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1 Introduction

In this paper I want to consider the so-called reduction of thermodynamics to
statistical mechanics from both historical and relatively contemporary points
of view. As is well known, most philosophers not working in the foundations
of statistical physics still take this reduction to be a paradigm instance of
that type of intertheoretic relation. However, numerous careful investigations
by many philosophers of physics and physicists with philosophical tendencies
show this view is by and large mistaken. It is almost surely the case that
thermodynamics does not reduce to statistical mechanics according to the re-
ceived view of the nature of reduction in the philosophical literature. What
is interesting is that, while not framing the issue in these terms, J. Willard
Gibbs can also be seen as being somewhat sceptical about the possibility of a
philosophical reduction of thermodynamics to statistical mechanics. Gibbs’
scepticism is, of course well-known. Nevertheless, I think his remarks bear
further consideration given certain advances in understanding the founda-
tions of statistical physics.

I will first briefly run over some philosophical ground, outlining the re-
ceived approach to theory reduction as well as what I take to be a more
promising conception of reduction that parallels, to some extent the way
physicists typically speak of theory reduction. Following this I will discuss
Gibbs’ famous caution in connecting thermodynamical concepts with those
from statistical mechanics. This is presented in chapter XIV, “Discussion of
Thermodynamic Analogies,” of his book Elementary Principles in Statisti-
cal Mechanics. We will see that there are several reasons Gibbs held back
from identifying thermodynamic quantities such as temperature and entropy
with specific statistical mechanical quantities. I will then present a sketch
of a program for reduction that involves deep connections between results
in probability theory on limit theorems and the so-called real space renor-
malization techniques that play such an essential role in understanding the
universality of critical phenomena. The framework provides a way of unify-
ing two fundamental problems—the so-called equivalence of ensembles and
the existence of critical phases.
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2 Philosophical Reduction

Most contemporary views about reduction owe much to the seminal work of
Ernest Nagel. In The Structure of Science Nagel asserts that “[r]eduction
. . . is the explanation of a theory or a set of experimental laws established in
one area of inquiry, by a theory usually though not invariably formulated for
some other domain.”[10, p. 338] Standard views about explanation hold that
to explain some phenomenon requires the derivation of a statement charac-
terizing that phenomenon from laws of some true theory. Thus, reduction,
very roughly, involves the derivation of the laws of the “reduced” theory from
the laws of the “reducing” theory. In the case of thermodynamics we have
a reduction to statistical mechanics because the laws of thermodynamics are
(supposedly) derivable from those of statistical mechanics.

Of course, Nagel himself realized that to actually carry out such deriva-
tions requires nontrivial work. Here is one major problem: In most cases
the laws of the reduced theory (thermodynamics) contain terms that do not
appear in the laws of the reducing theory (statistical mechanics). For ex-
ample, while thermodynamics talks of temperature and entropy, statistical
mechanics does not. Some kind of connection between the predicates ap-
pearing in the reduced theory and those in the reducing theory (provided by
so-called “bridge laws”) is required so that a derivation of the laws of the
one from the laws of the other will be possible. These bridge principles are
essential, because explanation and reduction are conceived to be arguments
in a formal language. They are linguistic relations that obtain between the
theories understood as sets of sentences in that formal language.

As I mentioned, it is commonplace to read that bridge laws or connections
can be found in the thermodynamics/statistical mechanics case. For instance,
one often sees that “temperature” in thermodynamics is to be identified with
“mean molecular kinetic energy.” This is taken to be a paradigm example of
the sort of bridge law Nagel demands for reduction.

There are many reasons to be sceptical that a Nagelian or neoNagelian
reduction of thermodynamics to statistical mechanics is possible. One worry
concerns the status of the bridge laws. In one sense they seem to be state-
ments of definition. But surely they cannot be logical connections—statements
true solely in virtue of the meanings of the terms and, perhaps, knowable
merely by reflection upon those meanings. Another possibility is that the
bridge principles are stipulated conventions or coordinative definitions. A
third possibility is that they express factual claims that essentially have the
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status of physical hypotheses. [10, p. 354]
In the context of the reduction of thermodynamics these worries become

acute. The “temperature equals mean molecular kinetic energy” bridge law
identifies a fundamentally nonstatistical quantity with a fundamentally sta-
tistical quantity. How is this supposed to work? Of course, this problem will
arise as well for other strictly thermodynamic predicates such as entropy.

Actually, the situation is even more dire. Even terms such as “pressure”
require appropriate bridge laws. Surely it is correct to associate in some way
the thermodynamic pressure with some function of the number of collisions
per unit area upon the walls of the container. But which function? As Sklar
points out,

[t]here is, for a particular sample of gas at equilibrium, the ac-
tual momentum transferred by the molecules . . . , and there is
its average value per unit area per unit . . . time. On the other
hand, there is the quantity calculated for an ensemble of similarly
constituted systems . . . , or, alternatively by looking for the most
probable value of the relevant quantity in the ensemble. Whereas
the former sort of pressure, the feature of the individual system,
will be expected to fluctuate, the latter kinds of ensemble quan-
tities . . . , will, of course, not. Here fluctuations will show up
as assimilated into the ensemble description by the calculation
of averages or most probable values for quantities, but the aver-
ages themselves are not the sort of things to fluctuate. [14, pp.
349–350]

