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Abstract The majority of the currently flourishing theories of actual(token-level) causa-
tion are located in a broadly counterfactual framework thatdraws on structural equations. In
order to account for cases of symmetric overdeterminiationand preemption, these theories
resort to rather intricate analytical tools, most of all, towhat Hitchcock (2001) has labeled
explicitly nonforetracking counterfactuals. This paper introduces a regularity theoretic ap-
proach to actual causation that only employs material (non-modal) conditionals, standard
Boolean minimization procedures, and a (non-modal) stability condition that regulates the
behavior of causal models under model expansions. Notwithstanding its lightweight ana-
lytical toolbox, this regularity theory performs at least as well as the structural equations
accounts with their heavy appliances.

Keywords actual causation, regularity theory, overdetermination,preeemption, difference-
making

1 Introduction

Theories of token-level oractual causationare currently flourishing like hardly ever be-
fore. Many of these theories operate within a broadly counterfactual framework that draws
on structural equations (cf. e.g. Hitchcock 2001; 2007; Woodward 2003; Halpern and Pearl
2005; Halpern 2008; Halpern and Hitchcock 2010). In order toaccount for recalcitrant prob-
lem cases, such as cases of symmetric overdetermination or preemption, theories employing
structural equations resort to rather intricate analytical tools, most of all, to what Hitchcock
(2001, 275) has labeledexplicitly nonforetracking counterfactuals. These nonforetrackers
have antecedents in which causes are counterfactually set to non-actual values without their
effects changing accordingly. That is, nonforetracking counterfactuals presume counterfac-
tual configurations of causes and their effects that are excluded by the very causal structures
under scrutiny. Apart from raising the question to what degree relations of actual causation
in the actual world can be clarified by considering non-actual worlds where these relations
do not hold, Hall (2007) has pointed out that nonforetrackers create new problem cases for
counterfactual accounts, such as cases of switching or short-circuiting (cf. also Hall and Paul
2003).



2 Michael Baumgartner

This paper presents an approach to analyzing actual causation that is located in a broadly
regularity theoretic framework. Regularity theorists have repeatedly suggested that their ac-
counts could efficiently capture cases of symmetric overdetermination or preemption (cf.
Mackie 1974; Graßhoff and May 2001; Strevens 2007; Baumgartner 2008). However, as the
primary target of many regularity theories is causation on the type-level, actual causation is
frequently a mere side issue for regularity theorists.1 Accordingly, rather than developing in
detail how their accounts could be adapted to the token-level, they too often content them-
selves with hinting at the potential of regularity theoriesof actual causation by means of a
few standard examples (e.g. Mackie 1974, 44). This paper intends to make up for the lack of
theoretical detail in the regularity theoretic literatureon actual causation. It will turn out that
the regularity theoretic framework is capable of accounting for structures of overdetermina-
tion, preemption, switching, and short-circuiting on the mere basis of material (non-modal)
conditionals, standard Boolean minimization procedures,and a (non-modal) permanence or
stability condition that regulates the behavior of causal models under model expansions.

The main reason why the vast majority of authors working on actual causation have
chosen not to go the regularity theoretic way, of course, is that the standard opinion in the
literature has it that regularity theories already fail fortheir primary analysandum: type cau-
sation (cf. e.g. Lewis 1973; Armstrong 1983; Cartwright 1989, 25-29; Hitchcock 2010). In
particular, it is claimed that regularity theories cannot distinguish between spurious regu-
larities that hold, for instance, among parallel effects ofa common cause and regularities
that stem from causal dependencies. While that is indeed thecase for Mackie’s (1974) well-
known INUS-theory or Wright’s (1985) NESS-approach, the regularity theoretic literature
has, in the meantime, overcome the deficiencies of the INUS- and NESS-theories. Modern
regularity theories of type causation, as presented in Graßhoff and May (2001) and Baum-
gartner (2008) (cf. also Psillos 2009), successfully meet the traditional challenges.

Another reason for the neglect of regularity accounts mightbe that an intuition appar-
ently shared by many suggests that whether two events are related in terms of actual cau-
sation depends on theintrinsic properties of the corresponding sequence of events only (cf.
e.g. Lewis 1986; Menzies 1996; Hall and Paul 2003). By contrast, a regularity theory entails
that whether an eventa is an actual cause of another eventb, among other things, depends
on howa andb relate to other events of the corresponding event typesA andB.2 That is, a
regularity theory makes actual causation an extrinsic property of an event sequence. I shall
not try to argue over intuitions here. Rather, I will simply introduce the theoretical ease
with which a regularity theory handles cases of preemption,overdetermination, switching,
short-circuiting and the like, as an incentive to reconsider the intrinsicness intuition.

In the end, this paper’s argument in favor of a regularity theoretic approach to actual cau-
sation will be ofpragmaticnature. Glymour et al. (2010) justifiably doubt that, in light of the
unmanageable amount of possible counterexamples and of themuddy intuitive background
against which theories of actual causation are typically assessed, an entirely satisfactory the-
ory will ever be available. Accordingly, I am not going to claim that a regularity theory is
beyond doubt in all conceivable cases. Rather, I am going to argue that it performs at least
as well as modern counterfactual accounts. Furthermore, contrary to the latter, a regularity
theory achieves its goal by implementing uncontroversial and straightforward conceptual
and technical resources.

1 There are some regularity theoretic proposals that consider token causation to be primary (e.g. Mackie
1965), but the criticism raised against these token-level accounts (e.g. Kim 1971), in my view, shows that
these accounts are beyond repair. I shall not pursue the singularist thread in the regularity theoretic literature
here.

2 Hall (2004) shows that counterfactual theories do not respect intrinsicness either (cf. also Maudlin 2004).
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Section 2 reviews the basics of a modern regularity theory oftype causation and indi-
cates how standard objections can be dealt with. Section 3 then presents the details of a
regularity theory of actual causation and illustrates the potential of that theory by applying it
to the standard problem cases. Finally, section 4 relativizes the theory to a context-sensitive
distinction between typical and atypical scenarios.

2 Regularity theory of type causation

As anticipated above, many regularity theories focus on causation on the type-level as
their primary analysandum and take material regularities among event types as their pri-
mary analysans.3 Moreover, regularity theories only aim to analyzedeterministiccausation.
The metaphysical question as to the deterministic nature ofall causal processes shall be
sidestepped here. For our purposes it suffices to note that all causal processes discussed in
the structural equations literature on actual causation are explicitly or implicitly assumed to
be of deterministic nature, and thus fall into the domain of regularity theories.

To introduce the details of a regularity theory of type causation, some conceptual pre-
liminaries are required. Event types orfactors, as I call the relata of type causation for short,
can be seen as sets of event tokens. If, and only if, a member ofsuch a set occurs, the cor-
responding factor is said to beinstantiated. However, not any set of event tokens constitutes
a factor that can be involved in causal dependencies. Factors that can be causally related
aresuitableor appropriate for type causation (or for causal modeling),and the factors that
can be contained in complex causal structures constitute suitable factor sets. Unfortunately,
rendering the relevant notion of suitability precise is a notoriously difficult task, which is
often sidestepped in the literature (cf. e.g. Spirtes et al.2000, 21, 91-92). There exist a few
negative suitability standards: for instance, suitable factors do neither correspond to gerry-
mandered nor gruelike properties (cf. Lewis 1999; Fodor 1997); and different members of
a suitable factor set are not related in terms of logical dependence or other forms of depen-
dence that are metaphysically stronger than causation, such as supervenience, constitution,
or mereological containment (cf. Hitchcock 2007, 502; Halpern and Hitchcock 2010, Sec-
tion 4). And there exist some positive suitability standards: for example, suitable factors
correspond to (imperfectly) natural properties and all of their instances mutually resemble
each other (cf. Lewis 1999), i.e. suitable factors aresimilarity setsof event tokens. Plainly,
most of these conditions are vague and only yield suitability by degree.4 In what follows,
the problem of sharpening the relevant suitability standards shall be bracketed. I am simply
going to assume that all subsequently employed (sets of) factors meet those standards.

