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Abstract

The essential precondition of implementing interventionist techniques of causal reasoning is that
particular variables are identified as so-calledintervention variables. While the pertinent litera-
ture standardly brackets the question how this can be accomplished in concrete contexts of causal
discovery, the first part of this paper shows that the interventionist nature of variables cannot, in
principle, be established based only on an interventionistnotion of causation. The second part then
demonstrates that standard observational methods that draw on Bayesian networks identify inter-
vention variables only if they also answer all the questionsthat can be answered by interventionist
techniques—which are thus rendered dispensable. The paperconcludes by suggesting a way of
identifying intervention variables that allows for exploiting the whole inferential potential of inter-
ventionist techniques.

Keywords interventionism, causal discovery, causal reasoning, Bayes nets methods,
intervention variables, causal assumptions, Markov condition, Faithfulness condition

1 Introduction

Woodward’s (2003) interventionist theory of causation hasnot only stimulated the concep-
tual literature on causation in recent years, it has also exerted a significant influence on the
literature concerned with methods of causal reasoning and discovery. It is widely agreed
upon that intervening on causal structures in the manner made precise by Woodward sup-
plies considerable inferential leverage when it comes to uncovering causal structures. If
all variables in a causal structure are systematically manipulable—say, in ideal laboratory
contexts—that structure can be thoroughly and unambiguously uncovered and it is deter-
mined exactly how many experimental manipulations are sufficient to do so (cf. Eberhardt
et al. 2006; Eberhardt and Scheines 2007). Moreover, even the manipulability of only some
variables in a structure may render it possible to uncover relevant parts of it or to disam-
biguate causal inferences that would remain ambiguous wereit not for the possibility to
intervene (cf. Pearl 2000; Spirtes et al. 2000, ch. 4; Korb and Nyberg 2006). Likewise, inter-
ventionist techniques can be effectively implemented in the discovery of causal structures
that resist analysis by other methods (cf. Nyberg and Korb 2006).
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All of these powerful applications of interventionism crucially hinge on the possibility
to manipulate investigated causal structures in a very particular manner, which Woodward
(2003, 130) describes assurgical. A surgical manipulation is what Woodward calls aninter-
vention. He spells out the conditions an intervention has to satisfyby means of the notion of
an intervention variable. Roughly, an intervention variableI for X with respect toY , is a
cause ofX that is not connected toY on a causal path that does not go throughX and that is
independent of any other cause ofY . The essential precondition of fruitfully implementing
interventionist means in causal discovery is that particular triples of variables can in fact be
established to have these very specific interventionist properties.

While, in the literature on interventionist causal reasoning, it is common to assume
that for all variables in an analyzed structure there exist suitable intervention variables, the
problem of how these intervention variables can actually beidentified is normally brack-
eted. Still, in ordinary contexts of causal discovery, the important question is not so much
whether intervention variables exist for a variableX with respect to another variableY ,
but rather which variable is such an intervention variable,or whether a concrete variableI
is such an intervention variable or not—and, often, the answers to these questions are far
from obvious. For instance, a typical interventionist testdesign to determine the causal re-
lationship between, say, depression and insomnia would be to administer an anti-depression
drugδ to relevant patients and to then investigate whether that treatment is accompanied by
reduced (or increased) insomnia. Plainly though, such a test is only revealing if it has been
ascertained thatδ itself does not have a direct somniferous (or agitating) effect, which calls
for an antecedent study on the (side-)effects ofδ. Or, important controversies in the history
of science can be understood as controversies about whetheror not certain experimental ac-
tions are interventions in the surgical sense. For example,the controversy between Pasteur
and Pouchet concerning the possibility of spontaneous generation is largely about whether
specific manipulations (letting air through sulphuric acid, warming air up to a very high
temperature, filtering it through cotton. . . ) succeed in eliminating any trace of life it may
contain while not at the same time destroying the inert vitalcomponent that could produce
life according to the proponents of the theory of spontaneous generation (cf. Collins and
Pinch 1993, ch. 4).

