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Abstract

After it is argued that philosophers of science have lost their interest in
logic because they applied the wrong type of logics, examples are given of
the forms of dynamic reasoning that are central for philosophy of science
and epistemology. Adaptive logics are presented as a means to under-
stand and explicate those forms of reasoning. All members of a specific
(large) set of adaptive logics are proved to have a number of properties
that warrant their formal decency and their suitability with respect to
understanding and explicating dynamic forms of reasoning. Most of the
properties extend to other adaptive logics.

1 Aim of this Paper

In the first half of the twentieth century, epistemology largely reduced to the
philosophy of science and logic played a central role in it. We are here interested
in the last half of the previous sentence. This raises at once the question why
logic lost its central role in epistemology, including the philosophy of science. We
all know when this happened—the Vienna Circle was succeeded by people like
Hanson, Kuhn, Lakatos, Feyerabend, and Laudan, just to name a few central
ones. There is no logic in their writings, they hardly ever mention logic. But
why did it happen?

Of these philosophers of science, only Feyerabend made some explicit claims
on the topic. While arguing, in [30], that often inconsistencies occur in episodes
of the history of some sciences, he remarks that ‘logic’ cannot handle incon-
sistencies, and comments that this is a problem for logic, not for the history
and philosophy of science. I do not think that this diagnosis is correct. For
one thing, logics that can handle inconsistencies had been around for a while—
see, for example, [28] and many other papers on paraconsistent1 logics (by da
Costa and associates); even some of Jaśkowski’s work had been translated into
English—see [32].

∗The research for this paper was financed by the Fund for Scientific Research – Flanders,
by the Research Fund of Ghent University, and indirectly by the Flemish Minister responsible
for Science and Technology (contract BIL98/73). I am indebted to Kristof De Clercq for
locating several mistakes as well as many misprints in a former draft of this paper.

1A logic is paraconsistent iff it does not validate ex falso quodlibet (A,∼A ` B).
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The correct diagnosis, it seems to me, is that philosophers of science had
been applying the wrong type of logic. They had mainly been applying CL
(Classical Logic). Even the few that recurred to ‘non-standard logics’ applied
modal logic or intuitionistic logic—systems that share their central properties
with CL. I do not claim that there is anything wrong with those logics. I only
claim that that they were used for purposes for which they are unfit.

That the wrong type of logics was chosen was not merely an accident. The
mainstream in Western epistemology has always been foundational. Notwith-
standing some occasional remarks (as Neurath’s idea that we have to rebuild
our ship in the open sea) concerning the revision of (mainly) theories, the Vi-
enna Circle fitted perfectly within this tradition. The ‘Protokollsätze’ provided
the absolute basis. The only epistemological role for logic was to relate Pro-
tokollsätze to theories, mainly by deriving consequences from theories together
with Protokollsätze. Needless to say, CL performs that role in an excellent way,
especially as the Vienna Circle’s view on the relation between observation and
theory was simple and one-dimensional: saving the phenomena.2

When Hanson, Kuhn, and the others came around, it soon became clear that
the most interesting aspects of scientific reasoning do not concern the relation
between observations and theories, and that the Vienna Circle’s view on the
relation was utterly simplistic and mistaken—see especially [34]. Soon, there
was again attention for discovery processes—the definite breakthrough were [40]
and [41]. Not long thereafter, the study of explanation as a logical relation was
replaced by a study of the process of explanation: how does one, given an
explanandum E and a theory, arrive at ‘initial conditions’ to explain E?3 And
these are just a few examples.

In Section 2, I shall consider several reasoning processes that are essential to
epistemology and philosophy of science, and that clearly cannot be handled by
logics of the same type as CL. In Section 3, I shall introduce adaptive logics,
the type of logics that is able to handle such reasoning processes. Character-
izing such logics semantically will enable me, in Section 4, to prove that the
consequence relations of these logics have the required properties. Much more
important, however, is the dynamic proof theory of adaptive logics, which I shall
discuss in Section 5. Unlike the semantics, which characterizes the consequence
relations by means of abstract definitions, the dynamic proof theory enables
one to explicate the actual reasoning processes. Moreover, the metatheory en-
ables one to show that, notwithstanding their dynamic character, these proofs
(i) lead to the correct conclusions in the long run, and (ii) lead to conclusions
that provide a basis for decision and action even in the short run.

2 The Problem

The most common mechanism that, in specific situations, leads to general knowl-
edge is inductive generalization. To be more precise, I mean the ‘derivation’ from
data of formulas of the form ∀(A ⊃ B) (the universal closure of A ⊃ B) and of

2Logic also had a curative function: to prevent people from talking nonsense. I shall not
discuss this here, as the topic has long been settled by now.

3See, for example, the work of Hintikka and associates, who were among the few philoso-
phers of science that tried to keep applying logic.
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CL-consequences of the data and the generalizations.4 It often has been argued
that there is no logic of induction. The only argument that has ever been ad-
duced for this claim, is that the resulting consequence relation is not monotonic:
a generalization that is derivable from a set of data, need not be derivable after
the set of data is extended. Today, however, many non-monotonic consequence
relations have been decently defined and well-studied.

Non-monotonic consequence relations display an external dynamics. Sup-
pose that Γ `LI A states that A is an inductive consequence (defined by the
logic of induction LI) of Γ.5 If Γ is the set of data available at some point in
time, then Γ `LI A enables one to accept A. At a later point in time, the set of
available data might be Γ ∪∆ and if Γ ∪∆ 0LI A, one will have to give up the
conclusion A. This dynamics is external because it does not occur within the
reasoning process. Both Γ `LI A and Γ∪∆ 0LI A always were true and always
will be true. If one knows them to be true, then one justly accepted A at the
point in time where Γ was the set of available data, and one justly rejected A
after Γ was extended with ∆.

Suppose that one is only interested in inductive generalizations ∀(A ⊃ B)
in which both A and B do not contain any quantifiers or individual constants.
The basic mechanism behind (thus restricted) inductive generalization is that
the derived generalizations should together be compatible with the data. Given
that the data are singular formulas and given the form of the generalizations,
it is (effectively) decidable whether the data together with any finite set of
generalizations is consistent. However, let us make the picture slightly more
realistic and suppose that some background theories are available. Suppose
moreover, to keep things simple, that the data do not contradict the background
theories. The available knowledge now consists of the data, the background
theories, and their (CL-)consequences. Which set of inductive generalizations
is compatible with such a knowledge set is not in general a decidable matter.
Worse, there is no positive test for it.6 So, even if the set is consistent, there is
in general no finite proof of this.

Given the absence of a positive test, how is is possible that people ever arrive
at inductive generalizations? The answer is quite obvious: by reasoning. This
reasoning cannot lead to a final judgement, even if the set of data remains stable
during the reasoning process. It can, however, lead to a good estimate. Some
people will arrive at a better estimate than others, and the efficiency of such
reasoning processes may be studied. In specific cases, the reasoning may enable
one to arrive at a final judgement. Even if it does not, one may consider the
obtained estimate as sufficient for taking a decision—one may know that a final
judgement is impossible, one may consider it too expensive or time consuming
to obtain a better judgement, etc.

The absence of a positive test makes the reasoning process necessarily dy-
namic. Even when reasoning from a stable set of premises, one will have to
consider certain formulas as derived provisionally. In other words, it cannot be

4Nearly always, background knowledge plays a role. I return to that in this very section.
5Actually, the adaptive logic LI is described in [16] and several further results will appear

in papers by Lieven Haesaert and myself. However, one needs not to know those systems in
order to follow the argument in the text.

