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Abstract

First and foremost, this paper concerns the combination of classical
propositional logic with a relevant implication. The proposed combination
is simple and transparent from a proof theoretic point of view and at the
same time extremely useful for relating formal logic to natural language
sentences. A specific system will be presented and studied, also from a
semantic point of view.

The last sections of the paper contain more general considerations on
combining classical propositional logic with a relevant logic that has all
classical theorems as theorems.

1 Some Motivation

In this paper I present an extension of PC (Classical Propositional Logic) with
a relevant implication. The resulting system is called PCR. It figured in my
introductory logic course for many years, even before this was published as [3].
Thousands of students applied the system for natural deduction (Fitch-style)
proofs and for formalizing Dutch sentences. Still, PCR appears here for the
first time in English.

The logic PCR was developed especially for elementary logic classes. Teach-
ing elementary logic, one cannot avoid presenting the paradoxes of Classical
Logic, henceforth CL.1 Becoming familiar with inferences deemed correct by
PC, even the slowest students start complaining after a while.

Having described the paradoxes, textbooks and logic teachers sometimes
try to reason them away. Two types of moves are invoked in this connection.
The first move is legitimate but insufficient: one shows that it is correct that
the paradoxes are apparent only. Indeed, there is a discrepancy between PC
and the logical constants from natural languages, but there is a systematic

∗Research for this paper was supported by subventions from Ghent University and from the
Fund for Scientific Research – Flanders. I am indebted to Peter Verdée for some discussions
and for comments on a previous draft.

1The paradoxes all show at the propositional level. The paradoxes of material implication
are even typical for propositional logic—see below in the text.
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and coherent2 idea behind PC. So PC is all right as a logical system. This
move is insufficient because of the discrepancy. It does not explain in which
way a correct reasoning in PC can have a bearing on a reasoning in natural
language. The second move is an attack on the discrepancy. It often proceeds
in terms of Grice’s conversational maxims. The maxims are extremely useful,
for example for explaining that A ∨ B indeed follows from A, but that it may
be inappropriate for a person knowing A to affirm A ∨ B rather than A—and
similarly for quantifiers and for modalities. This, however, does not have any
bearing on the paradoxes of CL. If my grandson weeps because his doll is
unrecognizably dirty, I shall tell him that he left the doll in the garden, that
the overnight rain turned the sand into mud, and if a doll lies all night in the
mud, it is unrecognizably dirty. It is just nonsense to say that the implication
is inappropriate because the child knows that the consequent is true. Similarly,
“It is not so that it rains if I want it to rain” and, more idiomatically, “It does
not rain if I want it to” are decent English sentences. Their logical form is
obviously not W → ¬R but ¬(W → R). Neither “I want it to rain” nor “it
does not rain” is derivable from the sentences.

Textbook writers and teachers who don’t try to reason away the paradoxes
may refer to relevant logics as a way out of the paradoxes. One may spell out
some properties of one or more relevant logics. However, it seems beyond the
reach of an elementary logic course to make students familiar with proofs within
a relevant logic. The popular relevant logics are just too complex.

The resulting situation is frustrating for both teacher and students. The
aim is to improve the students’ reasoning in the context of natural language.
However, they become at best fluent in CL. It is this situation that urged me
to devise PCR.

The logic PCR was not intended for solving all paradoxes of CL. As I see it,
there are paradoxes of three kinds. (i) Some paradoxes derive from the fact that
the consequence relation is not relevant. If there is a proof of A, then it is said
that A is provable or derivable from any premise set Γ. An obvious example is
p ⊢PC q ⊃ q. This is matched by the semantic consequence relation: what holds
true in all models is a semantic consequence of every premise set. (ii) Even given
(i), further paradoxes derive from the fact that contradictory theories have no
models. So they are all trivial, cannot be distinguished from each other and
reasoning from them is pointless. (iii) The meaning of the implication in CL
differs drastically from that in natural language; the standard examples are
p ⊢PC q ⊃ p, p ⊢PC ¬p ⊃ q, ¬(p ⊃ q) ⊢PC p ∧ ¬q.

The official relevance tradition, Anderson and Belnap and their many stu-
dents and followers, has chosen to remove the paradoxes of all three kinds. This
is by no means necessary. One may study ways to remove one of the kinds of
paradoxes. Some such ways may have effects on other paradoxes, but not all of
them.

The logic PCR was devised with the aim of removing only the paradoxes
from (iii). In [3], paraconsistency is presented as a means to remove the para-
doxes from (ii). Also, a different means is presented to remove the paradoxes
from (i) and (ii) together. PCR takes care of the remaining paradoxes, those

2It is sometimes claimed that PC is incoherent, for example because classical negation
would be a tonk-like operator, as is claimed in [5]. I think this claim is mistaken because
coherence depends on possibility, not on actuality—but this is not the appropriate place to
discuss the matter.
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from (iii). It introduces a relevant implication within the context of CL. This
is not an obvious matter, as we shall see in Section 2.

The discussion will be kept at the propositional level. The paradoxes from
(ii) originate at the propositional level. The discrepancy between formal and
natural language mainly plays at that level.3

2 Fitch-Style Rules for PC

Fitch-style proofs4 consist of a main proof and of zero or more subproofs, some
of which may occur within other subproofs. There are three ‘structural’ rules:
PREM to introduce premises, HYP to introduce hypotheses, thus starting a
new subproof at the current point (in the main proof or in a subproof), and
REIT to reiterate formulas from the main proof or from a subproof into one of
its subproofs. There are ten rules of inference, two for each connective:

MP A,A ⊃ B/B
CP From a subproof starting with the hypothesis A and ending with B, to

infer A ⊃ B.
ADJ A,B/A ∧B
SIM A ∧B/A and A ∧B/B
ADD A/A ∨B and B/A ∨B
DIL A ∨B,A ⊃ C,B ⊃ C/C
EI A ⊃ B,B ⊃ A/A ≡ B
EE A ≡ B/A ⊃ B and A ≡ B/B ⊃ A
DN ¬¬A/A

RAA A ⊃ B,A ⊃ ¬B/¬A

A subproof is said to be closed iff a formula was derived from it by CP.
Rather than further specifying the precise format, I present an example, a

proof of p ⊃ ¬q, (r ⊃ r) ⊃ q ⊢PCR ¬p. Although there is nothing paradoxical
about this inference, a paradox of kind (iii) is invoked at line 8.

1 p ⊃ ¬q PREM
2 (r ⊃ r) ⊃ q PREM
3 p HYP
4 r HYP
5 r ⊃ r 4, 4; CP
6 (r ⊃ r) ⊃ q 2; REIT
7 q 5, 6; MP
8 p ⊃ q 3, 7; CP
9 ¬p 1, 8; RAA

Definition 1 A PC-proof of A from Γ is a list of formulas L such that A is
the last member of L, all members of L are justified by a PC-rule, only members
of Γ are justified by PREM, and all subproofs in L are closed.

Definition 2 Γ ⊢PC A (A is PC-derivable from Γ) iff there is a PC-proof of
A from Γ.

3At the predicative level, implications take on a further function. The English sentence “all
humans are mortal” does not even contain an implication and there is nothing paradoxical in
deriving it from “all mammals are mortal” and “humans are mammals.”

4The reader is supposed to be familiar with the basics of Fitch-style proofs.
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Definition 3 ⊢PC A (A is a PC-theorem) iff ∅ ⊢PC A.

In a pedagogical context, a set of derivable rules of inference will be intro-
duced, looking for an equilibrium between heuristic facility and the number of
rules.

3 Relevant Consequence Relation

The official relevance tradition does not provide an obvious way to combine a
relevant implication with PC. Actually, there are two reasons why it doesn’t.
The first reason is that the tradition aims at removing all paradoxes together.
So all its relevant logics are paraconsistent and their implication as well as their
consequence relation is relevant. The second reason is that the consequence rela-
tion (which consequences are assigned to a premise set) is defined in a somewhat
unusual way by the tradition and that this holds for the syntactic consequence
relation as well as for the semantic one.5

That the official relevance tradition aims at removing all paradoxes together
is easily understandable from its position, which is that ‘the true logic’ is relevant
and that the mistaken conception of CL is responsible for all its paradoxes.6

Obviously, this situation does not help us to realise the aim of the present paper.
The Fitch-style proofs presented in [1] establish that certain formulas are E-

theorems but do not enable one to derive consequences from a premise set. In
other words, the proofs define theoremhood but not the syntactic consequence
relation. The latter is defined in [1, §23.6] for E and is there called “a proof
in E that A1, . . . , An entail(s) B”. The definition refers to E-theorems, thus
presupposing that these are provided independently. Incidentally, it is easily
seen that there is such a proof iff (A1 ∧ . . . ∧ An) → B is a theorem of E.7

The relation with E-theoremhood reveals at once two important properties of
“a proof in E that A1, . . . , An entail(s) B”. (i) No formula is entailed by the
empty set. Indeed, this syntactic consequence relation presupposes that n > 0.
(ii) The consequence relation is Tarski: reflexive, transitive, and monotonic.