Accordingly, this paper focuses on the much neglected problem of how intervention
variables can be identified in contexts of causal discovery.In order to answer this method-
ological question, we first answer the following conceptualquestion: what can justify the
belief that a given triple of variables has the interventionist properties? It turns out that such
justifications require recourse to non-interventionist causal knowledge. Therefore, the sec-
ond part of the paper draws on a currently dominant strand of non-interventionist methods
of causal reasoning,viz.on Bayesian networks methods (cf. Spirtes, Glymour, and Scheines
2000; Pearl 2000), in order to tackle the problem of how intervention triples can actually be
identified.

2 Intervention triples

The standard reference for rendering the notion of a (suitable) intervention precise is Wood-
ward’s (2003) interventionist theory of causation. The theory is intended to illuminate “how
we think about, learn about, and reason with various causal notions” (Woodward 2008,
194). Woodward determines what characteristics interventions must have in order to have
maximal inferential purchase in contexts of causal discovery with recourse to the two core
conceptual constituents of his interventionist theory of causation: the notion oftype causa-
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tion, which has the two components ofdirect and ofcontributingcausation, and the notion
of an intervention variable. Here are the two corresponding (frequently cited) definitions
(M) and (IV):

(M) A necessary and sufficient condition forX to be a (type-level) direct cause ofY with
respect to a variable setV is that there be a possible intervention onX that will change
Y or the probability distribution ofY when one holds fixed at some value all other
variablesZi in V. A necessary and sufficient condition forX to be a (type-level)con-
tributing causeof Y with respect to variable setV is that (i) there be a directed path
from X to Y such that each link in this path is a direct causal relationship (. . . ), and
that (ii) there be some intervention onX that will changeY when all other variables in
V that are not on this path are fixed at some value. (Woodward 2003, 59)

(IV) I is an intervention variable forX with respect toY iff (i) I causesX; (ii) certain
values ofI are such that whenI attains those values,X ceases to depend on the values
of other variables that causeX and instead depends only on the value taken byI; (iii)
any directed path fromI to Y goes throughX; (iv) I is statistically independent of any
variableZ that causesY and that is on a directed path that does not go throughX.
(Woodward 2003, 98)

Relative to the notion of an intervention variable, an intervention onX with respect toY is
then straightforwardly spelled out in terms of an intervention variableI for X with respect
to Y taking on some valuezi such thatI = zi causesX to take on some determinate value
zj (Woodward 2003, 98).

It is plain from this that Woodward’s interventionism relies on an interdefined concep-
tual core. Causation is defined in terms of the notion of an intervention which is itself defined
based on the notion of an intervention variable which, in turn, is defined in terms of cau-
sation. The fact that (M) and (IV) interdefine causation and intervention is not considered
to be problematic by Woodward. He maintains that his way of interdefining causation and
intervention is not viciously circular (Woodward 2003, 104–105):1

The causal information required to characterize the notionof intervention onX
with respect toY is information about the causal relationship between the interven-
tion variableI andX, information about whether there are other causes ofY that
are correlated withI, information about whether there is a causal route fromI to
Y that does not go throughX and so on,but not information about the presence or
absence of a causal relationship betweenX andY .

In a nutshell, thus, the basic idea behind interventionism is that if the triple〈I,X, Y 〉
satisfies (IV) such thatI is an intervention variable forX with respect toY , interventions
onX throughI will reveal whether or notX is a cause ofY . According to Woodward, this
is possible notwithstanding the interdefined conceptual core of interventionism, because the
fact that〈I,X, Y 〉 is an intervention triple does neither entail nor presuppose anything what-
soever with respect to the relationship betweenX andY . That is, interventionism’s “primary
focus ismethodological” (Woodward 2008, 194), and interventionist methods aim to modu-
larly uncover causal structures: based on clarity about thecausal (in)dependencies between
I andX as well as betweenI andY , (in)dependencies betweenX andY can be revealed.
Or more generally, a whole causal structureG over a set of variablesV is uncovered by first

1 Even though not all authors agree that interdefining causation and intervention is as unproblematic as
Woodward would like to have it (e.g. Strevens 2007, 2008 or Baumgartner 2009), it is clear that Woodward
neither aims nor claims to provide a reductive analysis of causation.
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identifying substructures inG that comply with (IV), and by then sequentially uncovering
further substructures ofG on the basis of the relevant intervention triples.

