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Abstract

In this paper, adaptive logics are studied from the viewpoint of uni-
versal logic (in the sense of the study of common structures of logics).
The common structure of a large set of adaptive logics is described. It
is shown that this structure determines the proof theory as well as the
semantics of the adaptive logics, and moreover that most properties of
the logics can be proved by relying solely on the structure, viz. without
invoking any specific properties of the logics themselves.

1 Aim and Preliminaries

In this paper the common features of a wide variety of logics is studied. The
logics, viz. adaptive logics, are very different both in nature and in application
context. Of the adaptive logics studied until now, some are close to CL (Clas-
sical Logic), others are many valued, still others modal, and there clearly are
adaptive logics of a still very different nature. The application contexts too
are very varied: handling inconsistency, inductive generalization, abduction,
handling plausible inferences, interpreting a person’s changing position in an
ongoing discussion, compatibility, etc. I shall show that all these logics have a
common structure, which determines their proofs as well as their semantics, and
moreover their metatheory. Specific adaptive logics will not even be mentioned,
except as illustrative examples.

Adaptive logics adapt themselves to specific premise sets. To be more pre-
cise, they interpret a premise set “as normally as possible” with respect to some
standard of normality. They explicate reasoning processes that display an inter-
nal and possibly an external dynamics. The external dynamics provides from
the non-monotonicity of the inference relation: if premises are added, some
consequences may not be derivable any more—formally: there are I', A and A
such that ' H A and T'U A ¥ A. The internal dynamics plays at the level of

*Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research — Flanders. I am indebted to Peter Verdée for comments to
a previous version.



MontrArt2 — January 11, 2006 2

proofs (sequences of inferential steps): as insights in the premises grow, earlier
drawn conclusions may be withdrawn, and conclusions withdrawn earlier may
be classified again as derivable.

The origin of adaptive logics does not lie in any technical insights, but in an
attempt to explicate reasoning processes that occur in actual reasoning, both
everyday reasoning and scientific reasoning. As far as scientific reasoning is
concerned, the processes are not located in contexts in which finished theories
are formulated, but in contexts in which theories are forged or modified, and
sometimes in contexts in which theories are applied. So adaptive logics are
not intended to be used as the underlying logic of scientific theories,! but are
intended for explicating problem-solving processes, especially creative processes
or discovery processes.

So the actual reasoning processes were there first, and adaptive logics are
an attempt to explicate them. The requirements on good explications—the lo-
cus classicus is obviously [19]—entail that, in comparison to more usual logics,
adaptive logics have some unusual properties. The central cause of the unusual
properties is that the explicated reasoning processes define a consequence rela-
tion for which there is no positive test (that is not even partially recursive)—see
[18] or [17]. This need not prevent one from studying adaptive logics in a for-
mally decent way, viz. in agreement with the usual metatheoretic standards.

A list of reasoning processes for which adaptive logics have been devised
can be found in [7]. That paper contains also a list of inference relations that
originated from without the adaptive tradition, but have been characterized by
an adaptive logic, often under a translation.?

Many (not all) adaptive logics seem to have a common structure. Some
of the others can be given this structure under a translation. This structure
moreover seems to be central for the proof theory as well as for the semantics of
an adaptive logic. It seems equally central for the soundness and completeness of
the proofs with respect to the semantics, for the proofs of further metatheoretic
properties, for computational aspects, and so on. In view of this originated the
plan to describe this common structure, which was labelled the standard format
(for adaptive logics). The first steps in that direction were taken in [5].

In the present paper, I shall first present a slightly improved version of the
standard format (Section 2) and I shall describe the way in which the standard
format determines the proof theory (Section 3) as well as the semantics (Section
4). From Section 5 to Section 8, I shall present a large list of theorems, including
soundness and completeness, and prove them in terms of the standard format,
viz. without referring to the specific properties of any adaptive logic. In Section
9, I briefly consider criteria for final derivability for all adaptive logics that use
the Reliability strategy.

For certain purposes, it is necessary to combine adaptive logics. This too
may be described and studied without relying on the properties of the specific
adaptive logics that are combined, but the results cannot be presented in this
paper.

The results of the present paper are provisional. This is so because every-

IWhere AL is an adaptive logic, CnarL(I') = {A | T Far A} may still be taken to be
a theory (of a sort). Occasionally, it might be useful to study such theory as a (sometimes
provisional) alternative for an existing theory.

2At http://logica.ugent.be/adlog/ more recent lists and references to the relevant pa-
pers are available.
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thing is provisional, but also for a more specific reason. It is very well possible
that a different, presumably more general ‘standard format’ is possible, which
would apply to more adaptive logics in the sense that it imposes less require-
ments on them. During the last ten years, especially under the influence of
young logicians in close contact with philosophers of science and other philoso-
phers, the number and variety of adaptive logics has constantly been growing
and more and more different domains were explored. The present version of the
standard format is apparently sufficient for nearly all of these. Still, there is no
warrant that the general idea of an adaptive logic has been fully explored. So
it seems better to define the notion of an adaptive logic in an intuitive way and
to consider the standard format as open for revision.

2 The Standard Format

A (non-combined) adaptive logic AL is characterized by a triple:

(1) A lower limit logic LLL: a reflexive, transitive, monotonic, and compact
logic that has a characteristic semantics (with no trivial models) and con-
tains CL—see below.

(2) A set of abnormalities Q: a set of formulas characterized by a (possibly
restricted) logical form F, which is LLL-contingent and contains at least
one logical symbol.

(3) An adaptive strategy.

In this paper, the lower limit logic LLL will be taken to contain CL. If]
for example, LLL is a paraconsistent logic, then the language will be extended
with a new negation connective, and possibly with some further new connectives,
which are all given their CL-meaning.? This does not hamper the paraconsis-
tency of the logic. The standard negation will still be paraconsistent and one
may require that the premise set be formulated in the non-extended language.
The presence of the classical connectives greatly simplifies the metalinguistic
proofs, and sometimes also the formulation of the adaptive logic. So, for the
sake of generality, I introduce an important convention.

Convention From now on, — will denote classical negation in all contexts
(whereas ~ is the standard negation) and U will denote classical disjunction in
all contexts (whereas V is the standard disjunction).

Typical for adaptive logics is that their consequence set extends the LLL-
consequence set by presupposing that ‘as many’ members of Q are false as
the premise set permits. If the logical form F that characterizes the set of
abnormalities would not be LLL-contingent, then either 1, F or Frpy, —F.
In the former case, no member of 2 can possibly be false; in the latter case all
members of ) lead to triviality on LLL. In both cases, AL would reduce to LLL.
Exactly the same situation arises if the logical form is A (the LLL-consequences
are unavoidable and every other formula would be a non-consequence). I qualify
the restriction further when I come to the upper limit logic.

