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Abstract A natural language argument may be valid in at least two nonequivalent senses:
it may be interpretationally or representationally valid (cf. Etchemendy 1990). Interpreta-
tional and representational validity can both be formally exhibited by classical first-order
logic. However, as these two notions of informal validity differ extensionally and first-order
logic fixes one determinate extension for the notion of formal validity (or consequence),
some arguments must be formalized by unrelated nonequivalent formalizations in order to
formally account for their interpretational or representational validity, respectively. As a
consequence, arguments must be formalized subject to different criteria of adequate formal-
ization depending on which variant of informal validity is to be revealed. This paper devel-
ops different criteria that formalizations of an argument have to satisfy in order to exhibit
the latter’s interpretational or representational validity.

Keywords logical formalization; logical validity; interpretational validity; representational
validity; argument reconstruction; Etchemendy

1 Introduction

Beall and Restall (2006) have provided novel support for logical pluralism, i.e. for the claim
that there are at least “two different accounts of deductive logical consequence, two different
senses of ‘follows from”’ (29). They argue that the pre-theoretic or informal notion of an
argument’s validity is genuinely ambiguous. Moreover, this ambiguity does not simply arise
from different choices of logical constants. Rather, the claim is that relative to one particular
specification of logical constants, say the constants provided by classical first-order logic,
an argument can be valid in at least two different ways. To see this, consider the modal char-
acterization of informal validity that can be found in virtually all textbooks: An argument
〈Γ, Ψ〉 consisting of a set of premises Γ and of a conclusion Ψ is valid if and only if it is
impossible for all members of Γ to be true while Ψ is false. The ambiguity arises from the
modality involved in this characterization. There are at least two ways in which it can be
impossible for the premises in Γ to be true and the conclusion Ψ to be false:
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(I) there is no permissible reinterpretation of the non-logical (categorematic) terms con-
tained in Γ and Ψ under which every member of Γ is true and Ψ false;

(II) there is no possible world in which every member of Γ is true and Ψ false.

Spelling out the modality informally associated with the validity of arguments in terms
of (I) and (II) does not amount to a mere terminological difference, but yields two nonequiv-
alent notions of validity. This is best illustrated by means of arguments featuring analyticity,
as the following notorious exemplar:

(a) Clooney is a bachelor. Therefore, Clooney is an unmarried man.

Both the premise and the conclusion of (a) are subject-predicate statements that do not
feature expressions corresponding to first-order logical constants. “Clooney” is a name that
may be reinterpreted in terms of any other singular term, and “. . . is a bachelor” and “. . . is an
unmarried man” may be reinterpreted in terms of any other (first-order extensional) 1-place
predicate. Accordingly, a reinterpretation of the categorematic terms in (a) that renders (a)’s
premise true and its conclusion false is easily found: simply substitute “. . . is an unmarried
man” by “. . . is a woman” in (a)’s conclusion. That is, spelling out the informal notion of
validity in terms of (I) entails that (a) is an invalid argument. By contrast, as the notions of
a bachelor and of an unmarried man are interdefined, the transition from (a)’s premise to
(a)’s conclusion is analytical, i.e. it is warranted by the meanings of the involved concepts
only. There is no possible world where “Clooney is a bachelor” is true and “Clooney is an
unmarried man” false. Therefore, if the validity of arguments is understood along the lines
of (II), (a) is determined to be a valid argument.

According to Beall and Restall (2006), (I) and (II) are but two conceivable ways to cash
out informal validity. In fact, they take the informal notion of validity to be a mere schema
which is given by what they call the Generalized Tarski Thesis:

(GTT) An argument is validx if, and only if, in every casex in which the premises are true,
so is the conclusion.

While instantiating the variable casex by permissible reinterpretations and possible worlds
yields two notions of validity that are accessible to classical first-order logic, i.e. that validate
all classically valid inferences, taking casesx to be situations or stages of proof constructions
yields two non-classical specifications of informal validity. According to Beall and Restall,
there is no fact of the matter whether any one of those instantiations of (GTT) is the correct
understanding of informal (pre-theoretic) validity. They hold that these understandings do
not conflict. Rather, depending on a given reasoning context, it may be more suitable or
fruitful to spell out validity in terms of one rather than another of the possible instantiations
of (GTT).

Whereas the radical pluralism that treats classical and non-classical instantiations of
(GTT) on a par has been criticized by several authors (cf. Field 2009; Bueno and Shalkowski
2009; Vecsey 2010), pluralism only with respect to the two classical instantiations (I) and
(II) is less controversial. Plainly, spelling out informal validity in terms of (I) is much more
common among (mathematical) logicians. Nonetheless, there is a long standing tradition,
going back to Wittgenstein’s Tractatus, according to which precisifications of informal va-
lidity along the lines of (II) are equally justifiable (cf. e.g. Etchemendy 1990; McFetridge
1990; Read 1994; Hale 1996; Jackson 2007; Baumgartner and Lampert 2008). According
to Beall and Restall (2006, 40-43), (I) fares better when it comes to cashing out the idea
that the validity of an argument exclusively hinges on the meanings of the logical constants,
while (II) emphasizes that the truth of the premises of a valid argument necessitates the truth
of its conclusion.
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This paper neither addresses the correctness of logical pluralism nor the question which
of (I) and (II) is better suited for spelling out what is informally meant by characterizing
an argument as valid. Rather, I simply assume that both (I) and (II) are viable precisifica-
tions of informal validity. Against the background of this assumption, I then investigate the
criteria that first-order formalizations have to satisfy when it comes to formally accounting
for an argument’s (I)- or (II)-validity, respectively. According to a frequently cited slogan,
logic is the philosopher’s tool to study correct reasoning and to exhibit the validity of ar-
guments. Yet, before formalisms can be applied to render the validity of a natural language
argument formally transparent, the latter’s component statements must be transferred into
the syntax of a pertaining formalism, i.e. they must be formalized. And here severe problems
emerge, because the grammatical surface of natural language is often radically misleading
with respect to underlying logical forms.

While standard textbooks content themselves with illustrating logical formalization with
a handful of paradigmatic examples supplemented with commentaries to the effect that for-
malizing essentially is an artistic skill, Brun (2004) has presented the first book-length inves-
tigation exclusively dedicated to developing criteria that are intended to provide a systematic
understanding of logical formalization and to assist in justifying and evaluating the adequacy
of different formalization candidates. Further studies concerned with establishing criteria of
adequate formalization include Epstein (1990, 1994), Sainsbury (2001), Baumgartner and
Lampert (2008), and Brun (2012).1

The existing literature on criteria of adequate formalization does not distinguish between
criteria that are suitable for exhibiting (I)- and (II)-validity. However, as these precisifica-
tions of informal validity differ extensionally and first-order logic fixes one determinate
extension for the notion of formal validity (or consequence), some arguments must be for-
malized by unrelated2 nonequivalent formalizations in order to account for their (I)- or (II)-
validity. Accordingly, a first-order formalization 〈γ, ψ〉 of an argument 〈Γ, Ψ〉 must meet
different criteria, depending on whether 〈γ, ψ〉 is intended to exhibit (I)- or (II)-validity. Ne-
glecting the difference between (I)- and (II)-validity, therefore, constitutes a severe gap in
the current literature on criteria of adequate formalization. This is the gap this paper intends
to fill.

Etchemendy (1990) has famously distinguished between two different readings of stan-
dard models of logical formulas, to which he refers as interpretational and representational
semantics. Section 2 locates the difference between (I)- and (II)-validity in this model-
theoretic context and spells out (I)-validity as interpretational validity and (II)-validity as
representational validity. In sections 3 and 4, I then develop two sets of criteria formal-
izations of arguments have to meet in order to exhibit interpretational and representational
validity, respectively.

1 The problem of systematizing logical formalization has also been addressed from a different angle in
the literature. Instead of developing criteria of adequate formalization, authors as Davidson (1984), Chomsky
(1977), Massey (1975), or Montague (1974), implicitly or explicitly subscribe to the ambitious project to de-
fine effective formalization procedures. This second thread in the formalization literature will be sidestepped
in this paper.