Obviously, the crucial prerequisite for implementing thismethodological strategy is the
availability of suitable intervention variables for an analyzed structure. That is, to get inter-
ventionist methods off the ground, some triples of the set ofvariables for which a causal
model is being searched must be known to satisfy (IV). Because of the interdefinition of the
notions of an intervention variable and of causation, knowledge about compliance with (IV)
is causal knowledge. The next section is going to investigate what this causal knowledge
consists in and, more specifically, what can justify that a given triple in fact is an interven-
tion triple.

3 On what justifies the interventionist nature of a given triple

Knowing that〈I,X, Y 〉 is an intervention triple amounts to being justified in believing that
it satisfies each of the four conjuncts constituting (IV). Ofthese four conditions, (IV.ii)
is the least significant one. Eberhardt and Scheines (2007) refer to a variableI that only
complies with (IV.i), (IV.iii), and (IV.iv) as asoft or parametricintervention variable and
show that even soft intervention variables can provide considerable inferential leverage in
many contexts of causal discovery (similarly Korb et al. 2004). Moreover, given that a triple
〈I,X, Y 〉 satisfies (IV.i), (IV.iii) and (IV.iv), (IV.ii) is usually taken to be satisfiable by simply
choosing a value ofI that actually determines a particular value ofX. Hence, for simplicity,
we subsequently focus on the question of what justifies that triples of variables comply with
(IV.i), (IV.iii) and (IV.iv), i.e. we focus on soft intervention variables only.

While the particular manner in which (M) and (IV) interdefinecausation and interven-
tion may be claimed not to be viciously circular, the interdefined conceptual core of interven-
tionism triggers infinite regresses when it comes to justifying the interventionist character
of variables by application of the definitions (M) and (IV). Based on (M) and (IV), no vari-
able can ever be justified to have the interventionist properties in a finite number of steps.
In consequence, it is never possible, in principle, to justify the belief that a particular triple
of variables is an intervention triple by applying interventionist definitions. To see this, sup-
pose we want to determine that a variableI1 is an intervention variable forX with respect
to Y . Condition (IV.i) stipulates that a necessary condition for that to be the case isI1 being
a cause ofX. According to (M), a necessary condition forI1 to be a cause ofX is that there
be a possible intervention onI1 with respect toX, and hence an intervention variable for
I1 with respect toX, call it I2. This, in turn, requiresI2 to be a cause ofI1, which again
presupposes that there is an intervention variableI3 for I2 with respect toI1, which calls
for a further intervention variableI4 for I3 with respect toI2, and so on. Condition (IV.iii)
amounts to another necessary condition forI1 to be an intervention variable forX with re-
spect toY : there must not be a causal path connectingI1 andY that does not go through
X. In order to determine whetherI1 satisfies that condition, first, the possibleI1 −X − Y

connection must be suppressed (or ‘broken’) by fixing the value ofX by means of a further
intervention variableI5 and, second, it must be established that there is no possibleinter-
vention onI1 that changesY or the probability distribution ofY when one holds fixed all
other variables.2 Of course, according to (M),I5 being an intervention variable forX with
respect toY requires there to be another intervention variableI6 for I5 with respect toX,

2 For further details on testing the satisfaction of (IV) cf. Woodward (2003, 99–111).
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and so on. In sum, given that causation is defined in terms of (M), justifying that (IV) is
satisfied sets off multiple infinite regresses.3

In scientific practice, a common way of solving the problem ofjustificatory regresses
that arise when definitions are applied to relevant entitiesis to draw on some sort of founda-
tionalism. For instance, if we are to determine whether a yellow ring satisfies the definition
of gold, we are first going to conduct a chemical analysis thatdraws on certain causal char-
acteristics of gold. Depending on theoretical preferences, these causal characteristics might
then be reduced to, say, probabilistic (in)dependencies, which again depending on theoret-
ical preferences, can be analyzed in terms of a suitable frequency distribution. However,
as all scientific theorizing inevitably operates within some conceptual frame that is taken as
given and unquestioned, regresses of this ordinary type arenot infinite, but terminate as soon
as some conceptual level is reached that is considered to be primitive by whoever happens
to apply a corresponding definition. Applying the definitionof gold to a ring induces a pro-
gression from one conceptual level to a subsequentindependentlevel and stops when some
primitive level is reached. By contrast, no primitive conceptual level can ever be reached if
(M) is applied in order to justify that a given triple of variables satisfies (IV). The fact that
(M) and (IV) are interdefined induces aninfinite oscillationbetween two notions, none of
which is primitive according to interventionism, which, inturn, yields that no foundational-
ist solution to the problem of justifying compliance with (IV) is available.