Factors are symbolized by italicized capital lettersA, B, C, etc., with placeholdersZ1,
Z2,. . . representing any factors. Their instances are symbolized by italicized lowercase let-
tersa, b, c, etc., withx, y,. . . representing any instances. As absences are often causally
interpreted as well, factors shall be negatable. The negation of a factorA is written thus:
A. A simply represents the absence of an instance ofA. Controversial questions as to the

3 There are some analyses of causation referred to as “regularity theories” that draw on such modal notions
as nomic sufficiency (Hausman 1998, 42-43) or counterfactual conditionals (Hall 2004). This terminology,
however, blurs the important distinction between empiricist and modal analyses. As this distinction will be
of particular importance for this paper, I subsequently reserve the label “regularity theory” for non-modal
analyses.

4 Often the suitability of factors is also rendered dependenton such context-sensitive conditions as salience
(Handfield et al. 2008) or farfetchedness (Hitchcock 2001, 287; Woodward 2003, 86–91; Halpern and Pearl
2005, 871). I prefer to first propose a context-independent notion of causation and to postpone all considera-
tions of context-sensitivity to section 4.
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ontological makeup of the instances of factors or as to what instantiates absences are de-
liberately ignored in the present context.5 To avoid these questions the structural equations
framework has a very handy terminology on offer: both occurrences and non-occurrences
of events are simply understood as random variables taking one of their respective values.
Thus, alternatively, factors can be seen as binary variables that take the value 1 whenever a
token of the corresponding type occurs and the value 0 whenever no such token occurs.

Clearly, there are certain connections between deterministic causal dependencies and
material conditionals. For instance, if it is assumed that factorsA andB are the two alter-
native deterministic causes ofE, as depicted in figure 1, it follows that for every instance
of typeA or B there exists an event of typeE and for every event of typeE there exists
an event of typeA or B. Moreover, theseA- or B-type events differ from theE-type event
(no self-causation) and they occur spatiotemporally proximately or in the same situation (lo-
cality). What the relation “x occurs in the same situation asy” amounts to depends on the
causal process under investigation and is notoriously vague. For simplicity, I am going to
assume that the processes discussed in this paper are sufficiently well known that this rela-
tion is properly interpretable.6 If we introduce the relationRxy representing “x occurs in the
same situation asy”, we can express the regularities entailed by the deterministic structure
in figure 1 as follows:

∀x((Ax ∨Bx) → ∃y(Ey ∧ x ≠ y ∧Rxy))∧

∀x(Ex→ ∃y((Ay ∨By) ∧ x ≠ y ∧Rxy))
(1)

Since I shall not be concerned with the requirement as to the non-identity of causes and
effects nor with their spatiotemporal proximity, I am goingto conveniently abbreviate first-
order regularities such as (1) by means of propositional expressions. As a shorthand for (1)
I use:

A ∨B ↔ E (2)

I take it to be uncontroversial thatA andB being the two deterministic causes ofE

entails that events of typeE occur in a situationω if and only if there is an event of either
typeA or of typeB in ω. Of course, deterministic causal structures in the actual world are
not as simple as in figure 1. Single factors do not cause their effects in isolation. Rather, de-
terministic causes amount to complex conjunctions of co-instantiated factors, i.e. of factors
that are instantiated in the same situation and only jointlydetermine their effect. Moreover,
on the type-level, effects can be brought about by several alternative complex causes. That
is, regularities entailed by deterministic structures typically are significantly more complex
than the one stated in (2). To adequately represent the complexity of regularities induced by

5 For an interesting suggestion as to how to handle instantiations of absences within an event ontology cf.
Handfield et al. (2008, sect. 2.2).

6 Even though locality is relevant for all theories of causation, it is usually sidestepped in the literature. For
more details on the problem of suitably interpreting spatiotemporal proximity for a given causal process cf.
Baumgartner (2008).
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real-life deterministic structures we thus need to somewhat extend our shorthand notation. I
follow Mackie (1974, 66-71) in symbolizing conjunctions offactors by mere concatenation
and in introducing variablesX1, X2,. . . that stand for open factor conjunctions and vari-
ablesY1, Y2,. . . that stand for open disjunctionsX1 ∨X2 ∨ . . . ∨Xn. Furthermore, Mackie
(1974, 34-35, 63) relativizes deterministic regularitiesto what he calls acausal field, i.e. to
a constant configuration of background conditions. These conventions allow for represent-
ing regularities entailed by deterministic structures of greater complexity. A more realistic
scenario than the one given in (2) is thatA andB are mere parts of alternative causes ofE

within a fieldF, from which it follows:

in F ∶ AX1 ∨BX2 ∨ Y1 ↔ E (3)

In words: in the fieldF, events of typeE occur in a situationω if, and only if, eitherA is co-
instantiated with other factorsX1 in ω or B is co-instantiated with other factorsX2 in ω or
further factorsY1 are instantiated inω. For brevity, I abstain from making the field-relativity
of deterministic regularities explicit in the following. Subsequent regularity statements are,
hence, to be understood as implicitly relativized to a givensetting of background conditions.

As regularity theorists want toanalyzedeterministic causation in terms of regularities,
they not only need a way to infer regularities from deterministic causal structures, but also a
way to infer back to causation on the basis of regularities. Contrary to the former direction
of entailment, however, the latter is far from straightforward. Most regularities of type (2)
or (3) arespurious(cf. e.g. Cartwright 1989, 25-29). Therefore, the core taskfor regularity
theorists is to impose constraints on material regularities as (2) and (3) such that the subset
of regularities that meet those constraints are those that are non-spurious and, thus, allow
for inferring back to causation, i.e. those that are causally interpretable. Modern regularity
theories essentially impose two such constraints: (I) causally interpretable material regular-
ities do not feature redundancies, and (II) they arepermanent(or stable). Let us take these
constraints in turn.

The most important condition regularities have to satisfy in order to be causally in-
terpretable is what may be called aprinciple of non-redundancy. Causal structures do not
feature redundancies. Every cause contained in a type-level causal structure makes a dif-
ference to at least one effect in the structure in at least onesituation. However, material
conditionals—the core analytical tool of regularity theories—are monotonic and, accord-
ingly, tend to feature a host of redundancies. IfAB is sufficient forE, so isABZ (i.e.
AB → E ⊢ ABZ → E), and if A ∨ B is necessary forE, so isA ∨ B ∨ Z (i.e.
E → A ∨ B ⊢ E → A ∨ B ∨ Z). In both cases,Z may be interpreted to stand for any
arbitrary factor. That means sufficient and necessary conditions can only be causally inter-
preted if all redundancies are removed from them, i.e. if they are rigorously minimized. To
this end, modern regularity theories draw on the notions of aminimally sufficient condition
and of a minimally necessary condition (cf. Graßhoff and May2001; Baumgartner 2008).
AX1 is aminimally sufficient conditionof E iff AX1 → E and for no proper partα of AX1:
α → E, where a proper part of a conjunction is that conjunction reduced by at least one
conjunct.AX1∨BX2∨Y is aminimally necessary conditionof E iff E → AX1∨BX2∨Y
and for no proper partβ of AX1 ∨BX2 ∨Y : E → β, where a proper part of a disjunction is
that disjunction reduced by at least one disjunct.

Minimizing sufficient and necessary conditions amounts to systematically testing
whether they contain sufficient and necessary proper parts and to eliminating redundant
parts. Such systematic redundancy testing requires sufficient and necessary conditions to be
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given in a particular syntactic form: disjunctive normal form.7 To have a handy label for the
resulting minimally necessary disjunctions of minimally sufficient conditions, I (following
Graßhoff and May 2001) introduce the notion of aminimal theory.

Minimal Theory: A minimal theoryΦ of a factorE is a minimally necessary disjunction
of minimally sufficient conditions (in disjunctive normal form) of E, such that (i) the
conjuncts in each disjunct ofΦ are instantiated in the same situation, (ii)E is instantiated
in the same situation as its minimally sufficient conditions, and (iii) the instances ofE
differ from the instances of its minimally sufficient conditions.