2 Two FOL formulas φ and ψ are said to be unrelated iff neither φ is a specification of ψ nor vice versa and
there does not exist a formula χ that is a specification of both φ and ψ. For the relevant notion of specification
cf. Brun (2004, 320) or Lampert and Baumgartner (2010, 89-90).
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2 Interpretational view vs. representational view

Cashing out the modality involved in an argument’s informal validity in terms of permissible
reinterpretations or possible worlds, of course, simply amounts to replacing one modality
by another. This maneuver immediately raises the follow-up question as to what counts as
a permissible reinterpretation and a possible world, relative to which an informally valid
argument is entailed to be truth-preserving. For instance, a predicate as “. . . is a bachelor”
may be reinterpreted in terms of any other expression of the same semantic type. But what
accounts for sameness of semantic type? While “Clooney” is certainly not of the same type
as “. . . is a bachelor”, what about “. . . is evenly distributed over the earth’s surface” (cf.
Sainsbury 2001, 50)? Analogous problems arise when it comes to delineating the realm of
possible worlds. Possible worlds are often understood as complete sets or configurations of
compossible atomic states of affairs. Yet, what are atomic states of affairs and which of them
are compossible?

I shall not attempt to provide analyses of the modalities involved in (I)- and (II)-validity
here. Rather, I join Shalkowski (2004) in doubting that (non-modal) analyses of these modal-
ities are feasible. Hence, in what follows I just treat them as primitives. Whoever has no
pre-theoretic conception of the realm of permissible reinterpretations of a given argument
and possible worlds relative to which to evaluate the truth values of premises and conclu-
sions, has no pre-theoretic conception of (I)- and (II)-validity either. Informally determining
an argument to be valid presupposes clarity on what counts as permissible reinterpretations
or possible worlds. That does not mean that somebody who informally judges an argument
〈Γ, Ψ〉 to be (I)- or (II)-valid can in fact construct the set of all permissible reinterpretations
of 〈Γ, Ψ〉 or the set of all possible worlds relative to which 〈Γ, Ψ〉 is truth-preserving. It
merely means that for any reinterpretation 〈Γ ′, Ψ ′〉 of 〈Γ, Ψ〉 and any world w it is deter-
minable whether 〈Γ ′, Ψ ′〉 is permissible and whether w is possible. For the purposes of this
paper, this kind of clarity with respect to the modalities involved in (I)- and (II)-validity shall
be assumed to be given.

While the informal notions of validity give rise to numerous questions, first-order logic
(FOL)—the tool designed to, among other things, formally exhibit the (I)- and (II)-validity
of arguments—provides a completely unambiguous and straightforward notion of formal
validity. Let me briefly recap the model-theoretic machinery by means of which FOL valid-
ity is commonly spelled out. A model M of FOL is a structure consisting of a non-empty
domain D and a function = that assigns truth values {T, F} to sentence letters, single el-
ements of D to name letters, and sets of n-tuples of elements of D to predicate letters of
arity n. Given an appropriate variable assignment g that assigns elements from D to the free
variables in a formula φ, satisfaction of φ by g in M can then be defined in the ordinary
recursive way. This allows for defining truth of a formula φ in M in terms of satisfaction of
φ by the empty variable assignment g∅ in M. Finally, this yields the model-theoretic notion
of FOL validity for an argument scheme 〈γ, ψ〉, where γ is a set of FOL sentences (i.e. FOL
formulas without free variables) and ψ is an FOL sentence:3

FOL validity: An argument scheme 〈γ, ψ〉 is FOL-valid if and only if ψ is true in every
model M in which all elements of γ are true.

3 For details on this model-theoretic background cf. any textbook, e.g. Chiswell and Hodges (2007, sect.
7.3); Barwise and Etchemendy (1999, sect. 18.2).
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Fig. 1 Mary’s world

Many have emphasized the usefulness of model theory when it comes to modeling (in
the ‘modeling-a-system’ sense of the term) semantic aspects of natural language, for in-
stance:4

Truth in a model is interesting because it provides a transparent and mathematically tractable
model—in the “ordinary” sense (. . . )—of the less tractable notion of truth. (Hodes 1984, 131)

The term “model” has two very different scientific uses: a model of a system or phenomenon
is an idealized representation, a simulation, or even a theory of relevant aspects of the mod-
eled system, whereas a model of a formal language is a mathematical structure, i.e. a mathe-
matical object consisting of certain kinds of sets, and, as such, does not represent or simulate
anything. In order to clearly keep these two notions apart, I subsequently speak of models∗

whenever the notion is used in the former sense.
Even though FOL models in themselves are not representations, they suggest themselves

as instruments to model∗ the construction of sets of permissible interpretations and possible
worlds, respectively. To implement FOL validity as such a modeling∗ device for informal
validity, FOL models must be read either as representations of permissible reinterpretations
or of possible worlds. These are exactly the two readings Etchemendy (1990) has labeled
the interpretational and the representational views of models. On the interpretational view,
different models are understood as different meaning assignments to the terms of a cor-
responding formal language against the background of one particular (configuration of the)
world, whereas on the representational view, different models are taken to stand for different
possible worlds against the background of one particular (interpretation of the) language.

By way of example, consider Mary’s world shown in figure 1. This world only consists
of a cube (c), a cylinder (y), a torus (t), and a sphere (s). The former two are made of wood,
the latter two of marble. To keep things simple, we talk about Mary’s world by means of
a very austere sublanguage of FOL, LM , which, apart from the FOL constants, only has
the following categorematic terms: two 1-place predicates F and G, one 2-place predicate
R, and two names a and b. Let us construct two models for LM by defining two different
functions=1 and=2 over a domain that maps onto Mary’s world, i.e. overDM = {c, y, t, s}:

=1(a) = c, =1(b) = t, =1(F ) = {c, y}, =1(G) = {t, s}
=1(R) = {〈c, y〉, 〈c, t〉, 〈c, s〉, 〈y, t〉, 〈y, s〉, 〈t, s〉}

(M1)

=2(a) = s, =2(b) = y, =2(F ) = {t, s}, =2(G) = {c, y}
=2(R) = {〈y, c〉, 〈t, c〉, 〈s, c〉, 〈t, y〉, 〈s, y〉, 〈s, t〉}

(M2)

4 Similarly, Shapiro (1998, 137).
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=1 and=2 assign different extensions to the categorematic terms of LM . Varying extensions
of the categorematic terms of a language may have two distinct sources: they may be due
(i) to variations of corresponding intensions or (ii) to variations in corresponding matters of
fact. The interpretational view ascribes the extensional differences between M1 and M2 to
(i) whereas the representational view ascribes them to (ii). More specifically, on the interpre-
tational view, M1 and M2 are taken to reflect two different intensional interpretations of the
language LM , which is applied to one and the same world, i.e. Mary’s world, which is given
independently of M1 and M2. On the representational view, the intensional interpretation
of LM is given independently of M1 and M2 (e.g. in a dictionary), and M1 and M2 stand
for two different worlds to which LM is applied—only one of which being Mary’s world
(the other being Helge’s world in figure 2 below).

To bring this contrast out more vividly, it is helpful to consider translations of LM into
English. Such translations can be represented by functions that assign expressions of natural
English to the terms of LM . Translations of the logical constants of a formal language are
straightforward: logical constants have fixed translations into English that are independent
of models and possible worlds. Translations of the categorematic terms, however, give rise to
some intricacies. Moreover, as will become apparent shortly, translations of categorematic
terms must be understood as very different sorts of functions in the interpretational and
representational frameworks. Accordingly, I shall speak of interpretational and representa-
tional translations, respectively. An interpretational translation of the categorematic terms
of LM , on the formal side, depends on which objects a given =k assigns to those terms,
and on the informal side, it depends on the objects and the properties constituting the world
wk to which English is applied. More specifically, an interpretational translation assigns a
singular term of English to a such that the reference of this singular term in wk corresponds
to the object of Dk assigned to a by =k; moreover, it assigns an English predicate to F such
that the extension of that predicate consists exactly in the objects of wk which correspond to
the elements of Dk assigned to F by =k. For instance, relative to Mary’s world and relative
to =1(F ) = {c, y}, F can be translated in terms of “. . . is made of wood”, because being
made of wood is the property the cube and the cylinder (and only these two objects) share
in Mary’s world. That is, in order to interpretationally translate the categorematic terms of a
formal language under a given =k of a model Mk into English two things are required: (i) a
specification of a possible world wk and (ii) a one-to-one mapping σk of the elements of the
domain Dk onto the objects of wk. Overall, an appropriate interpretational translation of the
categorematic terms of LM as interpreted in M1 relative to Mary’s world wM and relative
to the mapping given above, call it σM , would be the following, where the objects of Mary’s
world are numbered from left to right:

T1(a) = “object #1”

T1(b) = “object #3”

T1(F ) = “. . . is made of wood”

T1(G) = “. . . is made of marble”

T1(R) = “. . . is smaller than. . . ”

(T1)

Now, take an exemplary sentence of LM , say:

Fa ∧Gb ∧Rab (1)

(1) is true in M1, and according to T1, (1) claims:

(b) Object #1 is made of wood, and object #3 is made of marble, and object #1 is smaller
than object #3.
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Fig. 2 Helge’s world

In M2, (1) comes out true as well. According to the interpretational view, (1) does not
claim (b) relative to M2, because M2 supplies a new interpretation of LM . That is, an
interpretational translation assigns different English expressions to LM under =2 relative to
wM and σM . An appropriate translation of the categorematic terms of LM as interpreted in
M2 would be this:

T2(a) = “object #4”

T2(b) = “object #2”

T2(F ) = “. . . is made of marble”

T2(G) = “. . . is made of wood”

T2(R) = “. . . is larger than. . . ”

(T2)

That is, against the background of =2, (1) claims:

(c) Object #4 is made of marble, and object #2 is made of wood, and object #4 is larger than
object #2.

According to the interpretational view, the transition from M1 to M2 is to be described
as a swapping of the notions of being-made-of-wood and being-made-of-marble as well as of
the smaller-than and larger-than relations. More generally put, in order to formally model∗

logical features of English from an interpretational perspective, the categorematic terms of
the corresponding formal language under two different =n and =m must be translated into
different English expressions.

In contrast, on the representational view, M2 is not seen to reinterpret LM . Rather, it
is taken to reconfigure Mary’s world. M2 represents another possible world, viz. Helge’s
world depicted in figure 2. In this world, the sphere takes the position, the size, and the
makeup of the cube in Mary’s world, and vice versa. Analogously, the cylinder and the
torus switch position, size, and makeup. As M2 does not change the meanings (intensions)
assigned to the terms of LM , the translation for =2 is the same as the translation for =1.
Accordingly, (1) makes exactly the same claim relative to =2 as it does relative to =1.
On the representational view, a language is given one fixed interpretation independently of
its models and independently of the world to which that language is applied. To properly
model∗ this, we need a translation of LM that is identical for =1 and =2. This can be
generalized for any representational translation: all representational translations constantly
assign the same English expressions to the categorematic terms of a formal language across
all models of the latter. Section 4 will show that representational translations of formal
expressions are normally simply given by a suitable correspondence scheme (or dictionary
or key) (cf. Brun 2004, ch. 6.1). Depending on such a correspondence scheme, (1) is either
constantly translated in terms of T1 or of T2, to the effect that (1) either constantly claims
(b) or (c), which are both true in Mary’s and in Helge’s world.
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Etchemendy (1990) introduces the distinction between the interpretational and repre-
sentational views in the context of discussing Tarski’s famous analyses of logical truth and
consequence (cf. Tarski 1956), which Etchemendy reads as adopting an entirely interpre-
tational perspective. As is well-known, his far-reaching criticism of Tarski’s analyses has
itself been criticized (cf. e.g. Ray 1996; Sher 1996; Gómez-Torrente 1996). While that con-
troversy is not relevant for our present purposes, it is important to emphasize that contem-
porary model theory cannot be read in a purely interpretational way as originally conceived
by Etchemendy. FOL models may not only differ with respect to the function that assigns
elements and sets of elements from the domain D to the terms of FOL, but also with re-
spect to D itself. Model theory systematically varies the cardinality of D up to infinity. If
the elements of D, as is usual, are read as representing the objects FOL sentences quantify
over, then two models that—unlike M1 and M2—not only differ in = but also in D must
be read as representing two different interpretations of FOL relative to two worlds that are
constituted by different objects, that is, relative to two different worlds. Therefore, a strictly
interpretational reading of models, according to which different models exclusively change
the interpretation of FOL, does not yield an adequate understanding of the whole model-
theoretic machinery.

In light of this, the difference between the interpretational and representational perspec-
tives must not be understood in the broad way originally suggested by Etchemendy (1990).
Rather, the difference only concerns the reading of one constituent of models, viz. of the
function =. The interpretational view takes two different =n and =m that are defined for the
same domain D as reflecting two different meaning assignments to the categorematic terms
of FOL relative to D. By contrast, the representational view takes two different =n and =m
that are defined for the same domain D as representations of two different FOL-describable
possible worlds. Both views agree that two models Mn and Mm that involve two differ-
ent domains Dn and Dm must be seen to represent different worlds. Still, while according
to the representational account Mn and Mm represent two worlds in as much detail as is
expressible in FOL (or a relevant sublanguage thereof), interpretationally read models Mn

and Mm stand for any two worlds with the cardinality of Dn and Dm, respectively. On an
interpretational reading, models never represent worlds in all their FOL-expressible partic-
ularity. Interpretationally read models only symbolize the cardinality of the worlds to which
FOL is applied.5

It is evident from the above considerations that the interpretational view is best suited
to model∗ (I)-validity, whereas the representational view suggests itself for modeling∗ (II)-
validity. To make this more concrete, consider an argument 〈Γ, Ψ〉 and let M〈γ,ψ〉 designate
a model of the FOL sublanguage constituted by the categorematic terms occurring in FOL
formalizations γ of Γ and ψ of Ψ . Against this background, the set of permissible reinterpre-
tations of 〈Γ, Ψ〉 relative to which 〈Γ, Ψ〉must be truth-preserving in order to be (I)-valid can
be modeled∗ on the basis of interpretationally read models M〈γ,ψ〉. Analogously, the realm
of possible worlds in which 〈Γ, Ψ〉 must be truth-preserving in order to be (II)-valid can be
modeled∗ by the set of representationally read models M〈γ,ψ〉. Accordingly, I subsequently
also refer to (I)-validity as interpretational validity and to (II)-validity as representational
validity.

In order to implement FOL as a means to model∗ or formally exhibit the interpretational
or representational validity of an argument 〈Γ, Ψ〉, we not only need suitable readings of

5 Essentially, this is what Shapiro (2005, 663) dubs the blended view of models. I prefer to stick to
Etchemendy’s original label “interpretational view”, because it emphasizes the core difference from the rep-
resentational view.
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FOL models but also an adequate FOL formalization 〈γ, ψ〉 of 〈Γ, Ψ〉. Yet, since (I)- and
(II)-validity differ extensionally and FOL fixes one determinate extension for the notion of
formal validity, some arguments must be reproduced by different FOL formalizations de-
pending on whether the goal is to exhibit interpretational or representational validity. Sup-
pose that 〈Γ, Ψ〉 is (I)-invalid and (II)-valid. On the one hand, to exhibit its (I)-invalidity,
〈Γ, Ψ〉 must be formalized by an argument scheme 〈γ, ψ〉 that is FOL-invalid; on the other
hand, to capture its (II)-validity 〈Γ, Ψ〉 must be formalized by an FOL-valid 〈γ′, ψ′〉. That
is, what counts as an adequate formalization of 〈Γ, Ψ〉 depends on whether the goal of for-
malizing 〈Γ, Ψ〉 is to account for interpretational or representational validity.

Accordingly, we need different criteria of adequate formalization, interpretational and
representational criteria, which yield two different notions of adequate formalization, inter-
pretational and representational adequacy. The next section develops interpretational crite-
ria.

3 Exhibiting interpretational validity

Before discussing the details of exhibiting interpretational validity we need to set one ques-
tion aside: what kind of entities are premises and conclusions of arguments? There are many
candidates, for instance, beliefs, judgments, propositions, utterances, interpreted sentences,
etc. (cf. Brun 2008; Russell 2008). Satisfactory answers to that question are hard to come by
and I shall not attempt to address it here. Instead, I simply characterize premises and con-
clusions as being composed of declarative and de-contextualized statements (which in case
of FOL formalizable arguments are moreover required to be extensional and bivalent), and
invite the reader to view that label as a placeholder for whichever entity happens to be her
preferred candidate category. Nonetheless, a crucial qualification is necessary at this point.
While the constituents of representationally read arguments are statements with a fixed in-
terpretation (or fully interpreted statements), the statements that make up interpretationally
read arguments allow for reinterpretations. From the interpretational perspective, arguments
are, from the outset, seen to be composed of statement schemata or representatives of logical
forms rather than of statements with a fixed interpretation.