6A positive test for a property is a systematic procedure that leads, after finitely many
steps, to a “yes” if the property applies, but may go on forever if it does not. See [26] for such
matters.
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avoided that, at some point in the reasoning process, one considers as derived
certain formulas that later have to be considered as not derived. This I shall
call the internal dynamics. It is not caused by the introduction of new premises,
but is a property of the reasoning process itself, even if the premise set is stable.
For example, if background knowledge is present, one cannot avoid deriving cer-
tain inductive generalizations that later turn out incompatible with the (stable)
available knowledge.

In the subsequent paragraphs, I give some more examples of reasoning pro-
cesses that display an internal dynamics. However, let me stress at once that
the discussed logic of inductive generalization is only a special case of a broader
phenomenon. Whenever a new theory is adduced, it is supposed to be compat-
ible7 with available knowledge (the data and formerly accepted theories, or at
least part of them). As there is no positive test for compatibility, any reasoning
that leads to accepting the new theory necessarily displays the internal dynam-
ics and, except in the specific cases in which a final judgement can be reached,
the decision taken as the result of this reasoning is necessarily defeasible and
hence provisional.

In [31], Ilpo Halonen and Jaakko Hintikka present a recent version of the
theory of the process of explanation. In Section 6, they discuss the conditions
on (nonstatistical) explanations (with a number of restrictions). The conditions
(I slightly change their notation) concern an explanandum Pb, a background
theory T (in which the predicate P occurs) and an initial condition (antecedent
condition) I (in which b occurs). Among the six conditions are the following:

(iii) I is not inconsistent (0CL ∼I).
(iv) The explanandum is not implied by T alone (T 0CL Pb).
(vi) I is compatible with T , i.e. the contextual evidence does not falsify the

background theory (T 0CL ∼I).

Obviously, there is no positive test for any of these three conditions. In other
words, no finite reasoning process can (in general) lead to the conclusion that
Pb is explained by I and T .

So, although the ‘logic’ appears to be CL (see the formal conditions above),
it is quite obvious that the reasoning process that leads to the conclusion that I
and T together explain Pb cannot possibly be explicated in terms of CL (at the
object level). The reasoning is about CL-derivability, and necessarily displays
the internal dynamics. This is why it cannot be explicated by a CL-proof but
only by a dynamic proof.8

The logic of questions forms a further example. According to [52] and [51],
where this problem is studied and solved, a question Q is evoked by a set of
declarative statements Γ iff the presupposition of Q is derivable from Γ but no
direct answer to Q is derivable from Γ. However, there is no positive test for
non-derivability from Γ. Hence, although the definition is itself unobjectionable,
only a dynamic proof may (in general) lead to the conclusion that Q is evoked
by Γ.

Another example concerns handling inconsistency. Consider the case in
which a scientific (empirical or mathematical) theory T was meant to be con-
sistent and was formulated with CL as its underlying logic, but turned out to

7See [18] for the adaptive logic of compatibility in the framework of CL.
8See [20] for adaptive logics that explicate several forms of reasoning that underly the

search for explanations.
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be inconsistent. As we know from the literature,9 scientists do not just throw
away such a theory. They reason from T in search for a consistent replacement.
Of course, they do not reason in terms of CL, because this is known to lead to
triviality. However, they also do not reason in terms of some monotonic para-
consistent logic PL. In their reasoning, they want to interpret T as consistently
as possible. After all, T was meant as a consistent theory.

Let us consider an utterly simplistic but instructive example. Let the ‘theory’
consist of ∼p, p ∨ r, ∼q, q ∨ s, and p. One obviously should not derive r from
∼p and p∨r by Disjunctive Syllogism. To do so would lead to triviality: p∨r is
itself a consequence of p, and so is any formula of the form p ∨ A. However, as
the theory was meant to be consistent, one will apply Disjunctive Syllogism to
derive s from ∼q and q∨s. Indeed, it is quite obvious that q behaves consistently
on this theory. To be more precise, q is consistently false on the theory, for ∼q is
obviously derivable whereas q is not, except of course by explicitly or implicitly
applying Ex Falso Quodlibet to p and ∼p.10

So, the reasoning from T should proceed in such a way that one obtains T in
its full richness, except for the pernicious consequence of its inconsistency. Pre-
cisely for this reason, the reasoning cannot proceed in terms of some monotonic
paraconsistent logic PL. Indeed, PL will invalidate certain PL-rules, for ex-
ample Disjunctive Syllogism.11 However, as we saw from the previous example,
the requested reasoning should not invalidate certain rules of inference of CL,
but only certain applications of these rules. Let me express this more precisely.
For certain rules, an application should be valid if specific involved formulas
behave consistently on the theory, and invalid otherwise. Precisely this proviso
causes the reasoning to be internally dynamic: there is no positive test for the
consistent behaviour of some formula on a set of premises.12

Up to now, we have considered forms of reasoning that display an internal
dynamics. All of them concerned a single unstructured set of premises. In many
cases, however, the premises are structured, usually as an n-tuple of sets. I shall
now consider some examples of this type.

Let us return for a moment to inductive generalization. Apart from the
data, we usually have background knowledge. Let us restrict the discussion to
the case where the background knowledge consists of generalizations in the sense
meant before. An obvious complication is that the data may falsify some of the
background generalizations. So, two forms of dynamics have to be combined.
First, we retain the background generalizations in as far as they are not falsified
by the data. Next, from the data and the retained background generalizations,
we obtain new generalizations by the aforementioned logic LI. Remark, how-
ever, that it is in general impossible to perform the first selection (of background
generalizations) before proceeding to the second selection (of new inductive gen-
eralizations). This means that both forms of dynamics are necessarily combined
in the reasoning process. After deriving some new inductive generalizations, one
may be forced to change one’s judgement on the compatibility of some back-

9See for example [42], [43], [47], [27], [39], [36] and [38]. Not all of these authors side with
me on the required approach.

10One way to implicitly apply Ex Falso Quodlibet proceeds by first applying Addition to
obtain p ∨ q from p and next applying Disjunctive Syllogism to obtain q from ∼p and p ∨ q.

11See [37] for an exception: the paraconsistent logic AN validates Disjunctive Syllogism
(and all ‘analysing’ rules of CL) but invalidates Addition (and Irrelevance and similar rules).

12Explicating this type of kind reasoning was at the origin of the adaptive logic programme—
see [5], [8], and many other papers.
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ground generalization with the data, and this will affect the derivability of new
inductive generalizations.13

Often not all background generalizations will be considered equally trust-
worthy. So, instead of a set of background generalizations, one confronts a
sequence of such sets, each having a different priority. In this case one has to
combine a multiplicity of dynamics concerning the background generalizations
with the dynamics that pertains to the new generalizations. Moreover, even
falsified background generalizations may be considered as applying ‘normally’.
This means that an instance of the generalization is considered to hold unless
and until proven incompatible with the data. Such ‘pragmatic generalizations’
may also be ordered by some priority relation. All this leads to more forms of
dynamics (which, however, are all of three kinds).

Let us now consider a very different example. A participant in a discus-
sion may change his or her position in view of arguments adduced by other
participants. As a result, the interventions of the participant will be mutually
incompatible, even if the participant’s position is consistent during each inter-
vention. However, the participant needs not state his or her full new position
whenever there is a change. So, after an intervention, the participant’s position
has to be reconstructed from all his or her interventions. In order to do so, one
starts with (the consistent part of) the last intervention, to this one adds that
part of the previous intervention that is compatible with it, and so on. Remark
that, while doing so, one does not select statements that are made during an
intervention, but rather their consequences.14

Diagnostic reasoning forms a further example in which the premises are
prioritized and hence require a multiplicity of dynamics. One reasons from on
the one hand data and on the other hand expectancies (that may have varying
degrees of trustworthiness). The expectancies, or rather their consequences, are
retained (in their order of priority) until and unless proven inconsistent with
the data. (See [50], [50] and [22] for the adaptive logics.)