To illustrate, reconsider the simple structure depicted infigure 1. In this structure,A and
B each are sufficient forE and, as they do not contain proper parts, they do not contain
sufficient proper parts. Hence,A andB each are minimally sufficient forE. The disjunction
A ∨ B, in turn, is necessary forE and neither of its proper parts is itself necessary forE,
for according to the structure in figure 1,A andB are alternative causes ofE, which is only
the case if neitherA norB is redundant to account for all instances ofE. That is, there are
circumstances such thatA makes a difference toE independently ofB, and vice versa. It
hence follows that there exist instances ofE without instances ofA, i.e. instances ofE that
are caused by instances ofB only, and there exist instances ofE without instances ofB, i.e.
instances ofE that are caused by instances ofA only.8 Overall, the structure in figure 1 not
only entails (1), but moreover (4):

∀x((Ax ∨Bx) → ∃y(Ey ∧ x ≠ y ∧Rxy))∧

∀x(Ex→ ∃y((Ay ∨By) ∧ x ≠ y ∧Rxy))∧

¬∀x(Ex→ ∃y(Ay ∧ x ≠ y ∧Rxy))∧

¬∀x(Ex→ ∃y(By ∧ x ≠ y ∧Rxy))

(4)

To suitably abbreviate the formal expression of minimal theories in our shorthand nota-
tion, I introduce the operator “⇒”, which does not only state regularities among factors as
expressed in (1) but moreover determines sufficient and necessary conditions to beminimal.
This allows for abbreviating (4) in terms of (5):

A ∨B ⇒ E (5)

(5) is the minimal theoryover the set{A,B,E} expressing the minimized deterministic
dependencies regulating the behavior ofE as induced by the deterministic structure in figure
1. A ∨ B is the antecedent of the minimal theory (5) andE its consequent. A factorZ is
said tobe part ofa minimal theoryΦ of E iff Z is a conjunct of at least one disjunct in the
antecedent ofΦ.

The notion of a minimal theory takes us a long way towards identifying the subset of
material regularities that allow for inferring back to causation, for it turns out that minimal
theories do not state spurious regularities. That is, if thecausally interpretable regularities
are restricted to minimal theories, spurious regularitiesare precluded from a causal interpre-
tation. To see this, consider the deterministic structure depicted in figure 2. In this structure,

7 There exist several Boolean procedures that algorithmically minimize sufficient and necessary condi-
tions, the most well known being Quine-McCluskey optimization (cf. Quine 1959). For an alternative cf.
Baumgartner (2009).

8 Plainly, the non-redundancy principle does not require relevant difference-making circumstances to exist
in the past or the present of a particular causal analysis. These circumstances simply need to exist in a tenseless
sense (in the domain of quantification).
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C andE are two parallel effects of the common causeA. In addition, there exists one further
alternative cause forC andE each:D for C andB for E. Even though this structure is again
artificially simple, it suffices for our current purposes, for it yields spurious regularities. For
instance, it entails thatC in combination with the absence ofD, i.e.CD, is minimally suf-
ficient forE without CD being a complex cause ofE. WheneverCD is instantiated,A is
instantiated as well, for no effect occurs without any of itscauses. Hence, ifD is absent,
A must be present to account forC. Furthermore, sinceA determinesE in structure 2, it
follows thatCD is sufficient forE as well. Of course,CD is moreover part of a necessary
condition ofE:

CD ∨A ∨B ↔ E (6)

As CD is composed ofINUS-conditionsof E (cf. Mackie 1974, 62), Mackie’s INUS-
theoretical variant of a regularity theory is forced to interpretCD as complex cause ofE,
which, according to the structure in figure 2, is false. Structures as this one are ubiquitous—
the most famous concrete example being the so-calledManchester Factory Hootersexam-
ple, in light of which Mackie (1974, 83-87) ultimately abandoned the attempt to provide a
genuine regularity theoretic analysis of type causation. However, (6) is not a minimal theory
of E, for CD ∨A ∨B is only necessary but not minimally necessary forE. It contains one
necessary proper part:A∨B. WheneverE occurs,A or B occur as well. The left-hand side
of (6) has no other necessary proper part.CD∨A is not necessary forE, because according
to figure 2E may occur withoutCD andA—say, whenCD is given along withA andB.
Neither isCD ∨B necessary forE: E may occur withoutCD andB—for example, when
CD is given in combination withB andA. Among the elements of the necessary condition
of E in (6) the following asymmetry holds, which allows for eliminatingCD: CD is suffi-
cient forA ∨ B, while A ∨ B is not sufficient forCD. That means, whileA ∨ B makes a
difference toE independently ofCD, the converse does not hold. The minimal theory ofE

entailed by figure 2 is not (6) but (5).
These considerations reveal the principal deficiency of Mackie’s INUS-theory and

Wright’s NESS-account. Both of these theories do not minimize material regularities rig-
orously enough. Mackie and Wright only call for a minimization of sufficient conditions.
Yet, necessary conditions may contain redundancies as well.9 By contrast, causal structures
do not feature any redundancies whatsoever. By rigorously minimizing both sufficient and
necessary conditions those factors are filtered out that under some circumstances actually
make a difference to the outcome. Thereby it becomes possible to distinguish between
regularities that stem from causal dependencies and regularities that are spurious.

Minimizing necessary conditions also prevents a causal interpretation of so-calledac-
cidental regularities, e.g. of regularities that exist because involved factors have only very
few instances that, by chance, happen to coincide with specific effects (cf. Armstrong 1983,
15-17). To illustrate, assume that Harold Bride, the juniorwireless operator on the Titanic,

9 For this reason, recent attempts to reanimate Wright’s NESS-test for the analysis of actual causation, as
can be found in Baldwin and Neufeld (2004) or Halpern (2008),are bound to fail.



8 Michael Baumgartner

for the first (and only) time in his life lit a Havana cigar moments before the ship hit the ice-
berg. Suppose, moreover, that we define a factorH that has Harold’s lighting of a cigar as
its only instance. Then, if we letW stand for the occurrence of a shipwreck, the conditional
H →W is true and, moreover, the instances of its antecedent and consequent differ and are
spatiotemporally proximate. AsH does not comprise proper parts, it is not only sufficient,
but also minimally sufficient forW . H is not the only minimally sufficient condition ofW .
Shipwrecks are regularly preceded by storms (S) or fires (F ) or collisions with icebergs (I)
etc. The particular instance ofW constituted by the sinking of the Titanic was preceded
by an instance ofI. Nonetheless, there is a necessary condition ofW that containsH, viz.
H ∨S∨F ∨ I ∨Y1. Yet, that condition, analogously to the necessary condition ofE given in
(6), is not minimal, for it holds thatH → I and¬(I → H). Hence,H makes no difference
to E independently ofI and is therefore redundant.

Causal models are always relativized to the set of factors considered. This relativization
is of particular relevance to proper minimizations of sufficient and necessary conditions, for
the elimination of all redundancies essentially hinges on the diversity of that factor set. In
contexts of epistemic limitation, notably in contexts of causal discovery, the factor set of
an analysis may well not be diverse enough to allow for complete minimizations. There-
fore, material regularities that are maximally minimized relative to such a context cannot
be unconditionally interpreted causally. As indicated above, the non-redundancy require-
ment (I) is not sufficient to guarantee the causal interpretability of material regularities in all
circumstances. We additionally need to impose apermanenceconstraint (II).

What that supplementary constraint amounts to can again be illustrated by means of
the structure in figure 2. Suppose the scientific discipline investigating the causal structure
depicted in figure 2 starts by considering the factors in the setF1 = {B,C,D,E}. Relative
toF1 it is discovered thatCD andB are each minimally sufficient forE. At the same time,
the scientists investigating the behavior ofE are confronted with instances ofE in situations
where bothCD andB are absent. That is, the setF1 does not feature a necessary condition
of E. In consequence, the researchers infer the existence of further unmeasured causes ofE

outside ofF1. They hence conjecture the validity of the following minimal theory (withY1
running over the unmeasured causes):

CD ∨B ∨ Y1 ⇒ E (7)

Now suppose that after a while of further investigation the initial setF1 is expanded to
F2 = {A,B,C,D,E}. Relative toF2, it is then discovered that the formerly unmeasured
factorA constitutes an additional minimally sufficient condition of E. Moreover, now the
scientists can account for all instances ofE: wheneverE is instantiated, there is an instance
of CD orA orB. Thus, a necessary condition ofE has been discovered. This finding raises
the question whether that necessary condition is minimal. As we have seen above, that is
not the case. The discovery ofA rendersCD redundant, which, accordingly, drops out of a
minimized necessary condition. ThatCD appeared to make a difference toE turns out to
have been a mere by-product of the limited diversity ofF1. ExpandingF1 toF2 reveals that
the regularityCD → E is spurious. Accordingly,CD is no longer part of a minimal theory
of E overF2.