Conceiving of the statements constituting an argument’s premises Γ and conclusion Ψ
as representatives of logical forms suggests an approach to logical formalization according
to which adequate formalizations of Γ and Ψ can, in one way or another, be read off the
latter’s natural language surface. For brevity, I shall speak of the surface approach in the
following. As interpretational validity is the standard textbook precisification of informal
validity, the surface approach is the standard textbook approach to logical formalization. In
a nutshell, formalizing a statement Φ along its lines involves a stepwise procedure that grad-
ually abstracts from descriptive content (cf. e.g. Ray 1996, sect. 2): (1) the expressions in Φ
are partitioned into a set V of variable (reinterpretable) expressions and a set C of expres-
sions that correspond to logical constants of the target formalism—FOL in our case; (2) the
members of V are partitioned into semantic categories (names, predicates, relations etc.);
(3) the elements of each semantic category are replaced by FOL terms of the corresponding
semantic category and the elements of C are replaced by corresponding FOL constants. Ac-
cording to the surface approach, a formalization 〈γ, ψ〉 is said to be adequate for an argument
〈Γ, Ψ〉 iff γ and ψ reproduce the logical forms Γ and Ψ represent.

The surface approach, however, faces one major problem: the surface of natural lan-
guage statements is often so misleading in regard to underlying logical forms that the latter
cannot be reliably read off the former’s surface. There are countless well-known examples
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illustrating this so-called misleading form thesis (cf. e.g. Brun 2004, 161-165; Sainsbury
2001, 44-53). For instance, the surface of “The whale is a mammal” misleadingly suggests
that it is of the same form as “The king is a Frenchman”, which, as far as a Russellian anal-
ysis of definite descriptions is concerned, misleadingly suggests to be of subject-predicate
form. Or “Humans are mortal”, which is commonly viewed to be of universal conditional
form, fails to contain “if. . . then” or “all” as logical constants. In the end, only regimented
non-natural idioms whose grammar is purposefully designed to reflect logical forms can be
adequately formalized on the basis the surface approach.

To formalize non-regimented arguments, i.e. arguments outside of artificial textbook
contexts, another approach is called for. The literature provides such another approach,
which I shall dub the correctness approach. Rather than formalizing a statement Φ by taking
its natural language form as a starting point, representatives of the correctness approach (cf.
Blau 1977; Sainsbury 2001; Brun 2004; Baumgartner and Lampert 2008) formalize Φ on
the basis of its truth conditions. They hold that an adequate formalization φ of Φ, first and
foremost, must be correct for Φ, where φ is correct for Φ iff every model of φ in which φ
is true models∗ a truth condition of Φ and every model of φ in which φ is false models∗ a
falsehood condition of Φ.6

However, if truth conditions of a statement, as is usual, are understood as the factual
conditions under which that statement is true, correct formalizations as defined by the cor-
rectness approach are only revealing with respect to whether the conclusion of an argument
is true under all factual conditions under which the premises are true, i.e. with respect to
whether that argument is representationally valid. Correct formalizations in that sense are
of no help to determine whether the premises and conclusion are truth-preserving under
all reinterpretations. That is, while the approach to logical formalization that is standardly
used for exhibiting interpretational validity—the surface approach—is only applicable to
regimented (non-natural) languages, the standard approach to formalizing non-regimented
languages—the correctness approach—is custom-built for exhibiting representational valid-
ity.

In order to formalize non-regimented arguments in a way that suits interpretational pur-
poses I subsequently adapt the correctness approach to the interpretational context. For clar-
ity, I dub the representational (truth-conditional) variant of correctness sketched above (and
mainly implemented in the next section) r-correctness, and to the interpretational variant
developed in what follows I refer as i-correctness. The basic idea behind i-correctness can
be easily stated: a formalization φ is i-correct for a statement Φ iff different models of φ
model∗ different permissible reinterpretations of Φ. To make that idea more explicit and
precise, some conceptual preliminaries are required.

The previous section has shown that the connection between a formalization φ and rein-
terpretations of a statement Φ is established by translations of the FOL-sublanguage Lφ
comprising the categorematic terms of φ relative to specific interpretations of Lφ given in
models Mφ

k . We have also seen that interpretationally read models only specify the cardinal-
ity of corresponding worlds, which vastly underdetermines English translations of models.
Therefore, to translate the categorematic terms of an FOL formula φ into English it is nec-
essary that the domains of its models Mφ

k be mapped onto possible worlds. For a model Mφ
k

such a domain-to-world mapping is guaranteed to exist if its domain Dk has the same cardi-
nality as the possible world wΦ in which Φ is intended to be evaluated. To the pair 〈Φ,wΦ〉

6 Cf. e.g. Brun (2004, 210); Baumgartner and Lampert (2008, 108). Correctness can also be defined syn-
tactically. In this paper, I am only going to use the semantic variant of correctness. For details on the syntactic
one cf. Baumgartner and Lampert (2008).



Exhibiting interpretational and representational validity 11

there corresponds the pair 〈φ,Mφ
I 〉 constituted by a formalization φ of Φ and by the model

Mφ
I featuring the so-called intended interpretation of φ. The intended interpretation =I of φ

assigns to the names of φ the entities that correspond to the entities to which the names of Φ
refer in wΦ, and to the predicates of φ the sets of things that correspond to the extensions of
the predicates of Φ in wΦ (cf. Sainsbury 2001, 162). The relevant correspondence between
〈Φ,wΦ〉 and 〈φ,Mφ

I 〉 is established by the correspondence scheme that comes with each
formalization. Correspondence schemes moreover identify the components of the statement
Φ that are treated as reinterpretable units by a given formalization φ.7

That is, all Mφ
k over the same domain as Mφ

I have suitable domain-to-world mappings.
For instance, in case of statement (b) about Mary’s world, all models of the FOL sublan-
guage LM with the domain DM = {c, y, t, s} can be mapped onto a possible world, viz.
Mary’s world. Also, all models with domains that result from DM by removing objects can
be mapped onto possible worlds that result from Mary’s world by removing corresponding
objects. By contrast, to translate LM relative to models with a domain Dk that is a proper
superset of DM specifications of the objects contained in Dk but not in DM must addition-
ally be supplied. Such specifications can be given by simple conventions, for instance, to
the effect that all Dk that are proper supersets of DM correspond to worlds that result from
Mary’s world by adding wooden cubes of size t1 or marble spheres of size t2 etc; or they
can be given by complex descriptions of resulting worlds.

Apart from a suitable domain-to-world mapping, the translatability of a formal language,
relative to its models, into English also depends on the availability of English names that co-
refer with their formal correlates and English predicates that are co-extensional with their
formal correlates; and for many models that availability is dubious, to say the least. The
space of possible reinterpretations provided by the model-theoretic machinery far exceeds
the expressive power of natural English. Yet, we do not need to require that translations may
only involve English names and predicates that are listed in standard English dictionaries.
For the purposes of logical formalization artificial English names and predicates may be
introduced whenever dictionaries do not provide sufficient expressiveness. While artificial
names can simply be generated by numbering the objects in a corresponding world, arti-
ficial predicates can be defined by means of (e.g. Boolean) functions of existing English
predicates. As long as artificial predicates have explicit definitions in terms of existing pred-
icates, the truth values of statements featuring those artificial predicates can be informally
assessed, which, as we shall see below, is all that is of relevance for the i-correctness of
logical formalizations.

Overall, we can hence stipulate that for a formalization φ of a statement Φ there exists a
translation Tk of Lφ relative to a model Mφ

k iff there exists a mapping of Mφ
k ’s domain Dk

onto a possible world wk. I subsequently call such a model Mφ
k wk-mappable. A translation

Tk allows for verbalizing a formalization φ of Φ (cf. Brun 2004, ch. 10). For brevity, I
shall speak of Tk-verbalizations. Against this conceptual background, we can now spell out
i-correctness in more detail:

(i-COR) The formalization φ is i-correct for statement Φ iff for all wk-mappable models
Mφ
k and all corresponding worldswk: there exists a translation Tk ofLφ, as interpreted

in Mφ
k , such that Tk-verbalizing φ yields a permissible reinterpretation Φ′ of Φ, and φ

has the same truth value in Mφ
k as Φ′ in wk.