3In some paraconsistent logics, for example da Costa’s C; systems, classical negation can
be defined—see [21] and elsewhere. Even where this is not the case, classical negation can
simply be added, were it only for technical purposes.
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The logical form F that characterizes the set of abnormalities 2 may be
restricted. This means that the metavariables that occur in the logical form
may be required to denote formally specific entities. Let us consider an example.
Some inconsistency-adaptive logics have {3(A A ~A) | A € F} as their set of
abnormalities, in which F is the set of (open and closed) formulas and 3(A A
~A) is the existential closure of A A ~A. Other inconsistency-adaptive logics
have {3(A A ~A) | A € FP} as their set of abnormalities, in which F? is the
set of primitive formulas (those not containing any logical symbols other than
identity).

In the expression Dab(A), A will always be a finite subset of 2, and Dab(A)
will denote the classical disjunction of the members of A—the disjuncts may be
defined to occur in a certain order or not, all such disjunctions being logically
equivalent anyway. If A is a singleton, Dab(A) is an abnormality (a member of
Q) and no classical disjunction occurs. If A = (), Dab(A) is the empty string
and AU Dab(A) is A.

The need for a strategy is best seen as follows. For some premise sets I'
and lower limit logics LLL, T' Frry, Dab(A) will obtain for some As that are
not singletons. The strategy then determines what it means to interpret the
premises ‘as normally as possible’ in such cases. In this paper, I shall only
consider the Reliability strategy and the Minimal Abnormality strategy. These
are the most basic strategies and will be clarified when we come to the proofs
and semantics. For some lower limit logics and sets of abnormalities it holds
that, whenever T' Frpr, Dab(A), then there is an abnormality D €  for which
I Fron D. Where this is the case, both strategies come to the same, which is
then called the Simple strategy. Other strategies seem less attractive and were
only devised in order to characterize in terms of an adaptive logic consequence
relations that were described in the literature.*

An adaptive logic AL can now be described in a different way. The AL-
consequences of I' are all those formulas that can be derived from I' by LLL-
means and by relying on the supposition that “the members of ) are false in
as far as I' permits them to be false”. This expression is ambiguous, but the
strategy disambiguates it.

The lower limit logic LLL and the set of abnormalities 2 jointly determine
a so-called upper limit logic ULL. Syntactically ULL is obtained by adding
an axiom (or rule) that connects abnormality to triviality. More generally,
the upper limit logic ULL is exactly like the lower limit logic, except that it
trivializes abnormalities. So, where A™ = {-A | A € A}, we can define:

Definition 1 T'tyrp A ff TUQ™ FoL A
An ULL-model is an LLL-model that verifies no member of €).

Definition 2 I' Fyry, A iff A is verified by the LLL-models of T that verify no
member of Q.

A normal premise set is one that requires no abnormality to be true, in other
words a premise set that has ULL-models.

4Moreover, some of these strategies may themselves be reduced to the Reliability or Min-
imal Abnormality strategy under a modal translation. An example is the Normal Selections
strategy, which was invoked in [4] and [14] to characterize consequence relations that validate
all classical consequences of all maximal consistent subsets of a premise set (or validate all
classical consequences of the maximal extensions of a consistent premise set by defaults).
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Even if F, the form that characterizes €2, is LLL-contingent, some formulas
of this form may be not LLL-contingent. If some of them are LLL-theorems,
there would be no ULL-models and CnyrL(I') would be trivial for all I". So in
such a case ) should be defined as {F [FrrL F;...}, in which ... denotes further
restrictions on F. An example, taken from [10], is Q = {=0A |Fgs ~0A4; A € F},
in which F is the set of non-modal formulas and a predicative version of S5 is
the lower limit logic. So the set of abnormalities comprises all formulas of the
form —QA that are not S5-theorems. From now on I suppose that the proviso
¥riL F occurs standardly in the definition of 2, but I do not mention it in the
subsequent examples because it is useless in view of the specific F.

Often some logic is considered the standard of deduction—which logic is
regarded as such may depend on the context. If the standard of deduction is
the upper limit logic of an adaptive logic, the adaptive logic is called corrective.
If the standard of deduction is the lower limit logic of an adaptive logic, the
adaptive logic is called ampliative. In the present paper, I shall take CL to
be the standard of deduction. This is merely a pragmatic decision, not one I
consider correct.

Let us consider some examples of adaptive logics. The inconsistency-adaptive
CLulN"™ is defined by:

(1) lower limit logic: CLuN (full positive CL together with excluded middle,
for example (A D ~A) D ~A)

(2) set of abnormalities: Q= {I(AN~A)| Ae F}

(3) adaptive strategy: Minimal Abnormality

The inconsistency-adaptive ACLulN" is defined by the same elements, except

that Reliability is its strategy. The upper limit logic of both adaptive logics

is CL, viz. syntactically obtained by extending CLuN with the axiom (A A

~A) D B and semantically obtained by restricting the set of CLuN-models to

those that verify no inconsistency. On the previous convention, ACLuN™ and

ACLuN" are corrective adaptive logics. If a theory that was intended to be

consistent and was given CL as its underlying logic turns out to be inconsistent,

one wants to interpret it ‘as normally as possible’ in order to forge a consistent

replacement for it by reasoning from it.

The (ampliative) logic of inductive generalization: IL™ is defined by:

(1) lower limit logic: CL
(2) set of abnormalities: Q@ = {JAANI~A | A € F°}, in which F° is the set
of formulas that contain no individual constants and no quantifiers (the
purely functional formulas)
(3) adaptive strategy: Minimal Abnormality
The upper limit logic is UCL, obtained syntactically by extending CL with
the axiom JaA(w) D VaA(a), which reduces non-uniformity to triviality, and
obtained semantically by restricting the set of CL-models to the uniform CL-
models. Uniformity is obviously an idea taken from [20]. In all UCL-models
v(n") € {0, DM} the extension of a predicate of rank r is either empty or
universal (the set of all r-tuples of members of the domain). Needless to say,
applying UCL to the actual world results in triviality because not all objects
have the same properties, viz. the world is not (fully) uniform. The IL™-
consequences of our observational data contain the generalizations that would
hold in the world if it were as uniform as is compatible with our observational
data.
The set referred to in the last sentence is not as easily obtained as one might
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be tempted to think. If the data comprise Pa, Qa, Rb, ~Qb, Pc and Rc, neither
Vz(Px D Qz) nor Vz(Rx D ~Qx) are derivable because they are not jointly
compatible with Pc and Re. I refer to [9] and [6] for the remarkable properties
of the logic of inductive generalization and for the way in which it may be
combined with adaptive logics handling background-knowledge.
As a final example, consider the (ampliative) adaptive logic of plausibility
Tm:
(1) lower limit logic: T (a specific predicative version of this logic—see for
example [15])
(2) set of abnormalities: Q@ = {OAN~A| A € FP}, in which FP is the set of
formulas that contain no logical symbols other than identity
(3) adaptive strategy: Minimal Abnormality
The upper limit logic is the well-known system Triv, obtained by adding the
axiom QA D A to S5. Intuitively, the premises of the form (¢ A may be read as
stating that A is plausible.® The adaptive logic T™ interprets the premises in
such a way that plausible formulas are true ‘in as far as the premises permit’.
Of course, plausibilities come in degrees. But this is not a difficult problem.
It is solved by superimposing a sequence of adaptive logics T that are exactly
as T™, except that Q; = {OAA~A| A € FP}, Qy = {00AN~A | A € FP},
etc. and, where ¢ is a sequence of i times ¢, O Ay, which is Ay, expresses that
Ay is certain, O'A; that A; is very plausible, %A, that A, is somewhat less
plausible, etc.

