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A GCH EXAMPLE OF AN ORDINAL GRAPH
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JEAN A. LARSON

ABSTRACT. It is hard to find nontrivial positive partition relations which

hold for many ordinals in ordinary set theory, or even ordinary set theory with

the additional assumption of the Generalized Continuum Hypothesis. Erdös,

Hajnal and Milner have proved that limit ordinals a < u;"+ satisfy a positive

partition relation that can be expressed in graph theoretic terms. In symbols

one writes a —► (a, infinite path)2 to mean that every graph on an ordinal a

either has a subset order isomorphic to a in which no two points are joined by

an edge or has an infinite path. This positive result generalizes to ordinals of

cardinality Nm for m a natural number. However, the argument, based on a

set mapping theorem, works only on the initial segment of the limit ordinals

of cardinality Nm for which the set mapping theorem is true. In this paper,

the Generalized Continuum Hypothesis is used to construct counterexamples

for a cofinal set of ordinals of cardinality Nm, where m is a natural number at

least two.

1. Introduction. Erdös, Hajnal and Milner [3] were the first to look at the

partition relation a —> (a, infinite path)2 in their 1969 paper on set mappings. They

were able to prove positive results for many ordinals, but their method using set

mappings only worked for ordinals of relatively simple order structure. However,

this particular relation looked most promising as a nontrivial one that many ordinals

might satisfy. J. Larson [6] used Martin's Axiom to extend the positive result to

limit ordinals less than the continuum. (It is not hard to construct counterexamples

for sucessor ordinals.)

However, under the assumption of the Generalized Continuum Hypothesis, above

the continuum, counterexamples start to appear, as indicated in the statement of

the main theorem below.

THEOREM. Assume the Generalized Continuum Hypothesis. For every positive

integer n > 2, there is a cofinal set of ordinals a < ojn so that

a -*+ (a, infinite path)2.

For ordinals of power continuum, the situation appears to be more delicate. In

A diamond example of an ordinal graph with no infinite paths, J. Baumgartner and

J. Larson [1] used Jensen's Diamond Principle to show that for all ordinals a with

w"+2 < a < w2, the negative partition relation a -** (a, infinite path)2 holds.
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Recall that a v+ (a, infinite path)2 means that there is a graph on a which has

no independent (edge-free) subsets of order type a and no infinite path. An infinite

path is an infinite sequence vq,vi,... of vertices (no repeats allowed), so that for

all i, Vi is joined by an edge to vl+x.

The basic counterexamples are constructed as the comparability graphs of trees.

The trees are constructed so that they have no infinite branches. This constraint

guarantees that the comparability graphs have no infinite paths. The weak form

of the Diamond Principle is used to guarantee that there are no large independent

subsets.

Rather than work with the ordinals directly, it is more convenient to work with

a richer structure based on finite sequences of ordinals. The ordering of any ordinal

can be imitated by the lexicographic ordering on a suitably chosen set of finite

sequences of ordinals. Such a representation does not conveniently provide all the

information desired for building the counterexample, so products of such sequences

are used to build the richest counterexample in the paper. In §2, a relatively

simple counterexample is constructed to give the basic ideas of the proof without

too many complicating details. The richest counterexample is given in §3. In §4

the counterexamples are lifted to ordinals via pinning to prove the theorem quoted

above.

The remainder of this section is devoted to a review of some basic definitions,

terminology and well-known facts. In general our set theoretic notation is standard,

and T. Jech's book Set theory [5] may be used as a reference.

Order types, that is order-isomorphism types, are partially ordered by embed-

dability. An order type <p is indecomposable if whenever <p = tt + 0, then <p < tt

or (p < 6. We are particularly interested in the order types of ordinals, converse

ordinals and their products. If <p is linearly ordered by <, then the converse <p*, is

ordered by <*, where x <* y if and only if y < x.

