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1. Aim of This Paper

A recent issue of Synthese contains a paper by Horsten and Welch
(2007) on adaptive logics. The paper comprises results on the com-
plexity of two adaptive logics, states that Batens made two mistaken
claims, and attaches some philosophical comments to the complexity
results. Meanwhile, one of the complexity results was shown mistaken
(Verdée, 200x), but the others may be generalized to most adaptive
logics in standard format—the standard format is described in Section
2. Horsten and Welch are right on one of Batens’ claims, not on the
other. Their philosophical comments, however, are severely misguided.
The comments illustrate a deep misunderstanding about the nature
and function of logics for defeasible reasoning forms, in other words
for most human reasoning. As the misunderstanding is by no means
peculiar for Horsten and Welch, it seems worthwhile to consider the
matter in a systematic way.

The central claim we want to dispute is that adaptive logics are too
complex to serve as an explication for actual human reasoning. Horsten
and Welch presuppose that derivability is a simple relation, much sim-
pler than, for example, truth. According to their results, the complexity
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of adaptive consequence relations, or rather of the consequence sets, is
¥9 (for some infinite propositional premise sets). This brings them to
their central claim. We find this claim baffling. Apparently they live in
a place that only remotely resembles planet earth, where decisions are
based on provisional judgements and where the formal explication of
most reasoning is complex.

We also have several minor complaints about Horsten and Welch
(2007). We shall present these where they seem most appropriate. Two
minor complaints are best mentioned from the outset. The first con-
cerns the title: “The undecidability of propositional adaptive logic”. It
is usually said that propositional CL (Classical Logic) is decidable, by
which one means that A4, ..., A, Fcr, B is decidable for all Aq,..., A,
and B. Propositional adaptive logics in standard format are decidable
in precisely the same sense.! The consequence relations of these logics
are undecidable if the premise set is infinite. But so is the consequence
relation of propositional CL. So the title comes to blaming Kripke for
being single brained.

The second minor complaint concerns the presentation of adaptive
logics. Twenty five years ago, there was a single adaptive logic. Today
there is a multitude of extremely diverse logics that share the same
formal structure. On the road, adaptive logicians had to adjust their
terminology to new insights and had to find ways to systematize the
growing domain. Horsten and Welch mix terminology from the last
twenty five years and intersperse it with terminology of their own. They
present things in a weird and idiosyncratic way, for example defining
inference rules in terms of truth tables. This forces us to describe
adaptive logics from scratch according to present standards.

As the adaptive logic program is application driven, it would have
been nice to start with a section describing some of the reasoning
forms that are explicated by adaptive logics. This would have provided
philosophical motivation. Adaptive logics are intended to describe, in a
strictly formal way, reasoning forms that frequently occur both in ev-
eryday contexts and in scientific reasoning. Limitations of space forced
us to postpone the examples of such reasoning forms to Section 5. In
Section 2, we shall present the standard format for adaptive logics and
we introduce the two specific logics that Horsten and Welch criticize.
The standard format is the common structure of nearly all adaptive
logics. We cannot refer to Horsten and Welch’s paper for this purpose,
because their description is idiosyncratic and concerns two logics only.

! This is not fully precise. All propositional adaptive logics studied so far are
decidable in this sense, including the logics referred to by Horsten and Welch.
However if the lower limit logic (see Section 2) is undecidable, then so will be the
propositional adaptive logic.
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The contentions of Horsten and Welch will be presented in Section 3.
In Section 4, the dynamic proofs of adaptive logics will be considered
and Horsten and Welch’s misunderstandings in this connection will
be spelled out. This section is essential for understanding the relation
between reasoning (the explicandum) and adaptive logics (the expli-
catum). In the central Section 5, (i) we shall discuss the need for
defeasible reasoning forms, their complexity, and the implications for
their explication in terms of logics, and (ii) we shall show that Horsten
and Welch’s objections are misguided.

2. Adaptive Logics in Standard Format

Adaptive logics adapt themselves to the premise set they are applied
to. The logic adapts itself: it depends on the premise set whether a
specific application of an inference rule is or is not correct with respect
to the premise set. The present most attractive description of adaptive
logics is called the standard format, appearing from (Batens, 2001) on
and most extensively studied in (Batens, 2007), to which we refer for
details and metatheoretic proofs. Nearly all known adaptive logics have
been phrased in standard format, which has major advantages as will
become clear below. The two logics mentioned in (Horsten and Welch,
2007) are in standard format.
An adaptive logic AL is defined by a triple:

1. A lower limit logic LLL: a reflexive, transitive, monotonic, and
compact logic that has a characteristic semantics and contains CL
(Classical Logic).2

2. A set of abnormalities €2 : a set (or union of sets) of LLL-contingent
formulas, characterized by a (possibly restricted) logical form F.

3. An adaptive strategy: Reliability or Minimal Abnormality.

The lower limit logic is the stable part of the adaptive logic; anything
that follows from the premises by LLL will never be revoked. The
abnormalities are formulas that are presupposed to be false, ‘unless
and until proven otherwise’. Strategies are ways to cope with derivable

2 This is realized by adding classical logical symbols (those having the same
meaning as in CL) to the language. These will be written as ~, V, 3, etc. The
classical symbols have mainly a technical use and are not meant to occur in the
premises or conclusions of standard applications.
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disjunctions of abnormalities: an adaptive strategy picks one specific
way to interpret the premises as normally as possible.?

The predicative version of the logics considered in (Horsten and
Welch, 2007) is defined as follows. The lower limit logic is CLulN
(Classical Logic allowing for gluts with respect to Negation), viz. full
positive CL with (A D ~A) D ~A added as the only axiom for the
standard negation, and extended?* with classical negation <~ see note
2. While AV~A is a CLuN-theorem, AA~A is CLuN-contingent. The
set of abnormalities € comprises all formulas of the form 3(A A ~A)
(the existential closure of AA~A).5 The strategies are respectively Re-
liability and Minimal Abnormality—see below. The resulting adaptive
logics will be called CLuN" and CLuN"™.