Although the syntactic consequence relation is not defined for any other
logic in [1], relevant logicians clearly have a similar entailment notion in mind
for those logics.8

The Routley-Meyer semantics for relevant logics—see for example [7] and
other publications including [6]—may be interpreted as defining the semantic
consequence relation in a similar way. The models define the valid formulas

5It is perhaps more accurate to say that the role and status of theorems (respectively valid
formulas) is unusual, both in the proof theory and in the semantics. See also below in the
text.

6Amultiplicity of relevant logics has been devised. It was never very clear whether relevance
logicians see these as candidates for the title ‘true logic’ or as sensible logics for specific
purposes. Thus in [1] the logic E seems to be advocated as the ‘true logic’ but in §28.1 it is
argued that R is required for some purposes—see especially the paragraph on applicability.

7The widespread habit to define the set of theorems as the set of formulas derivable from
the empty set—compare Definition 3—cannot be upheld for relevant logics as the two sets are
not identical. See also below in the present paragraph of the text.

8For example [6] is in line with this—see §3.1 and see the notion of a L-theory in §4.6.
Where a theory T is a set of formulas, T should obviously contain all formulas entailed by its
members. Given the relation between entailment and theoremhood, this means that T should
be closed under adjunction (if A,B ∈ T , then A ∧ B ∈ T ) and ‘L-implication’ (if A ∈ T and
A → B is a theorem of L, then B ∈ T ).
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as those true at a specific world 0 of every model or as those true at every
member of a specific non-empty set of worlds Z of every model.9 The set of
valid formulas is provably identical to the set of theorems. Already in [7, §4],
Richard Routley and Bob Meyer also define “A R-entails B” in a direct way and
the definition is referred to approvingly in the postscript to the appendices of [6].
The definition comes to this: for every world of every model from the Routley-
Meyer R-semantics, if A holds true in the world, then so does B. To see what
this comes to, take into account that worlds may be inconsistent (verifying both
A and ¬A for some A) or negation incomplete (falsifying both A and ¬A for
some A) or both. However, consistency and negation completeness are required
for world 0 (alternatively, for the members of Z).

It is not difficult to see the reason for the construction. Every E-theorem beter weg? zie §10

is verified at world 0 (at every member of Z in the other formulation) of every
model. All theorems of CL are theorems of E and most other relevant logics.
So if one were to define “A is an E-semantic consequence of Γ” as

A is verified by all E-models of Γ, (1)

the semantic consequence relation would be non-relevant. Indeed, p ∨ ¬p is
verified by every E-model of {q} (because it is verified by every E-model) and
q is verified by every E-model of {p∧¬p} (because {p∧¬p} has no E-models).
Moreover, the formulas verified by world 0, respectively by all members of Z,
form a consistent set. So if the E-semantic consequence would be defined by
(1), it would validate Ackermann’s rule (γ), more widely known as Disjunctive
Syllogism.10

4 Eliminating Nested Arrows

We shall need three sets of formulas: W will be the set of formulas of the
language of PC, compounded in the usual way from sentential letters, the unary
connective ¬, and the binary connectives ∨, ∧, ⊃, and ≡; W→ will be like W,
except that there also is a binary connective →; W1 will be like W→, except
that it has no formulas containing nested arrows. A formula A ∈ W→ contains
a nested arrow if it has a (proper or improper) subformula B → C in which B
or C contains an arrow.

The language of PCR will comprise the formulas of W1. Choosing W1

instead of W→ leads to a drastic simplification of the Fitch-style proofs. Indeed,
the subproofs that lead to the introduction of an arrow do not require sets of
relevance indices, but a single symbol, in the present paper an asterisk. However,

9In [6], Z is called 0. Truth at world 0, respectively at every world in Z is defined by the
general clauses that pertain to every world but also by specific clauses. Thus 0, respectively
every member of Z, is negation consistent as well as negation complete—this warrants that all
PC-theorems are valid—and relates to other worlds by the ‘accessibility relation’ R in such a
way that all implicative theorems of the relevant logic come out true.

10On p. 497 of [2] we read: “Relevance logicians have so far invariably used a classical
metalanguage [. . . ] “preaching to the heathen in his own language.” ” The point is that a
truth-value like {t} does not express, within a relevant metalanguage, what one usually means
by “true only” because “only” here refers to classical negation, which is not available within
the relevant metalanguage. One wonders, however, where this leaves the proof that rule (γ)
is admissible in E, by which is meant that B is a theorem of E whenever A ∨ B and ¬A are
theorems of E. Indeed, in order for an E-theory to be closed under (γ) it is not sufficient that
it is consistent; it should be consistent only.
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the restriction to non-nested arrows does not render the logic useless with respect
to formalizing sentences from natural language. It hardly is any hindrance at all
as I show below. So the restriction makes the logic suitable for an introductory
logic course.

It is hardly an exaggeration to claim that nested implications do not occur in
natural language sentences. Most exceptions are sentences produced by logicians
trying to read or instantiate formulas from formal languages in such a way that
they sound minimally ‘natural’. When another natural language sentence seems
to have the logical form A → (B → C), the sentence is usually equivalent to
one that has the logical form (A∧B) → C or else to a metalinguistic statement
that has the form A ⊢ B → C. A similar equivalence seems to obtain for other
forms.

Of course, PCR is too weak a logic to formalize all sentences from natural
language—think about modalities, times and tenses, commands, and so on.
Even if what is said in the previous paragraph would be false, it would still
hold that many sentences from natural languages can be formalized by means
of formulas that are members ofW1 and that some practice with PCR improves
the students’ logical competence in connection to implication.

5 Stars and Carrying them Over

The obtain the specific properties of the arrow as opposed to the horseshoe a
special kind of subproof is required. The rule RHYP says that any member of
W may be introduced with a star attached to it. By applying RHYP one starts
(what will be called) a starred subproof.

Certain rules will carry over stars from one formula to the other. If the
starred subproof that starts with A∗ ends with a starred formula, say B∗, the
rule RCP (relevant conditional proof) allows one to infer A → B from the
starred subproof. Here is a schematic representation:

...
...

i A∗ RHYP
...

...
...

j B∗ . . .
j+1 A → B i, j; RCP
...

...

All this will sound familiar to people acquainted with the work of Anderson
and Belnap. The language being W1, there is no need for index sets; the star
will be sufficient to recall whether the hypothesis of the subproof is or is not
relevant to the conclusion of the subproof. If it is, an arrow can be introduced.

An important restriction is that no subproof can be started within a starred
subproof. Half of the restriction is necessary: if a starred subproof were started
within a starred subproof, nested arrows would result. The other half of the
restriction is conventional: starting a non-starred subproof within a starred
subproof will never lead to a useful result (given the other rules that will be
introduced).

The absence of nested arrows in the members of W1 entails that no formula
containing an arrow should ever occur starred. If such formula occurred starred
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in a proof, it would occur in a starred subproof. But then RCP would lead to
nested arrows.

Let us now turn to the central point: which rules carry over stars? Consider
a subproof that begins with the starred hypothesis A∗ and in which occurs C∗.
If we stop the subproof right there, applying RCP gives us A → C. If we
continue the subproof by applying a rule X to C∗ and this results in D∗, we can
derive A → D from the subproof. So it is justified that rule X carries over de
star from C to D just in case A → C provides a warrant for A → D. If rule X
requires two starred formulas, say C1

∗ and C2
∗ in order to derive D∗, then it

is justified that rule X carries over the star just in case A → C1 and A → C2

jointly provide a warrant for A → D. And so on.
As carrying over the star is parasitic on the justification of the transition

between arrow formulas, it is advisable to have an intended intuitive interpre-
tation of the arrow. A simple and general, and rather unquestionable, such
interpretation is the following:

(M→) A → B means that reasons to accept A constitute reasons to accept B
and that reasons to reject B constitute reasons to reject A.