A bounded subset S of an ordinal a is one such that sup(S) < a. An unbounded

subset of a is one which is not bounded. A closed subset C of a is a subset such

that sup(S) is in C for all bounded subsets S of C. A stationary subset S of a

is a subset such that the intersection C H S is nonempty for all closed unbounded

subsets C of a. Let wlim be the class of all ordinals a of cofinality to, and for any

cardinal A, let wlim(A) denote the set (wlim) n A. Note that for any cardinal A of

uncountable cofinality, w lim(A) is a stationary subset of A.

The form of Jensen's Diamond Principle used in the paper is stated below, where

E is assumed to be a stationary subset of a regular cardinal A.

0(E): There is a sequence (Sa: a E E) such that

(1) Sa is a subset of a;

(2) for all subsets A of A, {a E E: X n a = Sa} is stationary in A.

If GCH holds, then ()(u> lim(A)) holds for all sucessors A of cardinals of uncount-

able cofinality. In particular, 0(wlim(wm)) holds for all integers m > 2. See 1.8, 1.9

and 2.1 of Gregory's [4] paper Higher Souslin trees and the Generalized Continuum

Hypothesis for details.

2. A simple example. In this section a counterexample is built for the carte-

sian product R — u>2 x wi x u. This product has order type to ■ w* • w2 when

endowed with lexicographic ordering induced from the usual order on uj and uj2
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and the converse of the usual order onwi. The next definition leads to a charac-

terization of subsets of the product of type u ■ uj\ ■ oj2. The alternate terminology

is introduced here to produce a suitable analogy for the generalization in §3. The

basic idea is to generalize the definition of cofinal subset of an ordinal to the notion

of strongly cofinal subset of a product. The latter definition is made recursively, so

preliminaries are in order.

DEFINITION 2.1. (1) In a Cartesian product X x Y, an element a; of A occurs

with an element y in a subset A of X x Y if (x,y) is an element of A. Given a

notion of strongly cofinal subsets of Y, an element x of X recurs in a subset A of

X x F, if for a strongly cofinal set of y, x occurs with y. Given notions of cofinal

subsets of X and strongly cofinal subsets of Y, a subset A of X x Y is strongly

cofinal in A x y if for a cofinal set of A in A, a; recurs in A.

(2) To adapt these notions to the product of limit ordinals, a x ß x 7, one uses

the usual notion of cofinal subset of an ordinal both for cofinal where needed above

and for strongly cofinal subset of 7 to initialize the definition.

LEMMA 2.2. Under the lexicographic ordering given above, a subset S of oj2 x

wjxw has order type uj ■ u* ■ u2 if and only if it is strongly cofinal.

THEOREM 2.3.   Assume GCH. Then

ij32 x wi x io -*+ (strongly cofinal, infinite path) .

COROLLARY 2.4.   Assume GCH. Then

u) ■ uj{ ■ u)2 -*+ (lü ■ u}\ ■ u)2, infinite path)2.

As indicated in the introduction, the counterexample is built as the comparability

graph of a tree with no infinite branch. If T = (T, <) is a tree, the comparability

graph, G(T), is the graph on the vertex set of T in which edges join pairs {u, v}

for which u < v. In [1] the elementary proof of the following fact appears.

LEMMA 2.5 (LEMMA 2.2 OF [1]). If a tree T = (T,<) has no infinite
branches, then the comparability graph G(T) has no infinite paths.

A diamond sequence is the starting point of the recursive definition of the tree

whose comparability graph is the sought counterexample. The following claim

states that there is a diamond sequence suitable for the discussion of strongly

cofinal subsets of lú2 x wi x lj.

LEMMA 2.6. Assume GCH. Then there is a sequence (Ua: a E u)lim(u>2)) so

that

(1) Ua is a subset of a x u>i x u strongly cofinal in a;

(2) If A is a strongly cofinal subset of ui2 X Ui x w, then for a in a stationary

subset of u lim(oj2), A n (a x wi x w) = Ua.