Incidentally, if the lower limit logic is extended with an axiom that
declares all abnormalities logically false, one obtains the upper limit
logic ULL. If a premise set I' does not require that any abnormal-
ities are true, the AL-consequences of I' are identical to its ULL-
consequences. The upper limit logic of CLulN" and of CLulN"™ is
CL.

In the expression Dab(A), A will always be a finite subset of Q
and Dab(A) will denote the classical disjunction (see note 2) of the
members of A. Dab(A) is called a Dab-formula. Dab(A) is a minimal
Dab-consequence of T iff T' Frpy, Dab(A) whereas T' Frprr, Dab(A')
for any A" € A. Where Dab(A1), Dab(Asg), ... are the minimal Dab-
consequences of I', U(T') = AjUALU. . .; U(T) is the set of abnormalities
that are unreliable with respect to I'. Where M is a LLL-model, Ab(M)
is the set of abnormalities verified by M.

DEFINITION 1. A LLL-model M of T is reliable iff Ab(M) C U(T").
DEFINITION 2. T Eapr A iff A is verified by all reliable models of T'.

So a LLL-model of T is reliable iff it verifies only abnormalities that
are unreliable with respect to I' anyway. According to an adaptive logic
that has Reliability as its strategy, the semantic consequences of I' are
the formulas verified by all reliable models of T'.

DEFINITION 3. A LLL-model M of T' is minimally abnormal iff
there is no LLL-model M’ of T such that Ab(M') C Ab(M).

3 Apart from Reliability and Minimal Abnormality, several strategies were de-
veloped mainly in order to characterize consequence relations from the literature
in terms of an adaptive logic. All those strategies can be reduced to Reliability or
Minimal Abnormality under a translation.

* Suitable axioms are (4 D ~A4) D ~A and A D (XA D B).

5 So, for the propositional fragment, Q comprises all formulas of the form AA~A.
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DEFINITION 4. T Eapm A iff A is verified by all minimally abnormal
models of .

So a LLL-model M of I' is minimally abnormal iff no other LLL-
model of I" verifies (set theoretically) less abnormalities than M. Ac-
cording to an adaptive logic that has Minimal Abnormality as its
strategy, the semantic consequences of I' are the formulas verified by
all minimally abnormal models of T'.

An annotated AL proof consists of lines that have four elements: a
line number, a formula, a justification and a condition. Where

A A

abbreviates that A occurs in the proof on the condition A, the (generic)
inference rules are:

PREM IfAeTl:

A 0
RU If Al,...,An FLLL B: A1 Al
A, A,

B AlU...UA,

RC If Ay,..., Ay b BVDab(©) Ay A

B AMU...UA,UB

We shall need to consider stages of proofs, which are lists of lines
obtained by applications of the three above rules, with the usual un-
derstanding that the justification of a line should only refer to lines
preceding it in the list. The empty list will be considered as stage 0
of every proof. Where s is a stage, s’ is an extension of s iff all lines
that occur in s occur in the same order in s’. A (dynamic) proof is
a chain of stages. Here comes a peculiarity required by the Minimal
Abnormality strategy. Normally, the extension of a stage is obtained
by appending lines. This is not required here. The added lines may
be inserted, provided that the justification of every line refers only to
preceding lines. A line inserted between lines 4 and 5 may, for example,
be numbered 4.1.

That A is derivable on the condition A may be interpreted as follows:
it follows from the premise set that A or one of the members of A is true.

5 An alternative, which we shall not consider in this paper, is to renumber all
lines after the insertion and to adjust the old line numbers in the justifications.
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As the members of A, which are abnormalities, are supposed to be false,
A is considered as derived, unless and until it shows that the supposition
cannot be upheld. The precise meaning of “cannot be upheld” depends
on the strategy, which determines the marking definition (see below)
and hence determines which lines are marked at a stage. If A is only the
formula of marked lines, it is considered as not derived at that stage.

We now set out to present the marking definitions. Dab(A) is a
minimal Dab-formula at stage s of an AL-proof iff Dab(A) has been
derived at that stage on the condition () whereas there is no A’ C A for
which Dab(A’) has been derived on the condition ().” A choice set of
¥ ={A1,A,,...} is a set that contains an element out of each member
of ¥. A minimal choice set of ¥ is a choice set of ¥ of which no proper
subset is a choice set of 3. Consider a proof from I' at stage s and let
Dab(A1), ..., Dab(A,) be the minimal Dab-formulas at that stage.
Us(T) = AjU...UA,S and ®4(T) is the set of minimal choice sets of
{A, ..., A0

DEFINITION 5. Marking for Reliability: Line | is marked at stage s
iff, where A is its condition, AN Us(T) # 0.

Note that at least one line on which A is derived is unmarked iff, on
the present estimation of U(T") (see note 8), A is verified by all reliable
models of T'.

DEFINITION 6. Marking for Minimal Abnormality: Line [ is marked
at stage s iff, where A is derived on the condition A on line l, (i) there
is no p € ®4(T) such that pNA =0, or (ii) for some p € ®4(T), there
is no line on which A is derived on a condition © for which oM O = ().

This reads more easily: where A is derived on the condition A on
line [, line [ is unmarked at stage s iff (i) there is a ¢ € ®4(T") for which
©NA = () and (ii) for every ¢ € ®4(T'), there is a line at which A is
derived on a condition © for which ¢ N © = ().

" Note the similarity with the definition of a minimal Dab-consequence of T'.
The minimal Dab-formulas at a stage represent an estimation of the minimal Dab-
consequences of I'; the estimation depends on the insights provided by the stage of
the proof.

