symbols from some
finite-size alphabet. Such a message is a mathematical abstraction which needs
a physical support for having any interaction with the real world, and especially

2Philip Henry Gosse (1816,1888) even attributed this intent to God in his book Omphalos,
published in 1857, aimed at conciliating the data of geology with the Biblical account of creation.
3In the phrase ‘genetic code’ which appeared in the sixties, the word ‘code’ has been given a
meaning rather foreign to its earlier use in information theory, that of a correspondence rule
between objects of different nature, i.e., nucleotides and amino-acids.
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for being communicated. The physical support of a message can take a variety
of forms, either material (e.g., ink deposits on a sheet of paper according to
conventional patterns, i.e., letters, or holes punched in a card, or local states
of magnetization of some ferromagnetic medium, or shallow tiny holes in
a compact disk (CD), . . . ), or consisting of the variation of some physical
quantity as a function of time (e.g., air pressure, or electrical current, or electro-
magnetic field, . . . ). The material supports are actually used for recording, i.e.,
communication through time consisting of writing a message to be read later,
while the variation in time of a physical quantity can be propagated as a wave
hence enables communication through space. Regardless of its support, each
of the alphabet symbols needs only be unambiguously distinguishable from the
other ones.

A same message can be supported by different physical media which more-
over can be converted from one to another. For instance, the message recorded
on a computer memory or a CD can be converted into an acoustic wave
(i.e., a sound), or emitted as an electromagnetic wave. Similarly, the alphabet
size can be changed: a musical record in a computer memory uses the binary
alphabet, but a large-size alphabet is needed for converting it into an audible
acoustical signal. The message itself can moreover be changed so as to improve
its characteristics as regards some desired property. For instance, it may be
compressed so that its recording needs less memory space (this is source coding
as alluded to above), or on the contrary expanded by a redundant encoding
making it resist transmission errors (this is channel coding).

A message can thus exist into a variety of equivalent forms, depending on
its possible encoding, alphabet size, and physical support. We refer to the
underlying entity which is common to all these forms as an information. We
may thus define an information as the equivalence class of all the messages
which can be converted to each other by changing their encoding, alphabet
size, or physical support. Each of these messages will be said to bear this
information. The equivalence class associated with an information clearly
contains infinitely many elements. Any of these messages is a representative
of this class. An information is thus an abstract object which manifests itself in
the physical world by any of its representatives, or realizations.

The following question immediately arises: given some alphabet with an
arbitrary physical support, is there a minimal-length realization of a given
information? The simplest alphabet, i.e., the binary one, is a natural choice.
The problem becomes whether a minimal-length binary message exists within
the equivalence class associated with the given information. Shannon’s infor-
mation theory asserts this existence when the given representative is a message
generated by a stationary probabilistic source. The algorithmic information
theory extends this statement to any message that a universal computer can
generate. We’ll refer to the minimal binary realization of an information
as its information message. The fundamental theorem of source coding of
Shannon’s information theory states that the average length of the information
message equals the length of the original message times the source entropy
expressed using binary information units, i.e., shannons. In the algorithmic
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information theory, the length of the information message is used for defining
the algorithmic complexity associated with the given information. The first
case is much more restrictive than the second one, which may be considered
as general. However, the source stationarity enables effectively estimating
the probabilities of the sequences it generates, hence its entropy, by making
frequency measurements. In the second case, on the contrary, the existence
of a minimal-length realization is mathematically proven, but the algorithmic
complexity is actually an uncomputable quantity which thus can generally not
be evaluated.

Given a stationary source of entropy per symbol H shannons, the funda-
mental theorem of source coding states that any n-symbol message generated
by this source can be transformed by source coding into a binary message
of average length at least � = nH bits. This minimal-length realization of an
information generated by a probabilistic source is its information message. It
results from optimal source coding, which entails that its bits are probabilisti-
cally independent and equiprobable.

The set of all binary messages of length � can be represented by a tree like
that of Fig. 1 with each of its branches labelled with a bit according to some
convention. Let us interpret the i-th bit of the information message as the
answer to a dichotomic question (i.e., answerable by yes-or-no), ‘0’ meaning

Fig. 1 Binary tree for
representing all binary
sequences of length 4. An
ascending branch represents
the bit 0 and a descending one
the bit 1
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for instance ‘yes’ and ‘1’ meaning ‘no’. Any information message of length �

may thus be interpreted as one of the 2� paths of a binary tree of length �

taken from the root to the leaves, the choice of a branch at any fork being
made at random with probability 1/2. A path in this tree, i.e., an information
message of length �, can be interpreted as an integer i, 0 ≤ i ≤ 2� − 1. The ques-
tions associated with the successive bits of the information message may for
instance be those needed for identifying the species to which some given living
being belongs. Provided the set of species is ordered according to a binary
hierarchical taxonomy, using � = nH properly chosen successive dichotomic
questions enables distinguishing from each other 2nH = (2H)n species. The
entropy H of the source then measures the ability of the messages it generates
to discriminate among objects of some outer world, hence to bear some kind
of semantics. The corresponding information quantity is simply the number of
binary digits which are needed to represent it.