All this demonstrates that the belief that a triple〈I,X, Y 〉 satisfies (IV) cannot be jus-
tified by direct applicationof (M) and (IV) to the triple〈I,X, Y 〉. Clearly though, in order
to determine whether a specific entity satisfies a given definition it is often not necessary to
apply the definition itself, rather,heuristicswill do. If we want to know whether a yellow
ring is made of gold, we do not necessarily have to conduct a chemical analysis. Many suit-
able heuristics are available. The price of the ring will be an indication, or the reputation
of the store in which it is sold. Hence, the question arises whether there might exist some
heuristic which may warrant,without direct applicationof (M), that 〈I,X, Y 〉 complies
with (IV). In general terms, heuristics are experience-based techniques that sufficiently fre-
quently succeed in solving problems in a ‘cost-effective’ way (cf. Wimsatt 2006, 463-465).
Their solutions do not need to be perfect, but the quality of these solutions must be as-
sessable independently of the heuristics, at least in principle. The problem to solve in the
present context is determining the satisfaction of definitions. As indicated above, heuristics
often render it unnecessary to explicitly apply definitions. For instance, the problem of de-
termining whether a ring complies with the (chemical) definition of gold can be solved by
using the ring’s price as a heuristic measure. By conductingchemical analyses and, thus,
by explicitly applying the definition of gold, it can be seen that gold frequently has a high
price. This yields a generalizable constraint on heuristics that evaluate the satisfaction of
definitions: in order for a non-definitional criterionΦ to serve as a heuristic measure for
whether relevant entities satisfy a definitiont, Φ must sufficiently frequently identify such
entities as complying and as not complying witht that would be identified as such ift itself
were applied and it must be possible to applyt, at least in principle. While that constraint
is certainly satisfied in the case of gold and its price, matters are different for intervention
variables defined along interventionist lines. Indeed, theconsiderations of the previous para-
graphs show that there is no way to determine for even one single triple of variables whether
it satisfies (IV) by applying (M). In view of the lack of a single positive application of (M)

3 Since the notion of causation is also of crucial importance in (IV.iv) a similar regress is initiated when
it comes to determining whether a specific triple〈I1, X, Y 〉 satisfies (IV.iv). For brevity, we leave it to the
reader to scrutinize that additional regress.
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and (IV), there cannot exist a heuristic for assessing the satisfaction of (M) and (IV), for
there does not exist an independent gauge for heuristic success.

That means the satisfaction of (IV) cannot be justified on heuristic grounds either. At
the same time, however, there exist certain triples of variables〈I,X, Y 〉 such thatI is de
facto known to be an intervention variable forX with respect toY . Suppose we want to
find out whether treatment with a specific drug (T ) is a cause of recovery from a particular
disease (R). To answer that question, subjects that suffer from the disease are randomly
assigned to treatment and control groups, say, by tossing a coin (C). Everybody will agree
that C is an intervention variable forT with respect toR (cf. Woodward 2003, 94–98;
2008, 203–204).C causally determines the assignment to treatment or controlgroup,C
does not directly causeR, andC is statistically independent of other causes ofR. We have
enough background causal knowledge to be reasonably confident that the triple〈C, T,R〉
satisfies (IV). We have shown in the previous paragraphs thatthis causal knowledge cannot
be interventionist causal knowledge. Therefore, whoever is convinced that coin tossing has
the interventionist propertiescannotand, as a matter of fact,does notunderstand causation
on the sole basis of (M). To justify compliance with (IV) somenon-interventionist theory of
causation is indispensable (cf. Cartwright 2010).