In all examples mentioned before, the flat ones as well as the prioritized ones,
the reasoning displays both the internal dynamics and the external dynamics. It
is worth mentioning that, whenever the external dynamics (non-monotonicity)
is present, the reasoning necessarily displays the internal dynamics (defeasible
conclusions even if the premises are stable). The converse, however, does not
hold. The Weak consequence relation, of Rescher and Manor—see, for example,
[46] and [24]—is monotonic. Nevertheless, it may be shown that the reasoning
from premises to weak consequences requires an internal dynamics.15 Some
consequence relations that are monotonic as well as decidable may even be
characterized (in an enlightening and attractive way) by a form of reasoning
that displays an internal dynamics—see [11] for an example.

The preceding paragraphs do by no means contain an exhaustive list of
all reasoning mechanisms (or even of all types of reasoning mechanisms) that
display an internal dynamics. Nevertheless, the problem should be clear by now.
Essential forms of human reasoning, that are common and that are important

13The complication of falsifiable background generalizations is dealt with in [16]. The
complications discussed in the subsequent paragraph of the text will be handled in forthcoming
papers.

14Adaptive logics for this reconstruction are spelled out in [48] and [12].
15A is a Weak consequence of Γ iff it is a CL-consequence of some consistent subset of

Γ—remember that there is no positive test for consistency.
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for understanding the way in which humans arrive at knowledge and revise it,
display an internal dynamics.

In order to arrive at a precise theory of knowledge, one needs to explicate
such forms of reasoning. In order to do this, one needs specific logics: adaptive
logics. These logics unavoidably have some non-standard properties. More
important, however, is that they are characterized in a formally stringent way,
and that their properties are studied in agreement to the professional standards.

3 What are Adaptive Logics?

In the loose sense of the term, a logic is adaptive iff it adapts itself to the specific
premises to which it is applied. This should not be misunderstood. First, I do
not mean to say that the consequence set, determined by the logic, depends
on the set of premises. This obviously holds for nearly all16 logics. I mean
that the logic itself adapts to the premises in that it depends on properties of
the premise set whether some formula is derivable from some of the premises.
Next, I really mean that the logic adapts itself to the premises. The reasoner
does not interfere in this. The logic is defined by a set of rules as well as by a
semantics, and these lead to the adaptive effect, independently of any decision
of the human or machine that applies the rules.

The previous paragraph describes the underlying idea. I shall also present a
more technical characterization. This should not be understood as a definition,
but rather as a hypothesis on the properties of all adaptive logics. It relies
on present best insights. These may change as more logics are studied or new
insights in them are gained. I have a good reason to insert this remark: during
the last twenty years the dynamics of the adaptive logics programme forced the
Ghent logic group several times to revise the technical characterization.

Flat (non-prioritized) adaptive logics. Let us start with these, as the
prioritized ones require a somewhat more complex treatment. An adaptive
logic AL may be characterized by a triple: the lower limit logic, the set of
abnormalities, and the strategy. The lower limit logic LLL is a monotonic logic
that is characterized by CnLLL(Γ) =

⋂
{A | Γ ∪ ∆ `AL A; ∅ ⊆ ∆ ⊆ W} in

which W is the set of all closed formulas of the language. Intuitively, the lower
limit logic is the stable part of the adaptive logic, the part that is not subject
to any adaptation. From a proof theoretic point of view, the lower limit logic
delineates the rules of inference that hold unexceptionally. From a semantic
point of view, all adaptive models of Γ are lower limit models of Γ (but not
conversely). It follows that CnLLL(Γ) ⊆ CnAL(Γ).

Suppose that we are dealing with a context in which CL is taken as the
standard of deduction. If the lower limit logic of AL is CL (or, for example,
a modal extension of CL), it is said that AL is ampliative. This is the case

16The two obvious exceptions are zero logic, according to which nothing is derivable from any
premise set (not even the premises themselves) and the logic according to which everything is
derivable from any premise set. These logics may seem completely uninteresting, but actually
zero logic is not. From it, an adaptive logic may be defined, thus making all logical reasoning
contingent on specific properties of the premises (put differently: on ‘the world’). For example,
adaptive zero logic assigns to consistent sets of premises exactly the same consequence set as
CL. See [9] for a study of zero logic and the (most straightforward) adaptive logic definable
from it.
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for inductive generalization (without background knowledge), for compatibility,
etc. If the lower limit logic is weaker than CL, as in the case of inconsistency-
adaptive logics, the adaptive logic is called corrective—the theory was intended
to be interpreted in terms of CL, but turned out to be inconsistent and hence
is interpreted as consistently as possible.17

The second (and crucial) component of an adaptive logic is the set of abnor-
malities Ω. These are the formulas that are presupposed to be false, unless and
until proven otherwise. Thus, in an inductive logic, the set of abnormalities may
consist of all formulas of the form ∃(A∧B)∧∃(A∧∼B) in which no individual
constants or quantifiers occur in A and B, and ∃A abbreviates the existential
closure of A. In handling inconsistency, the set of abnormalities will be some
set of formulas of the form ∃(A ∧ ∼A).

There seems to be a natural restriction on the set of abnormalities Ω: extend-
ing the lower limit logic with the requirement that no abnormality is logically
possible, should result in a monotonic logic, which is called the upper limit logic.
Presumably the effect is most easily seen by considering the semantics. If from
the lower limit logic models one eliminates those that verify an abnormality, the
resulting models should characterize the upper limit logic. If the adaptive logic
is corrective, the lower limit logic is weaker than CL, and the upper limit logic
will be (and is in all cases studied up to now) CL. If the adaptive logic is am-
pliative, the lower limit is (in all cases studied so far) CL or a modal extension
of CL, and the upper limit logic is an extension of this.

Some examples are useful to clarify the matter. If the lower limit logic
is CL and the set of abnormalities comprises all formulas of the form ∃(A ∧
B) ∧ ∃(A ∧ ∼B) (see the previous paragraph), then the upper limit logic is
obtained by adding to CL the axiom ∃A ⊃ ∀A.18 If, as in the case of an
inconsistency-adaptive logic, the lower limit logic is a paraconsistent logic PL
that is a fragment of CL, and the set of abnormalities comprises all formulas
of the form ∃(A ∧ ∼A), then the upper limit logic is CL. The importance of
the set of abnormalities is obvious. If the premise set does not require any
abnormality to obtain, the adaptive logic will deliver the same consequences as
the upper limit logic. If the premise set requires some abnormalities to obtain,
the adaptive logic will still deliver more consequences than the lower limit logic,
viz. all upper limit consequences that are not ‘blocked’ by those abnormalities.