Establishing a correspondence between each bit of the information message
and a dichotomic question makes it eventually identify or represent an object
which belongs to some outer world, like living beings as in the above example
of taxonomy, making possible to distinguish between them. Then information
in the above meaning is given a semantic content according to an external
convention which we may refer to as its meaning.

This is a rather crude kind of semantics, apparently restricted to represent-
ing material objects which can be ordered in a tree-like fashion. However, the
possible semantic content can be widely extended if we notice that:

– Describing an outer reality by a binary message is not limited to answering
dichotomic questions. Data of various other kind can also be represented.
For instance, grouping k bits of the information message into a block
may be used to specify that the value of some parameter is one of 2k

predetermined levels. If k is large enough, this amounts to approximately
specify the value of a continuously varying parameter. This is for instance
currently used in telephony to represent instantaneous values of the speech
signal (referred to as samples) by a sequence of bits, a process referred to
as ‘pulse code modulation’ (PCM). For frequent enough samples (8 kHz,
i.e., a sample every 125 μs) and k as low as 8 (hence 28 = 256 levels), a
sufficient quality of speech transmission is achieved.

– Moreover, a relation between material objects can be represented by the
same means as the objects themselves, then opening the semantic field to
abstract as well as material objects.

Information theory, either Shannon’s or algorithmic, uses the length of
the information message as a quantitative measure of information. Since an
information message of length � enables distinguishing 2� different objects, � is
a logarithmic measure of the discriminating ability of the information message,
regardless of the distinguished objects, a matter of semantics. We may thus
understand a quantity of information as the number of semantic instances it
can represent, or as the number of dimensions of some space which represents
semantic objects. It should be kept in mind that the information quantity is by
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no means an exhaustive description of an information, just like the mass is only
one of the many attributes that a material object possesses.

Notice that in the information-theoretic literature, the word ‘information’
is most often used to mean measure or quantity of information. For instance,
mutual information refers to the quantity of information that the output of
a channel provides as regards its input. The word mutual expresses that it is
also the quantity of information that the input of a channel provides about its
output. The capacity of a channel is the largest possible mutual information
between its input and its output.

Some Remarks About Information Theory

Literal communication being basically simpler, information theory developed
as a mathematical and quantitative science. However, the necessity of imple-
menting the functions of communication revealed unexpected difficulties. This
point will be illustrated by comparing quotations from Marcello Barbieri and
Claude Shannon.

Barbieri (2008) defines semiosis as the production of signs, while Shannon,
in the text already quoted in the introduction, writes that ‘the fundamental
problem of communication is that of reproducing at one point [. . . ] a message
selected at another point’. Shannon’s formulation implies that the difficulty of
engineering communication mainly lays at the receiving end. Indeed, since the
selected message is unknown at the receiving end, the choice which has been
made at the transmitting end must be inferred. ‘Producing signs’ is, in a sense,
trivial. Inferring what signs have been produced implies that the receiving
end deals with the possibly sent signs as chance events, which entails that it
needs knowing the repertoire of signs which can occur. Moreover, the intended
destination of the produced signs seldom (actually never) escapes outer influ-
ences. The signs which are produced are thus not perceived in isolation, but
in the presence of noise, this word designating the collective result of external
influences which can only be dealt with as random. The receiving process is
thus basically probabilistic, hence has a nonzero probability of failure or error.
Reflection about implementation reveals here an overlooked difficulty.

Measuring Information Conforms to Peirce’s Triadic Paradigm

The necessity for the receiver to know the repertoire of signs in use results
in the measure of information conforming to Peirce’s triadic paradigm. Let us
consider a set M of M randomly occurring events or messages. Let pm denote
the probability that the particular message m occurs. Since a message of the set
M must occur, we have

M∑

m=1

pm = 1. (1)
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Information theory measures the information quantity brought by the
occurrence of the particular message m by

hm = log(1/pm) = − log pm, (2)

which is positive (more precisely, nonnegative) since pm ≤ 1. Then the more
improbable is m, the more information it bears.

The entropy associated with M is the information quantity brought in the
average by the occurrence of one of its elements, namely,

H =
M∑

m=1

pmhm = −
M∑

m=1

pm log pm. (3)

This information measure is relevant to the set of messages M as a whole, not
to any particular message which belongs to it.