3 Proofs

The dynamics of the proofs is controlled by attaching conditions (finite subsets
of Q) to derived formulas and by introducing a marking definition. While lines
are added to a proof by applying the rules of inference, the marking definition
determines for every stage of the proof® which lines are ‘in’ and which are ‘out’.
The rules of inference are determined by the lower limit logic LLL and the
set of abnormalities €2, whereas the marking definition is determined by 2 and
by the strategy. So the lines that occur (marked or unmarked) in a proof are
independent of the strategy.

A line of an annotated proof consists of a line number, a formula, a justifica-
tion, and a condition. The presence of the latter distinguishes dynamic proofs
from usual proofs. The justification consists of a (possibly empty) list of line
numbers (from which the formula is derived) and of the name of a rule.

As remarked before, the rules determine which lines (consisting of the four
aforementioned elements) may be added to a given proof. The only effect of the
marking definition is that, at every stage of the proof, certain lines are marked
whereas others are unmarked. For all marking definitions, whether a line is
marked depends only on the condition of the line and on the minimal Dab-
formulas—see below—that have been derived in the proof. Whether the marks
are considered as parts of the annotation is obviously a conventional matter.

50n the present approach, all CL-consequences of A are also plausible, but this can be
avoided, for example as in [9].

6 A stage of a proof can be seen as a sequence of lines and a proof can be seen as a chain
of stages. Every proof starts off with stage 1. Adding a line to a proof by applying one of the
rules of inference brings the proof to its next stage, which is the sequence of all lines written
so far.
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I shall discuss the notion of an adaptive proof below, but first introduce the
rules of inference and the marking definitions. The rules of inference reduce to
three generic rules. Where

A A

abbreviates that A occurs in the proof on the condition A, the generic rules are:

PREM IfAel:
A 0

RU IfAl,...,An FLLL B: A1 Al
An Ap
B AjU...UA,

RC If Ay,..., A, b B U Dab(@) Aq Aq
A A,
B  AjU...UA,UBO

Consider, by way of example, the lower limit logic CLulN. In view of p, p D
¢ FcLun ¢, RU can be applied if p and p D ¢ occur in the proof. In view of
~p, pVq FeLun gV (pA~p), RC can be applied if ~p and p V ¢ occur in the
proof.

Before we move on to the marking definitions, let me point out the important
relation between adaptive proofs and LLL-proofs. An AL-proof from I' can be
seen as a LLL-proof in disguise. In the latter, the members of the condition are
joined to the formula by classical conjunctions.

Lemma 1 There is an AL-proof from I' that contains a line on which A is
derived on the condition A iff T Frrr, AU Dab(A).

Proof. = By an obvious induction on the length of the AL-proof from I', the
proof can be transformed to a LLL-proof from I', every line in which some A4;
is derived on a condition A; being replaced by a line in which A; U Dab(4;) is
derived.

< In view of the compactness of LLL, there is a LLL-proof of AU Dab(A)
from I'. So there is a AL-proof from I'; obtained by applications of PREM and
RU, in which AU Dab(A) is derived on the condition (). By applying RC to the
last step, one obtains a proof from I'" in which A is derived on the condition A.
]

There is also a direct relation between an AL-proof and an ULL-proof.
As the members of 2 lead to triviality on ULL, deleting the conditions in an
AL-proof results in an ULL-proof.

The marking definitions require some preparation. Dab(A) is a minimal
Dab-formula at stage s of the proof iff it is the formula of a line with condition
0 and no Dab(A’) with A’ C A is the formula of a line with condition . A
choice set of ¥ = {A1,A,,...} is a set that contains one element out of each
member of 3. A minimal choice set of ¥ is a choice set of 3 of which no proper
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subset is a choice set of ¥. Where Dab(A;), ..., Dab(A,) are the minimal
Dab-formulas that are derived on condition ) at stage s, Us(T') = A1 U...UA,
and ®,(T) is the set of minimal choice sets of {Ay,..., A, }.7

Definition 3 Marking for Reliability: Line i is marked at stage s iff, where A
is its condition, A N Ug(T) # 0.

Intuitively, Us(I') = A U...UA,, is the set of all abnormalities that are
unreliable. Indeed, they are disjuncts of a minimal Dab-formula; the premises
state that one of the disjuncts is true, but fail to specify which disjunct is true.

Definition 4 Marking for Minimal Abnormality: Line i is marked at stage s
iff, where A derived on the condition A at line i, (i) there is no ¢ € ®4(T') such
that pNA =0, or (i) for some o € ®4(T), there is no line at which A is derived
on a condition © for which pNO = 0.

The idea behind this definition is derived from the semantics—see Sec-
tion 4. If the minimal Dab-formulas at stage s are indeed the minimal Dab-
consequences if I, then a A is derivable iff it is true in every model of I" that
verifies one of the members of ®4(T").

Marks may come and go. So the rules of inference combined with the marking
definitions determine an unstable notion of derivability, viz. derivability at a
stage: A is derived from I' at stage s of the proof iff A is the formula of a line
that is unmarked at stage s. However, we also want a different, stable, kind of
derivability: final derivability. Intuitively, A line is finally derived at line 7 in an
AL-proof from I' iff A is the formula of line 4, line ¢ is unmarked, and the proof
is stable with respect to line ¢. The latter phrase means that line ¢ will not be
marked in any extension of the proof. For some AL, I', and A, only an infinite
proof from I' in which A is the formula of a line i is stable with respect to line i.
A simple example is the proof of p from {pVq, ~q, (qA~q)V (riA~71;), (gA~q) D
(ri A ~7ri)}iego1,...y)- Only after 7; A ~r; was derived for all i € N does the
proof become stable.

Needless to say, the existence of an infinite proof is not established by pro-
ducing the proof but by reasoning in the metalanguage. So it seems more
attractive to define final derivability as follows (as it was defined from the very
beginning).

Definition 5 A is finally derived from T' on line i of a proof at stage s iff (i) A
is the second element of line i, (ii) line i is not marked at stage s, and (i) every
extension of the proof in which line i is marked may be further extended in such
a way that line i is unmarked.

Definition 6 T' Fa1, A (A is finally AL-derivable from T') iff A is finally
deriwed on a line of a proof from T'.