8 U,(I') may be seen as the estimation of U(T') that is provided by stage s of the
proof.

9 Let ®(T) be defined similarly from the minimal Dab-consequences of I'. It can
be shown that ¢ € ®(T") iff there is a minimally abnormal model M of T" for which
@ = Ab(M). ®5(T') may be seen as the estimation of ®(I") that is provided by stage
s of the proof.
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Note that all lines on which A is derived are marked unless, on the
present estimation of ®(I") (see note 9), A is verified by all minimally
abnormal models of I'.10

A formula A is derived at stage s of a proof from I' iff it is the
formula of a line that is unmarked at that stage. Marks may come and
go as the proof proceeds. So one also wants to define a stable notion of
derivability, which is called final derivability.

DEFINITION 7. A is finally derived from ' on line I of a stage s iff
(i) A is the second element of line l, (i) line | is not marked at stage
s, and (iii) every extension of the stage in which line | is marked may
be further extended in such a way that line | is unmarked.

In Definition 7, s may be taken to be a finite stage for both strategies.
For the Reliability strategy, the definition may moreover be taken to
refer to finite extensions only. For Minimal Abnormality the definition
should be required to refer to finite as well as to infinite extensions, as
was shown in (Batens, 1999, p. 479).

The intuitive notion behind final derivability is the existence of a
proof that is stable with respect to an unmarked line [: A is derived
on line [ and line [ is unmarked in the proof and in all its extensions.
However, for some AL, T', and A, only an infinite proof from I' in which
A is the formula of a line [ is stable with respect to line [. A simple
example is the CLuN"-proof of p from {p V q,~q,(qg A ~q) V (r; A
~713), (@A ~q) D (1i A~1) Yicqo,1,...}- Every finite stage can be extended
with a formula (g A~q)V (r; A~r;) for an ¢ that does not yet occur in the
stage. In the extension, g A ~¢q is unreliable and hence line [ is marked.
The proof becomes stable only after r; A ~r; is derived for all ¢ € N.
Needless to say, the existence of an infinite proof is not established
by producing the proof but by reasoning in the metalanguage. This
is why, from the very first paper on, Definition 7 was introduced—see
also Section 4. There is an easy demonstration (Theorem 40 of Batens
(200x)) that A is finally derived at a finite stage of a proof from I'
according to Definition 7 iff A is derived on an unmarked line [ of a
(possibly infinite) proof from I' that is stable with respect to line .

10 The person who devises the proof has nothing to decide or even to do in con-
nection with marking. It is governed by a definition, not by a rule. The mistaken
name “rule” occurred in older papers on adaptive logics, but was corrected at least
from (Batens and Meheus, 2000) on. So it is a pity that Horsten and Welch continue
the confusion. Their way of proceeding moreover brings them to proofs in which
certain steps are repeated an infinite number of times, as appears from the example
in Section 3 below. This is not very elegant. As the proof goes on, one changes one’s
mind on derivability in view of the minimal Dab-formulas. This is best expressed by
lines being marked or unmarked at a stage. Horsten and Welch’s way of proceeding
moreover cannot be upheld for the Minimal Abnormality strategy.



Definition 7 has an attractive game-theoretic interpretation. The
proponent first produces a stage containing a line [ of which A is the
formula. Next the opponent extends the proof. Finally, the proponent
extends the extension. The proponent wins iff line [ is unmarked at
this point. The proponent has a winning strategy iff she can win what-
ever move the opponent makes. The existence of a winning strategy is
obviously established by a metalanguage reasoning.

The standard format provides an attractive systematization of adap-
tive logics. Apart from CLulN" and CLulN", many other corrective
adaptive logics have been studied. The upper limit logic of all of them
is CL or an extension of CL, for example a modal logic. With re-
spect to the standard symbols of the language, their lower limit logic
is weaker than CL; it is paraconsistent, some other logical symbol is
defective, several symbols are defective, or some non-logical symbols
are ambiguous or vague. Many other adaptive logics are ampliative in
that their lower limit logic is CL or an extension of it. These include
logics for inductive generalization, for abduction, for handling back-
ground knowledge, for generating questions, etc. Other adaptive logics
are corrective as well as ampliative. Adaptive logics can very easily be
combined in several ways.

If an adaptive logic is in standard format, the format provides the
proof theory as well as the semantic characterization of the logic, as
we have seen. The standard format also provides lots of metatheoretic
results, including the soundness and completeness proofs and the proofs
of all the interesting properties—see (Batens, 2007). It also provides
criteria for final derivability, viz. procedures (some pertaining to proofs,
others pertaining to tableaux) that enable one to decide, for specific A
and I', that A is finally derivable from I'—see also Section 5.

3. Horsten and Welch’s Contentions

There is no point in summarizing Horsten and Welch’s idiosyncratic
formulation of propositional CLulN" and CLulN"™. However, there are
a few things we need to mention in order to make their definitions
understandable.

First of all Horsten and Welch require that, once marked, a line
remains marked forever. They allow that the formula of the marked
line is derived on a new line (if this is unmarked), and require that this
line is appended to (the stage of) the proof. Next, they present an alter-
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native definition of final derivability. Disregarding some unimportant
idiosyncracies,'! their Definition 2 comes to:

A formula A is finally CLulN"-derivable from a set of premises I
if and only if there is a proof P of A from I' on a certain line [,
and this proof cannot be extended to a proof Q in which line [ is
marked.

By “a proof P of A from I" on a certain line [” they mean that A is the
formula of line [ of a certain proof.

These changes, which they say to introduce “for diagnostic pur-
poses”, lead to proofs that are not lists in the usual sense—see, for
example, Boolos et al. (2002)—because their length may be w + 1, etc.
Also, we do not see any diagnostic use of the changes.

In order to bring their approach to CLulN" closer to the approach
of adaptive logicians, they present their Definition 5, which roughly is
our Definition 7, except that they allow the stage mentioned in that
definition as well as all extensions mentioned in it to have length w.
They purport to show that the restriction to a finite stage and finite
extensions is mistaken (beginning of their section 3.3). They do so by
means of the following example. Let I's = {p V q,~q, (¢ A ~q) V (r; A
~1i), ((g A ~q) V (r; A ~13)) D (ri A ~r;) | i € N} and consider the
following CLulN"-proof from I's. We shall not write any marks, but
explain the matter immediately after the proof.