It turns out that relative to certain non-interventionist theories of causation it can in-
deed be substantiated that coin tossing is an intervention variable for treatment with respect
to recovery. Take for instance an elementary probabilisticaccount as professed by Sup-
pes (1970). Given a suitable probability distribution overC, T andR, such a theoretical
framework determines thatC is a direct cause ofT if C is positively correlated withT ,
C temporally precedesT , andC is not screened off fromT by any further variable in the
structure. Furthermore, ifC is screened off fromR by T , C can be said not to directly cause
R. Finally, if pertaining probabilistic data can be shown notto feature any other (probabilis-
tically defined) causes ofR that are correlated withC, it follows that the triple〈C, T,R〉

satisfies (IV.i), (IV.iii), (IV.iv) and, thus, thatC is an intervention variable forT with respect
to R. Of course, such a probabilistic analysis in the vein of Suppes (1970) has long been
shown not to adequately capture all causal dependencies, ase.g. causes that lower the prob-
abilities of their effects. Yet, irrespective of whether itsuccessfully accounts for all kinds of
causal dependencies, Suppes’ theory can be used to straightforwardly justify the belief that
coin tosses satisfy (IV) in randomized experiments. Modernand more sophisticated prob-
abilistic analyses as e.g. professed by Kvart (2001) or Eells (1991) could also establishC
as intervention variable forT with respect toR in a finite number of steps—even though a
corresponding argument would involve more complications.

These considerations show that as long as causation is exclusively understood in the
vein of (M) a given triple〈I,X, Y 〉 cannot be justified to have the interventionist properties.
To justify that〈I,X, Y 〉 complies with (IV.i), (IV.iii), and (IV.iv), recourse mustbe made
to non-interventionist causal knowledge. The interventionist nature of〈I,X, Y 〉 can, for
example, be justified based on a probabilistic account of causation.

4 Identifying intervention triples

In the previous section, we have seen how the belief that cointossing is an intervention vari-
able for treatment with respect to discovery can be justifiedbased on a (rough) probabilistic
notion of causation. This, however, does not tell us how cointossing has been selected as
a candidate intervention variable in the first place. To unfold the whole inferential poten-
tial of interventionist methodologies we not only need to beable to justify the belief that
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a given triple complies with (IV). We also require a methodically guided manner of iden-
tifying triples that justifiably comply with (IV) within a given setV of causally modeled
variables. The previous section has shown that a method for identifying intervention triples
within analyzed variable sets cannot rely on an interventionist conception of causation only.
A currently dominant framework of causal inference that searches for causal dependencies
as defined by a non-interventionist theory of causation is constituted by the procedures of
causal discovery that draw on Bayesian networks (cf. Spirtes, Glymour, and Scheines 2000;
Pearl 2000). TheseBN methodsdo not implement an interventionist notion of causation
(rather, they stipulate a connection between probabilities and causation which is very simi-
lar to the one stated by Suppes’ probabilistic analysis of causation). Moreover, they process
observational (non-experimental) data. Accordingly, this section investigates whether and
how intervention variables can be identified by means of BN methods.

4.1 Standard BN algorithms

Before we can address this question, the basic ideas behind BN methods must be briefly
reviewed. To this end, some definitional preliminaries are called for. A Bayesian network
(BN) over a set of variablesV is a pair〈G, p〉 such that: (i)G is a directed acyclic graph
(DAG) overV, (ii) p is a probability distribution overV, and (iii) 〈G, p〉 satisfies theMarkov
condition (MC):

(MC) Any V in V is independent inp of all its non-descendants inG conditional on its
parents inG.4

BNs appeared in artificial intelligence in the 1980s as a means to represent and handle uncer-
tainty (cf. e.g. Pearl 1988). More recently, they have come to be employed for the purpose of
causal inference. Algorithms for causal reasoning that rely on BNs were developed chiefly
by two groups. Their main results are presented in Spirtes etal. (2000) and Pearl (2000),
respectively.