Now consider the information quantity hm associated with a single message
m according to (2). It does not depend on the message m itself, but only on the
probability pm of its occurrence. That the probabilities of all the messages in M
sum up to 1 according to (1) entails that it is not possible to change one of these
probabilities without changing others. Hence the information measure that
information theory associates with a single event m according to (2) depends
on the context in which it occurs, namely, the probabilities of the events in
the set M to which it belongs: in a sense, the information borne by the
occurrence of a message depends on the probabilities of the messages which
were not selected as well as that of the single one which was. Measuring the
information of a single event thus needs an interpretation in terms of its context.

No Definite Information is Borne by a Single Sequence

As an important consequence, it is meaningless to refer to ‘the information
borne by a sequence’ since a single sequence can belong to an infinity of
different contexts. For instance, the 8-digit sequence 10101010 bears at most
8 binary information units (shannons) if its digits are assumed to belong to
the binary alphabet. However, 0 and 1 are also decimal digits as belonging to
the set {0, 1, 2, . . . , 9} (they are actually digits in a numeration system to an
arbitrary base b , b ≥ 2). If the sequence 10101010 is interpreted as decimal, it
bears log2 10 times more information, i.e., approximately 26.6 Sh at most.

An attempt to prove the concept of intelligent design allegedly using
information-theoretic arguments, in the book by Pullen (2005), is wrong be-
cause single sequences are assumed to bear absolute quantities of information.
Incidentally, a major argument in favour of intelligent design is that the
probability of a single-nucleotide mutation being of about 10−8 per generation,
a mutation involving two single-nucleotide mutations, assumed to entail a
significant phenotypic difference, has a per generation probability of (10−8)2 =
10−16, hence is practically impossible. This would be true only if the two single-
nucleotide mutations were independent events. This is not true, however, if
both nucleotides belong to a word of a genomic error-correcting code. It is
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this codeword as a whole which is erroneously chosen if a regeneration error
occurs and its symbols are strongly correlated. Ironically, the upholders of
mainstream biology rightfully reply that the two single-nucleotide mutations
are not independent events but simultaneously ignore the necessity of a
genomic error-correcting code (to be recalled later) which is precisely the
reason why they are correlated.

Difficulties are Mainly Found at the Receiving End

Realizing the unequal processing difficulty at the transmitting and receiving
ends illustrates one of the benefits of an engineering approach pointed out by
Benner as quoted in “What Engineering can Bring to Biology”: implementa-
tion questions how certain functions are performed and reveals unexpected
difficulties. In the biological literature, the complexity of processes which take
place at the receiving end is typically overlooked. This is especially true for
recognition processes, the importance of which is capital in the living world.
Humans, as most living beings, are very efficient in the tasks of recognition. It is
only when engineers tried to design machines able to perform such tasks that it
was realized how they were difficult. The laymen think of them as ‘natural’ and
completely overlook the needed complexity of the mechanisms which perform
recognition. As yet, the machines designed to this end, however sophisticated,
remain significantly less efficient than those that nature implemented. More-
over, the best of them use artificial neural networks which need some learning
process, i.e., mimic natural devices and processes.

Heredity as Literal Communication

Heredity is a problem of literal communication since it consists of communicat-
ing over time some message, the genome. The faithful communication of ge-
nomes is of capital importance for the living world as a whole.

Let us consider the two functions of the genome, as illustrated in Fig. 2.
As replicating itself, a genome provides (1) another identical genome, where

‘identical’ means that it is conserved at the geological timescale. A genome
also (2) instructs the construction of a phenotype. Performing (1) is a problem
of purely literal communication, hence fully relevant to information theory.
We shall show below the benefits that applying information theory to this
problem can provide to genetics. We’ll especially show that, contrary to the
current belief, the template-replication paradigm does not suffice to solve
it. Performing (2) involves semantics and thus escapes the competence of
information theory, so we’ll let it aside. Notice that problem (2) is dealt with in
a vast majority of papers. This may be due to the fact that we are phenotypes
(with dormant genomes inside them) so we are more or less consciously
affected with ‘phenotypocentrism’. Indeed, the two functions are absolutely
necessary, but (1) plays the rôle of the egg in the chicken-and-egg dilemma,
which may be thought of as the more basic.
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GENOME

PHENOTYPE

IDENTICAL
GENOME

1

2

Fig. 2 What a genome generates

Conserving a message using any kind of memory, for instance DNA if it
is a genome, is a problem of literal communication (over time) hence fully
relevant to information theory. As a communication channel, any permanent
memory has a capacity: an upper bound of which can easily be computed
(Battail 2006b). It turns out that, except if the error rate is exactly 0, this
capacity vanishes exponentially fast. In adamant words, no static memory is
permanent. Since genetic mutations occur with nonzero probability, DNA
alone cannot conserve the genome. This suffices to refute the template-
replication paradigm.