It became only clear during the last years that, given a lower limit logic,
different sets of abnormalities may result in the same upper limit logic but in
a different adaptive logic. This may be easily exemplified in terms of inductive
logics. To avoid technical clutter, I phrase the matter informally. Suppose that
one replaces the aforementioned set of abnormalities (all formulas of the form
∃(A ∧ B) ∧ ∃(A ∧ ∼B)) by the set of couples consisting of, first, an instance
of ∃(A ∧ B) and, second, an instance of ∃(A ∧ ∼B).19 The upper limit logic
is still obtained by adding to CL the axiom ∃A ⊃ ∀A. The resulting adaptive
logic, however, is drastically different from the original. Consider the premises
set Γ = {Pa, Qa, Pb, Qb, Pc,∼Qc, Pd}. According to the original adaptive logic

17Remark that the lower limit logic may be zero logic—see footnote 16.
18Semantically, this logic is characterized by those CL-models in which, for each predicate

π of adicity i, v(π) ∈ {Di, ∅} in which Di is the i-th Cartesian product of the domain.
19To avoid complications, I disregard models that are not ω-complete. Such models require

that one measures the abnormalities with respect to the model rather than with respect to
the formulas it verifies.
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of induction, neither Qd nor ∼Qd is a consequence of this premise set. Accord-
ing to the present adaptive logic, Qd is derivable because it causes only one
new abnormality, viz. (Pd ∧ Qd) ∧ (Pc ∧ ∼Qc) whereas ∼Qd causes two new
abnormalities. The original set of abnormalities leads to an adaptive logic of
inductive generalization; the set of abnormalities introduced in this paragraph
leads to an adaptive logic of (qualitative) inductive prediction. However, the
upper limit logic is the same in both cases.

A very important matter has to be brought up at this point. For all that
was said before, an adaptive logic is obtained by presupposing that all formulas
behave normally, except for those that need to behave abnormally in view of the
premises. This formulation suggests that there is a well-defined set of formulas
that need to behave abnormally in view of the premises, but this is not the
case. The complication derives from the fact that, except for some specific
lower limit logics—I shall discuss this when introducing the Simple strategy—a
set of premises may entail a disjunction of abnormalities (members of Ω) without
entailing any of its disjuncts. Let us again consider the original adaptive logic
of induction and let the premise set be {Pa, Qa,Rb,∼Qb}. Even with so small
a data set, (∀x)(Px ⊃ Qx) and (∀x)(Rx ⊃ ∼Qx) are derivable. Suppose next
that the premise set is extended to {Pa, Qa,Rb,∼Qb, Pc,Rc}. Remark that
neither (∃x)(Px∧Qx)∧ (∃x)(Px∧∼Qx) nor (∃x)(Rx∧Qx)∧ (∃x)(Rx∧∼Qx)
is CL-derivable from these premises. However, their disjunction is CL-derivable
from the premises.

Disjunctions of abnormalities will be called Dab-formulas and will be written
as Dab(∆), in which ∆ is a finite set of formulas.20 The Dab-formulas that are
derivable by the lower limit logic from the premise set Γ will be called Dab-
consequences of Γ. If Dab(∆) (the disjunction of the members of ∆ ⊆ Ω) is
a Dab-consequence of Γ, then so is Dab(∆ ∪ Θ) for any (finite) Θ.21 For this
reason, the following definition is important. Let LLL be the lower limit logic
as before.

Definition 1 Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆)
and there is no Θ ⊃ ∆ such that Γ `LLL Dab(Θ).

If Dab(∆) is a minimal Dab-consequence of Γ, then it is derivable (by the
lower limit logic) from Γ that some member of ∆ behaves abnormally, but it
is not derivable which member of ∆ behaves abnormally. Adaptive logics are
obtained by interpreting a set of premises ‘as normally as possible’. But clearly,
this phrase is not unambiguous. This is why we need to disambiguate it by
choosing a specific adaptive strategy.

The oldest known strategy is Reliability from [5], where it is discussed at the
propositional level. Let U(Γ) = {A | A ∈ ∆ for some minimal Dab-consequence
Dab(∆) of Γ} (the set of formulas that are unreliable on Γ). The Reliability
strategy considers a formula as behaving abnormally iff it is a member of U(Γ).
As for the other strategies, the effect of this on the semantics and proof theory
will be discussed in subsequent sections.

20Remark that Dab(∆) is the disjunction of the members of ∆. In many previous papers
on specific adaptive logics, Dab(∆) has a slightly different function.

21I suppose that the lower limit logical validates Addition, and justly so. Whenever we are
dealing with an adaptive logic in which disjunction is non-standard, the matter is handled by
extending the language with classical disjunction—see [9] for an example.
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The Minimal Abnormality strategy (first presented in [4] for the discussion
in semantic terms of the propositional level) delivers some more consequences
than the Reliability strategy. If, for example, Dab(∆1), . . . , Dab(∆n) are the
minimal Dab-consequences of Γ, the Minimal Abnormality strategy takes one
member of each ∆i to behave abnormally, while all other formulas behave nor-
mally.22 Obviously, the Minimal Abnormality strategy does not pick out a
specific such combination, but considers all of them. Consider a simple proposi-
tional example for an inconsistency-adaptive logic: Γ = {∼p,∼q, p∨q, p∨r, q∨r}.
If the lower limit logic validates all of full positive logic, (p ∧ ∼p) ∨ (q ∧ ∼q) is
a minimal Dab-consequence of Γ. On the Reliability strategy, both p and q are
unreliable with respect to Γ, and hence r is not an adaptive consequence of Γ.
However, if the Minimal Abnormality strategy is chosen, then r is an adaptive
consequence of Γ. Indeed, if p behaves abnormally, then q behaves normally and
hence r is true in view of ∼q and q ∨ r; if q behaves abnormally, then p behaves
normally and hence r is true in view of ∼p and p ∨ r. In subsequent sections,
we shall see that both strategies are simple and perspicuous from a semantic
point of view, and that the Reliability strategy leads to simple dynamic proofs,
but that the dynamic proofs determined by the Minimal Abnormality strategy
are rather complicated. Which strategy is adequate in a specific context of
application is obviously a very different matter.

For some specific lower limit logics and sets of abnormalities, any minimal
Dab-consequence Dab(∆) of any premise set is such that ∆ is a singleton. In
such cases, the Reliability and Minimal Abnormality strategies lead to the same
result and coincide with what is called the Simple strategy: a formula behaves
abnormally just in case the abnormality is derivable from the premise set. Ex-
amples may be found in [37] and [18].

Several other strategies have been studied, but seem to have a less general
import. Most of them were the result of characterizing an existing consequence
relation by an adaptive logic. Examples may be found in [14], [17], [29] and [49].

A different way to characterize most flat adaptive logics is by seeing them
as formula-preferential systems. The idea was first presented in [35] (see also
[2]). I am not sure, however, that this will work for any adaptive logic. As was
remarked in footnote 19, the aforementioned adaptive logic of inductive predic-
tion, if formulated at the predicative level and if one allows for ω-incomplete
models, requires that we define the ‘abnormal part’ of a model with respect
to the model itself rather than with respect to the formulas it verifies. Also,
Graham Priest system LPm from [45] defines the abnormal part of a model in
a similar way—see [15] for some mistakes in this construction.

The idea to combine a lower limit logic with an arbitrary set of abnormalities
was first presented in [35] and [2]. Of course, not any set of abnormalities will
define a sensible upper limit logic, let alone a sensible adaptive logic. However,
we shall see that the idea is sensible in general for so-called direct formulations
of prioritized adaptive logics.

Prioritized adaptive logics and combining adaptive logics. Consider
Σ = 〈Γ0, . . . , Γn〉, in which Γ0 is a set of data (that are taken to be certain)
and Γ1, . . . , Γn are sets of expectancies—formulas that are supposed to obtain

22For some sets of minimal Dab-consequences, it cannot be avoided that at least two mem-
bers of some ∆i behave abnormally—see [8, p. 468] for an example.
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but may be overruled. The members of Γi (1 ≤ i ≤ n) carry a higher degree of
certainty as i is smaller.