1 pVq Prem )
2 ~q Prem 0
3 p 1,2, RC  {gA~q}
4 (g A ~q)V (r1 A ~rq) Prem 0
5 ((g A ~q)V (r1 A~r1)) D (r1 A~rp) Prem 0
6 1A ~T1 Prem 0
k p 1,2, RC  {gA~q}
E+1 (gA~q)V (ri A~ry) Prem 0
E+2 ((gN~q)V (ri A~ri)) D (ri A~r;)  Prem 0
k+3 riA~r; Prem 0
w p 1,2, RC  {gA~q}

Line 3 is marked when line 4 is added, and (in Horsten and Welch’s
setup) the mark is not removed when line 6 is added. However, after
line 6, p may be derived again on a new line. This may be done infinitely
many times as lines k to k+3 illustrate. Line k is marked when line k+1

1 They consider the set of marks, which is a set of line numbers that cause the
mark, as an element of a line of a proof.
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is added, but p may be derived on a new line after line k4 3 was added.
Only after all minimal Dab-formulas, viz. all formulas r; A~r; have been
derived, p can be derived on a line that is and remains unmarked. Note
that, in our setup, line 3 is unmarked at stage 6 of the proof and there
is no need to introduce line k; line 3 will be marked at stage k + 1 of
the proof, unmarked again at stage k + 3, and so on.

For CLuN"™ Horsten and Welch do not go into the details of proofs
and do not present a marking definition, but define final derivability
with respect to formulas that can be categorically derived from the
premise set.!?

As a next step, Hosten and Welch set out to study the complex-
ity of final derivability, (recursive) infinite propositional premise sets
included. For CLuN" the outcome is X3. II} is an upper bound for
CLuN"™, but the precise outcome turns out to be ¥9.13

We now come to the philosophical reflections that Horsten and
Welch attach to these results.

Propositional adaptive logics are decidable in the usual sense: Aj,
..., Ay F B is decidable. Horsten and Welch correctly point out that
Batens made a mistake when he stated the guess that decidability
survives if the propositional premise set is infinite. Batens has an ex-
cuse. All interesting applications of adaptive logics to the philosophy
of science concern the predicative case. There the consequence rela-
tion is not only undecidable, there even is no positive test for it (in
general) as is noted in many published papers—the technicalities are
clarified in subsequent sections. So Batens did not really care for infinite
propositional premise sets. Still, the mistake was careless and had to
be corrected.

Horsten and Welch object to the fact that some premise sets and
conclusions require infinite proofs. They quote Church who, in a re-
action to Zermelo, remarks that logics are explications of the concept
of proof and proofs should carry finality of conviction to anyone who
admits the assumptions of the proof. This requires a finitary syntactical
test for the validity of proof candidates, which is impossible in infinite
cases. According to Horsten and Welch, the transfinite character of
some adaptive proofs is to be blamed for the fact that the “final proofs
[of adaptive logics] do not carry finality of conviction”.

Moreover, Horsten and Welch argue that the complexity of adaptive
logics is even more problematic than the transfinite character of the
proofs. Because truth itself is a complex notion, derivability should

12° As we have seen in Section 2, the only difference with CLuN" is the marking
definition.

13 Verdée (200x) has shown that this is mistaken: the complexity of final CLuN™-
derivability is II}.
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be comparatively simpler. Horsten and Welch refer to the moment at
which the propositional relevant logic R was proven undecidable. At
the time, this result was seen as a major problem for relevance logic,
precisely because the logic R was supposed to explicate a common
sense notion. Adaptive logicians have made a similar claim: the adap-
tive proofs should explicate actual reasoning processes. Therefore the
adaptive proofs should be simple. Relevant logics have the excuse of a
complex implication connective. The inconsistency-adaptive logics un-
der discussion, however, have only simple classical and paraconsistent
connectives, which have a straightforward two-valued semantics.

So adaptive logics are undecidable. Horsten and Welch point out
that the situation is even worse. Adaptive logic is not only undecidable
but even 9-complex. Formal learning theory has taught us that an
algorithm that converges to a correct answer (yes or no) for the question
whether x is an element of a set of natural numbers is only available if
the set is maximally AY-complex. Adaptive logicians always stated that
adaptive logics are conceived for contexts where there is no positive test,
but because adaptive logic consequence sets can apparently exceed the
AY-bounds, there cannot even be a machine that generates adaptive
proofs that stabilize to the right answer (if there is any). In view of
this result, Horsten and Welch attack a claim by Batens, viz. that, as
a dynamic proof proceeds, insights in the premises may increase and
never decrease. They argue that derivability at a stage does provably
not provide a good estimate of final derivability.

4. Adaptive Proofs

Consider a simple CLulN"-proof. Let I' = {~p, ~q¢,pV r,pV q,qV r}.
From here on, we obviously shall present proofs in our way.

1 ~p Prem 1)
2 ~q Prem 0
3 pvVvr Prem 0
4 7 1, 3; RC {p A ~p}
) pVyq Prem U]
6  (pA~p)V(gA~q) 1,2,5 RU 0
7 qVr Prem 0
8 r 2, 7: RC {qg N\ ~q}

Up to stage 5 of the proof, viz. before line 6 is added, no line is
marked because no Dab-formula has been derived. At stage 6, line 4
is marked. Indeed ®4(I") = {{p A ~p},{¢ A ~q}} and r has not been



12

derived on a condition © for which {p A ~p} N O = (). At stage 8, all
lines are unmarked again.