In order to reveal the spuriousness of regularities and the corresponding redundancy of
elements of minimal theories, expansions of factor sets must be suitable. Asuitable expan-
sionFj of a factor setFi is a superset ofFi, i.e.Fi ⊆ Fj , which is the result of introducing
factors intoFi that are all suitable for causal modeling and that are logically independent
of the elements ofFi and do not introduce relationships of supervenience, of constitution,
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or of mereological containment. A suitable expansionFj of Fi reveals that a factorZi ∈ Fi

which is part of a minimal theoryΦi of Zn overFi is redundant to account for an effect
Zn if, and only if, Zi is not part of a minimal theoryΦj of Zn overFj . If there does not
exist a suitable expansionFj that reveals the redundancy ofZi, I shall say thatZi is perma-
nently non-redundantfor Zn. That is, a material regularityZi → Zn is causally interpretable
only if it permanently satisfies the non-redundancy principle, i.e. if Zi is permanently non-
redundant forZn. More generally, a minimal theoryΦi of a factorZn over a factor setFi

is causally interpretable only if for all suitable expansionsFj of Fi there exists a minimal
theoryΦj of Zn overFj such that all factorsZi that are part ofΦi are also part ofΦj .
Or inversely put: a minimal theory is causally interpretable only if none of its members are
rendered redundant by suitably expanding the corresponding factor set.10

It must be emphasized that eliminating spurious regularities by systematically extending
analyzed factor sets and rigorously removing redundanciespresupposes that causal struc-
tures are of a certainminimal complexity. Take an almost empty universe that only comprises
events of typesA,C, andE such that these factors correspond to fundamental properties, i.e.
properties that cannot be further analyzed. Moreover, assume, for the sake of the argument,
thatA is a common cause ofC andE. It follows that any of those three factors is instantiated
if, and only if, any other of those factors is instantiated.A, C, andE are mutually bicondi-
tionally dependent. As no other factors are involved in thisstructure, it cannot be extended;
nor can it be modeled on a more fine-grained level to enhance complexity via specification.
Hence, the dependency betweenC andE is spurious and both free of redundancies and
permanent. Indeed, the most well-known counterexamples toregularity theories are exactly
of this simplistic form. Figure 2, however, shows that if there exists only one further alter-
native cause for each ofC andE, dependencies amongC andE are rendered redundant
and, thus, identifiable as spurious on regularity theoreticgrounds. Accordingly, determinis-
tic structures that are amenable to a regularity theoretic treatment must feature at least two
alternative causes for each effect. This does not mean that analyzed factor sets must actually
include two alternative causes for each effect; it just means that factor sets must be extend-
able to include two causes. In light of the enormous causal complexity of the world we
live in, it is fair to assume that all type-level causal structures de facto exhibit that minimal
complexity. In fact, I would want to claim that determinate causal dependencies only exist
in complex worlds, for permanent biconditional dependencies among three factors, in prin-
ciple, cannot be unambiguously interpreted causally. Yet,even if somebody wants to insist
that toy worlds, as the one described above, may feature causal dependencies, these worlds
do not show that regularity theories fail to adequately account for type causation as found in
the actual world. At best, these simplistic toy examples indicate that regularity theories are
not conceived for toy worlds.

With this caveat in mind, I propose the following analysis oftype causation (in the actual
world):

Type causation (TC): A factorA is a type-level cause of a factorE iff there exists a factor
setFi, whereA,E ∈ Fi, such that (i)A is part of a minimal theoryΦi of E overFi, and
(ii) for all suitable expansionsFj of Fi, there exists a minimal theoryΦj of E overFj

such thatA is part ofΦj—in short, iffA is permanently non-redundant forE.

10 Due to the universal (or negative existential) nature of this permanence requirement its satisfaction may
be difficult to establish in contexts of epistemic limitations. Plainly though, such uncertainties are a trademark
problem encountered in contexts of causal discovery. May (1999, 74) has shown that spurious regularities
have certain features that allow for their identification even prior to complete expansions of corresponding
factor sets. Halpern and Hitchcock (2010) have recently emphasized that acquiring structural stability across
expansions of causal models is of utmost importance for the structural equations framework as well.
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For simplicity of exposition and as my primary concern here is not with contexts of causal
discovery, regularities expressed by a minimal theoryΦi over a setFi shall be assumed to
satisfy the permanence constraint (TC.ii) by default in thefollowing.

Before we turn to actual causation, let me emphasize a few features of (TC) that will
be important for the ensuing discussion of actual causation. First, contrary to what critics of
regularity theories have often claimed (cf. e.g. Armstrong1983, ch. 2), material regularities
may allow for distinguishing between causes and effects, i.e. for identifying the direction
of causation. To see this, reconsider the minimal theory (5)which exhibits the alternative
causes ofE in the structure of figure 2. The regularities amongE and its alternative causes
A andB that are entailed by this structure exhibit an important non-symmetry:A andB

each determineE, butE does neither determineA nor B, but only the disjunctionA ∨ B.
A complete instantiation of a (complex) cause determines the corresponding effect factor,
but the latter does not determine which of its alternative type-level causes is responsible
for its instantiation in a particular situation. This is thenon-symmetry of determination (cf.
Baumgartner 2008).11 Distinguishing between causes and effects on the basis of this non-
symmetry, of course, presupposes that an analyzed factor set comprises at least two complete
causes for a corresponding effect.12 If a factorZ1 is both necessary and sufficient for another
factorZ2 relative to a given factor setFi, i.e. if it holds inFi thatZ1 ↔ Z2, conditional
dependencies are symmetric and do not permit a distinction between cause and effect. In
that case, identifying one ofZ1 andZ2 as effect (or cause) requires either imposing some
external non-symmetry, as most commonly the direction of time, or extendingFi until an-
other condition is found that is minimally sufficient for oneof Z1 andZ2, and independent
of the other.

Second, by conjunctively concatenating minimal theories,causal structures of arbitrary
complexity can be represented on regularity theoretic grounds. For instance, (8) represents
a causal chain such thatA andB are causes ofC which, in turn, is a cause ofE; or (9)
exhibits a common cause structure in whichB is a common cause ofC andE:

(AX1 ∨BX2 ∨ Y1 ⇒ C) ∧ (CX3 ∨DX4 ∨ Y2 ⇒ E) (8)

(AX1 ∨BX2 ∨ Y1 ⇒ C) ∧ (BX3 ∨DX4 ∨ Y2 ⇒ E). (9)

Third, over one setFi, there may exist several minimal theories for one effect. Tosee
this, consider the neuron diagram in figure 3. As such diagrams are omnipresent in the actual

A

D
F

EB

C

Fig. 3

11 One might be inclined to argue that some causes may also have alternative effects and that, in such
cases, the direction of determination is reversed. However, note that causes that bring about one effect in
one situation and another effect in another situation are not deterministic. In deterministic structures, which
constitute the domain of regularity theories, there are no causes with alternative effects.