Definition 5 has an attractive game-theoretic interpretation. The proponent
has shown that A is finally derived at line i iff, whenever the opponent extends
the proof in such a way that line 7 is marked, the proponent is able to extend
the extension further in such a way that line ¢ is unmarked.

"The proofs can be made more effective by slightly modifying the definition, for example
by defining ®4(I") as the minimal Q-closed choice sets, where the a Q-closure of a choice set
pis CnLLL (Lp) n Q.
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From now on AL", respectively AL™, will refer to an adaptive logic the
third element of which is the Reliability strategy, respectively the Minimal Ab-
normality strategy. So I' Farr A (A is finally AL"-derivable from T') iff A is
finally derived on a line of a proof from I'" in which lines are marked according to
the Reliability strategy. Similarly, I' Fapm A (A is finally AL™-derivable from
I') iff A is finally derived on a line of a proof from I' in which lines are marked
according to the Minimal Abnormality strategy.

Remark that while ULL extends LLL by validating some further rules, AL
extends LLL by validating some applications of those rules.

4 Semantics

The adaptive semantics selects some LLL-models of I as AL-models of I". The
selection depends on {2 and on the strategy. First we need some technicalities.
Let Dab(A) be a minimal Dab-consequence of I' iff I' Frrr, Dab(A) and, for
all A’ ¢ A, T Frrr Dab(A’). Where Dab(Ay), Dab(As), ... are the minimal
Dab-consequences of T,

UT)=A1UAU....

Where M is a LLL-model, Ab(M)={A € Q| M E A}.
Definition 7 A LLL-model M of T' is reliable iff Ab(M) C U(T").
Definition 8 T' Fayr A iff A is verified by all reliable models of T.

Definition 9 A LLL-model M of I' is minimally abnormal iff there is no LLL-
model M' of T such that Ab(M') C Ab(M).

Definition 10 I' Eapm A iff A is verified by all minimally abnormal models of
T.

Let MELE be the set of LLL-models of ', MY be the set of ULL-models
of ', M the set of AL™-models (minimal abnormal models) of I', and M. the
set of AL"-models (reliable models) of I'. If MEEL | the definitions warrant that
M € M7 iff M verifies no other abnormalities than those that are unreliable
with respect to I' and that M € MP iff no other LLL-model of ' is (set
theoretically) less abnormal than M.

Lemma 2 MPM C mm C ME C MELL,

Proof. Immediate in view of Definitions 2, 7 and 9. =

5 The Upper Limit Logic
Definitions 1 and 2 give us at once:
Theorem 1 I l_ULL A zﬁF ':ULL A.

The following theorem is extremely important. It is the ‘motor’ for the adap-
tive logic. By applying AL, we try to get as close to ULL as possible. Theorem
2 informs us that this can be done by considering ‘as many’ abnormalities false
as I' permits.
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Theorem 2 T Fyry, A iff there is a finite A C Q such that T Frry, AUDab(A).
(Derivability Adjustment Theorem,)

Proof. The following six statements are equivalent:

By the Definition 1:
TUuQ b A

As LLL is compact:
I"UA™ FroL A for a finite IV C T and a finite A C Q
As LLL contains CL:
I b AU Dab(A) for those IV and A
As LLL is monotonic:
I'Fron AU Dab(A) for a finite A C Q.
]

Theorem 3 ULL is reflexive, transitive, monotonic, and compact and contains

CL.

Proof. Immediate in view of Definition 1. m

The upper limit logic is axiomatized by adding to LLL the axiom schema —F
with the restriction that pertains to the logical form characterizing 2. This may
be seen as not very elegant. However, most upper limit logics can be axiomatized
very simply, viz. as the lower limit logic extended with the axiom schema —F.
This works whenever there is no restriction on F, or whenever for every A of
the form F there is a finite A € Q for which A Frry, Dab(A).8 But even if this
is not the case although 2 is characterized by a restricted logical form, it often
is the case that no ULL-models verifies any formula of the unrestricted form F.
The adaptive logic IL™ is a simple example.

6 Strong Reassurance

Graham Priest’s LP™ from [23] is an adaptive logic which is not in standard
format because it selects models in terms of properties of the assignment (or
interpretation) not in terms of the formulas verified by the model—see [2] for
a discussion. LP™ has the odd property that some models are not selected
because there are less abnormal models, but that none of the latter are selected
either because there are still less abnormal models. So there is an infinite se-
quence of less and less abnormal models. This is often seen as a disadvantage—
see also [3]. That a model is not selected should be justified by the presence of a
selected model. This property was labelled Strong Reassurance, Smoothness, or
Stopperedness. I now prove that it holds for adaptive logics in standard format.
It will play a role in proofs of subsequent theorems.

8Not restricting the form F that characterizes 2 sometimes leads to flip-flop logics—see [5]
or [13].
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Theorem 4 If M € MEYE — M, then there is a M' € MP® such that
Ab(M') C Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. The theorem holds vacuously if M = MEME. So consider a M €
MELL — M Tet Dy, Do, ... be a list of all members of 2 and define:

Ao =0;
it Ab(M') C Ab(M) for some LLL-model M’ of ' UA; U{=D;;1}, then
A1 =2;U{~Di1},

otherwise
AVERTE AV

finally
A=AgUA;UAU...

The theorem is established by the following three steps.

Step 1: T'UA has LLL-models. This follows immediately from the con-
struction of A and from the compactness of LLL.

Step 2: If M’ is a model of T'U A, then Ab(M') C Ab(M).

Suppose there is a D; € Q such that D; € Ab(M') — Ab(M). Let M" be
a model of I' U A;_; for which Ab(M"”) C Ab(M). As D; ¢ Ab(M), D; ¢
Ab(M"). Hence M" is a model of TUA;_;U{=D;} and Ab(M") C Ab(M). So
-D; € A; CA. As M’ isamodel of TUA, D; ¢ Ab(M'). But this contradicts
the supposition.

Step 3: Every model of I' U A is a minimal abnormal model of T'.

Suppose that M’ is a model of I'U A, but is not a minimal abnormal model
of I'. Hence, by Definition 9, there is a model M"” of T for which Ab(M") C
Ab(M').

It follows that M” is a model of I' U A. If it were not, then, as M" is a
model of T, there is a =D; € A such that M’ verifies ~D; and M" falsifies
—D;. But then M’ falsifies D; and M" verifies D;, which is impossible in view
of Ab(M") C Ab(M').

Consider any D; € Ab(M') — Ab(M") # 0. As M" is a model of ' UA;_;
that falsifies Dj, it is a model of TUA;_; U{=D;}. As Ab(M") C Ab(M') and
Ab(M') C Ab(M), Ab(M") C Ab(M). It follows that A; = A;_y U{-D;} and
hence that =D; € A. But then D; ¢ Ab(M'). Hence, Ab(M") = Ab(M’). So
the supposition leads to a contradiction. m

Theorem 5 If M € MEYE— MY, then there is a M' € My such that Ab(M') C
Ab(M). (Strong Reassurance for Reliability.)