PROOF. Let (Sa: a E u;lim(w2)) be a diamond sequence for w2. Under the

lexicographic order induced by the usual order on all three components, lo2 xui xw

has order type cu2; let h be the order-isomorphism, h: lo2 —» io2 x oji x w. If h(Sa)

is strongly cofinal in a, then let Ua = h(Sa); otherwise let Ua be any set strongly

cofinal in a (it is easy to build one). Certainly the sequence so defined has property

(1). Note that for all a in a closed unbounded set C, h(a) = a x u/i x w. Also if

A is a strongly cofinal subset of oj2 x wi x uj, then for a in a closed unbounded set
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D, A n (a x wi x lj) is strongly cofinal in a. Yet X be the subset of uj2 for which

h(X) — A. If 5 is a stationary set of a where X n a = Sa, then the intersection of

S with C and D is the stationary set required to show property (2) is satisfied.

In the construction of the tree order, to guarantee that no Ua extends to a

strongly cofinal independent set, one must make many points have predecessors in

Ua. The next definition makes precise a notion of large suitable in this context.

DEFINITION 2.7. A subset A of a limit ordinal a is almost all of a if it is

cobounded in a. A subset A of a product a x ß is almost all of a x ß if there is

a subset A of a which is almost all of a so that for every a in A, the set of b with

(o, b) in X is almost all of ß. Recursively, the notion can be extended to larger

products.

LEMMA 2.8. If A and B are each almost all of a Cartesian product, then so is

AD B. If A is almost all of a Cartesian product and C is a strongly cofinal subset

of it, then their intersection, A DC, is strongly cofinal.

The proof of Theorem 2.3 continues with two claims.

CLAIM 2.9. There is an assignment bill: u2 x wi x w —► [ulim(uj2)]<ljj, which

satisfies the following two properties:

(1) if (5 is in bill(a,ß,m), then 6 < a;

(2) if 6 is in ojlim(oj2) and 6 < a, then 6 is in bill((a) * i) for almost all t in

LOl   x LO.

PROOF. One can make such an assignment from enumerations, ea: \a\ —► a,

which have been extended for notational convenience by the convention ea(ß) =

ea(0) if ß > \a\. If 6 < a, then there is some d < wi so that ea(d) = 6. For

all ß > 6, there is some n so that eß(ri) = d. That is, 6 = ea(eß(n)). Thus for

s = (a,ß,m), one may set bill(s) to be the intersection of wlim(cj2) with the set

{a} U {ea(e0(n)): n < m).

CLAIM 2.10. There is a tree order <r on R — lo2 x wi x lú which satisfies the

following two properties:

(1) if s = (a, ß, m) <r t = (7,6, n), then a < 7 and m > n;

(2) if 6 is in bill(s), then s has a predecessor in the tree in Ug.

PROOF. Let the empty sequence be the root of the tree, and for all finite a, let

(a, ß, m) be an immediate sucessor of the root. Next suppose <T has been defined

onaxwiXw and fix for a moment a particular point s = (a, ß, m). To continue the

construction, one must determine the immediate predecessor of s. First suppose

that a is not in bill(s). Let a be the largest element of bill(s). Then by Claim 2.9,

for every d in bill(s), d is in bill(u) for almost all u in {a} x oui x oj. Thus there is

some v = (7,6, n) in {a} xwi xw with n> m, which has predecessors in Ud for all

d in bill(s). Let v be the immediate predecessor of s. Now suppose a is in bill(s).

Then a is in w lim(w2), and there is some a less than a so that a recurs in Ua and so

that a is greater than every element of bill(s) other than a. As before, the set of u in

{a} X0J1XLO for which bill(s)\{a} is a subset of bill(u), is almost all of {a}xwi xw.

Thus the intersection of Ua with this set is strongly cofinal in {a} x wi xu. Choose

some element v = (7,6, n) of this set as the immediate predecessor of s with the

property that n > m. Then s has v as the required predecessor in Ua and by the

induction hypothesis s has the other required predecessors among the predecessors
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oft;. Thus the recursive definition of <r can be extended to all points in {ajxwi xui

in a way that satisfies (1) and (2).