12 Similarly, to orient edges in causal Bayes nets at least two alternative paths are required that have a
common end node, so-calledunshielded colliders(cf. especially Pearl 2000, 51-57).
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causation literature (cf. Collins et al. 2004; Hall 2007; Hitchcock 2009), their graphical
features do not need explaining. Suffice it to say that, contrary to the graphs in figures 1
and 2, a neuron diagram does not represent a type-level but a token-level structure. The
diagram in figure 3 exhibits a switching process where the firing of neuronA triggersB
to fire, which in combination with a firing of the switchF stimulatesC and, finally,E.
Still though, this token-level process instantiates an underlying type-level structure, which
e.g. rules that in situations whereF does not fire the stimulatory influence ofA on E is
transmitted viaD. If we model this underlying type-level structure relativeto the factor set
F3 = {A,B,C,D,E,F}, where each element simply represents the firing of the respective
neuron, we find four minimally sufficient conditions forE: A, B, C, D.13 A disjunctive
concatenation yields a necessary condition ofE: if E fires there is also firing ofA or B or C
or D. Overall, it holds:

A ∨B ∨C ∨D ↔ E (10)

(10) is not a minimal theory because the necessary conditionon its left-hand side contains
three proper parts that are themselves necessary forE:

A⇒ E ; B ⇒ E ; C ∨D ⇒ E. (11)

That is, the type-level structure of which the process in figure 3 is an instance yields three
different minimal theories forE overF3.

In general, the behavior of an outcome of a deterministic structure can be expressed as
a function of its direct causes or of indirect causes furtherup on a causal chain. Of course,
the mere regularities stated by the minimal theories in (11)are not sufficient to determine
which of these theories exhibits the direct causes ofE. Moreover, the regularities inA⇒ E

andB ⇒ E do not even distinguish between causes and effects. But if weassume that
we have some way of orienting these dependencies, say, because figure 3 only depicts a
substructure of a more complex neuron diagram that featuresat least two alternative causes
for each effect or because we impose a temporal ordering on the firings of these neurons,
the minimal theories in (11) can be oriented and grouped intodirect andindirect theories of
E overF3: C ∨D ⇒ E is the direct minimal theory, andA ⇒ E andB ⇒ E are indirect
theories. Similarly, there is one direct and one indirect minimal theory for each ofC andD:
BF ⇒ C, AF ⇒ C, BF ⇒ D, AF ⇒ D.

A type-level structure is completely characterized by direct minimal theories only. The
indirect theories are mere logical consequences of a complete characterization on the basis
of direct theories. Nonetheless, as will become apparent shortly, indirect minimal theories
are important to evaluate the non-redundancy of factors foreffects further down on a causal
chain. For transparency, I subsequently label indirect theories with an index:(X1 ⇒ Z1)i.
In sum, the complex minimal theory overF3 representing the type-level structure underlying
the neuron diagram in figure 3 is this:

(A⇒ B) ∧ (BF ⇒ C) ∧ (BF ⇒ D) ∧ (C ∨D ⇒ E)∧

(AF ⇒ C)i ∧ (AF ⇒ D)i ∧ (A⇒ E)i ∧ (B ⇒ E)i
(12)

Finally, it is important to note that (TC) yields anon-transitivenotion of type causation.
Factors may make a difference to their direct effects and no difference to effects that are
located further down on a causal chain. A factorZ1 may be part of a minimally sufficient
condition ofZ2 which, in turn, is part of a minimally sufficient condition ofZ3, without

13
F is not part of a minimally sufficient condition ofE because the firing of the switchF can be eliminated

from every sufficient condition without sufficiency forE being lost.
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Z1 being contained in a minimally sufficient condition ofZ3. The structure characterized in
(12) provides an example. In this structure,F makes a difference to whether the stimulatory
impulse is transmitted via instances ofC or D, but E is instantiated independently of the
way of transmission. Correspondingly,F is part of a minimal theory ofC andC is part of
minimal theory ofE, butF is not part of a minimal theory ofE. That is, according to (TC),
F is a cause ofC andC is a cause ofE, but F is no cause ofE. The non-transitivity of
(TC) is the reason why indirect minimal theories are needed to assess non-redundancies in
difference-making along causal paths.

3 Regularity theory of actual causation

Let us now apply that type-level theory to analyzing actual causation. To avoid intricate
questions regarding the ontological makeup of the relata ofactual causation, I shall simply
use the neutral term ‘token’ to refer to the relata of actual causation. The basic idea behind
a regularity theoretic analysis of actual causation can then be stated very simply: two to-
kens are causally related if, and only if, they properly instantiate an underlying type-level
structure. Actual causation, hence, is a secondary relation that hinges on how correspond-
ing tokens relate to other tokens of the same types and on how these types relate to each
other. To spell this basic idea out in more detail, we first have to clarify what it means for
two tokens toproperly instantiatea type-level structure. To this end, one auxiliary notion is
required that I borrow from Hitchcock (2001) and adapt to theregularity theoretic context:
the notion of anactive causal route. Roughly, an active causal route is a causal path of a
type-level structure that is instantiated in a concrete situation. More specifically:

Active causal route: Relative to a factor setFi, Z1 is connected toZn by an active causal
route in a concrete situationω iff there is a sequence⟨Z1, . . . , Zn⟩ in Fi such that for
eachi, 1 ≤ i < n: (i) Zi is contained in a direct minimal theoryΦi+1 of Zi+1 overFi;
and (ii) inω, Zi is co-instantiated with all factorsXi constituting a minimally sufficient
conditionZiXi of Zi+1 in Φi+1.

To illustrate, reconsider the scenario depicted in figure 3 along with the corresponding
complex minimal theory (12) overF3. In (12),A is part of a direct theory ofB which is
contained in a direct theory ofC which, in turn, is part of a direct theory ofE. Moreover,
in diagram 3,A is co-instantiated with all other factors constituting a minimally sufficient
conditionAX1 of B—in this case, of course,X1 amounts to the empty set becauseA is itself
minimally sufficient forE—, B is co-instantiated withF , andC, which is itself minimally
sufficient forE, is instantiated as well. Hence, in that neuron firing process,A is connected
toE by an active causal route. Note that the notion of an active route is relativized to a factor
set. As a consequence, two factors may be connected by an active route relative to one factor
set, but not relative to another. Overall, that two tokens properly instantiate an underlying
type-level structure means that those tokens connect two corresponding types by an active
causal route relative to a setFi and relative to all suitable expansions ofFi, i.e. that those
tokenspermanentlyconnect the corresponding types by an active route.

The notion of an active causal route now enables us to define actual causation on the
basis of (TC):

Actual causation (AC): A tokena is an actual cause of a different tokene iff there exists a
factor setFi that contains two factorsA andE such that (i)A is part of minimal theory
Φi of E overFi andA is permanently non-redundant forE, i.e.A is a type-level cause
of E according to (TC); and (ii) for all suitable expansionsFj of Fi (which include
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Fi itself), A is on an active causal route toE relative toFj such thata ande are the
instances ofA andE, respectively, on this route.

As in case of (TC.ii), the permanence constraint (AC.ii) is of universal form and may,
hence, be difficult to establish in contexts of causal discovery. In order not to get entan-
gled in intricate questions of causal discovery, I shall simply assume that—if not explicitly
stated otherwise—the subsequently discussed neuron diagramscompletelyrepresent corre-
sponding causal processes, i.e. no further causes or causalintermediaries are left out. This
greatly limits the extendability of relevant factor sets and yields that (AC.ii) can be visibly
(in)validated.

The remainder of this section demonstrates the potential of(AC) by applying it to the
standardly discussed structures that create problems for counterfactual accounts: switching,
preemption, overdetermination, and short-circuiting. For reasons of space, I have to focus
on applying (AC) to these types of structures and cannot discuss in detail the problems they
generate for counterfactual accounts. Yet, all of these problems are well-documented in the
literature, most of all, in a recent exchange by Hitchcock and Hall (cf. Hall 2007; Hitchcock
2009).

As Hall (2007, 117-118) shows, structural equations accounts that draw on explicitly
nonforetracking counterfactuals identify the firing ofF as actual cause of the firing ofE
in the switching process of figure 3. However, in light of the fact that switchF de facto
makes no difference whatsoever to whether neuronE fires, this result conflicts with causal
intuitions. (AC), in turn, correctly captures those intuitions. It yields that the firing ofF does
not count as an actual cause of the firing ofE, because the corresponding factorF is not part
of a minimal theory ofE (over any suitable factor set) and, thus, is no type-level cause of
E. By contrast, the firings ofA, B, andC in diagram 3 all come out as actual causes of the
firing of E. As exhibited in (12), the factors these tokens instantiateare all type-level causes
of E and they are connected toE by active causal routes relative to all suitable expansions
of F3 (for, in light of the above completeness assumption,F3 contains all type-level causes
of E). Hence, (AC) correctly mirrors the relations of actual causation that are exhibited by
the switching process of figure 3.