From the point of view of these concerns about the philosophical under-
standing of theory reduction, it is natural to interpret Gibbs’ famous chapter
XIV, “Discussion of Thermodynamic Analogies” to be an investigation into
the nature and status of the bridge laws required for the reduction of ther-
modynamics to statistical mechanics. Sklar, following the above discussion
of the difficulties encountered in trying to identify thermodynamic concepts
with statistical mechanical concepts, says the following:

It should not surprise us that Gibbs, when he came to associate
ensemble quantities with thermodynamic quantities in Chapter
XIV of his book, spoke of the “thermodynamic analogies” when
he outlined how thermodynamic functional interrelations among
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quantities were reflected in structurally similar functional rela-
tions among ensemble quantities. He carefully avoided making
any direct claim to have found what the thermodynamic quanti-
ties “were” at the molecular dynamical level. [14, p. 350]

Gibbs was surely cautious and he did care about the connections be-
tween thermodynamics and statistical mechanics. But I think that this may
not be the most fruitful way to think about his caution or his approach to
intertheoretic relations.

3 Gibbs’ Caution

In the Preface to Elementary Principles in Statistical Mechanics Gibbs as-
serts that the laws of statistical mechanics for conservative systems of finite
degrees of freedom are exact. [6, pp. vi–vii] Further,

[t]his does not make them more difficult to establish than the ap-
proximate laws for systems of a great many degrees of freedom,
or for limited classes of such systems. The reverse is rather the
case, for our attention is not diverted from what is essential by
the peculiarities of the system considered, and we are not obliged
to satisfy ourselves that the effect of the quantities and circum-
stances neglected will be negligible in the result. [6, p. vii]

Forty odd years later, Khinchin, in the context of discussing Gibbs’ prior-
ity in the “systematic exposition of the foundations of statistical mechanics,”
notes that

[I]t was precisely the necessity of a statistical foundation for
the general laws of thermodynamics that produced trends which
found their expression in the construction of statistical mechan-
ics. To avoid making any special hypotheses about the nature
of the particles it became necessary in establishing a statistical
foundation to develop laws which had to be valid no matter what
was the nature of those particles (within quite wide limitations).
[9, p. 3]

I think that Gibbs was the one of the first to appreciate the idea that
sometimes, in the investigation and understanding of general principles or
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laws, too much attention to the details can get in the way.1 Comparatively
speaking, we are able to easily formulate the laws of statistical mechanics
because our “attention is not diverted from what is essential.”

Gibbs discusses a number of reasons why it is important to avoid making
assumptions or hypotheses about the nature of the particles or systems under
investigation. One of these reasons might be considered epistemic in nature,
another might be taken to be “pragmatic,” and a third is of fundamental
theoretical significance. Let me discuss these in turn.

In the preface to Elementary Principles Gibbs discusses the relationships
between empirical thermodynamics, rational thermodynamics and statistical
mechanics. He says

[t]he laws of thermodynamics, as empirically determined, express
the approximate and probable behavior of systems of a great num-
ber of particles, or, more precisely, they express the laws of me-
chanics for such systems as they appear to beings who have not
the fineness of perception to enable them to appreciate quantities
of the order of magnitude of those which relate to single particles
. . . . [6, p. vi]

Later on in the chapter on thermodynamic analogies he asserts that “all
that is really necessary to establish the science of thermodynamics on an
a priori basis” is to show by “a priori reasoning that for such systems as
the material bodies which nature presents to us, [the mechanical definitions
of temperature and entropy] hold with such approximation that they are
sensibly true for human faculties of observation.” [6, p. 166]

The point here is that it is possible to establish a connection between
thermodynamic principles and mechanical principles that is sufficient to sat-
isfy us, given our limited observational capabilities, without having to make
detailed hypotheses about the nature of the system being investigated. Un-
fortunately, as soon as we realize that all we are establishing is the connection
relative to some degree of approximation, we will feel unsatisfied:

Yet we will naturally desire to find the exact expression of those
principles of which the laws of thermodynamics are the approxi-
mate expressions. A very little study of the statistical properties
of conservative systems of a finite number of degrees of freedom

1This is, in fact, one of the points Khinchin is making.
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is sufficient to make it appear, more or less distinctly, that the
general laws of thermodynamics are the limit toward which the
exact laws of such systems approximate, when their number of
degrees of freedom is indefinitely increased. [6, p. 166]

Gibbs’ recognition of this limiting behavior represents the third, theoretically
fundamental, reason for eschewing detailed hypothesizing about the nature
of the systems under investigation. Before turning to a discussion of this, let
me briefly describe what I have called the pragmatic reasons.

Gibbs was working at a time in which physics was beginning a period
of what Kuhn called “extraordinary” science. The classical paradigm was
beginning to succumb to a number of anomalies whose ultimate resolution
required the quantum theory. Gibbs was well aware of these anomalies and
they provided pragmatic reasons for him to be sceptical of detailed hypothe-
ses about the nature of the systems. For example, Gibbs refers to the problem
of a gas composed of diatomic molecules for which according to the equipar-
tition theorem there should be six degrees of freedom sharing the energy,
whereas experiments on the specific heat of such a gas indicate that only five
degrees of freedom apparently share in the energy. The other example he
mentions in several places concerns the phenomenon of radiant heat. Here
the problem is that the assumption that we are dealing with system of finite
degrees of freedom, does not appear to be adequate for the explanation “of
the properties of bodies.” [6, p. 167]

These theoretical and experimental anomalies clearly contributed to Gibbs’
inclination not to formulate specific hypotheses about the nature of various
systems. Surely, they were significant factors relating to his caution toward
providing “true” as opposed to merely analogical connections between ther-
modynamic concepts and statistical mechanical concepts.