One prioritized adaptive logic to handle such n-tuples is obtained as follows.
Where ♦i abbreviates a sequence of i diamonds, Σ♦ = {♦iA | A ∈ Γi}. The
lower limit logic is the modal logic23 T and the set of abnormalities are all for-
mulas of the form ♦iA∧∼A in which A is either a primitive formula (sometimes
called an atom) or its negation and 1 ≤ i ≤ n. Remark that the upper limit
logic is Triv, which is obtained by extending T with (for example) the axiom
♦A ⊃ A. Finally, one combines the above with either the Reliability or Minimal
Abnormality strategy with the following proviso: an abnormality ♦iA ∧ ∼A is
considered as worse according as i is smaller. This means that, if either an
abnormality of level i or an abnormality of level j is unavoidable in view of the
premises, then the abnormality of level i is avoided if i < j. The results are the
nice adaptive logics Tsr and Tsm from [22]. For more examples see [48] and
[49], the latter containing adaptive logics that characterize all the prioritized
Rescher–Manor consequence relations from [25].

A different way to characterize prioritized adaptive logics is by seeing them
as the result of applying a sequence of flat adaptive logics, each of these logics
having a (nearly) similar structure. This characterization of prioritized adap-
tive logics is a special case of a more general mechanism, viz. that adaptive
logics, which may have a very different structure, are combined with each other.
Consider the search for an explanation of some singular fact, given a theory. If
one relies on Hintikka’s conditions, one needs an adaptive logic to deal with the
conditions for which there is no positive test—see Section 2. Suppose that more-
over the involved theory is inconsistent (or that the data are inconsistent)—see
[13] for the discussions of such inconsistencies. In such a case one needs to
combine the adaptive logic for the process of explanation with an inconsistency-
adaptive logic that interprets the theory as consistently as possible. The result
is a sequence of (two) adaptive logics.

The term ‘sequence’ deserves a comment. The definition may refer to such
a sequence, and intuitively one may understand the logic as resulting from
applying one adaptive mechanism after the other. However, as there is no
positive test for any of the two, it is essential that the dynamic proof theory is
able to handle all the adaptive steps in random order.

Applying the above logics Tsr and Tsm requires the transition from the
n-tuple Σ to the set Σ♦.24 Given such transition, the characterization of the
prioritized adaptive logic comes to a combination of (similar) flat adaptive logics.
However, it might be objected that the prioritized adaptive logic does not define
the consequence relation itself, but defines it only under some translation.25

In all cases studied up to now, we were able to also articulate direct formu-
lations. These are formulations in terms of the original language. The same

23Given the variety of predicative extensions of propositional modal logics, one needs to
pick a specific predicative version of T. I shall only discuss the propositional case here and
refer to [22] for a predicative version that is adequate for diagnosis logic.

24Actually, the situation is similar for several flat adaptive logics that characterize formerly
known consequence relations.

25Still, the matter is not as simple as it looks. If A is not a premise but only an expectancy, it
seems desirable that this is expressed in the object language. Typically, in [50], which started
the work on adaptive logics for diagnosis, that A is an expectancy is rendered as E(A). So,
one might just as well reinterpret ♦A as “it may be expected that A” and �A as “it cannot
be expected that ∼A”. In this case, there is no translation.
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applies for the dynamic proofs. It not completely clear whether these formula-
tions fit within the technical characterization of an adaptive logic. Apparently,
more work will be required before the matter can be settled. However, it is
quite obvious that the direct formulations may be seen as adaptive logics in
the sense of formula-preferential logics: the logic selects the models that verify
‘as much as possible’ the members of each Γi ∈ Σ (in its order of priority). If
adaptive logics are seen as formula preferential, and the set of abnormalities is
arbitrary (and not defined by some logical form), the lower limit logic and the
requirement that no abnormalities obtain might not together define an upper
limit logic. Formulations that recur to a translation are very different in this
respect. There the members of the different Γi are translated in a different way
(in the above example as ♦iA) and abnormalities have a specific logical form (in
the example ♦iA∧∼A in which A is either a primitive formula or its negation).
This matter too requires more study.

It is not always clear whether a prioritized adaptive logic (in its direct for-
mulation) is corrective or ampliative. Consider again some Σ = 〈Γ0, . . . , Γn〉. If
only the members of Γ0 are considered as the premises, then logics such as Tsr

are ampliative: some adaptive consequences may be CL-consequences of one or
more Γi (1 ≤ i ≤ n) that are not CL-consequences of Γ0. If Γ0 ∪ . . . ∪ Γn is
considered as the premise set, then the adaptive logic is corrective in that not
all CL-consequences of this set need to be adaptive consequences. This mainly
shows that the distinction between corrective and ampliative adaptive logics,
which is a merely pragmatic distinction that is useful for flat adaptive logics,
does not apply in a clearcut way to prioritized adaptive logics.

Other adaptive logics. The distinction between flat and prioritized adaptive
logics does not apply to all adaptive logics; some of them do not fit in either
category (as characterized above). As this concerns forthcoming work, I shall
only mention two examples.

Consider a flat adaptive logic, and suppose that Dab{A1, . . . , An} is a min-
imal Dab-consequence of some premise set Γ. If the adaptive logic is inductive,
such reasons apparently always derive from the set of data, and hence are ade-
quately taken care of by the fact that all data are premises. For other adaptive
logics, for example for all inconsistency-adaptive ones, there may be reasons
to believe that specific Ai do not behave abnormally and these reasons need
not be expressed by the premises. Indeed, if it follows from the premises that
some disjunction of inconsistencies obtains, one may have a good reason to be-
lieve that some of the disjuncts are false—for example, they may pertain to
well-entrenched theories, or to observational criteria that are considered as un-
problematic. In such cases, one may want to posit that some of the Ai are
not abnormal. If classical negation (written as ¬) is available, one may want
to introduce ¬Ai—remember that Ai is a formula of the form ∃(B ∧ ∼B)).
However, such ‘new premises’ should be defeasible. Indeed, there is no posi-
tive test for “is consistent” and hence one cannot in general be sure whether
some Dab-consequence of Γ is minimal—see also the proof theory in Section
5. In summary, this form of reasoning requires for the possibility, within the
framework of an inconsistency-adaptive logic, to introduce revokable premises
of a specific form next to the standard premises, thus introducing a separate
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adaptive mechanism.26

A different type of adaptive logic is also most easily illustrated in terms
of inconsistency. Suppose that one confronts an inconsistent theory, that the
inconsistency is taken to render the theory inadequate, and that one is interested
in the ‘consistent part’ of the theory, which one deems unproblematic. To locate
this consistent part (in other words, to obtain consistency by brute force) is a
task for logic. Given the absence of a positive test for consistency, it is a task
for adaptive logic. The task is a difficult one; so far this adaptive logic has not
been adequately characterized.

After first reading or hearing about adaptive logics, some people think that
adaptive logics are (what I like to call) flip-flop logics. Thus some people think
that inconsistency-adaptive logics (i) deliver the classical consequences of a
premise set if it is consistent, and (ii) deliver the paraconsistent consequences
(defined by the lower limit logic) of the premise set if it is inconsistent. While
(i) is correct, (ii) is false for most inconsistency-adaptive logics. Even if the
premise set is abnormal, most adaptive logics still interpret the set as normally
as possible, and hence deliver more consequences than the lower limit logic. It
is amusing, however, to note that it is very easy to define adaptive logics that
are flip-flop logics. They indeed adapt themselves to the premise set, even if
only in a very crude way.

4 Semantics

The dynamic proof theory of adaptive logics is certainly their most fascinating
feature. It was this proof theory that led to the discovery of adaptive logics—see
[5]. I shall nevertheless start by discussing the semantics because this will sound
more familiar to most people.

I shall at first concentrate on adaptive logics AL (defined from a lower limit
logic LLL, a set of abnormalities Ω and some strategy) that fulfil the following
conditions:

C1 AL is a flat adaptive logic.
C2 LLL is monotonic and compact.27

C3 The strategy is either Reliability or Minimal Abnormality.28

C4 LLL and Ω define a monotonic upper limit logic ULL. This means that
the set of LLL-models that verify no member of Ω form an adequate
semantics for the monotonic ULL.