Does 1-8 form a demonstration that I' Forun= 77 Obviously not.
It is a proof in the sense that it is written according to the rules of
CLuN"™ (in view of the specific premise set), not in the sense that it
is a demonstration. One knows that r is a final CLulN™-consequence
of T because one sees (and can demonstrate) that 6 is the only min-
imal Dab-consequence of I'. This information is not displayed in the
proof and cannot be displayed there. Adaptive proofs in themselves
are not demonstrations of the final derivability of a formula from the
premises.' To turn an adaptive proof into such a demonstration, one
needs a reasoning at the metalevel.

This has nothing to do with the fact that some adaptive proofs are
infinite, which Horsten and Welch blame for the fact that the “final
proofs [of adaptive logics] do not carry finality of conviction”. This is a
misunderstanding: even finite adaptive proofs from finite premise sets
do not in themselves carry finality of conviction with respect to final
derivability—they obviously do with respect to derivability at a stage.

The depth of Horsten and Welch’s misunderstanding may be illus-
trated as follows. Consider again the proof in Section 3. This proof,
notwithstanding its length, w or rather w + 1, does not demonstrate
that p is a consequence of I's on their Definition 2 for final CLulN"-
derivability. Indeed, it cannot be seen from the proof that it has no
extensions in which the line labelled w is marked. Has this anything to
do with the proof being infinite? By no means so. Replace ¢ by 1 in
I's (and remove the now pointless condition i € N) and consider the
subproof 1-6, or rather add a line 7 that is identical to line 3 (to make
Horsten and Welch happy). On their Definition 2 p is finally CLuN"-
derived in this proof. And they are quite right: the matter is even
decidable. But the proof does not demonstrate that p is finally derived
because the proof does not contain and cannot contain the information
that p is not marked in any of its extensions. So according to their
Definition 2, just as much as according to our Definition 7, a reasoning
at the metalevel is required to turn a proof into a demonstration.

We shall argue that such proofs form nevertheless a useful explica-
tion of certain (frequently occurring) reasoning forms. However, let us
first have a closer look at the proofs.

The usual definition identifies I Fcp, A with the existence of a list
of formulas that is obtained by applying CL-rules (depending on the

14 There is an exception. That A is derived on the condition () warrants that it is
derivable from the premises by the lower limit logic and hence is finally derivable
from the premises by the adaptive logic. This special case is similar to the general
case for CL, which is discussed below in the text.



13

specific formulation), that ends with A, and in which all formulas intro-
duced by the premise rule belong to I'. This definition is only adequate
because CL is compact and monotonic. In view of this, some will argue
that the proofs of CL, as those of every logic, are only demonstrations
in view of a reasoning at the metalevel. The situation of adaptive logics
is special, however. For usual logics, such as CL, the required metalevel
reasoning concerns properties of the logic. This may be provided inde-
pendently of a specific premise set or conclusion. For adaptive logics
one moreover needs a reasoning about specific LLL-consequences of
the premises.

That one needs this specific information is typical for dynamic proofs,
that is proofs in which formerly drawn conclusions may be revoked. This
dynamics occurs for non-monotonic logics, but also for some monotonic
consequence relations. Consider the Weak consequence relation from
(Rescher and Manor, 1970): ' by A iff there is a consistent IV C T for
which TV F¢p, A. Clearly Fyy is a monotonic consequence relation: every
consistent subset of I is a consistent subset of I' U A for every A. But
as there is no positive test (see the next paragraph) for consistency, the
proofs of a logic characterizing Fy are necessarily dynamic: that A is
derived from some members B, ..., B, of I' provides only a reason to
consider A as a Weak consequence of T if {By,..., B,} is a consistent
set—this holds even if A € I'. Incidentally, the Weak consequence
relation is characterized by an adaptive logic—see (Batens, 2000) and
(Verhoeven, 2001).

Where L is a logic, F, is decidable iff there is an algorithm for it: a
mechanical procedure that, for any I" and A, leads after finitely many
steps to the answer YES if I' k1, A and to the answer NO if T" /g, A.
For is not decidable, but there is a positive test for it (it is semi-
decidable): there is a mechanical procedure that, for every I" and A,
leads after finitely many steps to the answer YES iff I Fcy, A (but may
not provide an answer at any finite point if I' ¥cr, A). Adaptive logics
are typically meant as explications for consequence relations for which
there is no positive test, as was noted in most papers on adaptive
logics published after 2000. A positive test for derivability is absent
because of the condition involved in the consequence relation: A is AL-
derivable if certain other formulas are not derivable by the lower limit
logic LLL. If there is no positive test for LLL-non-derivability, there
is no positive test for AL-derivability. Adaptive logics explicate this in
terms of conditions and marks, but the phenomenon is typical for all
forms of defeasible reasoning, for example default reasoning. Quite a
few forms of defeasible reasoning have been characterized by adaptive
logics in standard format, usually under a translation, and it is a long
term aim of adaptive logicians to do so for all such reasoning forms.
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The comment following Definition 7 states that the eztensions men-
tioned in the definition may be taken to be finite for the Reliability
strategy, but that infinite extensions have to be taken into account
for the Minimal Abnormality strategy. In this sense, and only in this
sense, did adaptive logicians ever introduce infinite proofs. Obviously
the existence of an infinite extension in which line [ is unmarked cannot
be established by writing it down, but only by a reasoning at the met-
alevel. Actually, it would not make much of a difference that one could
write it down, because the definition requires a statement on extensions
of all possible extensions of the stage s. Recall that this holds even for
finite adaptive proofs from finite premise sets.

The proof 1-8, displayed at the outset of this section, is stable with
respect to line 4 in the sense explained in Section 2. However, according
to Definition 7, r is finally derived at stage 4 of that proof. The only
extensions of 1-4 in which line 4 is marked are those in which the
present line 6 occurs. They can all be extended in such a way that the
present line 8 occurs in them, resulting in line 4 being unmarked. The
important lesson to be drawn is that r is finally derived in 1-4 as well
as in 1-8 according to Definition 7, but that only 1-8 is stable with
respect to line 4.