Nevertheless, as I noted, there is a more fundamental reason to eschew the
making of specific hypotheses. Paradoxically, it is also a reason, at least in
retrospect, for thinking that his caution and repeated disclaimers ultimately
were not completely warranted.

As I noted, Gibbs was aware that the approximate a priori justification
of the thermodynamic laws—the one that depends upon our inability to
appreciate quantities on the order of magnitude of single particles—is not
entirely satisfactory. One quickly and naturally wants more. We desire to find
the “exact expression of those principles of which the laws of thermodynamics
are the approximate expression.” [6, p. 166] To some extent one can find such
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exact expressions by studying statistical mechanical principles in the limit of
increasing numbers of degrees of freedom. This limit is now often referred to
as the “thermodynamic limit.”

Gibbs’ take on the situation is nicely summarized by the following pas-
sage:

But although these difficulties [the anomalies just discussed] seem
to prevent, in the present state of science, any satisfactory expla-
nation of the phenomena of thermodynamics as presented to us
in nature, the ideal case of system of a finite number of degrees
of freedom remains as a subject which is certainly not devoid of
a theoretical interest, and which may serve to point the way to
the solution of the far more difficult problems presented to us
by nature. And if the study of the statistical properties of such
systems give us an exact expression of laws which in the limiting
case take the form of the received laws of thermodynamics, its
interest is so much the greater. [6, p. 167]2

4 Limiting Reductions/Limiting Relations Be-

tween Theories

So Gibbs realized that the thermodynamic limit will play a crucial role in
establishing a connection between thermodynamics and statistical mechan-
ics. The idea here is that the limit of statistical mechanics, as the number
of degrees of freedom goes to infinity, should yield the continuum thermo-
dynamic theory. Physicists often express this connection as an instance of
reduction, though not in the same way as Nagel and his followers. On the
physicists’ view statistical mechanics reduces to thermodynamics (in the ap-
propriate limit). Schematically we can represent this conception of reduction
as follows:

lim
ε→0

Tf = Tc. (1)

2From Gibbs’ point of view exact expressions are those statistical mechanical expres-
sions involving the actual finite sums corresponding to the actual finite number of particles
in the system under investigation. From a more contemporary point of view, the notion of
an “exact” expression has a different meaning: In that context one obtains exact or precise
results only by taking the thermodynamic limit where our inability to discern the precise
number of particles becomes irrelevant, and where sharp, as opposed to fluctuating, values
emerge.
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In the present case we can (somewhat sloppily) let ε = 1/N where N is the
number of particles, and take Tf to be statistical mechanics and Tc to be
thermodynamics.

Philosophers, as we have seen, typically talk of reduction going the other
way—that is, thermodynamics reduces to statistical mechanics via deductive
derivation of the laws of the former from those of the latter. On my view,
these two conceptions of reduction are related to one another. In fact, I
believe that those cases where a physicists’ limiting reduction holds—that is,
where equality obtains in schema (1)—are cases for which the philosophers’
conception of derivational reduction will likely hold as well. This is because
we can take the limiting relations as providing us with something like the
bridge laws appropriate for Nagel-like reduction.3

But limiting reductions in which the equality of schema (1) hold are, in
fact, rare. Schema (1) will fail when the limiting relation is singular. That is
to say, that the limiting behavior as ε→ 0 is qualitatively different than the
behavior at the limit when ε = 0. Singular limits do not mean that there are
no interesting connections between the theories. Usually, just the opposite.
But in such cases I think it is best to give up talk of “reduction” altogether
and to speak instead of “intertheoretic relations.”

Now I do not believe that the historical evidence is sufficient to enable
us to decide whether Gibbs held a philosophical conception of reduction as
deductive derivation or whether he opted for the physicists’ limiting sense of
reduction. I doubt that he conceptualized the issues in this way, and there are
places where, with hindsight, he seems to be talking of each. Nevertheless,
I would like to investigate the fruitfulness of the approach to intertheoretic
relations that focuses on the importance of limits and asymptotic connections
between theories.

I will consider two problem or issues, one of which was explicitly men-
tioned by Gibbs and is now known as the problem of the equivalence of
ensembles. The second, while nowhere mentioned in Elementary Principles,
is important and Gibbs was surely aware of it. This is the issue of the exis-
tence and explanation of critical phenomena and phase transitions. In fact,
I want to argue that the two problems are intimately related to one another.
They can both be treated using a similar strategy based upon some deep
limit theorems from probability theory. Furthermore, I hope to show that

3However, these will typically be mathematical relations and not universal bicondition-
als of the sort Nagel and others typically talk about.
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the fact that these two problems are related is relevant to the possibility
of realizing some kind of reductive relation between thermodynamics and
statistical mechanics after all. More cautiously, perhaps, I intend to show
that it is possible to assert something stronger than a mere Gibbsian analogy
between certain concepts in the two theories.