BN causal inference methods aim to infer causal structures from probabilistic depen-
dencies and independencies over a set of variablesV. To explain how these methods work
the notions of a causal graph and of causal sufficiency are required. For any set of variables
V, thecausal graphoverV is the directed acyclic graph overV in which there is an arrow
from a variableX to another variableY if and only ifX is a direct cause ofY relative toV.
BN methods operate under the assumption that the causal structures they analyze can indeed
be modeled by causal graphs in this sense. Among other things, this means that BN methods
employ the assumption that the structures to which they are applied are causally acyclic, i.e.
that they do not involve any causal cycles or feedbacks. Moreover, a set of variablesV is
said to becausally sufficientif and only if for every common causeC of two variablesX
andY in V it holds thatC is inV, or a cause ofC is inV, or an effect ofC which is located
on all directed paths fromC toX and on all directed paths fromC toY is inV. Against this
conceptual background, the so-calledcausal Markov condition(CMC) which is assumed by
all BN methods can be stated as follows (cf. e.g. Glymour 1997, 206; Ramsey et al. 2006;
Zhang and Spirtes 2008):

(CMC) For any set of variablesV, if V is causally sufficient, then any probability distri-
butionp overV that is generated by the causal graphG overV is such that〈G, p〉
satisfies (MC).

4 Definitions of all subsequently used graph-theoretical notions can be found in Spirtes et al. (2000, 5-10)
or in Pearl (2000, 12-13).
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(CMC) is a universal assumption. For expositional purposesit will be useful to also
have a label for the predicate which (CMC) claims to be satisfied by all causally sufficient
variable sets. We shall hence say that a sufficient set of variablesV satisfies (CMCV) if and
only if any probability distributionp overV that is generated by the causal graphG overV
is such that〈G, p〉 satisfies (MC).

In addition to (CMC), BN procedures of causal inference usually also exploit the as-
sumption that thecausal Faithfulness condition(CFC) holds (cf. Ramsey et al. 2006):

(CFC) For any set of variablesV, if V is causally sufficient, then all independencies in
probability distributions overV that are generated by the causal graphG overV
are implied by (CMCV) for V.

Analogously to (CMCV), we label the predicate that (CFC) universally applies to causally
sufficient variable sets (CFCV). A sufficient set of variablesV satisfies (CFCV) if and only
if all independencies in any probability distribution generated by the causal graphG overV
are implied by (CMCV) for V.

There is a certain variance in the literature on BN methods asto what exactly the logical
forms of (CMC) and (CFC) are. While most authors explicitly subscribe to the universal
version of (CMC) given above, (CFC) is often not explicitly stated in the universal form
advanced here. Rather, authors frequently content themselves with defining the predicate
(CFCV) in order to then (implicitly) assume that particular variable sets that are relevant to
a pertinent causal analysis satisfy (CFCV). However, as these latter presentations of causal
Faithfulness are normally not very clear about exactly which variable sets must be assumed
to satisfy (CFCV) in order for BN methods to be correct, we, for the time being,settle for
the universal version (CFC). We will consider weakenings of(CFC) in section 4.2. Although
they do not explicitly give necessary and sufficient probabilistic conditions for a variableX
to cause a variableY , (CMC) and (CFC) taken together constitute the theory of causation
that is conveyed by BN procedures of causal inference. They define a connection between
causation and probabilities which is very similar to the onestipulated by Suppes and which
entails necessary or sufficient conditions for various causal notions (cf. Pearl 2000,§2.7).
These conditions are put to work in BN algorithms of causal inference.

There exist two types of such algorithms. To state the prime difference between these
types, letO be the set of variables that areobserved(or measured) in a given study: while
algorithms of the first type employ the assumption thatO is causally sufficient, algorithms
of the second type do not rely on that assumption. Among the algorithms of the first type
are PC, SGS (Spirtes et al. 2000) or IC (Pearl 2000). Algorithms of the second type are, for
instance, CI, FCI (Spirtes et al. 2000) or IC* (Pearl 2000). For brevity, we label algorithms
of the first typeS-algorithmsand algorithms of the second typeNS-algorithms.