Proof. Immediate in view of Theorem 4 and Lemma 2. m

Corollary 1 IfT has LLL-models, I" has AL™ -models as well as AL™-models.
(Reassurance.)
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7 Soundness and Completeness

The proofs in this section rely on the standard format, including the fact that
the lower limit logic is supposed to have a characteristic semantics.

Lemma 3 If A is finally derived at line i of an AL"-proof from T, and A is
the condition of line i, then ANU(T) = 0.

Proof. Suppose that the antecedent is true but that AN U(T) # . Then there
is a minimal Dab-consequence of T, say Dab(A’), for which AN A’ # §. So
the AL"-proof from I' has an extension in which Dab(A’) is derived (on the
condition @). But then, where s is the last stage of the extension, A’ C Uy(T)
and ANU,(T) # 0, whence line 4 is marked at stage s in view of Definition 3. As
Dab(A’) is a minimal Dab-consequence of I'; A’ C U,/ (T) for all stages following
5. So the extension has no further extension in which line ¢ is unmarked. In
view of Definition 6, this contradicts that A is finally derived at line i of the
AL"-proof fromI". m

Theorem 6 I" Farr A iff, for some finite A C Q, T Frpr A U Dab(A) and
ANU() =0.

Proof. = Suppose that I' Farr A. So A is finally derived on line ¢ of an AL"-
proof from I'. Let A be the condition of line . But then I' Fyr1, AU Dab(A)
by Lemma 1 and ANU(T') = ) by Lemma 3.

< Suppose that, for some finite A C Q, ' Frp, A U Dab(A) and AN
U(T) = 0 for a finite A C Q. So there is a AL"-proof from T' (containing only
applications of PREM and RU) in which AL Dab(A) is derived on the condition
(). By an application of RU, a line ¢ can be added that has A as its formula and
A as its condition and this line is unmarked. In any extension of this proof in
which line i is marked Dab(©) is derived on the condition () for some © C €2 such
that ©NA # (0. As ANU(T) = 0, there is a ©' C © for which I by, Dab(©').
So the extension can be further extended in such a way that Dab(©) occurs on
the condition (). But then A is finally derived at line 4 in view of Definition 6.
]

Theorem 7 I Farr A iff there is a (finite) A C Q for which I’ Frp, AU
Dab(A) and ANU(T) = 0.

Proof. = Suppose that I' Farr A, whence all members of M[. verify A. So
Tru@-U)” ErLr A. As LLL is compact, IV U A™ Erpy, A for a finite
I C T and a finite A C . But then, by CL, I FrL1, AU Dab(A). So, as LLL
is monotonic, I' Frrr, A U Dab(A).

< Suppose thereis a A C Q for which I' FrL, AUDab(A) and ANU(T) =
0. T FaLr A holds vacuously if MELL = ). So suppose that MELL =£ () and
that all members of MELL £ () verify AU Dab(A). By Theorem 5, M} # (.
As ANU(T) =0, all AL -models of T' falsify Dab(A). So all AL"-models of T’
verify A. m

As LLL was supposed to be sound and complete with respect to its seman-
tics:

Corollary 2 T Fapr A iff T FaLr A. (Soundness and Completeness for AL".)
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For the Minimal Abnormality strategy we need one more bit of terminology.
Where Dab(A1), Dab(As), ... are the minimal Dab-consequences of T', ®(T") is
the set of minimal choice sets of {A1, Ag,...}.

The proofs of Lemma 4 and Theorem 14 require some facts about minimal
choice sets. I merely list them because proving them would require too much
space (even if the proofs are simple).

Fact 1 If X is a set of sets and ¢ is a minimal choice set of ¥, then, for every
A € p, there is a A € X for which p N A = {A}.

Fact 2 If ¥ and X' are sets of sets, then, for every minimal choice set ¢ of
YUY, there is a minimal choice set 1 of ¥ for which ¢ 2 1.

Fact 3 If X and X' are sets of sets and for every © € X' there is a A € X for
which A C O, then @ is a minimal choice set of YUY iff ¢ is a minimal choice
set of X.

Fact 4 If X and X' are sets of sets, ¥ is a minimal choice set of X, and there
is no minimal choice set @ of X U X' for which ¢ D 1, then there is a A € X'
such that ANy =0 and, for every B € A, there is a minimal choice set 1)’ of
%, for which B € ANy', and ¢ 2 ¢' — {B}.

If T has no LLL-models, it obviously has no AL™-models.

Lemma 4 If T' has LLL-models, then ¢ € ®(T) iff ¢ = Ab(M) for some
M e MP.

Proof. Suppose that I' has LLL-models. As every LLL-model M of T" verifies
all minimal Dab-consequences of I', Fact 1 gives us:

(t) Every LLL-model M of T verifies the members of a ¢ € ®(T).

Suppose that, for some ¢ € ®(T"), I' U (2 — )~ has no LLL-model. By the
compactness of LLL, there is a finite IV C I" and a finite A C (2 — ¢) such that
I"UA™ has no LLL-model. But then, by CL-properties, I'V Frp1, Dab(A) and,
by the monotonicity of LLL, T’ Frrr Dab(A), which contradicts A C (© — ¢).
So, for every ¢ € ®(I"), T U (Q — )™ has a LLL-model M and, as M verifies ¢
in view of (}), Ab(M) = ¢.

We have established that, for every ¢ € ®(I'), there is a LLL-model M of
T for which Ab(M) = ¢. But then, in view of (}), every LLL-model M of
T for which Ab(M) € ®(T") is a minimal abnormal model of I" and no other
LLL-model of I' is a minimal abnormal model of I'. m

Theorem 8 T Fapm A iff, for every p € ®(T), there is a A C Q such that
AN Y= ® and T b A LU Dab(A)

Proof. = Suppose that I Fa1,» A. By Definitions 6 and 5 an AL -proof from
T" contains a line 7 that has A as its formula and some A C Q as its condition,
line 4 is unmarked, and every extension of the proof in which line ¢ is marked
may be further extended in such a way that line ¢ is unmarked.

Suppose we extend the proof by deriving every minimal Dab-consequences
of " on the condition @), whence @ (I') = ®(I"). In view of Definition 4, line i is
unmarked iff the extended proof has a further extension such that (i) ANy =0
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for some ¢ € ®(I') and (ii) for every ¢ € ®(I'), there is a line that has A as
its formula and some A’ as its condition such that A’ N ¢ = (). There is such
an extension iff for every ¢ € ®(I'), there is a A C Q such that ANy =0 and
T AU Dab(A)

< Suppose that, for every ¢ € ®(T'), there is a A C Q such that ANy =0
and T' Frry, AU Dab(A). Then there is an AL™-proof from T in which (i) every
minimal Dab-consequences of I is derived on the condition () and (ii) for every
p € ®(T), A is derived on a condition A C § for which AN = @. Clearly A
is finally derived in this proof. m

Theorem 9 T' Fapm A iff T EaLm A. (Soundness and Completeness for
AL™.)