PROOF OF THEOREM 2.3. To prove the theorem, it is enough to check that

the tree defined by <r in Claim 2.10 has no infinite branches and no strongly

cofinal antichains. Condition (1) of Lemma 2.10 guarantees there is no infinite

branch. Condition (2) of Lemma 2.10 is used to show there are no strongly cofinal

independent subsets. Suppose A is a strongly cofinal subset of u>2 x wi x u. Note

that the set of a < u?2 for which h(a) = {a}xcji xlo and for which An({a}xwi xoj)

is strongly cofinal in a is a club. Thus for a stationary set of <5 in w lim(w2), one has

A D ({6} x u>i x uj) = Ug — h(Sg). Fix one such 6. Choose a larger than 6 so that

a recurs in A. For almost all (f,j), the ordinal 6 is in bill(a,7,y). Thus the set of

(f,j) for which both a occurs with (7,7) and 6 is in bill(a,7,y) is strongly cofinal

in oji x to. Therefore one may choose ß and m so that (a, /?, m) is in A and 6 is in

bill(a, /?, to). Then (a, /?, m) and some point of Ug witness the fact that A contains

comparable elements. Thus the tree has no strongly cofinal antichains. Therefore

the comparability graph of this tree is the example required to prove Theorem 2.3.

3. A richer example. In this section the previous example is generalized

to products of sequences of ordinals. Note that the order type of any ordinal

of cardinality k can be represented as the lexicographic order on a set of finite

sequences of ordinals less than k. Consequences for ordinals of the counterexample

of this section are discussed in the following section.

DEFINITION 3.1. For a limit ordinal a, let Seq(a) denote the set Seq(a) =

{ma: 0 < m < oj} of all nonempty finite sequences of ordinals less than a. If

s: m —* a, then length(s) = to and max(s) = max{s(0),... ,s(m — 1)}.

DEFINITION 3.2. For each natural number m, let

Base(rri) = Seq(wm) x Seq(wm_i) x ■ • ■ x Seq(w).

The main counterexample is built on Base(m). Thus a suitable notion of strongly

cofinal must be developed to follow the analogy with the first section. The notion

of occurs becomes more interesting. First some notation is introduced to facilitate

discussions of initial segments.

NOTATION 3.3. If s is an initial segment of t (or s = t), then write s < t. If s¿ <S

tt for ¿ = 0,1,...,n — 1, then write 5 = (so,si,... ,s„-i) < t — (ío,íi,- • • ,tn-i)-

DEFINITION 3.4. A sequence s = (sm,sm_i,...,s0) from

5 = Seq(am) x Seq(am_i) x • • ■ x Seq(a0)

occurs in a subset A of S if there is some t = (tm,tm-i, ■ ■ ■ ,t0) in Aso that s -C t;

in this case one also says that sm occurs with (sm, sm_i,..., s0) in A.

Notice that the concept of occurs may be given a recursive definition. Since the

concept of occurs has changed, a corresponding change must be made in the notion

of strongly cofinal. Before introducing that concept, a well-ordering on sequences is

defined that serves as the foundation for the generalization of almost all to Base(m),

as well as being part of the generalization of strongly cofinal.

DEFINITION 3.5. For s,t in Seq(a), s <wo t if and only if either max(s) <

max(i), or else max(s) = max(i) and length(s) < length(¿), or else max(s) =

max(i), length(s) = length(i) and s comes before t in the lexicographical ordering.
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LEMMA 3.6. For any limit ordinal a, the ordering <wo on Seq(a) has the

following properties:

(1) if s is a proper initial segment oft, then s <wo t;

(2) if s <wo t, then max(s) < max(i);

(3) a subset A ofSeq(a) is cofinal in Seq(a) if and only if the set ofmax(s) for

s in A is cofinal in a;

(4) if a — k is a cardinal, then Seq(Tc) has order type k under <wo-

DEFINITION 3.7. A subset A of Seq(a) is almost all of Seq(a) if it is cobounded

in a. A subset A of a product Seq(a) x Seq(/?) is almost all of Seq(a) x Seq(/?) if

there is a subset A of Seq(a) which is almost all of Seq(a) so that for every o in A,

the set of b with (a, b) in X is almost all of Seq(/3). Recursively, the notion can be

extended to larger products.