In order for this to do its job, we better also consider the other connectives,
skipping material implication and equivalence, which are definable anyway.

(M¬) One has reasons to accept ¬A iff one has reasons to reject A. One has
reasons to reject ¬A iff one has reasons to accept A.

(M∧) One has reasons to accept A∧B iff one has reasons to accept A as well
as reasons to accept B. If one has reasons to reject A or reasons to
reject B, then one has reasons to reject A ∧B.

(M∨) If one has reasons to accept A or reasons to accept B, then one has
reasons to accept A ∨ B. One has reasons to reject A ∨ B iff one has
reasons to reject A as well as reasons to reject B.

Let us call (M→)–(M∨) meaning postulates. Note that no exhaustive condition
pertains to reasons for accepting a disjunction or to reasons for rejecting a
conjunction. This is as it should be, but it follows that one cannot fully justify
de Morgan properties in terms of these meaning postulates. One of the possible
illustrations is in Figure 1. Figure 2 illustrates the situation where two of the

we have reasons to accept ¬(A ∧B)
⇕

we have reasons to reject A ∧B
⇑

we have reasons to reject A or to reject B
⇕

we have reasons to accept ¬A or to accept ¬B
⇓

we have reasons to accept ¬A ∨ ¬B

Figure 1: Present Meaning Postulates

statements are modified. The result is that the two unidirectional arrows become
bidirectional but that another bidirectional arrow becomes questionable, as the
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we have reasons to accept ¬(A ∧B)
⇕

we have reasons to reject A ∧B
⇕

we have reasons to reject A or to reject B or to merely reject A ∧B
⇕ ?

we have reasons to accept ¬A or to accept ¬B or to merely accept ¬A ∨ ¬B
⇕

we have reasons to accept ¬A ∨ ¬B

Figure 2: Closing Two Gaps and Creating Another?

question mark indicates. The question mark can be removed iff reasons to
merely reject A ∧B can be identified with reasons to merely accept ¬A ∨ ¬B.

And indeed, to do so seems justified. A reason to merely reject A ∧ B is a
reason to reject A∧B that is neither a reason to reject A nor a reason to reject
B. Yet, if our knowledge became total and would still constitute a reason to
reject A ∧B, then it would constitute a reason to reject A or to reject B or to
reject both A and B. Similarly for the reason to merely accept ¬A∨¬B. If our
knowledge became total and would still constitute a reason to accept ¬A ∨ ¬B,
then it would constitute a reason to accept ¬A or to accept ¬B or to accept both
¬A and ¬B. These considerations justify that we introduce a further meaning
postulate:

(M∧∨) One has reasons to merely reject ¬A∧¬B iff one has reasons to merely
accept A∨B. One has reasons to merely reject A∧B iff one has reasons
to merely accept ¬A ∨ ¬B.

Digression The paragraph preceding (M∧∨) contains two occurrences of a
phrase that is emphasized because it is crucial. Indeed, the situation that ob-
tains in the case of total knowledge cannot be taken as the norm.

This obtains notwithstanding the fact that we underwrite all presuppositions
of PC—the game we are playing is PC extended with a relevant implication.
So we take it for granted that total knowledge is consistent as well as negation-
complete. But even if (the world as well as) total knowledge is as Classical Logic
claims it to be, reasoning about our knowledge requires a relevant implication
because our knowledge is not total. A good illustration of this is provided by
A → (B ∨ C) 0PCR (A → B) ∨ (A → C). This is directly connected to the
fact that our reasons to accept A may be reasons to merely accept B ∨C. This
would be different if our knowledge became total, but it is not total right now.

So it is important to realize that (M∧∨) does not presume that our knowledge
is or will ever be total. The reasoning that leads to (M∧∨) merely refers to
total knowledge to identify, for example, reasons to merely accept ¬A ∨ ¬B
with reasons to merely reject A ∧B. This ends the digression.

With the five meaning postulates in mind, the carrying over of stars may be
organized by the four conventions that follow. The reader is prayed to verify
that each of the conventions is exhaustively justified by the meaning postulates.

(C1) Some formulas have the same meaning in view of the meaning postu-
lates. Here are some examples: A ⊃ B and ¬A∨B, A ≡ B and (A ⊃ B)∧ (B ⊃
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A), A∧ (B∨C) and (A∧B)∨ (A∧C), ¬¬A and A, ¬(A∨B) and ¬A∧¬B, etc.
Rules that lead from a formula to a formula that has the same meaning carry
over the star; reasons to accept a statement are obviously reasons to accept
every statement that has the same meaning. Incidentally, the involved couples
of formulas are actually mutual tautological entailments from [1, §15] and all
mutual tautological entailments correspond to primitive or derivable PCR-rules
that carry over the star in both directions.

(C2) ‘Simple weakenings’ like SIM and ADD carry over the star; reasons
to accept A ∧ B constitute reasons to accept A, and so on. Incidentally, the
simple weakenings correspond to tautological entailments and all tautological
entailments correspond to primitive or derivable PCR-rules that carry over the
star.

(C3) Consider rules with a major and a minor (local) premise. Modus Ponens
for the arrow is the easiest case. If A∗ and A → B occur in the subproof11

then B∗ is derivable. Indeed, A∗ tells us that reasons to accept the hypothesis
constitute reasons to accept A and A → B tells us that reasons to accept A
constitute reasons to accept B; so it follows that reasons to accept the hypothesis
constitute reasons to accept B. Similarly for reasons to reject.

The matter is wholly different for Disjunctive Syllogism or for material De-
tachment (Modus Ponens for material implication). If ¬A∗ and A∨B occur in
the proof, reasons to accept the hypothesis of the subproof constitute reasons to
reject A. However, A∨B is merely a truth function; its truth does not warrant
that reasons to reject A constitute reasons to accept B. The situation remains
the same if ¬A∗ and A ∨B∗ occur in the proof—see the digression below. The
case is actually crucial as the non-theoremhood of (A ∧ ¬A) → B depends on
it.

(C4) The result of an application of ADJ will only be starred if both con-
juncts were starred. This is a direct consequence of M∧: a reason to accept the
hypothesis is a reason to accept A ∧ B iff it constitutes a reason to accept A
as well as a reason to accept B. Incidentally, if A ∧B∗ were derivable from A∗

and B, then, as SIM carries over the star, B∗ would be derivable from B. So
the arrow would loose its relevant character.

The specific rules in Section 6 rely on conventions (C1)–(C4). Note that (C3)
requires the possibility that one has reasons to accept a statement as well as
reasons to accept its negation. Put differently, one may have reasons to accept
a statement as well as reasons to reject it.

Digression Some people will consider it impossible that one has reasons to
accept A as well as reasons to reject it. This is because they are thinking
about reasons that are both final and exclusive. Some reasons, however, do not
have these qualities. One may think of reasons provided by reliable witnesses
that contradict each other, or provided by empirical data on the one hand and
theoretical considerations on the other.

The possibility that someone has reasons to accept A as well as reasons to
reject A is amply sufficient for not having (A ∧ ¬A) → B as a theorem of
logic. Recall that the reason why (A ∧ ¬A) ⊃ B is a theorem of PC is that
PC considers it impossible that A and ¬A are both true. Expressed in similar
terms, PCR considers it impossible that A and ¬A are both true but considers

11As we have seen, A → B cannot possibly occur starred.
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it possible that one has reasons to accept A as well as reasons to reject A. So
(A ∧ ¬A) ⊃ B is and (A ∧ ¬A) → B is not a theorem of PCR.

6 Fitch-Style for PCR

As PCR is an extension of PC, all Fitch-style rules of PC are retained in
PCR. We have to add specific rules in order to handle the arrow and in order
to specify which rules carry over stars.

The rule RHYP was already mentioned in the previous section. The rule
REIT will be restricted to non-starred subproofs and a specific reiteration rule
for starred subproofs, RREIT, is added. RREIT states that only formulas of
the form A → B may be reiterated into a starred subproof.12

This is a matter of elegance and efficiency, not of principle. One might allow
for starred subproofs that start with the starred hypothesis A∗ and end with a
non-starred formula B. From such a starred subproof, one might then derive
A ⊃ B. It is obvious, however, in view of the rules of PCR that whatever
is derivable from such a starred subproof, is also derivable from a non-starred
subproof. A non-starred subproof is obtained for example by removing all stars
and replacing RHYP by HYP.