5 The Equivalence of Ensembles

As is well known, Gibbs’ canonical ensemble is appropriate for representing
equilibrium systems that can be considered to be in thermal contact with a
large heat bath at a fixed temperature. Here the idea is that the each member
of this ensemble remains at constant energy but that the members take on
all possible values for energy. The demand that this ensemble represents
statistical equilibrium is the demand that the probability density ρ(q, p) be
invariant over a region in phase space under its dynamical evolution. Any
function of phase that is constant along a phase space trajectory (hence
any function of the energy) satisfies this demand, but Gibbs argues that
one such function, in particular, has special features worthy of representing
thermodynamic equilibrium:

ρ = e
ψ−ε
Θ . (2)

Here ε is the energy of a system and ψ and Θ are constants. Gibbs argues
that one should take the negative of the “index of probability”:

− log ρ = −ψ − ε

Θ
(3)

to be analogous to the thermodynamic entropy and the modulus Θ to be
analogous to the temperature. Furthermore, Gibbs argued that the devia-
tions in energy from the mean value for energy in the ensemble should be
small. In fact, he claims that those deviations should be “of the same order of
magnitude as the reciprocal of the number of degrees of freedom, and there-
fore to human observation the individual values are indistinguishable from
the average values when the number of degrees of freedom is very great.” [6,
p. 168] In such a situation the deviations in the index of probability from its
mean will also be negligible in this operational sense.

Gibbs also discusses the microcanonical ensemble4 which is appropriate
for representing equilibrium systems that can be considered to be thermally

4I ignore here the third important ensemble of Gibbs: The grand canonical ensemble
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isolated from the rest of the world. Here we have a collection of systems that
all have the same energy. In such an ensemble the quantity

log V (4)

is the analog of the thermodynamic entropy where V is the “size” or “volume”
(in the natural measure) of the phase space region to which the possible
microstates of the systems are confined by macroscopic constraints. The
analog of temperature in the microcanonical ensemble is the quantity

dε

d log V
. (5)

Gibbs says

[w]e have thus precisely defined quantities, and rigorously demon-
strated propositions, which hold for any number of degrees of free-
dom, and which, when the number of degrees of freedom (n) is
enormously great, would appear to human faculties as the quan-
tities and propositions of empirical thermodynamics. [6, p. 169]

Nevertheless, it is well known that different quantities may approach the
same form in some appropriate limit, say, n→∞.

There may be therefore, and there are, other quantities [other
than the modulus, Θ, and the index of probability, ψ−ε

Θ
,] which

may be thought to have some claim to be regarded as temperature
and entropy with respect to systems of a finite number of degrees
of freedom. [6, p. 169]

Of course, one such set of quantities are those derived from the microcanon-
ical distribution: Equations (5) and (4), respectively.

Gibbs takes the fact that different statistical physical quantities appar-
ently have equal claim to be the analogs of thermodynamic temperature and
entropy to be problematic. It is yet another reason to resist claims to have
found the (statistical) mechanical definition of those quantities. From a more
modern perspective, however—one which recognizes explicitly the essential
role played by the thermodynamic limit—this can very well be considered

which is appropriate for the description of systems that can exchange particles with the
environment.
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a virtue. The idea here is that the equivalence of ensembles (to the extent
that it can actually be demonstrated) is evidence of a kind of universality.
The thermodynamic phenomenology obtains regardless of the exact statisti-
cal mechanical details.

One can see that this is to be expected by considering briefly Khinchin’s
program for statistical mechanics where the central limit theorem of prob-
ability plays a crucial role. Khinchin focuses on specific kinds of functions
defined on phase space—so-called “sum functions”—having the form

S(n) =
n∑
i=1

Si.

He employs the Central Limit theorem to show that the dispersions of the
suitably normalized sum functions will, in the thermodynamic limit (n→∞),
be distributed according to the normal or Gaussian distribution. Thus we
should expect that phase functions of the right form—those that presumably
represent thermodynamic quantities—will be peaked around their mean val-
ues with root mean square deviations proportional to n1/2.

But the real question is why the Gaussian distribution should play such
a fundamental role. Why should it emerge as the limiting distribution for
statistical systems in equilibrium virtually regardless of the nature of the sys-
tems’ molecular details and regardless of whether it is best represented using
the canonical or the microcanonical distributions of Gibbs? To answer this, I
will sketch an argument from probability theory that employs the renormal-
ization scheme developed by Kadanoff, Fisher, and Wilson. The connections
between renormalization in statistical mechanics and probability theory have
been stressed in a series of articles in the 1970’s by Sinai, Cassandro, and,
most forcefully, by Jona-Lasinio [2, 13, 11, 3, 8]. My presentation here follows
Sinai’s argument in [12, Lecture 15].

Suppose we have a sequence of random variables Si such as spins on a
one dimensional lattice. Suppose further that the Si’s have finite second
moments and are independent and identically distributed with the mean
values, E(Si) = 0.5 Consider a subsequence of the integers, np = 2p, and
define the random variable, Sp—a sum function of the spins—as follows:

Sp =
1

2p/2

2p∑
i=1

Si. (6)

5E(·) represents the expectation. The assumption of independence will be relaxed later.
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It follows that
Sp+1 = 1/

√
2(S

′

p + S
′′

p ) (7)

where

S
′

p =
1

2p/2

2p∑
i=1

Si and S
′′

p =
1

2p/2

2p+1∑
i=2p+1

Si.