Notice that the definition of almost all is identical to that of the previous section,

from the point of view of the sets with the ordering induced by <wo-

DEFINITION 3.8. A subset of Seq(a) is strongly cofinal if it is cofinal in the

ordering <wo- Extend the definition to products by recursion. Temporarily label

Seq(am) x Seq(am_i) x ■•• x Seq(a0) by S. A sequence s — (sm,sm-i,...,s0)

from S(am) recurs in a subset A of S if sm occurs with v = (um-i, • • • ,vo) in A

for all v in a strongly cofinal subset of Seq(am_!) x • • • x Seq(ao). A subset B of

S is strongly cofinal in S, if there is a cofinal set of sequences sm in Seq(am) which

recur in B.

LEMMA 3.9. (1) The intersection of two subsets of S = Seq(am)xSeq(am-i)x

• ■ • x Seq(ao) eacn °f which is almost all of S is itself almost all of S.

(2) The intersection of a strongly cofinal subset of S and one which is almost all

of S is strongly cofinal in S.

At this point, by an extension of the arrow notation, the main theorem of the

next section can be stated. Namely that theorem says a counterexample can be

constructed for Base(m), with strongly cofinal as the notion of large subset.

THEOREM 3.10. Assume GCH. Then for every integer to > 2, the following

relation holds:

Base(m) -*+ (strongly cofinal, infinite path)2.

It is convenient to be able to talk about initial segments of Base(m), where an

initial segment R refers to sequences (sm,... ,sq) where every element of sm comes

from an initial segment ß of u>m.

DEFINITION 3.11. Assume m > 2. If A is a subset of Base(m) and ß is an

ordinal with ß < tom, then X\ß is the set of all (sm, ■ ■ ■, so) in X with max(sm) < ß.

To indicate that X[ß is strongly cofinal in Seq(/3) x Base(m — 1), simply write X[ß

is strongly cofinal in ß.

LEMMA 3.12. A subset X o/Base(m) is strongly cofinal if and only if the set

of ß for which X\ß is strongly cofinal in ß contains a closed unbounded set.

PROOF. It follows from the definitions that if the set of ß for which X\ß is

strongly cofinal in ß contains a closed unbounded set then X is strongly cofinal.

So suppose that A is a strongly cofinal subset of Base (to). If to — 0, then both

concepts reduce to the set X being infinite. So suppose to > 1. To prove that the



A GCH EXAMPLE OF AN ORDINAL GRAPH 389

set of ß for which X\ß is strongly cofinal in ß contains a closed unbounded set it

suffices to show that given 6 there is such a ß greater than 6. Suppose 6 is given.

By recursion define ¿\ and s¿. First set <50 = 6. If ¿\ has been defined, let s¿ be an

element of Seq(wm) which recurs in A and has the further property that max(s¿)

is greater than ¿v If s¿ has been defined, let Si be a subset of X of cardinality

oJm-i of witnesses that s¿ recurs in X. That is, let S, be a subset of A so that s¿

recurs in 5¿. Let <5¿+i be larger than any ordinal appearing in any sequence t of

Seq(wm) which recurs in S¿. This ¿\+1 can be chosen less than ojm since it need

only be larger than at most LOm-i ordinals less that wTO. Thus the definition of the

sequence continues for countably many steps. Let ß be the supremum of the ¿Vs.

Then X\ß is strongly cofinal in ß.

So far the notion of an initial segment of an ordinal a has been generalized to

an initial segment of a subset X of Base(m) by X[ß and the notion of a subset of

a of order type a has been generalized to the notion of strongly cofinal. Next the

notion of a diamond sequence on w„ is extended to Base.

LEMMA 3.13. Assume GCH. Then there is a sequence (Va: a E u)lim(Lom)),

called a diamond sequence suitable for Base(m), so that

(1) Va is a subset ofSeq(a) x Base(m - 1) strongly cofinal in a;

(2) if A is any strongly cofinal subset of Base(in), then for a in a stationary

subset of ui lim(uim), A|a = Va.