Next, let us consider the case of early preemption shown in figure 4a: the firing of neu-
ron C triggersE to fire (viaD) and, at the same time, suppresses the stimulation ofE by
A (via B).14 In this situation, the actual causes ofE’s firing are the firings ofC and ofD.
Nonetheless, hadC not fired,E would have fired anyway because it then would have been
stimulated byA via B. If we model the underlying type-level structure relative to the set
F4 = {A,B,C,D,E} and—as in the previous section—assume orientability of determinis-

14 Inhibitory signals are represented by ‘p’. They always override stimulatory signals.
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tic dependencies, we get the following complex minimal theory:

(AC ⇒ B) ∧ (C ⇒ D) ∧ (D ∨B ⇒ E) ∧ (A ∨C ⇒ E)i (13)

(AC) entails that the instances ofC andD in diagram 4a are actual causes of the instance
of E. By contrast, the instance ofA does not come out an actual cause ofE. AlthoughA is
part of a minimal theory ofE and, thus, a type-level cause ofE, A is not connected toE
by an active route relative toF4 in 4a, forA is not co-instantiated with all other members
of the minimally sufficient conditionAC of B. Preempted causes—as the firing ofA—are
also intuitively not identified as actual causes.

This example demonstrates why (AC) requires tokens topermanentlyconnect corre-
sponding factors by active routes in order to be causally related. If the type-level structure
instantiated by the process in diagram 4a is modeled relative to the setF∗4 = {A,C,E},
A ∨ C ⇒ E turns out to be the direct minimal theory ofE. As a consequence, relative to
F∗4 bothA andC are connected toE by active routes. The setF∗4 is not diverse enough to
model the fact that the signal from neuronA toE can be interrupted. Suitably expandingF∗4
toF4 yields the richer minimal theory (13) which adequately models the interruptability of
that signal and reveals that the firing ofA is preempted in the process of diagram 4a.

Cases of late preemption are handled analogously. Since Lewis (1986, 203-204), canon-
ical examples of late preemption have the form of scenario 4b, where neuronE is stimulated
by G via C. E suppressesD, which would have triggeredE, hadE not already received a
stimulus along the other path. Modeling the underlying type-level structure relative to the
setF5 = {A,B,C,D,E,G} yields the following minimal theory:

(G⇒ C) ∧ (A⇒ B) ∧ (BE ⇒ D) ∧ (C ∨D ⇒ E)∧

(G ∨B ⇒ E)i ∧ (G ∨A⇒ E)i
(14)

A, B, C, andG are all contained in a minimal theory ofE. Yet, whileG andC additionally
are located on an active route toE in diagram 4b,A andB are not. (AC) hence identifies
only the firings ofG andC as actual causes of the firing ofE. Again, this result accords with
the usual causal intuitions.15

A caveat is required at this point. In recent years, there hasbeen some variance in the
literature as to what exactly the difference between early and late preemption amounts to.
According to the understanding which hearkens back to Lewis(1986) and which underlies
diagrams 4a and 4b, the difference is that “in cases of early preemption, the backup process
is cut off before the effect occurs, whereas in cases of late preemption, the process is cut
off by the effect itself” (Hitchcock 2007, 526). By contrast, e.g. Hall and Paul (2003, 111-
112) hold that the characteristic feature of early preemption is that a process is interrupted
by another process, whereas in cases of late preemption no interruption takes place, rather,
the preempted process just does not run to completion. Whatever the merits of these two
accounts may be, it is clear that in order to adequately reproduce cases of preemption within
difference-making theories of causation—be they of the counterfactual or the regularity the-
oretic type—relevant causal models must contain a factor (or a random variable) that takes
on different values depending on whether a corresponding cause is preempted or not (cf.
Halpern and Pearl 2005, 862). In a case where, say, two neurons A andC fire at the same
time, but the signal ofA reaches and triggers neuronE before the signal ofC such that the

15 Keep in mind that (14) is not a propositional expression but ashorthand for a first-order expression
that, among other things, imposes spatiotemporal constraints on the instances of the involved factors. In this
particular case, these constraints must be taken to imply that BE andE are not proximately instantiated
(which would be impossible), when neuronE is triggered viaD.
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signal ofC does not run to completion, such amarkingfactor (cf. Hitchcock 2004, 416) may
e.g. model whetherE has already fired or not when the signal fromC arrives (cf. Strevens
2007, 103). That is, to reproduce cases of preemption, both structural equations accounts
and (AC) require that relevant factor sets are suitably expandable to include at least one
marking factor on the preempted causal path.

Diagram 4c features another standard test case for counterfactual accounts: symmetric
overdetermination. In this process, neuronsC andA trigger E simultaneously, such that
each stimulus would have itself been sufficient forE to fire. Intuitively, we want to say that
both overdetermining causes count as actual causes ofE’s firing. (AC) yields this result in
a maximally simple manner. Relative to the setF6 = {A,C,E} the underlying type-level
structure is given by the following minimal theory:

A ∨C ⇒ E (15)

That is, bothA andC are type-level causes ofE and, in diagram 4c, are connected toE

by an active causal route each. Thus, the instances ofA andC are both identified as actual
causes ofE by (AC).

Let us now turn to what Hall (2007, 120) has dubbedshort circuits. An example is given
in figure 5a. In this process, neuronC triggersF throughD and, at the same time, suppresses
F by way of stimulatingB. Moreover,F is connected toE through an inhibitory edge, mean-
ing that if F were to fire,E would be suppressed. While structural equations accounts tend
to identify the firing ofC as an actual cause ofE’s firing, intuitively the firing ofC makes
no difference toE at all, becauseC’s stimulatory influence onE’s potential suppressorF
is canceled byC’s own inhibitory signal viaB. To see whether (AC) yields the same re-
sult, we again have to first identify the relevant minimal theory. Relative to the factor set
F7 = {A,B,C,D,E,F}, with factors once more representing the firings of the correspond-
ing neurons, diagram 5a seems to suggest thatAF is both minimally sufficient and necessary
for E. However, on closer inspection, it turns out that in the type-level structure underlying
diagram 5a,AF has a proper part that is sufficient and necessary forE, viz.A, for the other
part ofAF , i.e.F , holds trivially. Under no circumstances could neuronF ever fire, because
C andC are each minimally sufficient forF . That is, the tautologous disjunctionC ∨ C

determinesF . Therefore,F poses no potential threat toE whatsoever. As neuronF does not
possibly make a difference toE, the inhibitory edge betweenF andE in 5a is ungrounded.
Moreover, sinceC is necessary and sufficient forB andD, it follows thatB is instantiated
if and only if D is. As a consequence, the type-level dependencies amongB, D, andF are
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very ambiguous. As a matter of fact, these factors might not be causally connected at all, for
the neuron diagram in figure 5a is empirically equivalent to diagram 5b.16

Whatever the dependencies amongC, B, D, F may be, it is clear that the minimal
theory regulating the behavior ofE in the type-level structure underlying diagrams 5a and
5b is simply this:

A⇒ E (16)

As a result, (AC) only identifies the instance ofA as an actual cause of the instance ofE in
the process depicted in 5a and 5b, respectively, and hence accords with causal intuitions.

Matters change radically if we, instead of this simple shortcircuit, consider the slightly
more complex short circuit depicted in diagram 5c. Contraryto 5a (and 5b), 5c features
an additional neuronG that can actually causeF to fire. In the process depicted in 5c, the
stimulatory influence ofG via D on F is suppressed byC throughB. In 5c, neuronF poses
a real threat forE, and thus there exist circumstances (e.g. the one depicted in 5c) in which
firings of C make a difference to whetherE fires. In consequence,A is not itself sufficient
for E. The type-level structure underlying the behavior ofE in 5c involves all factors in the
setF8 = {A,B,C,D,E,F,G}. The pertinent minimal theory for diagram 5c is this:

(C ⇒ B) ∧ (C ∨G⇒ D) ∧ (B ∨D ⇒ F ) ∧ (AF ⇒ E) ∧

(C ∨G⇒ F )i ∧ (AB ∨AD ⇒ E)i ∧ (AC ∨AG⇒ E)i
(17)

C is now connected toE by an active causal route (viaB andF ) andC is moreover a type-
level cause ofE. Hence, according to (AC),E’s firing in diagram 5c is determined to be a
joint effect of the firings ofC and ofA. I consider this result to accord with causal intuitions,
for contrary to the process depicted in 5a, the firing ofC makes a difference to whetherE
fires or not in 5c.