7 Correspondence schemes have a very different function in the representational framework. In that frame-
work they fix the interpretation of formal languages. Cf. sect. 4 below.
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(i-COR) is a necessary (but not a sufficient) condition for the interpretational adequacy
of a formalization. Moreover, according to (i-COR), assessing the i-correctness of φ for
Φ presupposes that it be informally determinable whether Tk-verbalizations of φ amount
to permissible reinterpretations of Φ. More generally, as anticipated in section 2, it is a
precondition of the interpretational formalizability of Φ that it be clear for any statement Φ′

whether Φ′ permissibly reinterprets Φ or not. From the interpretational perspective, clarity
on whether Φ′ is a permissible reinterpretation of Φ is the minimal amount of informal
understanding of Φ that must be available in order to formalize Φ. As indicated in section
2, I assume that the statements formalized in this paper are informally understood to that
necessary degree.

Let me illustrate (i-COR) by way of example. First, consider statement (d), which is
intended to be about the actual world w@, and the formalization candidates (2), (3), and (4)
with correspondence scheme (c1).

(d) The whale is a mammal. p (2)

Ga (3)

∀x(Fx→ Gx) (4)

p : The whale is a mammal ; a : the whale ;

F : . . . is a whale ; G : . . . is a mammal
(c1)

That (2) is i-correct for (d) can be seen as follows. There are merely two models for the FOL
sublanguage consisting of the sentence letter p only: M(2)

1 comprising =1(p) = T and M(2)

2
comprising =2(p) = F . As (d) is true in w@, =1(p) = T is the intended interpretation of (2).
Verbalizing (2) based on the correspondence scheme (c1) yields (d) itself, which trivially
amounts to a permissible (re)interpretation of (d) with the same truth value in w@ as (2) in
M(2)

1 . Moreover, relative to M(2)

2 , (2) can be verbalized based on any translation of L(2) that
issues a statement that is false in w@. Plainly, at least one of those translations generates a
permissible reinterpretation of (d), for instance the translation that assigns “The elephant is
a bird” to p. Accordingly, (2) is i-correct for (d).

By contrast, (3) is not i-correct for (d), for there are countless models M(3)

k whose do-
main Dk can be mapped onto w@ but for which there does not exist a translation Tk of L(3)

such that Tk-verbalizing (3) yields a permissible reinterpretation of (d). For example, take
a model M(3)

k that assigns the object that corresponds to Obama to a and the singleton of
that same object to G. Conceivable translations will generate verbalizations as “Obama is
the 44th president of the US” or “Obama is the first African-American president of the US”
etc., none of which are informally judged to be permissible reinterpretations of (d).

Finally, verbalizing (4) by virtue of (c1) yields “For all objects, x, if x is a whale then x
is a mammal”. Even though this statement has a considerably different grammatical surface
than (d), it is ordinarily judged to permissibly (re)interpret (d). The same holds for verbal-
izations of (4) based on other translations of L(4), e.g. for “For all objects, x, if x is brown
then x is a table” or “For all objects, x, if x is born in Dietramszell then x has blood type
B+”. Just as (d), these statements claim that a first set is contained in a second set. This can
be generalized: for all wk-mappable models M(4)

k and all corresponding worlds wk, there
exists a translation Tk of L(4) such that a Tk-verbalization of (4) yields a permissible reinter-
pretation of (d) that has the same truth value in wk as (4) in M(4)

k . Thus, (4) is i-correct for
(d).

In light of the fact that the notion of a permissible reinterpretation of a statement Φ is an
essentially informal notion, clarity on whether a given Φ′ counts as a permissible reinterpre-
tation of Φ is clearly not an innocuous presupposition of i-correctness. Nonetheless, if it is
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indeterminate whether “Obama is the 44th president of the US” or “For all objects, x, if x
is brown then x is a table” amount to permissible reinterpretations of (d), the i-correctness
of (3) and (4) for (d) is indeterminate as well. Formalizing natural language statements
presupposes that certain features of those statements are informally understood: while inter-
pretational formalizations require clarity on permissible reinterpretations, representational
formalizations, as we shall see in the next section, presuppose clarity on the (factual) truth
conditions of statements. Relative to different informal understandings of a particular state-
ment Φ, different formalizations will count as i-correct for Φ.

Furthermore, note that rigorously applying (i-COR) in the course of assessing the i-
correctness of, say, (4) for (d) would amount to confronting an unmanageable amount of
models of (4) with corresponding reinterpretations of (d), which is a task that obviously
cannot be completed.8 In practice, however, the i-correctness of formalization candidates of
(d) can be reliably determined based on a comparison of the relevant structural features of the
wk-mappable models of a formalization and the relevant structural features of the resulting
permissible reinterpretations of (d). For instance, (4) and all of its verbalizations state a
subset relation between two sets. That is, (4) is true in a model M(4)

k iff =k(F ) ⊆ =k(G)

holds in M(4)

k ; analogously, permissible reinterpretations of (d) are true in a corresponding
world wk iff the extension of the first predicate is contained in the extension of the second
predicate. Hence, instead of laboriously confronting every model of (4) with every resulting
reinterpretation of (d), the i-correctness of (4) for (d) can be established based on structural
descriptions of the relevant features of the corresponding models and reinterpretations.

I now turn to formalizing (very simple) arguments on the basis of (i-COR). In accor-
dance with the notational convention adopted so far in this paper, I formalize an argument
〈Γ, Ψ〉 in terms of a pair 〈γ, ψ〉 where γ represents a set of FOL sentences that correspond
to the premises of the argument and ψ represents an FOL sentence that corresponds to its
conclusion. For simplicity, I say that 〈γ, ψ〉 and 〈Γ, Ψ〉 are true in a model M〈γ,ψ〉

k and a
corresponding world wk, respectively, if they are truth-preserving in M〈γ,ψ〉

k and wk, re-
spectively, and false otherwise. Moreover, the domains of the intended interpretations of
all subsequently discussed formalization candidates are (implicitly) assumed to be mapped
onto the actual world w@. First, consider the trivially interpretationally valid example (e)
with formalization candidates (5) and (6) and correspondence scheme (c2):

(e) Daryl is a mother. Therefore, Daryl is a mother.

〈{Fa} , Ga〉 (5)

〈{Ga} , Ga〉 (6)

a : Daryl ; F : . . . is a mother ; G : . . . is a mother (c2)

Even though both Fa and Ga are i-correct for the atomic statement “Daryl is a mother”,
(5) is not i-correct for (e), for verbalizing (5) based on most translations of L(5) does not
yield permissible reinterpretations of (e). In most models M(5)

k , =k(F ) differs from =k(G),
whereas reinterpretations of the instance of “. . . is a mother” in the premise of (5) must not
differ from reinterpretations of the instance of “. . . is a mother” in the conclusion. The two
instances of “. . . is a mother” constitute one reinterpretable unit in the context of argument
(e). Arguments are complex statements and their complexity constrains the reinterpretability
of the atomic statements of which they are composed. Multiple instances of one and the
same reinterpretable unit must always be reinterpreted jointly. This constraint is respected

8 As we shall see in section 4, (r-COR) faces an analogous termination problem. Cf. also Baumgartner and
Lampert (2008, 97).
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in (6). Verbalizing (6) based on translations of L(6) relative to models M(6)

k never yields
different reinterpretations of the two instances of “. . . is a mother” in (e). (6) is i-correct for
(e).

Next, consider the more interesting argument (f) with formalization candidates (7), (8),
(9) and correspondence scheme (c3):

(f) Daryl strolls slowly. Therefore, Daryl strolls.