PROOF. Let (Sa : a E u>lim(u)m)) be a diamond sequence for um. Under the

lexicographic order induced by <wo on all components of the product, Base(m) has

order type ojm; let h be the order-isomorphism, h: ojm —> Base(m). If the image

under h of Sa, that is, h(Sa), is strongly cofinal in a, then define Va = h(Sa);

otherwise let Va be any subset of Seq(a) x Base(m — 1) that is strongly cofinal in a.

Certainly the sequence so defined has property (1). Note that for all a in a closed

unbounded set C,h(a) = Seq(a) x Base(m — 1). Also if A is a strongly cofinal

subset of Base(m), then for all a in a closed unbounded set D, A\a is strongly

cofinal in a. Let X be the subset of ojm for which h(X) = A. If S is a stationary

set of a for which X C\ a = Sa, then the intersection of S with C and D is the

stationary set required to show property (2) is satisfied.

Next the assignment bill is suitably modified to fit with the changes in Base(m)

and in the notion of strongly cofinal.

LEMMA 3.14. There is an assignment bill: Base(m.) —> [wlim(a;m)]<w which

satisfies the following three properties:

(1) if 6 is in bill(sm,..., so), then 6 < max(sm);

(2) if 6 in Lülim(cjm) is less than max(sm), then 6 is in bill((sTO) * t) for almost

all t in Base(m — 1);

(3) if s 'tit, then bill(s) is a subset o/bill(i).

PROOF. The proof of this lemma is very much like the analogous lemma of

the previous section where the required function was defined largely by cardinality

considerations. The same approach can be used here, although the basic trick with

enumerations may need to be done up to to times. Such an approach would give a

first approximation, invoice, to the function desired here, one which would satisfy

the first two conditions of the lemma. To adjust it to satisfy the last condition of
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the lemma, one would need to define bill(i) to be the union of invoice(s) for all s

with s-Cf.

LEMMA 3.15. Assume bill is defined as in the previous lemma. Then there is

a tree order <t on Base(m) which satisfies the following two properties:

(1) if s = (sm,sm-i,...,so) <t t = (tm,tm-i,...,to), then Sm <wo tm and

so >wo to;

(2) if 6 is in bill(s), then some u in Vg is a predecessor of s in the tree order.

PROOF. The definition of the tree order is by recursion on Seq(wm) under

the ordering <wo. Let the empty sequence be the root of the tree, and for all

s = (sm, sm-i,..., so) with max(sm) finite, let s be an immediate sucessor of the

root.

Next suppose that for some um with max(um) infinite, the tree order <t has

been defined successfully for all t = (tm, tm-i, ■. ■, t0) with tm <wo um. Fix for a

moment a particular point s = (sm, sm_i,..., s0) with sm = um. To continue the

construction, one must determine the immediate predecessor of s. First suppose

that a = max(sm) is not in bill(s). Let ß be the largest element of bill(s). Then

by Lemma 3.14, for every 6 in bill(s), 6 is in bill((/?) * w) for almost all w in

Base(rrï — 1). Thus by the inductive hypothesis, there is some (vm, vm-i,... ,vo)

in {(/?)} x Base(m - 1) with vo >Wo s0, which has predecesors in Vg for all 6 in

bill(s). Let v be the immediate predecessor of s.

Now suppose a is in bill(s). Then a is in wlim(wm) and Va is strongly cofinal

in a. Thus there is a sequence r in Seq(a) which recurs in Va and which has the

property that max(r) = ß for some ß greater than every element of bill(s) other

than a. Let R be the set of all w in Base(m — 1) so that r occurs with w in Va. Let

W be the set of w in Base(m - 1) for which bill(s)\{a} is a subset of bill(r * w).