C5 For any A ∈ Ω there is a (finite or infinite) ΠA ⊂ W such that
(i) If B ∈ ΠA, then any ULL-model verifies B (�ULL B).
(ii) Any LLL-model either verifies A or verifies all members of ΠA.

26That standard premises may be revoked is not a problem, not even in the context of CL:
consequences of Γ need not be consequences of some ∆ * Γ. The new premises, however,
are conjectures and, given that they express claims that transcend theories and observations,
are revokable in the more fundamental sense that is captured by the internal dynamics of the
reasoning.

27I shall especially need semantic compactness: Γ has a model iff every finite subset of Γ
has a model.

28Whenever the Simple strategy applies, the theorems below extend to it immediately be-
cause both Reliability and Minimal Abnormality come to the Simple strategy in such cases.

13



(iii) No LLL-model29 verifies A as well as all members of ΠA.

The set ΠA (or its member, if it is a singleton) ‘expresses’ that A is false in
the sense of (iii). Convention C5 is easily illustrated in terms of an inconsistency-
adaptive logic. Suppose that the lower limit logic is a paraconsistent logic PL
and that p ∧ ∼p ∈ Ω. Which sets fulfil the condition imposed upon Πp∧∼p?
Depending on the presence of classical negation (¬), material implication (⊃)
and bottom (characterized by the theorem ⊥ ⊃ A), each of the following sets
does: {¬(p ∧ ∼p)}, {(p ∧ ∼p) ⊃ ⊥} and {(p ∧ ∼p) ⊃ A | A ∈ W}.30 From
now on, I suppose that ΠA denotes some such set (or the union of all of them).
Condition C5 holds for all adaptive logics studied so far by the Ghent logic
group. As far as I can see, it holds for all sensible adaptive logics.

Where it matters, I refer to the strategy by the name of the adaptive logic
thus: ALr and ALm. I shall suppose that an adequate semantics is available
for LLL as well as for ULL, and hence that I can pass freely from the proof
theory to the semantics.

The AL-models of a premise set Γ are a subset of the LLL-models of Γ.
How the selection is made depends on the strategy. For both strategies, we
need Ab(M) (the abnormalities verified by the model M). For the Reliability
strategy, we moreover need the minimal Dab-consequences of Γ (defined by the
semantic counterpart of Definition 1), and U(Γ) is defined as in Section 3, viz.
as {A | A ∈ ∆ for some minimal Dab-consequence Dab(∆) of Γ}.

Definition 2 A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 3 Γ �ALr A iff A is verified by all reliable models of Γ.

Definition 4 A LLL-model M of Γ is minimally abnormal iff there is no LLL-
model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 5 Γ �ALm A iff A is verified by all minimally abnormal models of
Γ.

I shall prove some theorems to hold for all adaptive logics under considera-
tion. To simplify the notation, let ML

Γ denote the set of L-models of Γ. Where
the logic is ALr or ALm, I shall write Mr

Γ and Mm
Γ respectively.

Given that the adaptive logics were defined by a selection of lower limit
models, it is important to prove that this selection is proper. A very strong
property is that, for any lower limit model M that is not selected (M /∈MAL

Γ ),
there is a selected model M ′ that is less abnormal than M (Ab(M ′) ⊂ Ab(M)).
I call this property Strong Reassurance, Avron calls it Stopperedness, and it is
closely related to what is called Smoothness in [33]. That its absence leads to
undesired results is shown, for example, in [10]. I first prove the property for
the Minimal Abnormality strategy. An unqualified “model” will always refer to
a LLL-model.

29If one prefers to allow for the trivial model, the requirement should read: only the trivial
LLL-model verifies A as well as all members of ΠA. In the sequel of the text, I suppose that
there are no trivial models. The alternative requires nearly no change to the proofs below.

30Graham Priest’s LPm from [45] contains neither classical negation nor (detachable) ma-
terial implication and indeed the convention does not apply to it. The upshot is that much
of what follows is not provable for it—for more problems with LPm, see [15].
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Theorem 1 If M ∈ MLLL
Γ − Mm

Γ , then there is a M ′ ∈ Mm
Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. The theorem holds (vacuously) if Γ has no LLL-models or if Mm
Γ =

MLLL
Γ . Consider a M ∈ MLLL

Γ −Mm
Γ , let D1, D2, . . . be a list of all members

of Ω, and define
∆0 = ∅

∆i+1 = ∆i ∪ΠDi+1

if there is a model M ′ of Γ ∪∆i ∪ΠDi+1 such that Ab(M ′) ⊆ Ab(M), and

∆i+1 = ∆i

otherwise. Finally,
∆ = ∆0 ∪∆1 ∪∆2 ∪ . . .

Given the compactness of LLL, Γ∪∆ has models in view of the construction.
Let M ′ ∈MΓ∪∆.

Step 1. I first show that, if M ′ is a model of Γ∪∆, then Ab(M ′) ⊂ Ab(M).
Suppose that there is a Dj ∈ Ω such that Dj ∈ Ab(M ′) − Ab(M). Let M ′′

be a model of Γ ∪ ∆j−1 such that Ab(M ′′) ⊆ Ab(M). As Dj /∈ Ab(M),
Dj /∈ Ab(M ′′). Hence M ′′ is a model of Γ∪∆j−1∪ΠDj

and Ab(M ′′) ⊆ Ab(M).
So, ΠDj

⊆ ∆j ⊆ ∆. As M ′ is a model of Γ ∪ ∆, Dj /∈ Ab(M ′). But this
contradicts the supposition.

Step 2. I now show that any model of Γ∪∆ is a minimally abnormal model
of Γ. Suppose that M ′ is a model of Γ ∪ ∆, but is not a minimally abnormal
model of Γ. Hence, some model M ′′ of Γ is such that Ab(M ′′) ⊂ Ab(M ′). It
follows that M ′′ is a model of Γ∪∆. If it were not, then, as M ′′ is a model of Γ,
there is a ΠDj

⊆ ∆ such that M ′ verifies all members of ΠDj
and M ′′ falsifies

some members of ΠDj
. By Condition C5, M ′ falsifies Dj and M ′′ verifies Dj ,

which is impossible in view of Ab(M ′′) ⊂ Ab(M ′).
Consider any Dj ∈ Ab(M ′)− Ab(M ′′) 6= ∅. As M ′′ is a model of Γ ∪∆j−1

that falsifies Dj , it is a model of Γ ∪ ∆j−1 ∪ ΠDj
. As Ab(M ′′) ⊂ Ab(M ′) and

Ab(M ′) ⊆ Ab(M), Ab(M ′′) ⊂ Ab(M). It follows that ∆j = ∆j−1 ∪ ΠDj
and

hence that ΠDj
∈ ∆. But then Dj /∈ Ab(M ′). Hence, Ab(M ′′) = Ab(M ′). So,

the supposition leads to a contradiction.

As Mm
Γ ⊆Mr

Γ (by property 1 of Theorem 3 below), it follows that:

Theorem 2 If M ∈MLLL
Γ −Mr

Γ, then there is a M ′ ∈Mr
Γ such that Ab(M ′) ⊂

Ab(M). (Strong Reassurance for Reliability.)

Corollary 1 If Γ has lower limit models, then it has minimally abnormal as
well as reliable models. (Reassurance.)