Proof. Each of the following are equivalent:

(1) I "AL'm A.

By Theorem 8:

(2) For every ¢ € ®(T), there is a A C Q such that AN =0 and I" Frr
AU Dab(A).

By the Soundness and Completeness of LLL:

(3) TFor every ¢ € ®(T), there is a A C Q such that AN =0 and T Frry
AU Dab(A).

By Lemma 4:

(4) For every M € M, there is a A C Q such that A N Ab(M) = § and
Tk AU Dab(A)

By CL:

(4) Every M € M} verifies A.

By Definition 10:

(4) T EaL» A

]

In view of Corollary 2 and Theorem 9, Corollary 1 gives us:

Corollary 3 If CnprL(T") is non-trivial, then Cnarm(I') and Cnapr-(T') are
non-trivial. (Syntactic Reassurance)

8 Some Further Properties

Theorem 10 Dab(A) € Cnan(T) iff Dab(A) € Cnpin(T). (AL is Dab-
conservative with respect to LLL /Immunity .)

Proof. If all LLL-models of I" verify Dab(A), then so do all Reliable models of
I and all Minimal abnormal models of T (Definitions 7 and 9). So the right-left
direction is obvious in view of the soundness and completeness of LLL-with
respect to its semantics and in view of Corollary 2 and Theorem 9.

For the right—left direction suppose that every adaptive model of T" verifies
Dab(A). Let M be a LLL-model of I'. If M is an adaptive model of T, it
verifies Dab(A) by the supposition. If M is not an adaptive model of I", then,
by Theorems 4 and 5, there is an adaptive model M’ of T such that Ab(M') C
Ab(M). But then, as M’ verifies Dab(A) by the supposition, so does M. =
Proof. It Dab(A) € CnrpL(T), then Dab(A) is derivable on the condition @) from
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I'in an AL-proof from I' and hence Dab(A) € Cnar(T). If Dab(A) € Cnar(T),
there are two cases.

Case 1: Dab(A) is derivable on the condition @) in an AL-proof from T.
Then Dab(A) € Cnrpi(T) in view of Lemma 1.

Case 2: Dab(A) is derivable in an AL-proof from I" but only on non-empty
conditions.

Case 2.1: the strategy is Reliability. Let © be a minimal such condition.
In view of Lemma 1, (i) Dab(A U ©) is derivable on the condition @) in the AL-
proof from I" and (ii) Dab(A’ U ©) is a minimal Dab-consequence of I" for some
A" C A. So ©® CU(T') and every line at which Dab(A) is derived on a condition
©’ D O is marked.

Case 2.1: the strategy is Minimal Abnormality. Suppose that Dab(A) is
finally derived on a condition ©¢ at line ¢ of an AL™-proof from I'" and that
O1, O, ... are the minimal conditions on which Dab(A) is derivable in the
proof. So there are A; C A such that Dab(A; U ©1), Dab(As U O3), ... are
minimal Dab-consequences of I'. It is easily seen that some minimal choice set
of these contains a member of every ©,;, which contradicts the supposition. m

Theorem 11

1. C’nLLL(I‘) g CTLA]_/ (F) g CTLALm (F) g CTLULL(F),

2. T C Cnan(D). (Reflexivity.)

3. IfAeQ—-U(), then A € CnarL-(I).

4. If Dab(A) is a minimal Dab-consequence of T' and A € A, then some
M e M7 verifies A and falsifies all members (if any) of A — {A}.

5. UM) =Uo(M).

6. Mp" = MG, .y whence Cnapn(I) = Cnapn(Cnann (). (Fized

Point/Idempotence for Reliability.)

7. M = M, ..y whence Cnavr (I') = Cnav (Cnavr- (I)). (Fized Point/
Idempotence for Minimal Abnormality.)
8. Cnrin(Cnar(l")) = Cnan(l'). (Redundance of LLL with respect to AL.)
9. If T/ C Cnan(l), then UT UT") =U(T) and (T UT') = &(T).
10. If T" C Cnan(l), then Cnan(TUTY) = Cnan(T).

11. IfT" C Cnan(T) then Cnan(TUIY) C Cnan(l). (Cautious Cut/Cumulative
Transitivity. )

12. IfT Ear A for every A€ TV, and T Ear B, then T UTY Ear B.
Viz. ifT" C Cnawn(T) then Cnarn(T) C Cnar (TUTY). (Cautious Monotonic-
ity/Cumulative Monotonicity.)

13. If T C Cnar(I") and IV C Cnar(T), then Cnan(T') = Cnarn(I”). (Reci-
procity.)
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Proof. Ad 1. We know from Lemma 2 that MFTL C mm C M~ C MELL. So,
the formulas verified by all LLL-models of T are verified by all AL"-models of
T, etc.? The Soundness and Completeness of LLL with respect to its semantics
was presupposed for and it was proved for the three other logics: Theorems 1
and 9 and Corollary 2.

Ad 2. As LLL is reflexive, I' C Cnprr(T"). SoT' C Cnar(T) in view of 1.

Ad 3. If A € Q — U(T), all reliable models of T falsify A in view of Def-
inition 7. So all reliable models of T' verify A. So Corollary 2 warrants that
—-A € C’I’LALT-(F).

Ad 4. Suppose that every M € M} verifies a member of A — {A}. So
I EaL» Dab(A — {A}), and hence, by Theorem 9, T' Far» Dab(A — {A}). By
Theorem 10, T’ Frry, Dab(A — {A}), whence Dab(A) is not a minimal Dab-
consequence of T'.

It follows that, if Dab(A) is a minimal Dab-consequence of I and A € A,
then some M € M7 falsifies all members (if any) of A — {A} and hence, as
['EaLm Dab(A), M verifies A.

Ad 5. Immediate in view of 4.

Ad 6. This is vacuously true if MEFL = (). So suppose that MEFE £ (). As
LLL is reflexive, transitive and monotonic, Cnypy(CnrrL(T)) = Cnpin(T). As
LLL is sound and complete with respect to its semantics, MI(}%ELL(F) = MELLL
In view of Theorem 10, ®(CnrLi(l')) = (I'). But then Mp" = M7, = by
Lemma 4 and Cnap=(I') = Cnaprm(Cnar-(T')) by Theorem 9.

Ad 7. The reasoning is identical to the one for 6, up to MIC‘EELL(F) = MELL,
In view of Theorem 10, U(Cnrrr(I')) = U(T'). It follows that Mp. = M, )
by Definition 7 and Cnap-(I') = Cnar-(Cnar-(T)) by Corollary 2.

Ad 8. As LLL is Reflexive, Cnar(T") € Cnpin(Cnar(T)). For the other
direction, suppose that A € CnpprL(Cnar(T)). By the Soundness of LLL with
respect to its semantics, all members of M%ﬁiL(r) verify A. By Definitions

9 and 7, MéﬁAL(F) - MLCﬁiL(F)v whence all members of Méﬁu(l‘) verify A.