For example, let p = 2 then

S
′

2 =
1

2

4∑
i=1

Si =
1

2
(S1 + S2 + S3 + S4) (8)

S
′′

2 =
1

2

8∑
i=5

Si =
1

2
(S5 + S6 + S7 + S8). (9)

From (6) we have

S3 =
1

23/2
(S1 + · · ·+ S8).

But we see from (8) that (S1 + S2 + S3 + S4) = 2S
′
2 and from (9) that

(S5 + S6 + S7 + S8) = 2S
′′
2 . Hence,

Sp+1 = S3 =
1√
2

(
S
′

2 + S
′′

2

)
.

So, S
′
p and S

′′
p are independent and identically distributed random vari-

ables. The probability distribution for the sum of two independent random
variables ξ1, ξ2, (that is, for the random variable ξ = ξ1 + ξ2) is given by
the convolution of their individual distribution functions. Thus if F1 is the
distribution function for ξ1 and F2 is the distribution function for ξ2, then

F1,2(x) =

∫ ∞

−∞
F1(x− u)dF2(u) (10)

is the distribution function for the random variable ξ. Now, the random
variables S

′
p and S

′′
p are not only independent but they are also identically

distributed. Let Fp be the distribution function for Sp—equation (6) which
is this common distribution function. Then from (10) we have

Fp+1 =

∫ ∞

−∞
Fp(
√

2x− u)dFp(u), (11)
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which is the distribution function for the random variable Sp+1 (recall (7)).
It follows that for any p, the distribution function Fp for the variable Sp can
be obtained by iterating this nonlinear convolution operation starting from
the distribution function F0 for S0—the random variable for an individual
spin. Thus, let

TF =

∫ ∞

−∞
F (
√

2x− u)dF (u) (12)

for any distribution function F then Fp+1 = TFp and Fp = T pF0. The
operator T is the analog, for the current case, of the renormalization group
operator.

It can be shown that the Gaussian distribution,

G(x) =
1√
2π

∫ x

−∞
e−

u2

2 du

is a fixed point of the transformation T . In other words, TG = G. The
emergence and the ubiquity of the Gaussian distribution is related to the
stability of this fixed point in the space of distributions and that stability
can be investigated by examining the stability of the linearization, L, of the
nonlinear operator T in the neighborhood of the fixed point G.

Sinai shows that the linear operator L at the point G is given by

Lh =

√
2√
π

∫ ∞

−∞
h

(
u+

x√
2

)
e−

u2

2 du.

One then determines the spectrum and eigenfunctions of L. It turns out that
the eigenfunctions are Hermite polynomials h = Pk(x) with eigenvalues

uk = 21− k
2

for k = 0, 1, 2, . . .. It follows that u0, u1 > 1, u2 = 1, and for all k > 2, uk < 1.
Thus, the “directions” P0 and P1 are unstable, P2 is marginal and all other
directions are stable. This analysis tells us that the fixed point G is stable
for linear approximation with respect to perturbations that lie in the class
of distribution functions F with zero expectation and finite variance.[12, p.
132] And so, a large class of distribution functions will behave just like the
Gaussian in the limit np → ∞. This class of distributions, in the jargon of
renormalization group theory, is a “universality class.”

The upshot of this analysis for the problem of the equivalence of ensembles
is that we must expect those finite systems distributed according to the
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microcanonical distribution, and those distributed according to the canonical
distribution, to behave in the same way as the number of their components
gets large. In fact, we can use the Gaussian distribution to calculate the
dispersions of various quantities from their means for large finite systems of
either type. A further consequence of this form of argument is that in order
to solve certain problems regarding universal behavior, one need only work
with the most convenient “system” in the relevant universality class. Nigel
Goldenfeld calls such a system a “minimal model” and asserts that it is a
model that “most economically caricatures the essential physics.” [7, p. 33]
In the current context, Gibbs’ insistence that for most problems it is easier to
calculate using the canonical distribution, is an indication that the canonical
distribution may be considered to be a minimal model.6

While Gibbs took the existence of the different quantities associated with
the different ensembles—each apparently having equal claim to be analogs of
thermodynamic temperature and entropy—to be a problem, from the current
perspective, we should take their existence to be a virtue: In the thermody-
namic limit, we can demonstrate the equivalence of the ensembles, and we
can show that calculations with either ensemble will yield the thermodynamic
phenomenology that we are after. On this way of thinking, the question of
what quantity is to be offered as the definition of thermodynamic entropy,
say, is not really well-formed. In the context of intertheoretic relations, the
study of the thermodynamic limit renders such a question moot.

I will say more about this shortly. But first we must address some obvi-
ous questions and objections to the argument presented above. On the one
hand, Sinai’s demonstration of the emergence and ubiquity of the Gaussian
demonstration assumes that the random variables are independent. To what
extent is this assumption legitimate for real thermodynamic systems? On
the other hand, it also assumes that we are working with a particular subse-
quence of the integers, np = 2p. What is the role of this assumption? Finally,
how does this entire argument, one which is purely mathematical relate to
real systems?