Furthermore, I take this result to show that actual causation is not an intrinsic relation
of two tokensa ande and, ifa is not a direct cause ofe, intermediary tokens mediating the
causal influence ofa on e.17 Whether two tokens are related in terms of actual causation
also hinges on the existence of suitable off-route tokens. Expanding the neuron diagrams
5a and 5b by the additional neuronG turns the firings ofC andB into actual causes ofE’s
firing, even thoughG is not located on the route fromC andB to E. The same also holds
on the type-level. The contrast between (16) and (17) reveals that addingG turnsC and
B into type-level causes ofE, even thoughG does not mediate between these factors. The
non-intrinsicness of both type and actual causation very naturally follows from analyzing
these relations in regularity theoretic terms.

The scenarios in figure 5 also demonstrate that the minimal theories representing the
type-level structures underlying neuron diagrams can be changed drastically by integrating
(or removing) single neurons. How (AC) analyzes a given example is highly sensitive to
the actual complexity of that example. This requires particular caution when comparing the
causal claims inferred on the basis of (AC) with an intuitiveassessment of a corresponding

16 Readers with sympathies for interventionism will deny the equivalence of diagrams 5a and 5b by arguing
that 5a and 5b do not have the same implications on howE behaves under possible interventions onD or B
that are independent ofC. According to diagrams 5a and 5b, however,D andB can only be stimulated by
C. Hence, there are no possibilities to intervene onD andB independently ofC. As will be shown below, as
soon as 5a and 5b are suitably expanded by further neurons that can stimulateD or B independently ofC the
equivalence of 5a and 5b breaks down.

17 Hall (2004) takes an example analogous to the one in figure 5 toshow that there exists at least one concept
of causation,viz. dependence, that does not amount to an intrinsic relation. Menzies (2002) also significantly
weakens his intrinsicness thesis (cf. Menzies 1996) in light of an example of this type.
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neuron diagram. The latter must be intuitively assessed without implicitly assuming ways to
manipulate certain neurons that are not represented in thatdiagram.

I conclude this collection of exemplary applications of (AC) with an example that Hall
(2004, 263) takes to show that accounts of actual causation in terms material regularities
ultimately fail. In diagram 6a,E is a so-calledstubbornneuron (symbolized by the grey
shading) that only fires if it receives at least two stimulatory signals at the same time. In the
process depicted in 6a,E is stimulated byA viaD and byC viaB.A not only stimulatesE, but
also suppressesH which would have triggeredE as well. Diagram 6a suggests that we should
count both the firing ofA and the firing ofC as actual causes of the firing ofE. However, if
we model the underlying type-level structure relative toF9 = {A,B,C,D,E,H}, it turns
out thatA is not part of a minimally sufficient condition ofE, for E is instantiated if and
only if C (andB) is—irrespectively of whetherA is also instantiated or not. Under no
circumstances couldA ever make a difference toE. The type-level structure instantiated by
6a is expressed by the following minimal theory:

(A⇒ D) ∧ (CA⇒ H) ∧ (C ⇒ B) ∧ (B ⇒ E) ∧ (C ⇒ E)i (18)

Against the background of (18), (AC) of course only identifies the instances ofC andB as
actual causes of the instance ofE in 6a. That is, contrary to what diagram 6a suggests, the
firing of A does not come out as cause of the firing ofE. Hall (2004) takes this to constitute
an insurmountable problem for pure regularity accounts of actual causation.

However, note that expressing the type-level structure instantiated by diagram 6a in
terms of the minimal theory (18), first and foremost, revealsthat A, D, andH make no
difference toE in addition toC andB. Diagram 6a is empirically equivalent to diagram
6b, in whichE is not represented as a stubborn neuron and which lacks edgesfrom D to
E and fromH to E. In view of the fact that causal structures—both on the type and on the
token-level—do not feature redundancies, the neuron process in question here should be
reproduced in terms of diagram 6b rather than 6a. Obviously,in light of 6b, which does not
contain redundant elements, it turns out to be a virtue of (AC) that it does not identify the
firing of A as an actual cause of the firingE. In fact, the firing ofA is no cause of the firing
of E because the former makes no difference whatsoever to the latter. Rather than giving
rise to a problem for regularity accounts, the fact thatA is not part of a minimally sufficient
condition ofE reveals that 6a features redundant elements and, hence, does not adequately
represent a causal process. Not any graph construed by connecting nodes by stimulatory
or inhibitory edges results in a neuron diagram that can be seen to adequately reproduce a
causal process.
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It will be objected that the stubbornness ofE and the capacity ofD andH to stimulate
E can in fact be tested by suitably intervening onH, D, andB. For instance, if we intervene
to suppressH without at the same time stimulatingD in a situation whereA does not fire,
we can test whether the firing ofC suffices to triggerE or not, i.e. whetherE in fact is
stubborn. Similarly, if we can intervene to stimulateD and to suppressB without at the
same time suppressingH in a situation whereC fires andA does not, we can test whether
the firings ofD andH indeed make a difference to the behavior ofE. Plainly, provided that
such interventions are possible the stubbornness ofE and the stimulatory impact ofD and
H onE are easily testable. Diagram 6a, however, does not feature any additional inhibitory
and stimulatory neurons that would be required for such intervention tests. Moreover, Hall’s
argument as toA’s failure to be part of a minimally sufficient condition ofE essentially
hinges on the impossibility to perform these additional interventions. If there indeed exist
ways to holdH andB fixed and to stimulateD that are not represented in diagram 6a,
relationships of minimal sufficiency change to the effect thatA will be part of a minimally
sufficient condition ofE after all. To see this, consider diagram 6c which results from 6a by
integrating additional inhibitory neurons forH andB and an additional stimulatory neuron
for D. The minimal theory exhibiting the type-level structure underlying 6c relative toF10 =

{A,B,C,D,E,F, J,H} is this:

(CJ ⇒ B) ∧ (A ∨G⇒ D) ∧ (CAF ⇒ H) ∧ (BH ∨DH ∨DB ⇒ E) ∧

(CAFJ ∨GCAF ∨ACJ ∨GCJ ⇒ E)i
(19)

In diagram 6c, exactly the same neurons fire as in diagram 6a. However, by integrating the
additional neurons required for the intervention tests described above, material regularities
change in such way thatA is now part of a minimal theory ofE and, thus, a type-level cause
of E. Moreover, in 6c,A is located on an active route toE. That is, (AC) now rules that the
firing of A is an actual cause of the firing ofE.

In sum, either diagram 6a is complete or it is not. If it is complete, the firing ofA under no
possible circumstances makes any difference whatsoever tothe behavior ofE over and above
the firing ofC (andB). In that case, diagram 6a is equivalent to 6b. Correspondingly, the
firing of A is not determined to be an actual cause of the firing ofE by (AC). By contrast, if
diagram 6a represents a mere substructure of, say, diagram 6c, there exist circumstances (e.g.
the ones represented in 6c) under which the firing ofA makes a difference to the behavior of
E. In that case, diagram 6a is not equivalent to 6b. Then,A is part of a minimal theory ofE
and moreover located on an active route toE. Consequently, the firing ofA is identified as
an actual cause of the firing ofE by (AC). In my view, (AC) entails the intuitively adequate
relationships of actual causation both if 6a is complete andif it is not.

4 A Relativization to Typicality

An example that is due to Hiddleston (2005) has recently leadto intensified efforts to rela-
tivize the notion of actual causation to a context-sensitive standard of normality or typicality
(cf. Hitchcock 2007; Hall 2007; Halpern 2008; Halpern and Hitchcock 2010).18 Consider
diagram 7 whereE receives an inhibitory signal fromC and no stimulatory signal fromA.