〈{Fa} , Ga〉 (7)

〈{Ga ∧ La} , Ga〉 (8)

〈{∃x(Jx ∧Hxa ∧ Lx)} , ∃x(Jx ∧Hxa)〉 (9)

a : Daryl ; F : . . . strolls slowly ; G : . . . strolls ; J : . . . is a stroll;

H : . . . is conducted by . . . ; L : . . . is slow
(c3)

(f) is commonly considered to be interpretationally valid. That means “. . . strolls slowly”
and “. . . strolls” are informally judged not to be two independently reinterpretable units.
(7), however, imposes no constraints on the reinterpretability of “. . . strolls slowly” and
“. . . strolls”. Verbalizing (7) based on some of the translations of L(7) yields arguments none
of which pass as permissible reinterpretations of (f), e.g. “Clooney is a bachelor. Therefore,
Clooney is a mother”. Hence, (7) is not i-correct for (f). By contrast, as (8) is FOL-valid,
verbalizations of (8) do not generate independent reinterpretations of the premise and con-
clusion of (f). Nonetheless, (8) fails to be i-correct for (f) because it does not i-correctly
represent (f)’s premise. “Daryl strolls slowly” does not predicate two independent proper-
ties of Daryl, yet verbalizing Ga ∧ La on the basis of many translations of L(8) will result in
statements all of which predicate independent properties of pertaining objects, e.g. “Obama
is married and Obama is a politician”. Finally, (9) draws on Davidson’s (1967) celebrated
analysis of action sentences. Verbalizing Davidson-style formalizations of statements in-
volving adverbial predication is generally judged to generate permissible reinterpretations
of the latter. Moreover, the FOL validity of (9) imposes constraints on the reinterpretability
of the premise and conclusion of (9) that match the corresponding constraints informally
ascribed to (f). As a consequence, the truth values of (9) in wk-mappable models M(9)

k agree
with the truth values of resulting reinterpretations of (f) in wk. Overall, (9) is i-correct for
(f).

This raises the question whether i-correctness and FOL validity is all that we need to
require of a formalization 〈γ, ψ〉 in order to formally exhibit the interpretational validity of
an argument 〈Γ, Ψ〉. That this question must be answered in the negative can be seen on the
basis of the following example:

(g) Daryl is a mother. Therefore, Daryl is a woman.

〈{Ga} , Ga〉 (10)

〈{Fa} , Ga〉 (11)

a : Daryl ; F : . . . is a mother ; G : . . . is a woman (c4)

Verbalizations of (10) based on all conceivable translations of L(10) generate co-intensional
reinterpretations of “. . . is a mother” and “. . . is a woman”. Plainly, co-intensional reinter-
pretations of these two predicates are permissible. Different instances of one reinterpretable
unit must be reinterpreted jointly in arguments, but that does not entail that instances of
different reinterpretable units must always be reinterpreted differently. That is, arguments
as “Daryl is a woman. Therefore, Daryl is a woman” or “Clooney is from Dietramszell.
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Therefore, Clooney is from Dietramszell” all pass as permissible reinterpretations of (g).
Moreover, (10) has the same truth values in models M(10)

k as the resulting reinterpretations
of (g) in wk, viz. true. Hence, (10) is i-correct for (g).

The fact that the FOL-valid formalization (10) i-correctly reproduces (g), however, does
not entail that (g) is interpretationally valid. Verbalizations of (10) only yield a very small
subset of all permissible reinterpretations of (g), and obviously, that (g) preserves truth rel-
ative to that subset does not entail that it preserves truth relative to all permissible rein-
terpretations. And in fact, there are many permissible reinterpretations of (g) that do not
preserve truth, e.g. “Clooney is a bachelor. Therefore, Clooney is from Dietramszell”. Thus,
interpretational validity of an argument 〈Γ, Ψ〉 cannot be inferred from the mere existence
of an i-correct formalization 〈γ, ψ〉 that is FOL-valid. In order to establish the interpreta-
tional validity of 〈Γ, Ψ〉, an FOL-valid formalization 〈γ, ψ〉 must not only be i-correct but,
in addition, it must be exhaustive, that is, it must model∗ the whole space of permissible
reinterpretations of 〈Γ, Ψ〉. In the more general case of formalizations of statements, ex-
haustiveness amounts to this: The formalization φ of Φ is exhaustive for Φ iff verbalizing φ
based on all translations of Lφ yields all permissible reinterpretations of Φ.

Of course, if, as is normal, no overview over all permissible reinterpretations of a natural
language statement Φ is on hand, the exhaustiveness of a given φ is not conclusively assess-
able. Nonetheless, analogously to approximatively establishing i-correctness of φ by virtue
of balancing relevant structural features of models Mφ

k and corresponding reinterpretations
of Φ, the exhaustiveness of φ can be approximated by establishing that all relevant structural
features of the different permissible reinterpretations of Φ are represented among the verbal-
izations of φ. This condensed way of consolidating exhaustiveness suffices to rule out that
(10) is exhaustive for argument (g). (10) does not yield any independent reinterpretations of
the premise and conclusion of (g), even though such reinterpretations are informally judged
to be permissible. Hence, (10) does not model∗ an important type of permissible reinter-
pretations of (g), and indeed a type relative to which (g) fails to preserve truth. (11), by
contrast, is not only i-correct for (g) but moreover models∗ the whole space of permissible
reinterpretations of argument (g), which is thus exhaustively formalized by (11).

In sum, in order to formally exhibit the interpretational validity of an argument 〈Γ, Ψ〉
an i-correct, exhaustive, and FOL-valid formalization 〈γ, ψ〉 is required. More specifically,
as a consequence of the considerations of this section I propose the following principle for
exhibiting interpretational validity:

(i-VP) An argument 〈Γ, Ψ〉 is exhibited to be interpretationally valid (I-valid) iff 〈Γ, Ψ〉 is
formalized by an FOL-valid formalization 〈γ, ψ〉 that is i-correct and exhaustive for
〈Γ, Ψ〉.

For completeness, I shall say that a formalization φ is interpretationally adequate, i.e. i-
adequate, for a statement Φ iff φ is both i-correct and exhaustive for Φ.

4 Exhibiting representational validity

As indicated in the introduction, even though interpretational validity is the more common
precisification of informal validity, representational validity is an alternative precisification
that has repeatedly been promoted in the pertinent literature. Moreover, the representational
perspective has (implicitly or explicitly) driven a significant amount of the recent litera-
ture concerned with developing criteria of adequate logical formalization, e.g. Blau (1977),
Sainsbury (2001), Brun (2004), Baumgartner and Lampert (2008).
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In order to be revealing in regard to representational validity, logical formalizations of an
argument 〈Γ, Ψ〉, first and foremost, must reproduce the (factual) truth conditions of Γ and
Ψ . For if a formalization 〈γ, ψ〉 that captures the truth conditions of the argument’s premises
and conclusion is FOL-valid, it follows that under all conditions that render Γ true Ψ is true
as well, or in other words, that 〈Γ, Ψ〉 is truth-preserving in all possible worlds. As antici-
pated in the previous section, the central necessary condition for adequate representational
formalization is correctness, or r-correctness as I shall call it. Roughly, a formalization φ
is r-correct for a statement Φ iff φ and Φ have the same conditions of truth and falsehood.
Before cashing that idea out in more detail, we again need to go through some preliminaries.

First, it must be emphasized that correspondence schemes play a very different role in
the representational framework than in the interpretational one. From the representational
perspective, a natural language statement Φ is viewed as a non-reinterpretable unit, i.e. as a
unit with a fixed interpretation. Formally modeling∗ this perspective requires a formal lan-
guage with an analogously fixed interpretation. It is the correspondence scheme, that comes
with every formalization, which fixes the interpretation of the FOL sublanguage Lφ that is
used in a given formalization φ. To illustrate, consider the statement (h) with formalization
(12) and correspondence scheme (c5):

(h) Obama is married and Obama is a politician.

Fa ∧Ga (12)

a : Obama ; F : . . . is married ; G : . . . is a politician (c5)

Here are two exemplary models of the FOL sublanguage L(12):

D1 = {b1, b2, b3, b4} ,
=1(a) = b1 , =1(F ) = {b1, b3} , =1(G) = {b1, b4}

(M(12)

1 )

D2 = {b1, b2, b3, . . . , b123} ,
=2(a) = b13 , =2(F ) = {} , =2(G) = {b1, b2, b3, . . . , b123}

(M(12)

2 )

As we have seen in section 2, the representational view takes M(12)

1 and M(12)

2 to be spec-
ifications in L(12) of two possible worlds. Interpreted in the vein of (c5), M(12)

1 describes a
world constituted by 4 objects one of which being Obama, two of which being married and
two of which being politicians. M(12)

2 specifies a world constituted of 123 objects one of
which being Obama, none of which being married and all of which being politicians. While
M(12)

1 and M(12)

2 specify two different possible worlds, the interpretation of L(12) remains
the same, viz. the interpretation given in (c5).