Let’s take up the second question first. It is absolutely crucial. The
particular subsequence np = 2p was chosen so that we would have the right
normalization factor for the sum function—for the random variable Sp. One
of Kadanoff’s main insights was that as we sum over blocks of spins (which
is, in effect, what we are doing by considering sum functions) and then try to

6See [1] for a discussion of minimal models and asymptotics.
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replace these sums with individual blocks-spins (averages perhaps) we need
to try to keep the (Hamiltonian) structure looking the same at these different
scales. Equivalently, we need to make sure that the partition function for the
original lattice is similar to that for the lattice of block-spins. One of the main
difficulties of employing the renormalization techniques in investigating the
behavior of model systems is to determine exactly how one needs to rescale
(or normalize) a collective variable like

∑
Si so as to arrive at reasonable

results. In fact, this is largely the art of the renormalization group approach.
In the example above, this difficult problem is taken care of by employing
that very special subsequence of the integers to form our “blocks” of spins.
This allows us to write down, without any difficulty, the “renormalization
group equation,” (12), for our distribution functions. In effect, the use of the
special subsequence of the integers gives us the proper normalization for the
variables Sp and determines the factor

√
2 that appears in equation (12). In

physical applications, however, we do not have the luxury of beginning with
a solution to how the block-spins are to be normalized.

The first problem concerns the fact that the demonstration of the uni-
versality of the Gaussian distribution relies upon the fact that the random
variables considered are independently distributed. Of course, this is far from
true even for the simplest ofthermodynamic systems: For example, the ki-
netic energies of molecules in an isolated gas are correlated with one another
as a result of collisions and the fixed total energy of the gas. This poses a
problem for Khinchin’s program—one of which he was well-aware. He tries
to deal with it by insisting that we must really think of the particles (in a real
gas) as being “only approximately isolated energetically components.” When
being precise, however, we must allow for correlations between the compo-
nents that would, strictly speaking, block the ability to use the central limit
theorem. He says,

inasmuch as forces of interaction between particles manifest them-
selves only at very small distances, such mixed terms in the ex-
pression of energy, representing mutual potential energy of parti-
cles, will be (in the great majority of points of the phase space)
negligible as compared with the kinetic energy of particles or with
the potential energy of external fields. In particular, they will
contribute very little in evaluating various averages. . . . However,
these mixed terms that are neglected, from the point of princi-
ple play a very important role, since it is precisely their presence
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that assures the possibility of an exchange of energy between the
particles, on which is based the whole of statistical mechanics. [9,
pp. 43–43]

This is hardly a satisfying response to the problem of interaction or cor-
relation: “The entire success of statistical mechanics depends upon such
interactions, but we need to ignore them completely because they will be
small.”

In fact, though, it is possible to generalize the above argument for the
universality of the Gaussian distribution to sequences of dependent random
variables, provided that the dependence is not too strong. This is a truly
remarkable feature of the central limit theorem. One can show that limit-
ing Gaussian behavior is to be expected even for a large class of dependent
random variables. Without going into details, let me discuss the degree of
robustness of such central limiting behavior and when one might actually ex-
pect it to fail. To this end, consider once again a sequence of independent and
identically distributed random variables Si (i = 1, 2, . . .).7 Suppose the Si’s
are centered at the origin and have finite variance. This means, respectively,
that

E(Si) = 0

E(S2
i ) = σ2.

Consider the sum function SN =
∑N

i=1 Si. The mean square deviation of
SN is given by

E(S2
N) =

N∑
i=1

E(S2
i ) = Nσ2. (13)

If we now suppose that the variables Si are not independent (13) needs to be
modified to reflect the contribution of correlations to this average. So write

E(S2
N) =

N∑
i,j=1

E(SiSj) =
N∑

i,j=1

R(i, j), (14)

where R(i, j) is the correlation function of the sequence. In physical applica-
tions we typically consider only stationary sequences which means that there

7Here I follow the discussion in [3, pp. 914–916].
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is kind of translation invariance—no privileged i in the sequence. Assuming
stationarity we get

E(S2
N) =

N∑
i,j=1

R(i, j) = NR(0) + 2
N∑
l=1

(N − l)R(l).8 (15)

The first term reduces to Nσ2 when the variables are independent and so
represents the contributions to the fluctuations of the variable SN if the
sequence had been independent with variance R(0). The second term is
nonzero when correlations between the Si exist. Cassandro and Jona-Lasinio
consider several possibilities for the behavior of R(l). [3, p. 915] The two
most relevant to our discussion are the following:

N∑
l=1

R(l)
N→∞−→ R̄ <∞, (16)

and
N∑
l=1

R(l)
N→∞−→ ∞. (17)

When (16) holds it is clear that for large N , the mean square devia-
tion of SN , E(S2

N), will still be proportional to N for large N and the
√
N

fluctuation law will still hold. Cassandro and Jona-Lasinio say that in this
situation the variables Si are “weakly dependent.” Weakly dependent sys-
tems of variables satisfy the condition of “strong mixing” that, physically, is
related to an exponential decay of correlations with distance. In such cases
it is possible to show that the distribution functions of these weakly dependent
random variables will flow, under the transformation T to the Gaussian fixed
point. Thus, this answers the worry about using the Central Limit theorem
in situations where independence fails. That is to say, central limiting be-
havior is quite robust and the independence condition in the theorem as it
is usually formulated can be considerably weakened. There is, therefore, no
need to accept Khinchin’s somewhat handwaving and inconsistent solution
to the problem of interacting components.