The trouble with template-replication is that copying reproduces the erro-
neous symbols as well as the correct ones. The genome should not be copied,
but made resilient to errors by means of an error-correcting code. Then, pro-
vided the cumulated number of errors remains less than some threshold, the
genome can be regenerated. Regeneration is intended to rewrite the genomic
message in such a way that:

– the rewritten message strictly satisfies the constraints which define the
genomic code;

– and is the closest to the original genomic message.

Contrary to replication, regeneration does not result in a message faithful
to the original one. It is however faithful to the genomic code seen as a set of
constraints.

Then, the casual errors which may affect the genome are corrected, except
if these errors are as numerous as to exceed the error-correcting ability of
the code. If such a regeneration error occurs, it results in a widely different
genome. For a long enough and properly designed code, and a short enough
interval between regenerations, the probability of a regeneration error is
extremely small. The crucial importance of conserving genomes necessarily
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led natural selection to retain a good enough genomic code and a short enough
time interval between successive regenerations.

Regeneration in itself does not suffice to ensure the survival of a species: the
number of its members should tend to increase, so a genome must be replicated
once it has been regenerated. As regards its implementation, regeneration is
much more costly than replication in terms of processing complexity.

We thus assume that:

– a genomic error-correcting code exists (main hypothesis);
– this genomic code unequally protects the data, since some of the oldest

are the most faithfully conserved. A system of nested component codes is
proposed as performing so (subsidiary hypothesis).

Assuming the above main and subsidiary hypotheses to be true, as we did
first in Battail (1997), explains very basic features of the living world, e.g.:

– that nature proceeds with successive generations (the number of cumu-
lated errors should not exceed the correcting ability of the code);

– the existence of discrete species directly results from the main hypothesis.
Moreover, the subsidiary hypothesis entails that they can be ordered
according to a hierarchical taxonomy which coincides with phylogeny;

– the trend of evolution towards increasing complexity, as a result of natural
selection operating on the genomic error-correcting codes and favouring
efficient codes, which need be longer to be more efficient as shown by
information theory.

These topics were dealt with at length in previous works (Battail 2006a, c,
2007, 2008).

The above remarks illustrate the benefit that an external discipline can
provide to biology by bringing ideas already foreign to it. This may help
detecting and correcting prejudices and even possible misconceptions which
remain unquestioned within its own framework. If a discipline tries to solve
problems as they are posed within the conventional framework of another
discipline, prejudices and misconceptions can be inherited within the problem
statements. Then the main advantage of interdisciplinarity, criticism from the
outside, is lost. It turns out that the semiotic approach to biology has not had
the same critical rôle as information theory: its attention has been restricted to
the processes by which a genome generates a phenotype. Semantics is central
in this problem. Being mainly concerned with semantics, semiotics ‘naturally’
inherited this prejudice from molecular biology.

The goal of synthetic biology, artificial life, is very ambitious, Promethean
indeed (Regis 2008). Much more modestly, having an engineering look at func-
tions basic to life can provide biology with the claimed benefits of synthesis,
namely, to quote again Benner, ‘forcing discovery and paradigm change’. As
fully relevant to information theory, heredity is very interesting in this respect.
The verdict of information theory is final: the template-replication paradigm
has to be replaced by that of genomic error-correcting code.
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Conclusion

Dawkins wrote in The selfish gene (Dawkins 1976), 1976:

We do not know how accurately the original replicator molecules made
their copies. Their modern descendants, the DNA molecules, are aston-
ishingly faithful compared with the most high-fidelity human copying
processes.

We have shown in earlier works and repeated above that copying is not the
function that DNA molecules should implement, which instead must actually
involve error-correcting means enabling their regeneration. Doing so, we
actually complied with Dawkins’s further remark (in The Blind Watchmaker,
(Dawkins 1986), 1986):

If you want to understand life, don’t think about vibrant, throbbing gels
and oozes, think about information technology.

However, the semi-conductor hardware is quite foreign to the enzyme-
catalyzed reactions which occur in the cell. It is not at the level of implemen-
tation means that information technology resembles life, but as regards the
algorithms which are implemented. Thus, we can fully agree with the above
quotation only if ‘theory’ is substituted for ‘technology’.

Indeed, biology must hear the lessons of information theory. A collaboration
between biologists and information theorists will be highly beneficial for
both. Maybe what mostly lacks for establishing such a collaboration is that
information theory be properly popularized.
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