This highlights the advantage of Definition 7 over a definition of final
derivability in terms of stability with respect to line [. Indeed, every
formula A that is finally AL-derivable from I' (for every adaptive logic
AL in standard format) is finally derived at a finite stage of a proof
from T,'® whereas, for some A and T, no finite proof from I' is stable
with respect to a line on which A is derived. Finite proofs may be
written down. Infinite proofs and infinite extensions of proofs cannot
be written down, but one may come to conclusions about them by a
metalevel reasoning (which can be written down).!6

Allow us a short degression at this point. It is simple enough to re-
strict adaptive logics to decidable cases, like finite propositional premise
sets, or premise sets and conclusions that belong to decidable fragments
of the (predicative) lower limit logic. As will become clear in Section 5,
to do so eliminates the most interesting applications of adaptive logics.
Alternatively one could define a full-blown semantics for adaptive logics
and restrict the proofs to decidable fragments. In doing so, however,
the derivability relation T' Fay, A cannot possibly be complete with
respect to the semantic consequence relation I' Fay, A. In (Batens,
1999) the soundness and completeness of CLuN" and CLulN™ are

15 For a more precise statement and its proof, see Theorem 39 of Batens (200x).

16 That the metalevel considerations refer to infinitely many extensions of a stage,
cannot possibly count as an objection. The entities reasoned about are certainly
simpler than models.
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proved; in (Batens, 2007) the proofs are generalized to all adaptive
logics in standard format.

Let us turn to Horsten and Welch’s contention that Batens is mis-
taken in claiming that Reliability requires only a reference to finite
stages and finite extensions—they repeat this extensively in Section 5.
They are badly wrong. Their Definition 2 requires infinite proofs in
order to conclude (from the proof and metalevel considerations about
its extensions) to final derivability. Batens’ Definition 7 requires only
finite stages and finite extensions for Reliability. Their Definition 5 can
be safely restricted to finite proofs and finite extensions for Reliability,
in which case it is identical to Batens’ Definition 7. That Batens’ Defi-
nition 7 is correct as it stands follows, first, from the proofs in (Batens,
1999) as well as from the generalized proofs in (Batens, 2007). It is
also proven directly in (Batens, 200x). We shall not repeat these proofs
here, but let us show that Horsten and Welch’s alleged counterexample
is not a counterexample at all. The premise set is I's (see Section 3)
and the logic is CLulN". Consider lines 1-3 of the proof:

1 pVg Prem 0
2 ~q Prem 0
3 p 1, 2; RC {g N ~aq}

Every finite extension E of 1-3 in which line 3 is marked contains
one or finitely many premises from {(g A ~q) V (ri A ~74) }icq0,1,..}- An
extension of E in which 3 is unmarked is obtained by adding, for each
(gA~q)V (ri A~r;) in E,

J ((gA~q)V (r; A~r)) D (1 A~rg) Prem 0
J+1 riANeery j,...: RU 0

which obviously results in a finite extension of E. This is true even if, as
Horsten and Welch require, p is derived on a new line in the extension of
E. So, returning to our way of presenting proofs, every finite extension
of 1-3 has a further finite extension in which line 3 is unmarked. This
warrants, by Definition 7, that p is finally derived from I'3 in the proof
1-3. So, contrary to what Horsten and Welch claim, their example does
not show the need to refer to infinite proofs (or infinite extensions) in
the definition of final CLuN"-derivability. They must have been so
blinded by their own definition that they could not apply Definition 7.

5. The Complexity of Reasoning

Adaptive logics are not candidates for the label “standard of deduction”
(if there is such a thing). They are means to characterize, in a strictly
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formal way, forms of reasoning that were traditionally not recognized as
formal, but frequently occur in scientific contexts as well as in everyday
reasoning. This should be stressed. Those reasoning forms are being
applied; adaptive logics are a means to describe them in a formally
decent way. Among the criteria for judging adaptive logics, adequacy
with respect to the explicandum is central. The logics cannot be blamed
for the complexity of the explicandum.

Adaptive logicians have analysed many concepts themselves and
have argued for this analysis, for example (Batens, 1989) and (Batens,
2002) on forms of handling inconsistency or (Batens et al., 2003) on
prioritized premise sets and diagnosis. To avoid any quarrels, we shall
refer to concepts introduced by people at a time they never had heard
of adaptive logics.

Nicholas Rescher, partly in cooperation with Ruth Manor, developed
consequence relations that handle inconsistencies in a way suitable
for specific applications, including the analysis of counterfactuals—see
(Rescher, 1964; Rescher, 1973; Rescher and Manor, 1970) and (Ben-
ferhat et al., 1997; Benferhat et al., 1999) for a survey and study of
those consequence relations, including prioritized ones. All of them are
defined in terms of CL-derivability from maximal consistent subsets of
the premises. There is no positive test for consistency.

A recent version of the theory of the process of explanation is pre-
sented by Ilpo Halonen and Jaakko Hintikka (2005). In their Section
6, they discuss the conditions on (nonstatistical) explanations (with a
number of restrictions). The conditions concern an explanandum Pb, a
background theory 7' (in which the predicate P occurs) and an initial
condition (antecedent condition) I (in which b occurs). Among the six
conditions are the following:

(iii) I is not inconsistent (F¥cr, ~I).

(iv) The explanandum is not implied by T" alone (T ¥#cr, Pb).

(vi) I is compatible with 7', i.e. the initial condition does not falsify
the background theory (T ¥cr, ~I).

There is no positive test for any of the three conditions.

In Andrzej Wisniewski’s erotetic logic, for example (1996) and (1995),
erotetic evocation is defined as follows: a question @ is evoked by a set
of declarative statements I' iff the (prospective) presupposition!” of Q

17 The prospective presupposition of, for example, a whether-question is the dis-
junction of its direct answers. Thus the prospective presupposition of “Did Mary
or John or Joan come?” is “Mary came or John came or Joan came.” Our slight
simplification does not harm the force of the example.