When (17) holds
E(S2

N)

N
→∞

8Stationarity entails that l will be the same for any pairs (i, j) equal separation (|i−j|).
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for largeN and the fluctuations will be greater than
√
N . This is the situation

of “strongly dependent” variables. Now if we think of the variables Si as spins
on a d-dimensional lattice Zd, we expect stationarity to hold which is to say
that R(i, j) = R(i − j) where i and j are d-dimensional lattice vectors. In
such a case, (17) is expressed as follows:∑

l∈Zd
R(l) = ∞. (18)

This says that the correlation length between spins on the lattice is in-
finite. In statistical mechanics this means that the system is at a point of
second order phase transition—a critical point. This takes us directly to
what very well may be another fundamental reason for Gibbs’ caution in
identifying thermodynamic quantities with (statistical) mechanical features
of systems—the existence of critical phenomena.

Before turning to this let me briefly take stock of the status of reductive
relations between thermodynamics and statistical mechanics up to this point.
The argument of this section is designed to show that, pace Gibbs, we should
not really worry about the fact that different “precisely defined quantities”
have some kind of equal claim to be “regarded as as temperature and en-
tropy with respect to systems of a finite number of degrees of freedom.” [6,
p.169] In fact, the canonical and microcanonical distributions will yield the
same results in the thermodynamic limit. They both lie within the basin of
attraction of the Gaussian distribution—in the Gaussian universality class—
under the probabilistic version of the renormalization group transformation
sketched above. So Gibbs is being overly cautious from the point of view
being advocated here.

By considering the thermodynamic limit in the context of intertheoretic
relations, we do in effect demonstrate the existence of a limiting connection
between statistical mechanics and thermodynamics akin to the physicists’
schema (1) for reduction. That is to say that schema (1) holds where Tf is
statistical mechanics and Tc is thermodynamics and ε = 1/N .9 The proof
of the equivalence of the microcanonical and the canonical ensembles in the
thermodynamic limit, together with the probabilistic renormalization group
argument given above, provides the required limiting connections between
the two theories. Given this, we should expect something like a philosopher’s

9More precisely, the thermodynamic limit is the limit in which N → ∞, the volume
V →∞ with the constraint that the density N/V → constant.
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derivational reduction to obtain. However, contrary to the Nagelian point of
view which requires bridge laws identifying a thermodynamic quantity with
a unique statistical mechanical quantity, we instead are able only to provide
an association between the thermodynamical properties, such as temperature
and entropy, and a universality class of statistical mechanical structures.

6 Critical Phenomena

While we seem to have been successful in finding a limiting connection be-
tween statistical mechanics and thermodynamics, there are prima facie rea-
sons to believe that such a reduction cannot hold in general. This is because,
the limiting schema (1) fails to hold for every thermodynamic phase. The
existence of phase transitions and critical points guarantee that a smooth
limiting relationship between the theories cannot hold everywhere.

Physically this failure of smooth limiting behavior is related to the diver-
gence of various quantities at the critical points. For instance, at a critical
point (Pc, Vc, Tc) the compressibility

κ ≡
[
−V

(
∂P

∂V

)
T

]−1

(19)

becomes infinite.
From a modern perspective this failure can be related to the inequivalence

of the microcanonical and canonical ensembles at certain phases. Giovanni
Gallavotti takes this to be a virtue of statistical mechanics rather than a
defect.

. . . [R]ather than being an obstacle to the microscopic formulation
of thermodynamics, [this inequivalence] shows the possibility that
statistical mechanics can be a natural frame in which to study the
phase transition phenomenon. . . .

We can therefore conclude, in the case . . . of the canonical and
microcanonical ensembles, that they provide equivalent descrip-
tions of the system thermodynamics in the correspondence of the
parameter values to which no phase transition is associated. In
the other cases, the possible nonequivalence cannot be considered
a defect of the theory, but it can be ascribed to the fact that,
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when equivalence fails, the elements of the two statistical ensem-
bles that should be equivalent are not because they describe two
different phases that may coexist (or different mixtures of coex-
isting phases). [4, p. 74–75]

Now Gibbs’ work on thermodynamics prior to writing Elementary Prin-
ciples in Statistical Mechanics, focused largely on representing (geometrically
and analytically) different phases of thermodynamic systems including places
of phase transitions and critical points.10 It is inconceivable to me that he
was not aware of the problem that the existence of critical states raises for
identifying precisely defined (statistical) mechanical properties with ther-
modynamic properties. That is, I think one major factor behind Gibbs’
caution—a major reason he allowed himself to speak only of thermodynamic
analogies and not of identities—was the recognition that such identities will
clearly fail at critical phases.

It is, therefore, extremely odd that Gibbs makes no mention of phase
transitions and critical phenomena in Elementary Principles in Statistical
Mechanics. This omission has been noted elsewhere by A. S. Wightman.
Wightman states that

[t]here is one aspect of the thermodynamic limit that Gibbs does
not emphasize. That is the appearance of phase transitions be-
tween distinct thermodynamic phases. Such sharp phase transi-
tions do not occur in finite systems . . . . It is only in the thermo-
dynamic limit that sharp phase transitions appear. A little more
pedagogical zeal by Gibbs on this point would have saved some
of the generations that followed considerable time. [15, p. 34]

It is certainly true that one can only find sharp (nonanalytic) phase transi-
tions in the thermodynamic limit. It is also true that that limit is singular
on lines of phase transitions and at critical points.