Below follows a list of rules of inference. The list is redundant—some rules
are easily derivable from others. To save some space, I write A ∥B to abbreviate
A/B and B/A. The rules in the first list are primitive or derivable rules of PC
for which the behaviour with respect to stars is here specified.

ADJ A∗, B∗/A ∧B∗

SIM A ∧B∗/A∗ and A ∧B∗/B∗

ADD A∗/A ∨B∗ and B∗/A ∨B∗

MI A ⊃ B∗ ∥¬A ∨B∗

ME A ≡ B∗ ∥ (A ⊃ B) ∧ (B ⊃ A)∗

DN ¬¬A∗ ∥A∗

ND ¬(A ∨B)∗ ∥¬A ∧ ¬B∗

NC ¬(A ∧B)∗ ∥¬A ∨ ¬B∗

DIST A ∧ (B ∨ C)∗ ∥ (A ∧B) ∨ (A ∧ C)∗

The second list contains specific properties of the arrow. The understanding
is that RMP, RDIL, and RMT remain valid if the stars are removed from them.13

RMP A∗, A → B/B∗

RDIL A ∨B∗, A → C,B → C/C∗

RMT ¬B∗, A → B/¬A∗

RCP From a subproof starting with the hypothesis A∗ and ending with B∗,
to infer A → B.

REQ A ↔ B ∥ (A → B) ∧ (B → A)

A PCR-proof of A from Γ, Γ ⊢PCR A, and ⊢PCR A are defined as for PC,
viz. by replacing PC by PCR in Definitions 1–3.

12There are presumably means to retain REIT for all subproofs and nevertheless to avoid
trouble. An example of trouble is presented at the end of the present section.

13The variants without stars are required in the main proof and in non-starred subproofs.
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Many properties of the arrow are derivable. It is easy enough to produce
proofs for A → B,B → C ⊢PCR A → C and A → B ⊢PCR ¬B → ¬A. The
latter enables one to show that ¬A → ¬(A ∧B) follows from (A ∧B) → A. So
both are PCR-theorems and the right-left direction of NC is redundant.

It seems wise to mention a few properties of PCR. I add at best a hint to
the proof because we are in propositional logic.

(1) PCR is a conservative extension of PC: if A ∈ W, then ⊢PCR A iff
⊢PC A.14

(2) For all A ∈ W, ⊢PCR A iff ⊢PCR ¬A → A.15

(3) A → B is a PCR-theorem iff it is a tautological entailment as defined in
[1, §15].

(4) If A ↔ B is a PCR-theorem and D is obtained by replacing the subformula
A in C by B, then C ↔ D is a PCR-theorem. This derivable rule may be
called Replacement of Relevant Equivalents.

(5) Replacement of (Material) Equivalents holds in PC but not in PCR. For
example ⊢PC p ≡ (p∨ (r∧¬r)) but 0PCR (p → q) ≡ ((p∨ (r∧¬r)) → q).16

(6) Derivable rules: A → (B ∧ C) ∥ (A → B) ∧ (A → C)
(A ∨B) → C ∥ (A → C) ∧ (B → C)

(7) Negative results: For some A and B, B 0PCR A → B, ¬A 0PCR A → B,
¬(A → B) 0PCR A, and ¬(A → B) 0PCR ¬B.
In general no implication paradox holds for the arrow of PCR.17

(8) Other negative results: For some A, B, C, and D: (A ∧ B) → C 0PCR

(A ∧ ¬C) → ¬B, A → (B ∨ C) 0PCR ¬B → (¬A ∨ C), and (A ∧ B) →
(C ∨D) 0PCR (A ∧ ¬C) → (¬B ∨D). These are obviously important to
prevent the theoremhood of irrelevant implications such as (p ∧ ¬p) → q,
p → (q ∨ ¬q), and (p ∧ ¬p) → (q ∨ ¬q).

As was announced in footnote 12, I present an example of the kind of trouble
that would occur if REIT were retained for all subproofs. Disjunctive Syllogism
(DS is obviously a derivable rule of PC and hence of PCR).

1 ¬p PREM
2 ¬p ∨ (p → q) 1; ADD
3 p∗ RHYP
4 ¬p ∨ (p → q) 2; REIT wrong

5 p → q 3, 4; DS
6 q∗ 3, 5; RMP
7 p → q 3, 6; RCP

The proof illustrates that, if it were allowed to apply within starred subproofs
the rule REIT (jointly with other rules that do not carry over stars), then it

14By an induction over Fitch-style proofs; or by an induction over the semantics (see Section
7 and Section 8); or by the fact thatPC is Post-complete whereasPCR has non-trivial models.

15⇒: if A ∈ W and ⊢PCR A, then ⊢PC A by (1); so if B1 ∨ . . . ∨ Bn is a conjunct
of the Conjunctive Normal form of A, then (i) some Bi is ¬Bj for i, j ∈ {1, . . . , n} and
(ii) ¬B1 ∧ . . . ∧ ¬Bn is a disjunct of the Disjunctive Normal form of ¬A; so ⊢PCR ¬A → A.
⇐: ¬A → A ⊢PCR ¬¬A ∨A, and ¬¬A ∨A ⊢PCR A.
The property is not merely a result of the absence of nested implications in W1. Even
¬(A → A) → (A → A) is not a theorem of any of the popular relevant logics.

16For those in doubt: if (p → q) ≡ ((p ∨ (r ∧ ¬r)) → q) were a theorem of PCR, then so
would be (p → p) ≡ ((p ∨ (r ∧ ¬r)) → p); but ⊢PCR p → p and 0PCR (p ∨ (r ∧ ¬r)) → p.

17The negative properties are easily proven from one of the semantic systems in the subse-
quent sections.
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would be possible to derive p → q from ¬p. So the arrow would loose its
relevance properties.

7 Worlds Semantics and Tableaux

It is easily seen that all connectives can be defined from {¬,∨,→}. The worlds
semantics will take this into account, leaving it to the reader to eliminate the
definitions if desired.

A PCR-model is a triple ⟨W,w0, v⟩ in which W is a set, w0 ∈ W and
v:W1 ×W → {0, 1} is a valuation fulfilling:

SPCR1 v(¬A,w0) = 1 iff v(A,w0) = 0
SPCR2 v(A → B,w0) = 1 iff, for all wi ∈ W , v(A,wi) ≤ v(B,wi) and

v(¬B,wi) ≤ v(¬A,wi)
SPCR3 v(A ∨B,wi) = max(v(A,wi), v(B,wi))
SPCR4 v(¬¬A,wi) = v(A,wi)
SPCR5 v(¬(A ∨B), wi) = min(v(¬A,wi)), v(¬B,wi))

M  A (a PCR-model M = ⟨W,w0, v⟩ verifies A) iff v(A,w0) = 1. A
model of Γ is a model that verifies all members of Γ. Γ � A (A is a semantic
consequence of Γ) iff all models of Γ verify A; � A (A is valid) iff every model
verifies A.

The set of formulas verified at world w0 is consistent and negation complete
(for each A, exactly one of A and ¬A is verified at w0). The set of formulas ver-
ified at a different world wi may be inconsistent as well as negation-incomplete
(for each A, the set contains any subset of {A,¬A}). Note that formulas of
the form A → B have an arbitrary truth-value at worlds different from w0.
Incidentally, as A → B ∈ W1, the A and B in SPC2 are arrow-free.

With the semantics we associate a tableau method. Being a great fan of
Beth tableaux, especially for pedagogical use, I shall nevertheless present signed
Smullyan tableaux to make the majority happy. I shall consider the logical
constants {¬,∨,∧,→}, leaving the others to the reader.

A tableau construction results from executing a procedure, which is defined
by a set of instructions and by the order in which they are applied. The con-
struction will consist of a main tableau, called 0, and of zero or more side
tableaux, called 1, 2, . . . Each tableau has one or more branches; for example
tableau 0 may have branches 01, . . . , 04. Each side tableau is associated to a
unique branch of the main tableau. For each branch 0i of the main tableau, the
set Si comprises 0i as well as all branches of the side tableaux associated with
0i. While the tableau construction is carried out, side tableaux may be added,
and branches of a tableau may ‘split’. A branch contains labelled formulas and
the labels are T and F . As the label is not part of the formula, I shall write
TA → B rather than T (A → B).