17

is derivable from I" but no direct answer of () is derivable from I'. Note
that there is no positive test for CL-non-derivability.!®

This short list of predicative examples can be extended ad nau-
seam. The sources are unsuspect. There is no positive test for these
concepts and their complexity is greater than that of CL-derivability.
The reasoning leading to applications of the concepts is necessarily
dynamic. The same holds for all forms of defeasible reasoning, unless
it is artificially restricted to decidable or semi-decidable cases.

Apart from matters already discussed, Horsten and Welch launch a
number of complaints or statements that look like complaints in their
Section 5. They state that “it is not an exaggeration to say that there
exist no complete proof procedures for propositional adaptive logic,
at least not if “proof” is understood in the usual (finitary) sense of
the word.” We thought that was clear from the very first paper on
adaptive logics, albeit for very different reasons than the ones adduced
by Horsten and Welch.

They think that “it seems improbable that our common sense notion
of propositional implication is so complicated [as relevant consequence
relations and a fortiori as adaptive consequence relations]”—by “im-
plication” they mean the consequence relation, not the implication
symbol. We return later to the complexity argument in general, but
let us point out here that adaptive logics do not explicate the common
sense notion of ‘propositional implication’, but explicate methodologi-
cal concepts and common sense concepts.

A similar confusion underlies their argument from formal learning
theory. Every book or paper on formal learning theory states that there
are many unsolvable problems. A problem is solvable if some method,
when applied to the problem, warrants that the correct answer is ob-
tained from a certain finite point on, even if it is unknown whether
the point was reached or not. That a problem is unsolvable means
that there is no such method. Now consider a kind of problems that
comprises unsolvable problems—for example a specific kind of abduc-
tion problems or a specific kind of inductive generalization problems.
When confronted with a problem of such a kind, it cannot always be
determined beforehand whether the problem is solvable or not. Let the
problem be to determine whether all P are ) on the basis of a strict
total order over a denumerable set of instances.!® Even if not all P
are (), no P that is not ) need occur at any finite point in the order.
So whether the problem is solvable depends on the order, not on the
problem type.

18 See (Meheus, 2001) for the adaptive logic that explicates the dynamic reasoning.
19 A strict total order over the natural numbers, need not define a list; for example:
024...135....
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Many kinds of problems comprise unsolvable items. This holds for
empirical as well as for mathematical kinds of problems. Only a fool
would consider this a reason for giving up on all problems of the kinds,
or on all problems not demonstrated solvable. Adaptive logics enable
one to formulate problems in a precise and unified way and within
a specific framework. The framework is different from that of formal
learning theory, it presents a different approach, and it provides one
with different heuristic means. But there is more. Every adaptive logic
characterizes a kind of problems and many such kinds comprise un-
solvable problems. Incidentally, this means that the kind of problems
cannot be formulated by means of, for example, CL because its con-
sequence relation is not sufficiently complex. An important task is to
find a method that solves all solvable problems of a certain type. That
is the best a method can do and such a method “has claims to the title
‘rational’” (Martin and Osherson, 1998, p. 153). This is precisely what
adaptive logicians realized in terms of proof theoretic procedures (see
below). So what is the point of the long paragraph that Horsten and
Welch devote to formal learning theory?

They complain that Batens considers derivability at a stage as an
estimate for final derivability. But there is nothing wrong with the
relevant quotation from (Batens, 1995). That, as the proof proceeds,
“the insights in the premises provided by the proof never decrease and
may increase” is correct. The quotation concerns the LLL-derivability
of Dab-formulas, not the final AL-derivability of a formula. The insights
increase whenever a new minimal Dab-formula is derived (either a
new one or one which makes a previously derived Dab-formula non-
minimal). Batens never said that one can derive all minimal Dab-
formulas at any finite point. If that could be done, there would be
a positive test for I' -1, A. Obviously the estimate cannot be brought
arbitrary close to the truth. It is just the best estimate available in
view of the insights provided by the present stage of the proof.

Maybe Horsten and Welch want to say that so complex consequence
relations (and concepts) should not be approached in terms of proofs,
but only in terms of definitions or by semantic means. If they think
so, they are wrong. If I' Faog, A can be decided by a reasoning about
the definition or by a reasoning about models, then this reasoning can
be transformed to a reasoning about proofs and vice versa. What is
the relevance of arguments from complexity for the distinction? None
obviously. The complexity is a property of the consequence relation,
not of the means by which one characterizes it. Nor are proofs useless
in view of the semantics: proofs offer a different perspective, which is
heuristically important.
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Two more points deserve attention: the complexity attainable by
humans and the question how consequence relations of this complexity
should be handled.

If common sense inference were simple from a formal logic point of
view, one wonders why logicians have been quarrelling about it ever
since the 1930s. And why is a decent theory of natural languages not
since long available?

Most of human inference, both in everyday situations and in the sci-
ences, consists of explanations, abductions, inductive generalizations,
raising questions, and the like. Apparently such reasoning forms are
applied, with some mistakes, by systems not more complex than hu-
man brains. This does not exclude, however, that the best normative
explications of the reasoning forms require complex formal systems, as
the above examples show.?’ A human brain does not work like anything
resembling a formal system (and certainly not like a semantics).

Next, consider humans applying formal systems. Which formal sys-
tems are too complex for them? Consider CL. If, confronted with the
simple question whether a certain formula is a CL-theorem, someone
applies the best possible procedure, he or she may never obtain an
answer (in case the answer is negative). If the answer to the question
is positive, it may still, say at one operation per minute, eight hours of
every working day, take 10 billion years to obtain the answer. That’s too
complex for us. So where is the border here? Why is CL simple enough
while adaptive logics are too complex? What about second order logic?
What about Peano Arithmetic? What about arithmetic (the standard
model)? Remember that there is no positive test for “is true in the
standard model”. What about Analysis?