Since W is almost all of Base(m -1), the intersection of R and W is strongly cofinal

in Base(m — 1). Choose some element w — (wm-i, wm-2, ■■■, u>o) of this set with

the property that wq >wo sq. Since r occurs with w in Va, there is an element

v = (vm,vm-i,... ,vo) of VQ which witnesses this fact. Let v be the immediate

predecessor of s. Since v is in Va, max(%) is less than a, so vm <wo sm. By

the definition of occurs, r * w <C v, so in particular îtj0 <wo v0. Consequently,

vo >wo so and the pair s,v satisfies condition (1). By transitivity, the pairings of s

with predecessors of v also satisfy condition (1). Recall that w was chosen so that

bill(s)\{a} is a subset of bill(r*w;). Since r*w <C v, by condition (3) of Lemma 3.14,

bill(s)\{a} is also a subset of bill(u). Thus v is the required predecessor of s in Va,

and by the induction hypothesis, v has among its predecessors the other required

predecessors of s.

Therefore the definition of <t can be extended to all points in {um} xBase(m-l)

in a way that satisfies (1) and (2). Thus by recursion on Seq(wm) under the order

<wo, the definition of the tree order can be extended to all of Base (to).

PROOF OF THEOREM 3.10. Consider the comparability graph of the tree

order of Lemma 3.15. Condition (1) of that lemma together with Lemma 3.14

guarantee that the graph has no infinite path. Condition (2) of Lemma 3.15 is

used to show there are no strongly cofinal independent subsets. Suppose A is a

strongly cofinal subset of Base(m). By Lemma 3.13, there is some a in wlim(u;m)

so that A|q = Va.   Since A is strongly cofinal, there is some r in Seq(wm) with
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max(r) > a so that r recurs in A. For almost all w in Base(m — 1), the ordinal is

in bill(r * w). Thus for some particular w in Base(TO - 1), r occurs with w in A

and a is in bill(r * w). Let t witness that r occurs with w in A. Since r * w <g; t,

the ordinal a is also in bill(i). Thus among the predecessors of í in the tree is an

element v of Va. The two points v and í show that A is not independent. Thus the

comparability graph is the desired graph to prove Theorem 3.10.

4. Pinning the example to ordinals. In this section the result of the previous

sections are applied to the ordinals to get a variety of results.

The simple product of §2 was generalized in §3 to a product of finite sequences

of ordinals. In the simple case one could describe the large subsets of interest by

an order type induced on the product via a lexicographic ordering where alternate

terms received the usual or the converse of the usual well-order. One can of course

expand this concept to products of more than the three sets of §2. In this case,

if one by an abuse of notation identifies an ordinal a with the sequence (a), then

the large subsets of such a product, uim x wm_i X • • • X w, are strongly cofinal in

Base(m). Thus the generalization to finite sequences includes the simpler products.

T. Carlson [2] has used such products in his paper on pinning. He has studied

the same order structure in terms of ideals and in terms of regularly branching

trees. In order to preserve infinite paths, one-to-one pinning maps are required.

DEFINITION 4.1. Suppose we are given sets S, T together with notions of large

subsets of S and T. Then S can be pinned to T, in notation, S —* T, if there is

a function p: S —> T so that whenever A is a large subset of S, then the image,

B = p(A), is a large subset of T. In this case, the function p is called a pinning

map.

The concept of pinning was introduced to transfer pinning relations from one

ordinal to another, so the notion of large originally used was that of a subset of the

full order type. Carlson generalized it by looking at ideals as giving small sets and

using sets not in the ideal for large in the sense mentioned above. For the products

that have been discussed in this paper, the notion of large is strongly cofinal. One of

Carlson's results is that for every positive integer m, there is an ordinal a between

wm_i and um so that a can be pinned to ojm x wm_i X • • • X w. Since these sets

can be identified with strongly cofinal subsets of Base(m), Carlson's result may be

recast as follows.

LEMMA 4.2. (See Lemma 3, p. 46 and Lemma 6, p. 61 of [2].) If m is a positive

integer, then there are ordinals a between wm and ojm+i so that a —» Base(m).