The tableau construction for A1, . . . , An � B is closed iff its main tableau
is closed. A tableau is closed iff all its branches are closed. A branch is closed
directly iff there is a formula A for which TA as well as FA occur in the branch.
A branch 0i of the main tableau is closed indirectly iff a side tableau associated
with 0i is closed. A branch is finished iff it is either closed or no application of
an instruction results in a new (labelled) formula being added to the branch. A
branch is open iff it is not closed. A tableau construction is open iff it is not
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closed and all its branches are finished. No rule is applied to extend a closed open tableau MET
OPZET NIET
BEPAALD / ev.
wel branch als
later nuttig

branch—to do would be harmless but useless.
A tableau construction for A1, . . . , An � B is started by writing the list

⟨TA1, . . . , TAn, FB⟩, which at this point forms the single branch of the main
tableau 0. First one applies the instructions that do not lead to the introduction
of side tableaux:

0iT¬A / 0iFA mT¬
0iF¬A / 0iTA mF¬
0iTA → B / jkFA | jk′TB for all jk ∈ Si mT→1

0iTA → B / jkF¬B | jk′T¬A for all jk ∈ Si mT→2

jkTA ∨B / jkTA | jk′TB aT∨
jkFA ∨B / jkFA , jkFB aF∨
jkTA ∧B / jkTA , jkTB aT∧
jkFA ∧B / jkFA | jk′FB aF∧

The first four instructions are only applied to the branches of the main tableau
0 whereas the last four instructions are applied to the branches of all tableaux—
the first letter of the names refers to this. The instruction mT¬, for example,
says: if T¬A occurs in a branch of 0, then FA is added to the same branch. The
instruction aF∨ says: if FA∨B occurs in branch k of tableau j, then both FA
and FB are added to branch jk. The instruction aT∨ says: if TA ∨ B occurs
in branch k of tableau j, then the branch is split into k and k′, TA is added to
jk and TB to jk′ . The instruction mT→1 says: if TA → B occurs in branch
i of the main tableau, then every branch jk ∈ Si is split into jk and jk′ , FA
is added to jk and TB to jk′ . Note that Si = {0i} as long as only the above
instructions are applied. So mT→1 has only effect on the main tableau for the
time being. Note also that there are two instructions for implicative formulas
that have label T .

After the main tableau is finished, we construct the side tableaux according
to a strict procedure.
Step 1 For every statement FA → B that occurs in branch i of 0, we start a
new side tableau j, add both TA and FB in its sole branch 1 and stipulate that
j1 ∈ Si:

0iFA → B / j1TA , j1FB j new; stipulating j1 ∈ Si mF→

Step 2 Next we apply to the side tableaux the above four instructions that
pertain to all branches (aT∨, aF∨, aT∧, and aF∧) as well as the following
specific instructions for branches of side tableaux:

for j ̸= 0 and X ∈ {T, F}: jkX¬¬A / jkXA sX¬¬
jkX¬(A ∨B) / jkX(¬A ∧ ¬B) sX¬∨
jkX¬(A ∧B) / jkX(¬A ∨ ¬B) sX¬∧

Step 3 When no further instruction from Step 2 can be applied to a branch of
the side tableau, we apply one of mT→1 or mT→2—this time the application
will have an effect in branches of side tableaux. Whenever a member of Si splits,
both resulting branches are stipulated to be members of Si. As soon as one of
the branches of a side tableau is split and extended, we return to Step 2, going
back and forth between Step 2 and Step 3 until no further instruction can be
applied.

Consider the following three statements:
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(1) The construction for A1, . . . , An � B is closed.
(2) A1, . . . , An � B
(3) A1, . . . , An ⊢ B

There are well-known standard means to prove the following three statements:
If (1) then (2). If not (1) then not (2). If (3) then (2). These three show the
equivalence of (1) and (2). The equivalence of (1) and (3) follows if we moreover
are able to show: If (1) then (3). To show this is simple, viz. exactly as for PC,
if all branches of the main tableau are closed directly. So I shall outline the
longwinded but simple proof for the case in which some branches are closed
indirectly.

Consider a closed tableau construction such that a branch of the main
tableau is closed indirectly because side tableau i is associated with the branch
and is closed directly. Let A → B occur in the branch with label F and let ∆
be the set of implicative formulas that occur in the branch with label T . Let
side tableau i result from applying mF→ to FA → B (Step 1) and next by
switching back and forth between Step 2 and Step 3. At the point were i is
closed, a specific sequence of (Step 3, Step 2) pairs has been executed. Note
that i will still be closed if these pairs are executed in a different order or if they
are applied to one branch at some point in time, and to another at a later point
in time.

Let us slightly reorganise Step 1 and the first Step 2. Executing half of
Step 1, we write FB into tableau i and apply Step 2 to this. Let the result
be branches i1, . . . , in. These contain only FB and other F -labeled formulas
obtained from FB. Let F k be the disjunction of the formulas C for which FC
occurs in branch ik. Obviously

⊢PCR

∧
{Fk | k ∈ {1, . . . , n}} → B . (2)

Next, the second half of Step 1 is executed, extending each of the branches with
TA and Step 2 is applied to TA. For each branch ik, this results in one or more
branches: ik1 , . . . , i

k
m. Apart from the F -labeled formulas that occur already

in ik, the so extended and possibly split branches contain TA and T -labeled
formulas obtained from TA.

Consider the situation depicted in Figure 3. Step 1 and the first Step 2 were
executed in the order specified in the previous paragraph. The first dashed dots
indicate that the branch may have been split zero or more times before TA was
introduced. The set of C for which FC occurs in branch ik is represented by
ϕk. After TA was introduced, the branch may have been split further before
the split below τkj . The set of C for which FC occurs in branch ikj is represented

by τkj .
Next, Step 3 is executed: mT→1 or mT→2 is applied to a member of ∆.

The effect is that the considered branch ikj is split into ikj and ikj′ , that FD is

added to ikj , and that TE is added to ikj′ .
After Step 3, another Step 2 is executed. The result is that F -labelled

formulas are added to ikj—these are all obtained from FD—and T -labelled

formulas to ikj′—these are all obtained from TE. Branches ikj as well as ikj′
may split during this Step 2. In Figure 3, Σ1 represents the present set of
subbranches of ikj and these contain only F -labelled formulas that are obtained

from FD; Σ2 represents the present set of subbranches of ikj′ and these contain
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Figure 3: Left branch is closed without splitting

only T -labelled formulas that are obtained from TE. A member of Σ1 is closed
iff it contains a FC for which TC occurs in τkj .

Remember that side tableau i is eventually closed. From this follows that,
after Step 1 and the first Step 2 were executed (in the specified order), there
is a member of ∆ for which the application of Step 3 followed by Step 2 has
the effect that all branches in Σ1 are closed.18 By the same reasoning, after
the execution of a (Step 3, Step 2) pair, another (Step 3, Step 2) pair can be
executed for which all branches in the new Σ1 close. This may be continued
until the construction is closed because it contains a formula TC for which FC
occurs in ϕk.

After this reordering of side tableau i, one can distinguish between left and
right subbranches of a branch ik. The right subbranches are those in which all
formulas with label F occur in ϕk.19 Let Rk be the set of right subbranches of
ik at a given point. Let Tj be the conjunction of the formulas C for which TC
occurs in branch ikj . After TA was introduced, the following holds:

∆ ⊢PCR A →
∨

{Tj | j ∈ Rk} . (3)

Next, one executes the (Step 3, Step 2) pairs in an order that warrants that the
pair starts with a FC|TD move and ends in such a way that all branches that
contain this FC are closed. The ‘remaining’ branches are members of Rk and
contain an increasing number of T -labeled formulas. Eventually, all members of
Rk contain a TC for which FC occurs in ϕk. It is easily seen that, after every
execution of a (Step 3, Step 2) pair, (??) still holds.

As i is eventually closed, the right branches of each ik close. This happens
because there is a C such that TC and F both occur in ikj . Note that, in this

case, (i) C ∈ ϕk and (ii) there is a k ∈ {1, . . . , n} such that A → Fk. In other
words,

===

18If this were not so, the application of mT→1 or mT→2 to the members of ∆, each
time followed by Step 2, would eventually lead to a branch that contains no other T -labeled
formulas than those in τkj and this branch would not contain a FC for which TC occurs in

τkj . But then side tableau i cannot be closed at the and of the construction.
19Before any step 3 has been executed, all subbranches of ik are right branches.
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, and
∨
{Tj | j ∈ Ri} →

∧
{Fj | j ∈ Ri},

. The upshot is that the so reordered tableau construction (in which branches
close indirectly) can be turned into a subproof of a Fitch-style proof.20 The
subproof starts with introducing A∗ by RHYP. Applications of instructions are
turned into application of rules in the standard way. As for PC, one first
‘translates’ T -labeled formulas until one reaches the TC that causes the branch
to be closed; next one continues from the corresponding FC and ‘translates’ up
to FB. After this, the sunproof ends with B∗ and justified deriving A → B.