By 6 and 7, Mévr:AL(F) = MAL whence all members of MAL verify A. By
Theorem 9 and Corollary 2, A € Cnar(T).

Ad 9. Suppose that TV C Cnap(T'). As LLL is monotonic, Dab(A) €
CTLLLL(F @] F,) if Dab(A) € CTlLLL(F).

Suppose that Dab(A) € Cnppn(I' UTY). By the monotonicity of LLL,
Dab(A) S CTLLLL(FU CnAL(I‘)) So Dab(A) S CTLLLL(CTLAL(F)) by 2. It
follows that Dab(A) € Cnarn(T) by 8, and hence that Dab(A) € Cnpyy(T) by
Theorem 10.

So we have established that Dab(A) € Cnppy (TULY) iff Dab(A) € Cnyii(D).

Ad 10. Suppose that TV € Cnarp(I'). As LLL is monotonic, M%BIIJ/ -
MELL - MAL comprises the members of MEFL that have a certain property,
viz. either Ab(M) € ®(T) or Ab(M) C U(T'), depending on the strategy. MAL,,
comprises the members of MIFJLIjII:, that have the same property (in view of 9). So,
as all members of MAL are members of MELL  MAL = MAL,, " By Theorem
9 and Corollary 2, Cnar(T' UTY) = Cnarn(T).

Ad 11 and 12. Immediate in view of 10.

9Inexperienced readers should remember that, if there are no AL"-models of I', then

T Earr A for all (closed) formulas A. Indeed, every AL"-model is either not a model of
T or it verifies A.
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Ad 13 Suppose that IV C Cnapn(T) and T' C Cnarn(IV). In view of 10,
C’nAL(F) = CTI,AL(F U F/) = C’nAL(F’). | |

Theorem 12

1. If T is normal, then MYV = M™ = ML C MELE
and hence CnpiL(T) C Cnar- () = Cnar= (') = CnuLi (D).

2. If T is abnormal and MEY £ 0, then MPYY ¢ M
and hence Cnar=(T) C CnyrL(T).

3. MPLE C M C MF C MELE
whence CnLLL(F) g CnALr(F) g CnALm (F) Q C’nULL(F).

4. MEC MEEL it T'U {A} is LLL-satisfiable for some A € Q — U(T).
5. CNLLL(F) - CnALr(F) Zﬁc Mf‘ C M%LL.

6. MP C MELL iff there is a (possibly infinite) A C Q such that T U A is
LLL-satisfiable and there is no ¢ € ®r for which A C .

7. If there are Ay,..., A, € Q (n > 1) such that T U{A;,..., A,} is LLL-
satisfiable and, for every ¢ € ®r, {A1,..., A} € ¢, then CnpiL(T) C
C’nALm(F).

8. Cnarn(T) and Cnar-(T) are non-trivial iff MEVL £ (.

Proof. Ad 1. If T is normal, U(T') = () and only ULL-models of T' are minimal
abnormal.

Ad 2. If T is abnormal, then MPM = () and Cnyrs(T) is trivial. If T
has LLL-models, then it has AL™-models by Corollary 1, whence Cnay=(T")
is non-trivial (there are no trivial LLL-models and all AL™-models of I" are
LLL-models of T).

Ad 3. by 1 and 2, MFEE C M. MF C MEEL s immediate in view of
Definition 7. M C MF. follows from Definitions 7 and 9.

Ad 4. From Definitions 7 and 8.

Ad 5. = Suppose A € CnpLr(T) — Cnarn-(T). So, for some A € Q—U(T),
all M € MY, falsify A whereas some M € MEME — MY verifies A. <=  obvious.

Ad 6. From Definitions 9 and 10.

Ad 7. Suppose the antecedent is true. Every M € M7’ falsifies some A;
whereas some M € MEMY (viz. an M € Mpbp, ) verifies A; ... M A,
in which M is classical conjunction.

Ad 8. Immediate from Corollary 1 and the fact that no LLL-model is trivial.
]

Theorem 13

1. For some T and A, Cnar(T) € Cnar(I'UA). (AL is non-monotonic.)

2. For someT and A, A C Cnar(T) but Cnarn(A) € Cnavn(T). (Cut/Transitivity

does not hold for AL.)

3. There are T', A and B such that T U {A} barr B but T Farr AU B.
(The Deduction Theorem does not hold for AL" ).
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Proof. For each of the properties, I rely on the following two facts. As the form
that characterizes Q is LLL-contingent,  # (. As the form contains at least
one logical symbol, p ¢ Q.

Ad 1. Where A € Q, pU AFar pand pU A, AFar p.

Ad 2. Where A€ Q, Abar, pUAand pUAFay p but AFar p.

Ad 3. Where A,B € Q, AUB,BUp, Abar pbut AUB, BUp Fayr "Alp.
]

The fact that every adaptive logic in standard format is non-monotonic,
does not rule out that a monotonic consequence relation is characterized by an
adaptive logic under a translation. Thus Rescher’s Weak consequence relation
which is monotonic, is characterized by an adaptive logic—see footnote 4.

In preparation of Theorem 14, remark that the Deduction Theorem holds for
LLL, viz. that T' b, "AUB if TU{A} by, B—remember that — is classical
negation, LI is classical disjunction, and LLL contains CL and is compact.

Theorem 14 IfT U {A} Far» B then T Far» mAU B. (Deduction Theorem
for AL™.)

Proof. Suppose that the antecedent is true. So, for every ¢ € ®(T'U{A}), there
isa A C Q for which ' U{A} FroL B U Dab(A) and AN = (. It follows (by
CL-properties) that I' Frrr, (AU B) U Dab(A) for all these A.

By Fact 2, for every ¢ € ®(I"), there is a ¢ € ®(T'U {A}) for which ¢ D 9.
Let ¥ be the set of minimal Dab-consequences of I' and let ¥’ be the set of
minimal Dab-consequences of I' U { A} that are not minimal Dab-consequences
of I". ®(T) is the set of minimal choice sets of ¥ and, in view of Fact 3, ®(TU{A})
is the set of minimal choice sets of ¥ UX'. Consider a ¢ € ®(T').

Case 1: Thereis a ¢ € ®(T'U{A}) for which ¢ D . Then thereisa A C Q
for which I' byt (WA U B) U Dab(A) and AN = 0, and hence ANy = 0.

Case 2: There is no ¢ € ®(T' U {A}) for which ¢ D . By Fact 4, there is
a A € ¥ such that AN+ = () and, for every B € A, there is a v’ € ®(T") for
which B € ANy’ and ¢ D ¢’ — {B}. But then, as ' U {A} by Dab(A) and
the Deduction Theorem holds for LLL, I" Fyp1, —A U Dab(A). It follows that
there is a A C Q for which T' by, (mAU B) U Dab(A) and ANy = (.