Many problems of such ‘disciplines’ are unsolvable while others are
unsolvable by human standards. But what should we conclude from
this? Do we have to stop doing mathematics because most of its theories
are ‘too complex’? Should we stop generating explanations, abductions,
predictions, generalizations and scientific theories because there is no
positive test for the underlying consequence relations? Or should we
declare scientific methodology a matter of taste and luck, inapt for log-
ical systematization? The answer to all these questions is negative. This
raises a less trivial question: how should we proceed with consequence
relations of such complexity?

First and foremost, we should study such consequence relations in a
formally decent way. That’s what adaptive logicians are trying to do.
So let us return to adaptive logics. Consider an adaptive logic AL that

20 Tncidentally, derivability at a stage, which corresponds to common sense rea-
soning without metalevel considerations, is not more complex than the derivability
relation of the lower limit logic.
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explicates a given reasoning form, whether from scientific methodology
or from an everyday situation. AL has a semantics and a proof theory.
We may be mistaken here, but we do not believe that ordinary people or
ordinary scientists reason semantically, that is about models. Try it on
a bus driver and a chemist, and they will stare at you.?! Our conjecture
is that people make inferences, and intersperse them occasionally with
metalevel considerations (this follows unless that would follow, but I
don’t believe that follows). Hence the attention adaptive logicians paid
to dynamic proofs. As we said, we may be wrong, but we are open to
learn about alternatives.

As we see it, (finite) adaptive proofs explicate quite well how people
handle such consequence relations. They reason for a while, occasionally
review a formerly drawn conclusion (but sometimes erroneously forget
to do so), and get to a provisional conclusion. This corresponds to
derivability at a stage, which may be supplemented with metalevel
considerations. If these are not conclusive, there is a choice: act on
present insights or continue the reasoning. The decision may largely
depend on time and money (and boredom).

The partial insights offered by derivability at a stage may be very
useful, even if they are not conclusive. Consider Frege’s set theory.
Insights in this inconsistent theory (and possibly in Cantor’s incon-
sistent set theory) led to the contemporary theories (ZF, NF, type
theories, and several others), which one hopes to be consistent. We
tend to believe that those insights can be explicated by adaptive logics
(a short study is forthcoming), but this should not be settled here. The
insights were clearly partial (corresponding to a proof at a stage only).
Indeed, the Curry paradox was only discovered after ZF, NF and other
major contemporary set theories were formulated.

Do adaptive logics enable one to arrive at better justifications, viz.
at final derivability? They do in some cases. First, there are the de-
cidable cases: the propositional case (for finite premise sets) and other
fragments of the predicative logics (provided the finitely many premises
as well as the conclusion belong to the fragment). Even beyond those
fragments establishing final derivability is possible. A proof-theoretic
procedure was devised, first for propositional CL by Batens and Provijn
(2001), and next for propositional CLuN" by Batens (2005). Results
on the predicative versions and on CLulN™ are forthcoming, as are
the generalizations to all adaptive logics in standard format. Even for
undecidable fragments, the procedure forms a criterion: for certain I'
and A, it leads after finitely many steps to a positive or negative answer

21 Also, were the presumably consistent set theories devised by thinking about the
models of Frege’s set theory?
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to the question whether I' F a1, A.2? In order for the procedures to lead
to a positive answer, A must be derived from I' on a line [ of a proof
that is stable with respect to [. So, if all such proofs are only infinite,
the procedures themselves are inconclusive. In some such cases one can
recur to a metalevel reasoning about the procedures.

6. In Conclusion

Horsten and Welch’s (2007) contains mistakes and suffers from misun-
derstandings. We shall not summarize these here, but shall point to
conclusions that have a more general interest.

1. Most reasoning is defeasible. Many defeasible reasoning forms were
described, often in a very precise way, by philosophers of science
and logicians.

2. Defeasible reasoning forms are not candidates for the standard of
deduction. They have nothing to do with truth-preservation.

3. Logics characterizing defeasible reasoning forms require dynamic
proofs. These proofs explicate the defeasible reasoning. Final deriv-
ability can only be established by metalevel considerations.

4. Adaptive logics explicate defeasible reasoning forms and approach
them within a unified framework. They should be judged in terms
of their adequacy, not in terms of the complexity of the explicated
reasoning forms.

5. The complexity of these logics is high, comparable to that of math-
ematical theories. The complexity pertains to the logic. It affects
the semantics just as much as the dynamic proof theory. More-
over, the complexity affects the metalevel reasoning, not the proofs
themselves, which are simple.

6. There are proof procedures that provide criteria for final deriv-
ability. In terms of formal learning theory, they solve all solvable
problems of the type explicated by the adaptive logic. In view of
this, the procedures provide one with a rational means to approach
the type of problems.

22 S0 a proof obtained by the procedure does not require a further specific met-
alevel reasoning to establish final derivability, whence it is useful to apply the
procedure even in decidable cases.
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7. That a reasoning form would be too complex for humans is an
obscure and confused statement. Decidable reasoning forms may be
too complex in practice, while highly complex consequence relations
may be approached in a way that results in a rational estimate.

The last point deserves special attention. There is no positive test
for final derivability. The logician should try to delineate the decidable
cases as sharply as possible and warn that, in a specific case, a final
judgement about final derivability is beyond reach. If this is the case
in real life applications, the logician and layman alike are thrown back
to deciding in uncertainty. That’s life.

Even the most classical realm is not much better off. If mathematical
theories are inconsistent, the literal understanding of most mathemat-
ical work, viz. in terms of CL, is pointless. No absolute warrant for
the consistency of even Peano arithmetic is available. So here too one
has to rely on a provisional judgement and, unlike what is the case for
adaptive logics, the whole theory would break down if the judgement
turned out to be mistaken. And yet one should not fear provisional
judgements. They led to the contemporary sciences.??
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