8 Algebraic Semantics

Consider an algebraic structure ⟨S,≤, ⟩, called an intensional lattice by Michael
Dunn—see [1, §28.2]. This structure has the following properties. (i) S is a set,
≤ is a partial ordering relation (a reflexive, transitive, antisymmetric relation)
over S, and is a function that maps every member of S to a member of S (if
a ∈ S, then a ∈ S). (ii) For all a, b ∈ S, a⊔ b, a⊓ b ∈ S, where a⊔ b, the join of
a and b, is the least upper bound of a and b in S with respect to ≤ and a ⊓ b,
the meet of a and b, is the greatest lower bound of a and b in S with respect to
≤.21 (iii) Join and meet distribute over each other: a⊔ (b⊓ c) = (a⊔ b)⊓ (a⊔ c)
and a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c). (iv) De Morgan properties obtain: a = a; if
a ≤ b then b ≤ a.22 (v) The structure has a truth filter: for all a, a ̸= a.23

An algebraic PCR-model is a structure ⟨S,≤, , R, v, T ⟩ such that: ⟨S,≤, ⟩
is an intensional lattice; R is a binary relation over S with the properties

R1 if a ≤ b, then Rab,
R2 if Rab, then Rba,
R3 if Rab and Rbc, then Rac,
R4 if Rac and Rbc, then R(a ⊔ b)c, and
R5 if Rab and Rac, then Ra(b ⊓ c);

v is an assignment that maps the sentential letters to S; T is a truth filter:
(i) T ⊂ S, (ii) a ∈ T iff a /∈ T , (iii) a ⊓ b ∈ T iff a, b ∈ T , and (iv) if Rab, then
a /∈ T or b ∈ T .24

An interpretation of the members of W is defined by:

(i) if A is a sentential letter, |A| = v(A)
(ii) |¬A| = |A|
(iii) |A ∨B| = |A| ⊔ |B|
(iv) |A ∧B| = |A| ⊓ |B|

and verification by an algebraic model M is defined by:

20In the reorganized construction, every execution of Step 3 corresponds to an application of
RMP, RMT, or a derivable RDIL-variant (viz. A∨B,A ⊃ C / C∨B and A∨B,B ⊃ C / A∨C.
The rest is as for PC.

21So a ≤ a⊔b and b ≤ a⊔b and, for all x ∈ S, if a ≤ x and b ≤ x then a⊔b ≤ x. Analogously
for a ⊓ b. Note that a ⊔ a = a etc.

22It follows that a ⊔ b = a ⊓ b and a ⊓ b = a ⊔ b.
23The phraseology is classical: the difference between a and a warrants that the truth filter

can pick exactly one of A and ¬A as true.
24In view of (iv), the left-right direction of (iii) is redundant. The following are derivable:

(i) a⊔ b ∈ T iff a ∈ T or b ∈ T , (ii) if Raa then a ∈ T , and (iii) if a ∈ T and a ≤ b, then b ∈ T .
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(a) Where A ∈ W, M  A iff |A| ∈ T .
(b) Where A,B ∈ W, M  A → B iff R|A||B|.
(c) M  ¬A iff M 1 A.
(d) M  A ∧B iff M  A and M  B.
(e) M  A ∨B iff M  A or M  B.

Purists will restrict (c) to the case where A /∈ W and will restrict (d) and (e)
to the case where A /∈ W or B /∈ W.

A model of Γ is a model that verifies all members of Γ. Γ � A (A is a
semantic consequence of Γ) iff all models of Γ verify A; � A (A is valid) iff every
model verifies A.

The obvious soundness proof is left to the reader. Completeness is also
easy. We start from a Γ and A for which Γ 0PCR A. We consider a sequence
L = ⟨B1, B2, . . .⟩ of all formulas of L1.25 Next we define

∆0 = CnPCR(Γ)

∆i+1 =

{
CnPCR(∆i ∪ {Bi+1}) if A /∈ CnPCR(∆i ∪ {Bi+1})
∆i otherwise

∆ = ∆0 ∪∆1 ∪ . . . .

The rest of the proof proceeds as for PC: from ∆ one defines a structure and
shows that this is a PCR-model.

One first defines relevant equivalence classes for arrow free formulas: B ∈ [A]
iff B is equivalent to A in view of the following equivalences: A ↔ A ∨ A,
A ↔ A ∧ A, (A ∨ B) ↔ (B ∨ A), (A ∧ B) ↔ (B ∧ A), ((A ∨ B) ∨ C) ↔
(A∨(B∨C)), ((A∧B)∧C) ↔ (A∧(B∧C)), ((A∨B)∧C) ↔ ((A∧C)∨(B∧C)),
((A ∧B) ∨C) ↔ ((A ∨C) ∧ (B ∨C)), ¬¬A ↔ A, ¬(A ∨B) ↔ (¬A ∧ ¬B), and
¬(A ∧ B) ↔ (¬A ∨ ¬B), and the rule if A ↔ B then (A ∧ C) ↔ (B ∧ C) and
(A ∨ C) ↔ (B ∨ C). Next one defines:

• S = {[A] | A ∈ W}

• ≤ is the transitive closure of the set of ordered pairs {(x, y) | x, y ∈
S; for some A and B, A ∧B ∈ x and A ∈ y or A ∈ x and A ∨B ∈ y}

• for each a ∈ S, a is the x ∈ S such that, for some A ∈ W, A ∈ a and
¬A ∈ x

• R = {([A], [B]) | A → B ∈ ∆}

• v(A) = [A]

• T = ∆ ∩W

and shows that ⟨S,≤, , R, v, T ⟩ is an algebraic PCR-model. The demonstra-
tion is standard and left to the reader.

25The proof becomes a trifle easier if it is required that, for all A,B ∈ W, ¬(A → B)
precedes in L every other formula that has A → B as a subformula. This guarantees that
A → B ∈ ∆ iff A → B ∈ CnPCR(Γ).
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9 Embarrassing Strength?

The reader may have noticed that the relevant implication of PCR is unusually
strong. Thus A → B ⊢PCR A → (A∧B) and A → B ⊢PCR (A∧C) → (B∧C).
The reason for this strength is not difficult to understand. Given that theorems
are seen as provable ‘from’ the empty set, we have ∅ ⊢PCR A → A and hence
A → B ⊢PCR A → A by monotonicity. Moreover A → B ⊢PCR A → B
by reflexivity. But A → B,A → A ⊢PCR A → (A ∧ B)—the corresponding
inference holds in nearly every relevant logic. So one obtains A → B ⊢PCR

A → (A ∧B) by transitivity.
We knew all along that the inference relation is not relevant. In the present

context, the absence of relevance derives from the fact that theorems are seen
as derivable from the empty set and hence, by monotonicity, as derivable from
every set. In view of this insight, that A → B ⊢PCR A → (A ∧ B) and similar
inference statements hold true is not a problem. This is especially so because
PCR is obviously meant to be at most applicable in contexts in which PC is
applicable.

Some may suspect that the non-relevant character of the inference relation
makes the implication non-relevant. I think this is not so. For one thing it is eas-
ily seen that all PCR-theorems of the form A → B are tautological entailments
and vice versa. In more technical terms,

∅ ⊢PCR A → B iff A → B is a tautological entailment.

Moreover, there is a set of statements that connect complex first-degree entail-
ments to simpler ones. Their form is: for certain A,B ∈ W, a formula of the
form A → B holds true just in case a set of simpler implicative formulas hold
true. Thus ¬(A ∧ B) → (C ∧ D) holds true just in case ¬A → C, ¬B → C,
¬A → D, and ¬B → D hold true. The interesting point is that statements of
the form

A → B iff (A1 → B1) ∧ . . . ∧ (An → Bn)

are valid in PCR iff they are valid for first-degree entailments—see [1, §19].
All this reveals that, whenever A → B is stronger than one would expect by

standard relevance lights,26 then A → B is relevantly equivalent to a conjunction
of formulas C → D and each of these formulas is an unsuspect consequence of
Γ or a theorem of PCR—all theorems of PCR are unsuspect (as theorems of
PCR). In view of the above, it readily follows that: given a set Γ of formulas
of the form A → B and where ∆ is the set of tautological entailments, Γ ⊢PCR

A → B iff A → B can be obtained from (zero or more members of) Γ ∪∆ by
(primitive and derivable) rules of the formalization of tautological entailments.
The upshot is that the oddities derive from the non-relevant inference relation
but do not locate any problems with the relevant implication. Is this situation
completely satisfactory? It seems wise to consider the question in the more
general setting of the next section.