So in both cases, there is a A such that I Frry, (-A U B) U Dab(A) and
ANy ={. It follows that T Fagm "ALB. m

Theorem 15
1. For allT', T' C Cnar(T"). (AL is reflexive.)

2. For all T, CnuLL(CnaL(l)) = CnuLn(I'). (AL is conservative with
respect to ULL.)

3. For allT, Cnar(Cnpirn (")) = Cnan(T). (LLL is conservative with re-
spect to AL.)

Proof. Ad 1. All members of ' can be derived on the condition @) in an AL-proof
by PREM.

Ad 2. As ULL is monotonic, CnyLr(I') € CnyuLn(Cnraw(l")) in view of 1. If
I is normal, then Cnar(T') = CnuLn(T) (in view of 1 of Theorem 12), whence
CnULL (F) = CTLULL(CTLAL (F)) (because C’nULL (F) = CnULL(CnULL (F)))
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If T is abnormal, then Cnyrn(T') = CnuLL(Cnarn(T")) because both sets are
trivial.

Ad 3. By applications of PREM and RU, every member of Cnypy (') can
be derived on the condition () in an AL-proof from I'. So every AL-proof from
CnyrL(T') can be transformed into an AL-proof from I" by deriving the members
of Cnprr(T') — T on the condition @, whence Cnar(Cnpirn(I')) € Cnar(T).
Moreover, any AL-proof from I'" can be transformed into an AL-proof from
CHLLL (F) |

Theorem 16 IfT' Ay A, then every AL-proof from I' can be extended in such
a way that A is finally derived in it. (Proof Invariance)

Proof. Let Py = (l1,la,...) be the (stage of the) proof in which A is finally
derived from T at line I and let Py = (I1,15,...) be a (stage of an) arbitrary
proof from I'. (If P; is finite, there is a last element in the sequence; similarly
for Ps.)

In view of Definitions 4 and 3, the following is obvious. Whether B is derived
at a stage s in a proof from I'" depends on the lines that occur in the proof, not
on the order in which these lines occur. So the sequence Ps = (I1,1],12,15,...)
(if there are more [; than [}, the sequence will contain only /; from some point
on, etc.) may be seen as an extension of P; and also as an extension of Ps. So,
as A is finally derived in Pj, it follows by Definitions 5 and 6 that Ps as well
as every extension of P3 in which line [ is marked has a further extension in
which line [; is unmarked. m

9 Criteria for Final Derivability

In view of the reasoning processes explicated by Far,, this relation is not decid-
able (in general) and there is no positive test for it. This leads to two questions.
Does the dynamics of the proofs go anywhere? And are there criteria for final
derivability?

In view of the block analysis of proofs (and the block semantics) from [1],
(i) a stage of a proof provides a certain insight in the premises, (ii) every step of
the proof is either informative, in which case insight in the premises is gained,
or non-informative, in which case no insight lost, and (iii) sensible proofs con-
verge toward maximal insight—sensible proofs are obtained, for example, by
the procedure described below.

There have been several attempts to devise criteria for final derivability. The
first ones originated from the block analysis of [1]. These are very complicated
and rather confusing for people that are not fluent in adaptive logics. More
elegant criteria were found in the context of tableau methods—see [11] and
[12]. The disadvantage of these criteria is that tableaus require writing a lot
of formulas and entering roads that lead nowhere and would be skipped in
sensible proofs. Tableaux are not goal directed and it is difficult to make them
goal directed. The most interesting criteria are procedural criteria, which I now
explain.

The procedural criterion for final derivability on the Reliability strategy is
based on a a special kind of goal-directed proofs, called prospective proofs.
Typical for these proofs is that most of the proof heuristics—Hintikka calls this
the strategy, for example in [22]—is pushed into the proofs themselves. While
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constructing a proof, the heuristic reasoning instructs one, for example, to add
a certain line and not another one. So, in a sense, a usual proof contains a part
of the reasoning required to obtain the proof, and not other parts. Which part
of the reasoning is actually written down in the proof is largely a conventional
matter. The prospective proofs for the propositional fragment of CL is described
for example in [16], that for the propositional fragments of CLulN and CLuN"
for example in [8].1° Predicative results are forthcoming. The procedure, of
which the structure is described below, presupposes that prospective proofs are
available for the lower limit logic. Given this, the structure of the procedure is
the same for all adaptive logics that have Reliability as their strategy.

The procedure for testing whether I' Far» A consists of three phases. If
the procedure stops, an answer is obtained: either yes or no. Of course the
procedure cannot always stop, because there is no positive test, but it can be
shown (where developed) to be at least as good as tableau methods.

Phase 1 Here the procedure is directed at deriving derive the conclusion
or goal, henceforth called G, on a condition. If the procedure stops without
deriving G, I' Facrun1 G. If the procedure stops because G is derived on a
condition A at a line 4, then (i) if A =, I’ Facrun1: G and (ii) if A # fn
the procedure moves to phase 2—see below. After returning from phase 2 to
phase 1, (i) if line ¢ is not marked, I' FacLun1 G and (ii) if line ¢ is marked,
the procedure tries to derive G on a (different) condition. And so on.

Phase 2 If the procedure arrives here, G was derived on condition A (# 0)
at line . The procedure tries to derive Dab(A) on some condition. If the
procedure is unsuccessful, A N U(T') = (), it returns to phase 1, line 7 being
unmarked. If the procedure is successful, Dab(A) is derived on a condition ©
at line j. (i) If ©® = (), line 4 is marked and the procedure returns to phase 1.
(ii) If © # (0, the procedure moves to phase 3. If, after returning from phase 3,
line j is not marked, © NU(I") = ) whence A NU(T') # 0; in this case line ¢ is
marked and the procedure returns to phase 1. If, after returning from phase 3,
line j is marked, I' Frpr Dab(®), so possibly ANU(T) = 0. So the procedure
tries to derive Dab(A) on a (different) condition. And so on.

Phase 8 1f the procedure arrives here, G is derived on condition A (# () at
line ¢ and Dab(A) is derived on condition © at line j, whence I' brrr, Dab(AU®).
The procedure tries to derive Dab(0) on a the condition @. (i) If the procedure
is unsuccessful, it returns to phase 2, line j being unmarked. In this case so
T #rir Dab(©), whence ANU(T) # 0. (ii) If the procedure is successful, line
j is marked and the procedure returns to phase 2. In this case I' b1, Dab(©),
so possibly ANU(T) = (.

Of course, the previous paragraphs do not clarify the way in which the
procedure actually works—see for example [8] for that—Dbut it gives a clear idea
of the steps taken by the procedure to arrive at a conclusion about the question
whether G is or is not derivable from I' by any adaptive logic that uses the
Reliability strategy. If the procedure stops, we have an answer. If it does not,
we shall have to stop anyway, and act on present insights. That’s life.

10The program pdp2.exe implements the procedure for propositional ACLulN". it is avail-
able at http://logica.ugent.be/centrum/programs/.
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