18 Instead of typicality, Handfield et al. (2008) relativize actual causation to a context-sensitive condition of
salience.
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A

E

CFig. 7

As a resultE does not fire. This process instantiates a type-level structure which, if mod-
eled relative toF11 = {A,C,E}, entails the regularities expressed in the following minimal
theory:

A ∨C ⇒ E (20)

In diagram 7, bothA andC are located on an active causal route toE. Accordingly, both
the non-firing ofA and the firing ofC are identified as actual causes of the non-firing of
E by (AC). Structural equations accounts imply the same causal dependencies. However,
the intuitive adequacy of this result seems doubtful. In thesituation depicted in diagram
7, A does not fire. Thus, the inhibitory signalE receives fromC appears to be completely
irrelevant. That is, causal intuitions tend to identify thenon-firing ofA as the only actual
cause of the non-firing ofE.19

Diagram 7 is structurally isomorphic to diagram 4c. While the latter exhibits a case of an
overdetermined occurrence, the former depicts an overdetermined absence. Unsurprisingly,
the corresponding minimal theories (15) and (20) are isomorphic as well. However, while
in the case of 4c causal intuitions clearly identify both overdetermining tokens as actual
causes, intuitions tend towards a different assessment in case of 7. Hitchcock, Hall, and
Halpern take this to show that actual causation does not onlydepend on the counterfactual
dependencies that are implied by corresponding causal processes and that are encoded in
structural equations. Assessments of actual causation additionally depend on “a theory of
‘normality’ or ‘typicality”’ (Halpern 2008, 204).

Plainly, relativizing actual causation to typicality standards renders actual causation de-
pendent on pragmatic features of the concrete context in which a causal process is modeled.
Yet, another widespread causal intuition has it that whether or not two tokens are causally
related is an entirely objective matter which in no way hinges on contingencies of model-
ing contexts. Therefore, rather than taking the conflict between the intuitive assessments of
diagrams 4c and 7 to count against the context-independenceof actual causation, I would
prefer to take this conflict to reveal a confusion in our causal intuitions. Whoever hesitates
to acknowledge that the instance ofC in diagram 7 is an actual cause ofE in fact has a
pragmatic and context-dependent causal notion in mind, most likely causal explanation. In
the end, however, whether or not Hiddleston-type examples are interpreted to show that the
notion of actual causation must be contextualized and approximated to the notion of causal
explanation is a terminological issue over which I do not want to argue. It is a fact that many
authors opt for contextualization. Therefore, I conclude this paper by briefly indicating how
the contextualization techniques adopted in the structural equations framework can also be
used to define a regularity theoretic notion of actual causation that is relativized to a standard
of typicality.

Factors that are connected by a deterministic causal structure can be instantiated in cer-
tain configurations and not in others. For instance, according to the type-level structure un-
derlying diagram 7 exactly the configurations listed in table 1a are empirically possible.

19 These intuitions are further strengthened by changing the interpretation of the occurrences in 7, as e.g.
done in a scenario Hitchcock (2007, 523) callsBogus Prevention.



20 Michael Baumgartner

That is,A andC can be instantiated whileE is not (configurationc1), or C can be instan-
tiated whileA andE are not (c2), or all three factors can be absent (c3), or A andE can
be instantiated whileC is not (c4). All other logically possible configurations of the factors
in F11 = {A,C,E} are determined to be empirically impossible by the type-level structure
behind diagram 7. Minimal theories simply express the configurations listed in table 1a in a
standardized syntactic form. Accordingly, the minimal theory (20) is true if, and only if, the
factors inF11 take one of the value configurations listed in table 1a.

In ordinary contexts of causal modeling, not all possible value configurations for an
analyzed structure are equally typical. Hence, relativizing (AC) to contextually induced typ-
icality rankings, first and foremost, presupposes that possible value configurations are or-
dered according to the typicality ranking that is relevant for a given modeling context. In the
structural equations framework, it is customary to assign the lowest rank to the most typical
configuration and to increase the rank with decreasing typicality. A tokena can then be said
to be a contextualized actual cause of another tokene iff a ande satisfy (AC) anda addi-
tionally makes a difference toe relative to the configurations with equal or lower typicality
rank than the actual configuration (cf. Halpern 2008).

In order to make this idea somewhat more precise, consider table 1b which exhibits one
conceivable ranking of the configurations listed in table 1a. The scenario depicted in dia-
gram 7 is of typec2 and, according to the ranking of table 1b, is of typicality rank 2. To
determine whether the firing ofC in diagram 7 makes a difference to the non-firing ofE

relative to all configurations with equal or lower rank thanc2, we first eliminate the one
possible configuration with higher rank, i.e.c1, and second, check whether the correspond-
ing factorC is still part of a minimally necessary condition ofE relative to this truncated
list of configurations. Table 1c constitutes such a truncation of 1b. As can easily be seen,
relative to the configurations in table 1c,C is not part of a minimally necessary condition of
E any more. In configurationsc2 andc3 of 1c the value ofC changes while bothA andE
remain unchanged. Hence, relative to the configurations with a maximal rank of 2,C makes
no difference toE. The minimal theory expressing the configurations in 1c is this:

A⇒ E (21)

We might call (21) acontextually weightedminimal theory for diagram 7. It reproduces
the relations of minimal sufficiency and necessity holding among the factors inF11 relative
to the set of configurations with equal or lower typicality rank than the configuration in the
actual situation, i.e. in diagram 7. Against this background, a contextualized notion of actual
causation can be more precisely defined as follows: a tokena is acontextualized actual cause
of a tokene iff a ande satisfy (AC) and, relative to a factor setFi that is used in a given
modeling context and that contains factorsA andE such thatA is instantiated bya andE
by e, A is part of a contextually weighted minimal theoryΦi of E overFi. Thus, the firing

# A C E

c1 1 1 0

c2 0 1 0

c3 0 0 0

c4 1 0 1

(a)

# A C E rank

c1 1 1 0 3

c2 0 1 0 2

c3 0 0 0 1

c4 1 0 1 2

(b)

# A C E rank

c2 0 1 0 2

c3 0 0 0 1

c4 1 0 1 2

(c)

Table 1
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of C in diagram 7 is no contextualized actual cause of the non-firing ofE becauseC is not
contained in the contextually weighted minimal theory (21).

Of course, this is only a rough sketch of a regularity theoretic notion of actual causation
that is relativized to typicality standards. Nonetheless,it should suffice to substantiate that,
if desired, a regularity theory can be relativized to such standards along analogous lines as
structural equations accounts.

5 Conclusion

This paper has shown that in order to account for token-levelprocesses contained in the
standard set of test cases no recourse to nonforetracking counterfactuals nor even to non-
actual possible worlds is required. Preemption, overdetermination, switching, and short-
circuiting—all of which cause problems for some counterfactual analyses or other—can be
accounted for on the basis of rigorously minimized materialregularities that are permanent
across extensions of causally modeled factor sets. As anticipated in the introduction, I do
not claim that (AC) is beyond doubt in all conceivable cases.For instance, I did not discuss
cases of trumping (cf. Schaffer 2000) or of preemptive prevention (cf. Collins 2000). There
are different intuitions as to how to assess these structures. Hitchcock (2007, 512) treats
trumping as a species of overdetermination and preemptive prevention as a species of early
preemption (cf. also McDermott 2002; Halpern and Pearl 2005). If treated as such, they
do neither constitute a problem for structural equations accounts nor for (AC). However,
Schaffer (2000) and Collins (2000) hold that trumping and preemptive prevention are not
reducible to overdetermination and preemption. In that case, they might well turn out to give
rise to problems both for modern counterfactual accounts and for (AC). Overall, I only want
to claim that the latter performs at least as well as the former. Moreover, contrary to theories
employing structural equations, (AC) achieves its goal by implementing uncontroversial and
straightforward conceptual and technical resources only.The ease with which structures of
actual causation that create problems for the structural equations framework can be properly
reproduced in a regularity theoretic framework should be reason enough to take regularity
theories more seriously than they are currently taken.
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