26Not all relevantists agree about these lights, as may be seen from [6, §3.6], but the state-
ment in the text holds even true if the ‘lights’ are identified with E or R.
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10 A General Recipe and A Lesson

There is a general recipe for combining the PC-consequence relation with a rele-
vant logic L of which all PC-valid formulas are theorems. The recipe is general,
viz. it works fine even if nested relevant implications occur in L-theorems.27 Let
us denote the particular combination as PC+L.

First, there is a general recipe that proceed in terms of the semantics and
which I shall briefly outline. The semantic consequence relation for the combina-
tion of PC+L may be defined as follows: Γ �PC+L A iff, in the Routley-Meyer
semantics for L, A is verified by every model that verifies all members of Γ.
To see that this is correct, note that the set of formulas verified by a L-model
is closed under the PC-consequence relation.28 From this follows (i) that L-
models verify all PC-theorems and (ii) that the PC+L-semantic consequence
relation assigns every theorem as a consequence to every set of formulas and
assigns every formula as a consequence to every negation of a theorem.

The Fitch-style approach is at least as perspicuous. Anderson and Belnap
provided Fitch-style rules for proving theorems of relevant logics. In these, each
formula has an index set which is a (proper or improper) subset of {1, 2, 3, . . .}.
In order to provide Fitch-style rules for the consequence relation that Anderson
and Belnap have in mind—see Section 3—it is sufficient to extend the set of rules
for proving theorems with a premise rule: Prem: a formula may be introduced
with index set {0}. A Fitch-style proof in E that A1, . . . , An entail(s) B is then
defined as a proof written by application of the aforementioned rules, in which
at most A1, . . . , An are introduced by the rule Prem, and in which B occurs with
index set {0} in the main proof.29 Similarly for R and other relevant logics.

In order to obtain Fitch-style proofs for the combination of PC with a rel-
evant logic in which all PC-theorems (as well as other formulas) are theorems,
two modifications are sufficient. First, one modifies the Prem rule, introducing
premises with the empty index set. Next, one adds the material Modus Ponens
rule for formulas with empty index set: to derive B∅ from A∅ and A ⊃ B∅. A
Fitch-style proof of A1, . . . , An � B is then defined as a proof written by appli-
cation of the aforementioned rules, in which at most A1, . . . , An are introduced
by the rule Prem, and in which B occurs with index set ∅.

What this comes to is that premises and theorems of logic are put on the same
foot and that the set of premises and theorems of logic is closed under material
Modus Ponens (or Disjunctive Syllogism). Some may find it more transparent
to retain the index set {0} for premises and actually it is instructive to consider
this version of the Fitch-style proofs. Let us call it Version Two. In Version
Two, the original Prem rule is retained, but two rules are added:

To derive A{0} from A∅. (4)

To derive B{0} from A{0} and A ⊃ B{0}. (5)

A Fitch-style proof of A1, . . . , An � B is defined as a proof written by application

27In terms of the recipee, PCR may be seen as the combination of PC and first-degree
entailments.

28It holds indeed that, for every L-model, world 0 (respectively every world in Z) is consis-
tent and negation complete.

29That this is correct is completely obvious if one introduces the restriction that formu-
las with index set {0} are not reiterated within subproofs. Next one shows that no new
consequences can be derived by removing the restriction.
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of the aforementioned rules, in which at most A1, . . . , An are introduced by the
rule Prem, and in which B occurs with index set {0}. Note that the added rule
(4) literally comes to: every theorem is a consequence of every premise set.

Both proof theories are equivalent and they are sound and complete with
respect to the semantics outlined before. It is straightforward that, where L is
a relevant logic of which all PC-theorems are theorems, PC+L is the weakest
logic that fulfils the following conditions: (i) the PC+L-consequence relation is
reflexive, transitive, and monotonic, (ii) if Γ ⊢PC A, then Γ ⊢PC+L A, (iii) if
A1, . . . , An L-entail B—see Section 3—then A1, . . . , An ⊢PC+L B, and (iv) if A
is a theorem of L, then ∅ ⊢PC+L A.

It is clear at once that the combination is stronger than one might have
expected. The reason for this is that the consequence relation is not relevant.
The unexpected strength of PCR is shared by every combined logic PC+L in
which the relevant logic L has all PC-valid formulas as theorems; for example
one will obtain A → B ⊢PC+L A → (A ∧ B) and A → B ⊢PC+L (A ∧ C) →
(B ∧ C). These hold for exactly the same reason as the corresponding PCR
statements and this reason was explained in the previous section. One of the
consequences is this: PC+L is a conservative extension of PC; as the PC+L-
consequence relation contains the PC-consequence relation, it cannot possibly
be a conservative extension of L; however, even for premises and conclusions
that belong to W→ −W, the PC+L-consequence relation is stronger than the
L-consequence relation.

11 Peter’s Complaint

A correspondence on the consequence relations was going on between Peter
Verdée and me while I was writing up the present paper—see also the acknowl-
edgment footnote. This led to several discussions. During one of them, Peter
argued that A → B ⊢ A → (A ∧ B) and A → B ⊢ (A ∧ C) → (B ∧ C) are
unacceptable because they don’t hold in the relevant logic.

It is possible to devise combinations that agree with Peter’s intuitions. As
Γ ⊢PC p ∨ ¬p, it is unavoidable that the consequence relation of the combined
logic assigns p ∨ ¬p as a consequence to every premise set. However, nothing
requires that the combined logic assign implicative L-theorems as consequences
to every premise set. The relevant logic L does not require it because its con-
sequence relation does assign them so and PC does not require it—the arrow
does not even belong to the language of PC.

Let L be a relevant logic and let all PC-theorems be L-theorems. I now
introduce a combination PC⊕L. It validates all PC-inferences as well as all
L-inferences but does not assign specific theorems of the relevant logic L as
consequences to all premise sets—so A → B 0PC⊕L A → (A ∧ B) and A →
B 0PC⊕L (A∧C) → (B∧C). The logic PC⊕L may be defined from the Version
Two Fitch-style formulation of PC+L by replacing rule (4) by the rule EM: “to
introduce A ∨ ¬A{0}” (for any A).

Every PC-theorem A is a PC⊕L-consequence of every premise set. If all
PC-theorems are theorems of the relevant logic L, this is so because every PC-
theorem is L-equivalent to a conjunction of one or more formulas of the form
C ∨ ¬C ∨ D. In other words, for every PC-theorem A, there are formulas
B1, . . . , Bn such that ((B1 ∨ ¬B1) ∧ . . . ∧ (Bn ∨ ¬Bn)) → A is a theorem of
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L. So if A is a PC-theorem, a proof of Γ ⊢PC⊕L A is obviously obtained as
follows: (i) introduce each of (B1 ∨ ¬B1), . . . , (Bn ∨ ¬Bn) with index set {0}
by EM, (ii) obtain their conjunction, (iii) prove the L-theorem and (iv) apply
→E (Modus Ponens for the arrow) to obtain A with index set {0}.

It is obvious from the Fitch-Style system that not all specific theorems of
the relevant logic L (those that are not also theorems of PC) are PC⊕L-
consequences of every premise set. Indeed, there is no way in which all specific
theorems of L can obtain index set {0}. This is the reason why, for example,
q 0PC⊕L p → p obtains in general.

Of course, one would like a more embracing claim, but it is difficult to phrase
one for all relevant logics. So let me consider some logics separately. The most
straightforward claim is possible about the relevant logic E: no formula A →
(B → C) is a theorem of E if A is a ‘factual formula’—a formula that contains
no arrow (and no necessity, which contextually abbreviates an arrow anyway).
So if no member of Γ contains an arrow, then Γ∪{B∨¬B | B ∈ W→} 0E A → A
and actually Γ ∪ {B ∨ ¬B | B ∈ W→} 0E A → C for all A and C.30 It follows
that, if Γ ⊆ W→ −W, then Γ ⊢PC⊕E A iff Γ ⊢E A.