Second, note that M(12)

1 and M(12)

2 specify two possible worlds in as much detail as
is expressible in L(12). Moreover, the world-specifications provided by M(12)

1 and M(12)

2
suffice to determine whether statement (h) is true in a corresponding world: (h) is true in the
world characterized by M(12)

1 and false in the world characterized by M(12)

2 . Accordingly,
every model Mφ

k of an r-correct formalization φ can be mapped onto a possible world wk,
viz. the world featuring the objects and properties specified in Mφ

k, and thus models∗ a truth
or falsehood condition of the statement Φ. Requiring an r-correct formalization φ to agree
with Φ in regard to truth and falsehood conditions, hence, amounts to requiring that the truth
values of Φ and φ coincide relative to all models Mφ

k and corresponding worlds wk.9

9 In this respect the version of r-correctness presented here differs considerably from the versions devel-
oped by Blau (1977) and Brun (2004) who both only require correspondence of truth conditions relative to
the subset of models Mφ

k that provide what Blau and Brun call suitable interpretations of φ. For a detailed
criticism of this latter approach cf. Baumgartner and Lampert (2008).
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With these characteristics of the representational framework in mind we can define r-
correctness as follows:

(r-COR) The formalization φ is r-correct for statement Φ iff every model Mφ

k of φ specifies
a possible world wk in enough detail to determine the truth value of Φ in wk, and φ
has the same truth value in every model Mφ

k as Φ in wk.

While the truth values of an FOL formula φ in different models are precisely defined on
model-theoretic grounds, the truth values of a statement Φ in different possible worlds, i.e.
Φ’s truth conditions, must be assessed informally. That is, just as i-correctness presupposes
that the permissibility of reinterpretations of Φ is informally determinate, r-correctness pre-
supposes that the truth conditions of Φ are informally determinate. This is the sort of in-
formal understanding of Φ that is required in order to representationally formalize Φ, and
analogously to the case of interpretational formalizations, presupposing such an extensive
informal understanding of Φ is not innocuous. However, if the truth conditions of Φ are infor-
mally dubious, Φ cannot be representationally formalized; or if the truth conditions of Φ are
informally ambiguous, what counts as an r-correct formalization of Φ is equally ambiguous.

Let me illustrate (r-COR) by applying it to formalization candidates of statement (h).
That (12) is r-correct for (h) can be established as follows: (12) is true in a model M(12)

k
iff =k(a) ∈ =k(F ) and =k(a) ∈ =k(G); analogously, (h) is true in a possible world wk iff
Obama has both the property of being married and the property of being a politician in wk.
Relative to (c5), all models M(12)

k specify a possible world wk in such a way that (h) has
a determinate truth value in wk, and (12) and (h) have the same truth values in all of these
model-world pairs 〈M(12)

k , wk〉. Compare (12) with the formalizations (13), (14), and (15)
of (h)—which are also to be interpreted in terms of (c5):

Fa ∨Ga (13)

Fa→ Ga (14)

Fa ∧Ga ∧ ∀x(Fx→ Gx) (15)

None of these formalizations is r-correct for (h). In models M(13)

k and M(14)

k such that
=k(a) /∈ =k(F ) and =k(a) ∈ =k(G), (13) and (14) are true, but (h) is false in worlds where
Obama is an unmarried politician. Moreover, in a model M(15)

k such that =k(a) ∈ =k(F ),
=k(a) ∈ =k(G), and =k(F ) * =k(G), (15) is false, whereas (h) is informally judged to be
true in a corresponding world wk.

As in case of (i-COR), a comprehensive application of (r-COR) would amount to bal-
ancing the truth values of φ and Φ in an unmanageable amount of models and possible
worlds, which is a task that cannot be completed. Yet, analogously to i-correctness, a com-
plete application of (r-COR) can be abbreviated—as has been done above—by comparing
structural descriptions of the models and possible worlds that render φ and Φ true and false,
respectively.

Let us now turn to representationally formalizing arguments. First, reconsider example
(f) with formalization candidates (7), (8), (9):

(f) Daryl strolls slowly. Therefore, Daryl strolls.

〈{Fa} , Ga〉 (7)

〈{Ga ∧ La} , Ga〉 (8)

〈{∃x(Jx ∧Hxa ∧ Lx)} , ∃x(Jx ∧Hxa)〉 (9)

a : Daryl ; F : . . . strolls slowly ; G : . . . strolls ; J : . . . is a stroll;

H : . . . is conducted by . . . ; L : . . . is slow
(c3)
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That (7) is not r-correct for (f) can be seen as follows: in models M(7)

k such that =k(a) ∈
=k(F ) and =k(a) /∈ =k(G), (7) is false10, yet these models do not specify possible worlds
relative to (c3), for it is informally judged to be impossible for Daryl to stroll slowly without
strolling. Hence, (7) does not model∗ the truth conditions of (f). By contrast, all models
M(8)

k —interpreted in the vein of (c3)—can be said to specify possible worlds. Moreover, (f)
is true in all of those worlds, for (f) is true in all possible worlds simpliciter. Correspondingly,
(8) is true in all models M(8)

k . Therefore, the FOL-valid (8) is r-correct for (f).
(9) is also r-correct for (f). Relative to (c3), every model M(9)

k specifies a possible world
wk and (9) has the same truth value in every M(9)

k as (f) in the corresponding wk, viz. true.
That is, we have two unrelated r-correct FOL-valid formalizations of argument (f): (8) and
(9). From the existence of any r-correct FOL-valid formalization 〈γ, ψ〉 of an argument
〈Γ, Ψ〉 it follows that 〈Γ, Ψ〉 is representationally valid. However, only one of those two
formalizations actually exhibits the features of the premise and conclusion of (f) that are
responsible for (f)’s representational validity, i.e. only one of those formalizations makes
transparent why (f) is representationally valid, viz. (9). The reason is that only (9) r-correctly
reproduces both the argument (f) as a whole, i.e. as a complex statement, as well as its
premise and conclusion, i.e. its components. (8), on the other hand, does not r-correctly
capture (f)’s premise, because not all models M(8)

k , read in the vein of (c3), specify possible
worlds in enough detail to determine the truth value of (f)’s premise. For example, take a
model M(8)

k such that =k(a) ∈ =k(F ) and =k(a) ∈ =k(L). The corresponding world wk is
one where Daryl strolls and Daryl is slow. This specification is not sufficient to determine
whether “Daryl strolls slowly” is true or false in wk.

This shows that in order to exhibit the representational validity of an argument 〈Γ, Ψ〉,
an FOL-valid formalization 〈γ, ψ〉 must not only be r-correct for 〈Γ, Ψ〉 as a whole, but all
members of γ must moreover be r-correct for the corresponding members of Γ and ψ must
be r-correct for Ψ . I shall speak of recursive r-correctness or rr-correctness, for short:

(rr-COR) The formalization 〈γ, ψ〉 is recursively r-correct (rr-correct) for the argument
〈Γ, Ψ〉 iff each member of γ is r-correct for the corresponding member of Γ , ψ is
r-correct for Ψ , and 〈γ, ψ〉 is r-correct for 〈Γ, Ψ〉.

Note that γ and ψ each being r-correct for Γ and Ψ , respectively, is not sufficient for the r-
correctness of 〈γ, ψ〉 for 〈Γ, Ψ〉—hence, the last conjunct of (rr-COR). To see this, consider
the following formalization candidate of (f), which is likewise to be understood in the vein
of (c3):

〈{Fa} , ∃x(Jx ∧Hxa)〉 (16)

(16) r-correctly accounts for both the premise and the conclusion of (f), but (16) as a whole
is not r-correct for (f), because all of the models M(16)

k in which Fa is true and ∃x(Jx∧Hxa)
false do not represent possible worlds.

Next, reconsider argument (g) with two formalization candidates that have already been
discussed in section 3—(10) and (11)—and three further candidates that are intended to
illustrate peculiarities of representational formalizations:

(g) Daryl is a mother. Therefore, Daryl is a woman.