S-algorithms take as input the setI of conditional independencies over a set of variables
O which is assumed to be causally sufficient, and they output a graphical pattern, to which
we shall refer as anS-pattern, for short.5 An S-pattern represents a set of DAGs overO

all of which constitute a BN in combination with all and only the probability distributions
featuring exactly the independencies recorded inI. The set of DAGs represented by anS-
pattern is called aMarkov equivalence class, because for all its members (MC) entails the
same conditional independence relations among the variables inO. S-algorithms are correct
in the following sense (cf. e.g. Spirtes, Glymour, and Scheines 1991): if two variablesX and

5 The idea of treating the setI of all conditional independencies overO as a premise is not unproblematic
in contexts of causal discovery, since what is usually available in such contexts are mere statistical data. How
conditional independencies inO are hypothesized based on corresponding statistical data is irrelevant for our
current purposes though.
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Y are connected by a graphical featureφ in anS-pattern,X andY are related in the causal
graphG over O in the way represented byφ; and if X andY are not connected by any
graphical feature in anS-pattern,X andY are causally unrelated. That is, assuming that
causation and probabilities are connected in the way that (CMC) and (CFC) define,G is
among the graphs represented by theS-pattern that anS-algorithm outputs when given the
conditional independencies overO as input. For there to be an edge betweenX andY in
anS-pattern, it is necessary and sufficient thatX andY are probabilistically dependent and
that no subset ofO\{X, Y } screens off between them (i.e. renders them probabilistically
independent). In light of the correctness ofS-algorithms, that means that the impossibility
to screen off betweenX andY in O\{X, Y } is necessary and sufficient for there to be a
direct causal relation betweenX andY . Finally, S-algorithms areindependence complete:
they output all the causal conclusions that can be drawn fromtheir probabilistic input (cf.
Meek 1995; Verma and Pearl 1992; Glymour 2010, 183).

Contrary toS-algorithms,NS-algorithms do not employ the assumption thatO is
causally sufficient. From the setI of conditional independencies overO, they build anNS-
patternwhich is a graphical representation of a class of DAGs each ofwhich is defined over
the union ofO and of a set of so-calledlatent variables. In combination with (MC), each
of the graphs represented by anNS-pattern entails exactly the independencies recorded in
I for the variables inO. NS-algorithms are correct in the following sense (cf. e.g. Spirtes,
Meek, and Richardson 1995): if two variablesX andY are connected by a graphical fea-
ture φ in anNS-pattern,X andY are related in the way represented byφ in the causal
graphG overO ∪ CCO, whereCCO designates a set such that for any common causeC

of two variablesX andY in O it holds thatC, or a cause ofC, or an effect ofC which
is located on all directed paths fromC to X and on all directed paths fromC to Y is in
CCO. Moreover, ifX andY are not connected by a graphical feature in anNS-pattern,
X andY are causally unrelated. That means that the causal graphG over the causally suf-
ficient setO ∪CCO is among the graphs represented by anNS-pattern. As a result of not
assuming thatO is causally sufficient, the so-calledobservational equivalence classesthat
NS-algorithms infer each contain an infinite number of DAGs—contrary to the Markov
equivalence classes inferred byS-algorithms. Moreover,NS-patterns are more ambiguous
thanS-patterns: while there is an arrow betweenX andY in anS-pattern only if this arrow
appears in all the DAGs it represents, an analogous arrow in anNS-pattern only means that
all the represented DAGs feature either a path directed fromX to Y or (at least) one sub-
graph featuring a path from a variableC to X and a path fromC to Y whereC is not inO.
That is, whereas in case of the assumed causal sufficiency ofO a probabilistic dependency
of X andY conditional on every subset ofO \ {X, Y } is necessary and sufficient for a
direct causal relation betweenX andY , such a probabilistic dependency ofX andY , when
O is not assumed to be causally sufficient, only determines that X is a direct cause ofY in
O∪CCO, or Y is a direct cause ofX in O∪CCO, or X andY have (at least) one common
cause outside ofO. NS-algorithms infer thatX is a direct cause ofY only under very spe-
cial probabilistic conditions (cf. Pearl 2000, 55). When these conditions are met, the arrow
from X to Y in the correspondingNS-pattern is marked with a special graphical feature.
Finally, at least someNS-algorithms, e.g. FCI, have also been proven to be independence
complete (cf. Zhang 2008; Claassen and Heskes 2011; Glymour2010, 186).6

6 Strictly speaking, the algorithm that Zhang (2008) proves to be independence complete is not FCI as
e.g. presented in Spirtes et al. (2000), but an extended version of FCI that implements two additional tail
inference rules. Moreover, note that when we subsequently talk aboutNS-algorithms we are only referring
to algorithms that are provably independence complete.
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Fig. 1 A diagram that represents relevant features ofSP1: there is a directed path fromI to X, any sort of
path or none at all betweenX andY , and no path betweenI andY that does not go throughX.