At this point, I need some lemmas that require a specific characterization of
the minimal abnormality strategy. In [8], such a characterization is offered in
terms of a set ΦΓ, which is a set of sets of abnormalities.31 It is then shown that,
where M is a minimally abnormal model of some Γ, Ab(M) is characterized by
some φ ∈ ΦΓ—all members of Ab(M) are LLL-consequences of some φ ∈ ΦΓ.

31In [8] ΦΓ is a set of sets of factors of abnormalities, but this modification is inconsequential
and factors of abnormalities are a nuisance in the present setup.
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Recently, I found a drastically simpler such characterization, which only has
the disadvantage to be less ‘finitistic’. I shall now redefine ΦΓ. The proofs in
[8] may be easily modified in view of this change and may be generalized to
all adaptive logics considered, but I cannot, in the present paper, spell out the
required modifications to the proofs. Let Φ◦

Γ comprise all sets that contain a
disjunct out of each minimal Dab-consequence of Γ and that are LLL-closed
with respect to Ω.32 Let ΦΓ contain all members of Φ◦

Γ that are not supersets of
other members of Φ◦

Γ. Suitably modifying and generalizing the proof of Lemmas
7.2 and 7.3 of [8] gives us:

Lemma 1 M is a minimally abnormal model of Γ iff M ∈MLLL
Γ and Ab(M) ∈

ΦΓ.

The strength of this lemma may be seen from the fact that each of the
following properties are immediate or nearly immediate consequences of it:

Theorem 3 Each of the following holds:

1. Each minimally abnormal model of Γ is a reliable model of Γ (Mm
Γ ⊆

Mr
Γ). Hence CnALr (Γ) ⊆ CnALm (Γ).

2. If A ∈ Ω− U(Γ), then ΠA ⊆ CnALr (Γ).

3. If Dab(∆) is a minimal Dab-consequence of Γ and A ∈ ∆, then there
is a minimally abnormal model M of Γ that verifies A and falsifies all
members (if any) of ∆− {A}.

4. All minimally abnormal models of Γ are minimally abnormal models of
CnALm (Γ) and vice versa (Mm

Γ = Mm
CnALm (Γ)) and hence CnALm (Γ) =

CnALm (CnALm (Γ)). (Fixed Point.33)

5. All reliable models of Γ are reliable models of CnALr (Γ) and vice versa
(Mr

Γ = Mr
CnALr (Γ)) and hence CnALr (Γ) = CnALr (CnALr (Γ)). (Fixed

Point.)

6. For all ∆ ⊆ Ω, Dab(∆) ∈ CnAL(Γ) iff Dab(∆) ∈ CnLLL(Γ). (Immunity.)

7. If Γ �AL A for every A ∈ Γ′, and Γ∪Γ′ �AL B, then Γ �AL B. (Cautious
Cut.)

8. If Γ �AL A for every A ∈ Γ′, and Γ �AL B, then Γ∪Γ′ �AL B. (Cautious
Monotonicity.)

A premise set Γ will be called normal if MULL
Γ 6= ∅; it is called abnormal

otherwise. Remark that Γ is normal iff Ω ∩ CnLLL(Γ) = ∅.

Theorem 4 Each of the following obtains:

1. MULL
Γ ⊆Mm

Γ ⊆Mr
Γ ⊆MLLL

Γ

and hence CnLLL(Γ) ⊆ CnALr (Γ) ⊆ CnALm (Γ) ⊆ CnULL(Γ).
32By the second half of the requirement I mean that ϕ = CnLLL(ϕ) ∩ Ω.
33The label might suggest that recurrent applications of some closure operation ultimately

lead to a fixed point. This, however, is not the case: a single application of the closure
operation leads to a fixed point (CnALm (Γ) is a fixed point with respect to AL-closure).
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2. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

and hence CnALr (Γ) = CnALm (Γ) = CnULL(Γ).

3. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂Mm
Γ

and hence CnALm (Γ) ⊂ CnULL(Γ).34

4. Mr
Γ ⊂MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω− U(Γ).

5. CnLLL(Γ) ⊂ CnALr (Γ) iff Mr
Γ ⊂MLLL

Γ .

6. Mm
Γ ⊂MLLL

Γ iff there is a (possibly infinite) ∆ such that Γ ∪∆ is LLL-
satisfiable and ∆ * ϕ for every ϕ ∈ ΦΓ.

7. If there are A1, . . . , An (n ≥ 1) such that Γ ∪ {A1, . . . , An} is LLL-
satisfiable and {A1, . . . , An} * ϕ for every ϕ ∈ ΦΓ, then CnLLL(Γ) ⊂
CnALr (Γ).

Proof. Ad 2. If Γ is normal, then U(Γ) = ∅ and only ULL-models of Γ are
minimally abnormal.

Ad 3. If Γ is abnormal, then MULL
Γ = ∅.

Ad 1. MULL
Γ ⊆ Mm

Γ follows from 2 and 3. Mr
Γ ⊆ MLLL

Γ is immediate in
view of the definition of reliable model of Γ. Mm

Γ ⊆ Mr
Γ is item 1 of Theorem

3.
Ad 4. Immediate in view of Definitions 2 and 3.
Ad 5. By 4, there is an A ∈ Ω − U(Γ) such that all M ∈ Mr

Γ verify ΠA

whereas some M ∈MLLL
Γ −Mr

Γ does not.
Ad 6. Immediate in view of Definitions 4 and 5.
Ad 7. Suppose that the antecedent is true. For all B1 ∈ ΠA1 , . . . , and

Bn ∈ ΠAn
, all M ∈ Mm

Γ verify B1 ∨ . . . ∨ Bn whereas some M ∈ MLLL
Γ (viz.

an M ∈MLLL
Γ∪{A1,...,An}) does not in view of Condition C5.

Other known adaptive logics are obtained by combining adaptive logics of
the type described above. Usually, it is easy to check that all aforementioned
properties extend to them.35

5 Dynamic Proof Theory

I shall restrict the discussion to adaptive logics that fulfil the conditions C1–5
as well as two new conditions. These concern a function f that associates with
any set of formulas Γ a set of formulas f(Γ) ⊆ Ω.

C6 Every LLL-model M of Γ that falsifies all members of f(Γ), verifies all
formulas verified by some ULL-model of Γ.

C7 If Γ is finite, so is f(Γ).

The conditions may look somewhat weird, but they are not. For example,
for most inconsistency-adaptive logics f(Γ) is the set of all formulas of the form
∼(A ∧ ∼A) (sometimes formally restricted, for example to primitive formulas)

34If Γ is abnormal, it has no ULL-models and CnULL(Γ) is trivial.
35More properties (see for example [1] and [2]) may be established for the adaptive logics

under consideration. For example, Right Cautious Cut (and hence Plausibility) holds for
ALm (but not for ALr).
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for which ∼A is a subformula of some member of Γ. Remark that this set is
finite whenever Γ is so. In general, the conditions are easily established if the set
of abnormalities, Ω, is characterized by some logical form (or by finitely many
logical forms)36 and if the LLL-semantics is recursive.

As before, I shall suppose that ∨ denotes classical disjunction. If disjunction
behaves abnormally in LLL, the language is extended with classical disjunction.
This may be done by means of an explicit definition or, where this is impossible,
by a straightforward extension of the language—see [9].

Theorem 5 Γ `ULL A iff there is a finite ∆ ∈ Ω such that Γ `LLL A∨Dab(∆).
(Derivability Adjustment Theorem.)

Proof. For the left–right direction, suppose that Γ `ULL A. By the Compactness
of ULL, there is a finite Γ′ ⊆ Γ such that Γ′ `ULL A. Let ∆ = f(Γ′), which
is a finite set. If a LLL-model of Γ′ verifies some member of f(Γ′), it verifies
Dab(∆). If a LLL-model of Γ′ falsifies all members of f(Γ′), then, by C6, it
verifies all formulas verified by some ULL-model of Γ, and hence it verifies A.
It follows that all LLL-models of Γ′ verify A ∨Dab(∆).