10 According to the convention adopted in section 3, I say that arguments and their formalizations are true
if they are truth-preserving in corresponding possible worlds and models, respectively, and false otherwise.
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〈{Ga} , Ga〉 (10)

〈{Fa} , Ga〉 (11)

〈{Fa ∧ ∀x(Fx→ Gx)} , Ga〉 (17)

〈{Ka ∧Ga} , Ga〉 (18)

〈{Ka ∧Ga ∧ (p ∨ ¬p)} , Ga〉 (19)

a : Daryl ; F : . . . is a mother ; G : . . . is a woman

K : . . . has a child ; p : Clooney is a bachelor
(c6)

While (10) is i-correct for (g), it fails to capture (g) rr-correctly, because it does not r-
correctly reproduce (g)’s premise. Read in terms of (c6), the models M(10)

k such that=k(a) ∈
=k(G) specify worlds in which Daryl is a woman. That does not suffice to determine
whether (g)’s premise is true in those worlds, i.e. whether Daryl is a mother. Analogously,
(11) is i-correct but not r-correct (and thus not rr-correct) for (g). The reason is that models
M(11)

k such that =k(F ) * =k(G) do not specify possible worlds relative to (c6). All of these
models entail that there exist mothers that are no women, which is informally judged to be
impossible. As (17) uses the same FOL sublanguage as (11), (17) is not r-correct for (g)
either, because models M(17)

k such that =k(F ) * =k(G) do not specify possible worlds.
(11) and (17) are not r-correct for (g) because the correspondence scheme (c6) interprets

the predicate letters of the FOL sublanguage used in (11) and (17) in terms of predicates that
are informally judged not to be independent, more specifically, the set of mothers is infor-
mally judged to be a proper subset of the set of women. Yet, the model-theoretic machinery
treats all predicate letters of FOL as representing logically independent predicates. It thus
generates models that cannot be read as representing possible worlds. Moreover, model the-
ory systematically assigns every element of every domain to the name letters of a relevant
FOL sublanguage and all truth-value combinations to the sentence letters. That is, in order
for models Mφ

k of an FOL formalization φ to specify possible worlds relative to a corre-
spondence scheme (ci), (ci) must meet the following requirement of informal independence
(cf. Baumgartner and Lampert 2008, 107):

(IN) A correspondence scheme (ci) accompanying a representational formalization φ sat-
isfies (IN) iff all expressions assigned to the categorematic terms of Lφ by (ci) are
mutually informally independent and (ci) assigns neither informally tautologous nor
contradictory expressions to any of the categorematic terms of Lφ.

As necessary condition of r-correctness, (IN) imposes severe constraints on the repre-
sentational formalizability of a natural language statementΦ. If the truth conditions ofΦ can-
not be cashed out in terms of informally independent non-tautologous and non-contradictory
expressions, Φ cannot be representationally formalized by means of FOL. FOL can only be
used as a tool to model∗ truth conditions of statements that can be analyzed on the basis of
components that conform to (IN). As a consequence, representational formalizations often
need to be accompanied by semantic analyses.11 In the case of argument (g), for instance,
such an (IN)-satisfying semantic analysis is feasible. (18) and (c6) analyze the predicate
“. . . is a mother” contained in (g) in terms of “. . . is a woman and . . . has a child”. This
analysis, in turn, yields that all models M(18)

k specify possible worlds wk. Furthermore, in
every M(18)

k the truth values of (18) and its components match the truth values of (g) and its
components in the corresponding wk. Hence, (18) is rr-correct for (g).

11 In Baumgartner and Lampert (2008), we argue that, from the representational perspective, there is no
clear distinction between logical formalization and semantic analysis.
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The same holds for (19). The premise and conclusion of (19) are formally equivalent to
the premise and conclusion of (18), and as (c6) interprets the categorematic terms of (19)
in compliance with (IN) all models M(19)

k represent worlds that are possible. Therefore, as
(18) successfully models∗ the truth conditions of (g) and of its components, so does (19).
All formalizations 〈γ, ψ〉 with components that are equivalent to the components of (18) and
whose models specify possible worlds are rr-correct for (g). This finding can be generalized:
for any two equivalent formalizations φ and φ′ that are interpreted in such a way that (IN) is
satisfied it holds that either both φ and φ′ are r-correct for a statement Φ or none of them is.
And analogously: for any two formalizations 〈γ, ψ〉 and 〈γ′, ψ′〉, such that the members of
γ are equivalent to the members of γ′ and ψ is equivalent to ψ′ and (IN) is satisfied, it holds
that either both 〈γ, ψ〉 and 〈γ′, ψ′〉 are rr-correct for an argument 〈Γ, Ψ〉 or none of them
is.12

Clearly though, the tautologous subformula p ∨ ¬p of (19) adds nothing whatsoever to
formally exhibiting the representational validity of (g). On the contrary, redundant syntac-
tical surplus tends to obscure rather than render transparent the truth conditions of an argu-
ment’s premises and conclusions. It is hence preferable to formalize (g) in terms of (18). A
formalization 〈γ, ψ〉 that exhibits the representational validity of an argument 〈Γ, Ψ〉 must
not only be rr-correct, but moreover it must not contain redundant elements. Relative to one
(IN)-satisfying correspondence scheme (ci), there exist infinitely many rr-correct formaliza-
tions of an argument 〈Γ, Ψ〉 such that for any pair of such formalizations 〈〈γ, ψ〉, 〈γ′, ψ′〉〉
it holds that each member of γ is equivalent to the corresponding member of γ′ and ψ is
equivalent to ψ′ (and, hence, 〈γ, ψ〉 is equivalent to 〈γ′, ψ′〉). Call the set % of these formal-
izations an rr-correct set of 〈Γ, Ψ〉. Relative to different correspondence schemes and within
different FOL sublanguages, an argument 〈Γ, Ψ〉 may have several rr-correct sets. The rep-
resentational validity (or invalidity) of 〈Γ, Ψ〉 is best exhibited by the minimally complex
formalizations in each rr-correct set.

There are several measures available in the literature that numerically reproduce the
complexity of an FOL formula. For instance, Hodges (2001, 47) defines the complexity
of a formula φ to be the number of its subformulas, where the subformulas of φ are the
atomic expressions contained in φ, the molecular expressions in φ composed by means of
logical connectives and quantifiers, and φ itself. According to this complexity measure, (18)
has complexity 5, whereas (19) has complexity 9. Against this background, the minimally
complex formalizations in a rr-correct set % are simply definable as the formalizations with
lowest complexity measure in %. The minimally complex formalizations in different rr-
correct sets exhibit representational validity equally well.

In light of these considerations, I advance the following principle for exhibiting repre-
sentational validity:

(r-VP) An argument 〈Γ, Ψ〉 is exhibited to be representationally valid (II-valid) iff 〈Γ, Ψ〉
is formalized by an FOL-valid formalization 〈γ, ψ〉 that is both rr-correct for 〈Γ, Ψ〉
and minimally complex.

For completeness, a formalization φ can be said to be representationally adequate, i.e. r-
adequate, for a statement Φ iff φ is both r-correct for Φ and minimally complex. Analo-
gously, 〈γ, ψ〉 is r-adequate for an argument 〈Γ, Ψ〉 iff 〈γ, ψ〉 is both rr-correct for 〈Γ, Ψ〉
and minimally complex.

12 In this regard, r-correctness differs significantly from i-correctness. While formalizations of a statement
Φ that introduce arbitrary tautologous elements not contained in Φ cannot be seen to model∗ permissible
reinterpretations of Φ, formalizations of Φ model∗ the truth conditions of Φ even if they feature an excessive
tautologous surplus, provided that (IN) is respected.
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5 Conclusion

By developing concrete formalization criteria that are suitable for exhibiting the interpreta-
tional and representational validity of arguments, this paper has shown that formalizing an
argument from the interpretational and from the representational perspective are two very
different tasks. Formalizing interpretationally presupposes clarity on the permissibility of
reinterpretations and aims at modeling∗ the space of permissible reinterpretations relative
to which a valid argument is truth-preserving. By contrast, formalizing representationally
presupposes clarity on truth conditions and aims at modeling∗ the space of possible worlds
relative to which a valid argument is truth-preserving. The first framework varies the in-
terpretations of premises and conclusions and evaluates these reinterpretations relative to
independently given specifications of possible worlds. The second framework varies the
configurations of matters of fact to generate different possible worlds in which premises
and conclusions are evaluated relative to independently given interpretations of pertinent
languages. Formalizing an argument in an illuminating manner, hence, requires that the
adopted framework be made explicit. Otherwise, confusion is inevitable.
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