Furthermore the pinning mapping may be chosen so that it is one-to-one.

To prove this result, Carlson looks at ordinals that are products of smaller or-

dinals that are sufficiently independent to allow mappings of each factor to be

combined to a mapping of the product. Note ß ■ a can always be pinned onto a.

Thus for each to, there are cofinally many ordinals below wm+i which can be pinned

onto Base(TO). These ordinals satisfy a negative partition relation as a corollary to

the result about Base(m) of the previous section, since if S can be pinned to T and

T satisfies a negative relation, then so does 5.
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THEOREM 4.3. Assume GCH. Let m be a positive integer with m > 2. Then

for a cofinal set of a < uim+i,

a ■++ (a, infinite path)2.

Carlson has as his goal finding an ordinal which can be pinned to larger ordinals.

He has isolated the heart of his argument on p. 58 of his article. There he states

that for a given cardinal k and a given notion of a large subset of S, if k<k = k

and there is a function <p: S —* [/c]<w so that \J<p(A) = k. for all large subsets A of

S, then 5 can be pinned to cofinally many ordinals below k+ . He also shows how

to use the function 0 to pin S to all regular cardinals less than or equal to k. The

definitions of Base(m) and strongly cofinal are designed for the task that Carlson set

for himself, since the function bill defined in §3 has exactly the required property.

What is not so clear is which ordinals can be pinned to Base(TO). Baumgartner and

Larson [1] have proved the following result for m = 1.

LEMMA 4.4. (See Lemma 5.1 of [1].) If a is an ordinal between wi and oj2,

then there is a one-to-one pinning map from a into Base(l).

This result combined with the work of Carlson shows that every ordinal a be-

tween w^+2 and u)2 can be pinned to cofinally many ordinals less than u2.

For larger ordinals the situation is not so simple. As indicated above, Carlson

shows how given a positive integer to, to get an ordinal am that can be pinned onto

Base(m). However, as Carlson indicates, it is also not difficult to pin Base(m) onto

un for n < to. Furthermore, Carlson (see Lemma 4 on p. 60 of [2]) has shown that

assuming GCH, for all n with 0 < n < to, there are cofinally many ordinals below

wm+i which do not pin to w„. Since Base(m) can be pinned to w„ for all n < m,

it follows that cofinally many ordinals below wm+i cannot be pinned to Base(rri).

Thus the counterexample on Base(m) has limitations. The consequences for

ordinals listed so far are all ones that follow from counterexamples on the product

<*>m x wm_i x ■ • • x LO, or its modification to (u>m x wm_i x • • • x u) x u>m for one-to-

one pinning maps. The ordinals cj21uj+2 and lo2 1+w are examples of ordinals that

one can pin without great difficulty onto Base(m), while whether or not one can

pin them onto the above-mentioned product is not so clear. Indeed, the question

of exactly which ordinals can be pinned, in a one-to-one fashion, to Base(m), is a

question which the current paper does not address.

Other questions immediately present themselves. One of the ones closest to the

original motivation for the paper is the following.

QUESTION 4.5. Assume GCH. Is there an ordinal a between u>21+2 and w3 so

that a —► (a, infinite path)2?

As mentioned in the introduction, the methods of this paper give no information

about ordinals larger than ww. Instead, the methods of the paper suggest that

products might be interesting to look at. The original paper of Erdös, Hajnal

and Milner [3] already answered some of the most attractive questions for simple

products without requiring any additional hypothesis, since these products give rise

to ordinal order types. In particular, lo x w2, wi xu2, and ljxljiXui2 all satisfy the

positive relation. In the same paper, the three authors show that ui2+1 ■ wi has the

positive relation. Since this ordinal can be pinned to wi x ui x u>2, the latter must

also have the positive relation. A cardinality argument can be used to show that
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under the assumption of GCH, w2 x oj also has the positive relation. In §2 of this

paper, the proof that w2 x u has the negative relation appears. Simple products

not yet decided are oj2 x u>i, to x u>2 x u>i, and w¡ x u2 x w.
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