For the right–left direction, suppose that Γ `LLL A ∨ Dab(∆). By C5, no
ULL-model verifies any member of Ω. It follows that all ULL-models of Γ (if
any) verify A.

This theorem provides the motor for the dynamic proof theory. Dab(∆)
expresses that some formulas behave abnormally. Adaptive logics suppose that
all formulas behave normally unless and until shown otherwise. So, if Γ `LLL

A ∨Dab(∆) and the members of Γ have been derived from the premises,37 one
may derive A on the condition that certain formulas behave normally—what
this means depends again on the strategy.

Just like any other proof, a dynamic proof consists of a sequence of formulas.
Annotated proofs consist of a sequence of lines that have five elements: (i) a
line number, (ii) the derived formula A, (iii) the line numbers of the formulas
from which A is derived, (iv) the rule by which A is derived, and (v) a (possi-
bly empty) ‘condition’. The condition specifies which formulas have to behave
normally in order for A to be so derivable.

Apart from the fifth element of the lines, the only unusual thing is that lines
of a dynamic proof may be marked. The marks may change from one stage of
the proof to the next (where adding a line brings the proof to its next stage).
The formula (second element) of a line that is marked at stage s is considered
as not derived at stage s. Marking is governed by a definition, which depends
on the strategy.

I first list the rules for a proof from Γ. I list them in the form of generic
rules.38 Apart from a premise rule, there is an unconditional rule and a condi-
tional rule.

PREM If A ∈ Γ, then one may add a line consisting of

(i) the appropriate line number,
36Remark that C4 will always be fulfilled in this case.
37Γ is an arbitrary set of formulas here, not the premise set.
38While this is unavoidable in the present general setup, it is even most convenient and

transparent to characterize the proof theory of specific adaptive logics in terms of generic
rules.
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(ii) A,
(iii) “−”,
(iv) “Prem”, and
(v) ∅.

RU If B1, . . . , Bm `LLL A and B1, . . . , Bm occur in the proof with the
conditions ∆1, . . . , ∆m respectively, then one may add a line consisting
of

(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪∆m.

RC If B1, . . . , Bm `T A ∨Dab(Θ) and B1, . . . , Bm occur in the proof with
the conditions ∆1, . . . , ∆m respectively, then one may add a line con-
sisting of

(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RC”, and
(v) Θ ∪∆1 ∪ . . . ∪∆m.

At any stage of the proof, zero or more Dab-formulas will be derived. Some
of them are minimal (at that stage). Let Us(Γ) be the union of all ∆ for which
Dab(∆) is a minimal Dab-formula at stage s. Let Φ◦

s(Γ) be the set of all sets
that contain one disjunct out of each minimal Dab-formula at stage s, and let
Φs(Γ) contain those members of Φ◦

s(Γ) that are not proper supersets of other
members of Φ◦

s(Γ).39

Definition 6 Marking for ALr: Line i is marked at stage s iff, where ∆ is its
fifth element, ∆ ∩ Us(Γ) 6= ∅.

Definition 7 Marking for ALm: Line i is marked at stage s iff, where A is the
second element and ∆ the fifth element of line i, (i) there is no ϕ ∈ Φs(Γ) such
that ϕ ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line k that has A as its
second element and has as its fifth element some Θ such that ϕ ∩Θ = ∅.

At this point I can define AL-derivability:

Definition 8 A is derived at stage s in an AL-proof from Γ iff A is the second
element of a line that is not marked in the proof (at stage s).

Definition 9 A is finally derived on line i of an AL-proof (at a stage) from
Γ iff (i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

39The proofs may made be somewhat more efficient by introducing some closing operations
in the definitions of Us(Γ) and Φs(Γ). However, one should take computational matters into
account: it should be decidable whether a line is marked or unmarked.
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Definition 10 Γ `AL A (A is finally derivable from Γ) iff A is finally derived
on some line of an AL-proof from Γ.

For the specific logics that were studied, the Soundness and Completeness of
the dynamic proof theory with respect to the semantics was proved. Apparently,
these proofs may be generalized for all adaptive logics under consideration. For
examples of dynamic proofs, I refer to the many papers on specific logics.40

While Definition 9 may be taken at face value for Reliability, some weird
premise sets require that, in the case of Minimal Abnormality, infinite extensions
of proofs are considered—see [8, p. 466] for an example.41

A central theorem for the dynamic proof theory is

Theorem 6 If Γ `AL A, then any proof from Γ can be extended into a proof
in which A is finally derived from Γ. (Proof Invariance.)

Proof. Consider any proof from Γ—call it P1. If Γ `AL A, there is a proof from
Γ—call it P2—in which A has been finally derived at some line i and that, if
extending it with proof 1 results in line i being marked, may be further extended
in such a way that line i is unmarked. Call the last extension E. Definitions 6
and 7 warrant that, if P2 is first extended with P2 and then with E, then the
line that had number i in P1 is unmarked.

What about decidability? The propositional fragments (and some other
fragments) of most adaptive logics are decidable. This means that the dynamics
of the proofs can in principle be avoided by deriving formulas in a suitable
order and by not deriving any formulas that will be marked in view of other
derived formulas. The full predicative versions of adaptive logics are obviously
undecidable and have no positive test for final derivability.

Even when one is swimming in undecidable waters, there may be certain
criteria that enable one to decide that a specific formula has been finally derived
at some line of a dynamic proof from Γ. Some such criteria provide from work
on the block approach (see for example [7]) and from work on tableau methods
for adaptive logics (see [19] and [21]). Much more efficient criteria derive from
goal directed dynamic proofs (work in progress, partly with Dagmar Provijn).

But what if no such criterion applies? It was shown in [7]—the result may
be easily generalized to all considered adaptive logics—that as dynamic proofs
proceed, the set of formulas derived at a stage offers an increasingly better
estimate of the set of finally derivable formulas. This estimate is not merely
a computational approximation, but there is an idea behind it: as the proof
proceeds, it provides an increasingly better insight in the premises, and hence
in the minimal Dab-formulas that are derivable from them. Moreover, the goal
directed dynamic proofs provide means to speed up the gain of insight in the
premises. The upshot is that dynamic proofs form a sensible basis for decision
and action. In this sense, they not only enable one to explicate actual forms of
dynamic reasoning, but also justify such forms of reasoning.

I shall be brief on prioritized and combined adaptive logics. The essential
point was already mentioned: where different adaptive mechanisms are com-
bined, one obtains dynamic proofs in which the dynamic mechanisms do not

40A list is available: http://logica.rug.ac.be/adlog/albib.html.
41Extensions of infinite proofs are obtained by inserting formulas in the proof.
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act consecutively but at the same time. As a result, the dynamic proofs obtain
their full explicatory and justificatory function.

6 In Conclusion

Several open problems have been mentioned in the previous sections and I shall
not repeat them here. I shall rather add a final comment concerning the epis-
temological function of adaptive logics.

In my own work on epistemology (see for example [3] and [6]), I have stressed
that the dynamics of human knowledge depends essentially on the fact that
humans (as individuals or as groups) shift from one context to the other in
solving problems. Adaptive logics do not offer an explication for this inter-
contextual dynamics. They are meant to apply within contexts and to explicate
the intra-contextual dynamics. Once we understand the latter, it may be hoped
that one will be able to move on to understand the inter-contextual dynamics,
to explicate it, and to find means to increase its computational as well as its
problem-solving efficiency.42
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