As Gallavotti has noted, the equivalence of the ensembles in the ther-
modynamic limit can fail, and when it does, it means that the system is at
criticality. We can no longer expect Gaussian behavior to emerge as a limit-
ing distribution in the iterative renormalization group equation (12). Some
have argued that this situation is an indication that we cannot expect general

10See, for example [5] and other papers in Volume One of his Collected Works.
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reductive limiting relations between thermodynamics and statistical mechan-
ics to obtain.11 However, if we take the inequivalence of the ensembles, and
the existence of critical phenomena, to be two sides of the same coin, as
Gallavotti suggests, then perhaps this pessimistic assessment is too quick. In
this section, I would like to suggest that the probabilistic interpretation of
the renormalization group provides a mathematical framework with which
to investigate both sides of this coin using the same methodology. We shall
see that the divergences and singularities at critical phases are not genuine
obstacles to some kind general limiting (reductive?) relation between the
theories after all. Rather than give up on intertheoretic reduction in this
case, we just need to recognize how involved it really is, and how different
the reductive relation really is from the traditional philosophical conception.

We have seen that Gaussian limiting behavior fails when the random vari-
ables Si are strongly dependent. This is the situation expressed by equation
(17), generally, and by equation (18) for the case of spins on a d-dimensional
lattice. Equivalently, given equation (14), this means that the variance of the
distribution functions for the sum functions or block-spins is infinite. Con-
sider a generalization (one that takes correlations into consideration) of the
iterative scheme (11):12

Fp+1 = gN(x, a)

∫ ∞

−∞
Fp(a

−1x− u)dFp(u). (20)

When the variables are strongly dependent gN(x, a) → g∞(x, a) as N → ∞
and this equation will, in that limit, have nonGaussian solutions. That is,
there will be limiting distributions F ∗ satisfying the the fixed point equation

TF ∗ = F ∗

for the relevant renormalization group transformation analogous to (12):

TF = g∞(x, a)

∫ ∞

−∞
F∞(a−1x− u)dF∞(u). (21)

Under the assumption that a solution to this equation—a fixed point—exists,
the value of the parameter a will determine the critical exponent α 6= 1/2 that

11I, for one, have been a major proponent of this point of view.
12The assumption that something like the convolution equation for distribution func-

tion of a sum of two random variables holds, is the essence of the renormalization group
approach.

21



characterizes the nature of this nonGaussian limiting distribution as well as
the form of the required normalization. If we assume that the correlation R(l)
exhibits power law behavior R(lα) ∼ l−α and that

∑N
l=1R(l) ∼

∑N
l=1 l

−α →
∞ as N →∞, then from equation (15) we have

E(S2
N) → N2−α,

as N →∞.
The point of all of this is the following: There do exist nonGaussian prob-

ability distributions that are stable limit distributions under transformations
of the form (21).13 These distributions represent fixed points of the proba-
bilistic renormalization group transformation for strongly dependent random
variables. Strong dependence is exactly what we expect in real systems at
criticality: It is reflected in the divergence of the correlation length. By gen-
eralizing the argument of the last section, it is possible to show that these
fixed points have large basins of attraction reflecting the fact that at criti-
cality a wide variety of distributions will all exhibit the same, nonGaussian,
behavior in the limit N →∞.

In effect, this solves the critical phenomenon problem. We can explain the
universality (the virtual independence of behavior from microscopic detail) of
systems at criticality. The very same strategy that can be used to show that
the microcanonical and canonical distributions behave like Gaussians in the
thermodynamic limit is used to explain the universal nonGaussian behavior
of systems at criticality.

7 Conclusion

The best understanding of intertheoretic relations between statistical me-
chanics and thermodynamics is to be had by investigating the limiting rela-
tions, both regular and singular that can be expressed in terms of schema (1).
We can say (with various qualifications14) that away from critical points and

13Stability here means that a block random variable (a block-spin or sum function) with
distribution function F can be split into the sum of two block random variables of arbitrary
relative size having a probability distribution of the same type; namely, F . Recall equation
(7).

14These are, in fact, serious qualifications that may lead us ultimately to deny anything
like a Nagelian reduction of the full theory of thermodynamics to statistical mechanics.
See [14, Chapter Nine].
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phase transitions, statistical mechanics does reduce to thermodynamics in
the thermodynamic limit. And, we can say that there does exist a kind of
identification of certain thermodynamic quantities such as temperature and
entropy with universality classes of statistical mechanical quantities. In this
context—that is, from the modern perspective of the success of renormaliza-
tion group arguments—we see that Gibbs need not have been so cautious
regarding the status of the connections between mechanical quantities and
thermodynamic quantities. The existence of the thermodynamic limit, and
the demonstration of the equivalence of ensembles, provides evidence that
the question of which ensemble quantity is really to be identified with ther-
modynamic entropy, say, may not even be an important question to ask.

On the other hand, Gibbs was an expert on phase transitions and critical
phenomena. I think that he must have understood that such phenomena
present a problem for connecting the two theories. In his interest to avoid
saying anything false, he did not raise the issue in his book. From the point of
view I have been advocating, his understanding this problem is tantamount
to recognizing that the limiting relationship between statistical mechanics
and thermodynamics as 1/N → 0 is not everywhere regular. Despite this,
the framework provided by the probabilistic interpretation of renormaliza-
tion group argument indicates that it is possible to employ these techniques
to connect both noncritical and critical thermodynamics to an underlying
statistical mechanics. Both problems—the equivalence of ensembles and the
inequivalence of ensembles—receive a unified, coherent treatment.
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