The situation is more complex for R, which has theorems like p → ((p →
q) → q). So it is unavoidable that p ⊢PC⊕R (p → q) → q and hence also that
Γ ⊢PC⊕R ((p ∨ ¬p) → q) → q for all Γ (including ∅).31 So ((p ∨ ¬p) → q) → q
and many other R-theorems are PC⊕R-consequences of every premise set. The
situation is even ‘worse’ in RM. This logic has A → (A → A) as a theorem and
so Γ ⊢PC⊕RM (p∨¬p) → (p∨¬p) holds for every Γ. Moreover, if Γ ⊢PC⊕RM A,
then unavoidably also Γ ⊢PC⊕RM A → A.

How satisfactory is the proposed approach? Let me start with the bad news.
We considered p → q ⊢PC+R p → p as objectionable because p → q and p → p
strictly belong to the language of R—they are not formulas of the language
of PC—and p → p is not a R-consequence of p → q. We tried to repair
this by forging a logic PC⊕R, in which R-theorems are means to pass from
premises to conclusions but are not consequences of every premise set (but in
which PC-theorems are still consequences of every premise set). However, the
proposed solution does not and cannot answer the objection completely. Indeed,
some specific R-theorems such as ((p ∨ ¬p) → q) → q are R-consequences of
PC-theorems. So they are PC⊕R-consequences of every premise set, including
subsets of W→−W. Needless to say, ((p∨¬p) → q) → q is not a R-consequence
of ∅, of {r → s}, and so on. Note also that more unwanted properties follow, for
example r → s ⊢PC⊕R (r ∧ ((p ∨ ¬p) → q)) → (s ∧ q) and also r → s, p ⊢PC⊕R

(r ∧ (p → q)) → (s ∧ q). And things are worse for the combination involving
RM. We have r → s ⊢PC⊕RM (r ∧ (p ∨ ¬p)) → (s ∧ (p ∨ ¬p)) as well as
r → s, p ⊢PC⊕RM (r ∧ p) → (s ∧ p).32

As suggested before, there is also good news. According to the relevance
tradition, theorems of logic are not consequences of the empty set. While the
PC-consequence relation requires that PC-theorems are consequences of every

30The formulation is correct: the claim holds true even if B contains arrows.
31Indeed, ∅ ⊢PC⊕R p ∨ ¬p and p ∨ ¬p ⊢PC⊕R ((p ∨ ¬p) → q) → q. So the transitivity

of ⊢PC⊕R gives us ∅ ⊢PC⊕R ((p ∨ ¬p) → q) → q and the monotonicity of ⊢PC⊕R gives us
Γ ⊢PC⊕R ((p ∨ ¬p) → q) → q.

32For relevant logics in which some ‘factual’ formulas entail relevant implications, the bad
news is worsened by the fact that the premise set is closed under the non-relevant PC-
consequence relation. Thus p∨ q,¬p ⊢PC⊕R q and hence also p∨ q,¬p ⊢PC⊕R (q → r) → r.
And so on.
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premise set, including the empty set, PC⊕L enables one, in contradistinction
to PC+L, to avoid that all specific theorems of the relevant logic L are con-
sequences of the empty set. So PC⊕L is half-hearted but at least it is so in a
systematic way, siding with the classicists in that it extends the PC-consequence
relation, but siding with the relevantists in connection with the extension. How-
ever half-hearted, the systematicity of the approach has an immediate technical
pay-off. Indeed, p ⊢PC⊕L q ∨ ¬q but p 0PC⊕L q → q. Moreover, it is not
difficult to prove that CnPC⊕L(Γ) is the smallest set Σ such that (i) Γ ∈ Σ,
(ii) CnPC(∅) ⊆ Σ, (iii) if A,A ⊃ B ∈ Σ, then B ∈ Σ, and (iv) if A ∈ Σ and
A → B is a theorem of L, then B ∈ Σ. From this, it is easily proved that
PC⊕L is the weakest logic that fulfils the following conditions: (i) the PC⊕L-
consequence relation is reflexive, transitive, and monotonic, (ii) if Γ ⊢PC A,
then Γ ⊢PC⊕L A, and (iii) if A1, . . . , An L-entail B, then A1, . . . , An ⊢PC⊕L B.
So there is a natural sense in which PC⊕L is the weakest logic that contains
both the classical PC-consequence relation and the relevant consequence rela-
tion of L. Note that ∅ ⊢ ((p ∨ ¬p) → q) → q is unavoidable in any logic that
contains the PC-consequence relation as well as the R-consequence relation.
Indeed, ∅ ⊢PC p ∨ ¬p holds and (p ∨ ¬p) → (((p ∨ ¬p) → q) → q) is a theorem
of R.

To conclude this section, a bit of extremely good news. The ‘unwanted
properties’ of PC⊕R concern nested implications.33 So if we can formulate a
logic, call it PCR, that relates to PCR in the same way as PC⊕R relates to
PC+R, PCR would not have those ‘unwanted properties’. The simplest Fitch-
style proofs I found are longwinded (if natural) and the matter is presumably
not worth the reader’s attention. However, a very simple algebraic semantics
is available: replace R1 by the following clause: “If a ≤ b and Rbc, or Rab
and b ≤ c, then Rac.” This reveals the important difference between PCR
and PCR. PCR conflates logical implications and implications derived from
(in the relevant sense) the premises while PCR keeps them apart, but leaves
room for the logical strengthening of the implicans and for the weakening of the
implicatum. Do not underestimate the impact of the change. For example, R4
remains unchanged but R(a ⊔ b)c does not follow from Rac and b ≤ c. For the
inference relation, the effect is that A → B ⊢PCR (A ∧C) → (B ∨D), but that
A → B 0PCR (A ∧ C) → (B ∧ C).

This finishes my comments on Peter’s complaint. Meanwhile, however, I
understand that Peter is following an approach for combiningPC with a relevant
implication and that this approach is very different from the one I proposed in
this section.

12 Concluding Remarks

The logic PCR has very simple Fitch-style proofs. Its semantic characteriza-
tions are a trifle more complicated. The tableau method is an extremely easy
and perspicuous decision method. A conceptual matter is that the arrow of
PCR is obviously relevant, notwithstanding the fact that the inference relation
is not. In view of all, it is hard to see a reason for not making students familiar
with the properties of this relevant implication. The proofs will give them a feel
for the distinction between material implication and relevant implication. As

33The situation is different for PC⊕RM.
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soon as relevant implication is available, negations of implicative sentences can
be expressed without paradox.

The logic PCR is even more interesting than PCR because it gives the
specific theorems of the relevant logic a different status than the theorems of
PC. The specific relevant theorems are not seen as universal truths, but as
means to derive the consequent from the antecedent and to derive the negation
of the antecedent from the negation of the consequent. The price to pay is a
more sophisticated proof theory and a more sophisticated semantics.

The two preceding sections were intended to offer general insights. In a sense,
the results on PCR and PCR are just specific applications of those insights
(to the case where PC is extended with the logic of tautological entailments).
The difference between the two approaches turns on the status of theorems in
relevant logics as opposed to classical logic, here PC. Note that there is no way
to adjust the status of PC-theorems without adjusting PC-derivability—every
set of rules that is sufficient to justify Γ ⊢PC A whenever A and all members
of Γ are PC-contingent, also justifies p ⊢PC q ∨ ¬q.34 So, for most relevant
implications, combining PC with the relevant implication will not lead to a
conservative extension of the relevant logic for any interesting fragment of the
language.

For all the positive results presented in this paper, there is also a pessimistic
message. Many consider relevant logics as too drastically remote from classi-
cal logic. At the same time, the properties of relevant implications seem so
attractive that few sensible people would like to loose operators having those
properties in exchange for retaining classical logics, in general or even for some
specific contexts only. This naturally leads to the aim of combining classical
logic with relevant implications. However, as the present paper shows, there
are reasons for pessimism with respect to precisely this aim. So we need a new
approach. The approach should retain PC, or rather CL, at least for specific
contexts. At the same time the approach should allow one to retain the nice
properties of relevant implications while avoiding the clutter arising from the
approaches presented here. As we have seen, the outlook of the Anderson-and-
Belnap relevance logics differs heavily from that of classical logic. The outlook
required by the suggested new approach will presumably need to be very dif-
ferent from both classical logic and today’s relevance logics. So be it. We shall
presumably learn a lot from it. All this, however, does not diminish the present
pedagogical and practical value of a system like PCR.
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