Certain patterns output by BN algorithms are sufficient to very straightforwardly con-
clude that a triple of variables〈I,X, Y 〉 is an intervention triple. More precisely, certain
patterns enable to identify triples of variables as being such that, based on the notion of cau-
sation that is employed by BN algorithms, the probabilisticinput that these algorithms take
is enough to justify their interventionist nature. For instance, take one of the simplest BN al-
gorithms, theS-algorithm IC (Pearl 2000, 50), and suppose that it outputs anS-patternSP1

which has the features depicted in figure 1.7 Against the background of (CMC), (CFC), and
the assumed causal sufficiency ofO, it can be concluded fromSP1 that〈I,X, Y 〉 is a (soft)
intervention triple, i.e. that〈I,X, Y 〉 satisfies (IV.i), (IV.iii), and (IV.iv). To see this, note
first that in light of the correctness of IC the directed path fromI toX in figure 1 entails that
I is a cause ofX: it is visible inSP1 that〈I,X, Y 〉 satisfies (IV.i). Second, the correctness
of IC also yields that the absence inSP1 of a path betweenI andY that does not go through
X, i.e. the absence of what we shall henceforth call anX-path betweenI andY , warrants
the conclusion thatI is not a cause ofY along anX-path. Therefore, (IV.iii) is also satisfied
in SP1. Finally, to see that from the features of the triple〈I,X, Y 〉 in figure 1 it can likewise
be inferred that (IV.iv) holds, suppose that—in violation of (IV.iv)— I is correlated with a
causeZ of Y that is located on anX-path. (CMC) and the correlation ofI andZ entail
that either (a)I is a cause ofZ, or (b) Z is a cause ofI, or (c) I andZ have a common
cause (cf. Williamson 2005, 51-52). None of these, however,can in fact be the case. (a) is
excluded because, in combination withZ being a cause ofY along anX-path, (a) yields
that I is a cause ofY on anX-path. Yet, in light of the fact that〈I,X, Y 〉 complies with
(IV.iii), this cannot be the case. Furthermore, it follows from both (b) and (c) thatI andY
have a common cause on anX-path. The sufficiency assumption exploited byS-algorithms,
in turn, implies that this common cause, or one of its causes,or one of its effects that is also
a common cause ofI andY , is contained in the setO of analyzed variables. However, due to
the correctness of IC, thatI andY have a common cause inO on anX-path is incompatible
with the absence of anX-path betweenI andY in SP1. (b) and (c) are thereby excluded.
We can, hence, conclude that there indeed does not exist a variableZ that causesY along
anX-path and that is correlated withI. Thus,〈I,X, Y 〉 satisfies (IV.iv).

Yet, identifying variables that can be justified to be intervention variables on the basis
of BN methods, notwithstanding the ease with which this can be done, comes with a catch.
For, as we shall see in the remainder of this section, whenever outputs of BN algorithms are
determinate enough to establish the interventionist nature of a triple〈I,X, Y 〉, these outputs
also determine whetherX is a cause ofY or not. That is, BN methods, when identifying
I as an intervention variable forX with respect toY , also render it expendable to actually
intervene onX via I to test whetherX causesY . We first show this for outputs of BN
procedures that have the properties depicted in figure 1 and then demonstrate that the same
holds for BN outputs in general.

If, as illustrated in figure 1, none of the DAGs represented bytheS-patternSP1 features
anX-path betweenI andY and, accordingly, the causal graph overO does not feature such
a path, (CMC) entails that either (d)I andY are unconditionally independent or (e) they

7 Note that figure 1 does not depictSP1 itself. Rather, it represents relevant properties ofSP1.
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are unconditionally dependent but independent conditional on X. Against the background
of (CFC), (d) implies thatI andY are causally independent, which yields that there does
not exist a directed causal path fromI to Y . As figure 1 ensures that there is a directed path
from I to X in the causal graph overO, it follows from the correctness of IC that there
cannot exist a directed causal path fromX to Y (for otherwise, contra (d), there would be a
path fromI via X to Y after all). That is,X is not a cause ofY . By contrast, (e) entails that
there exists at least one directed or back-door8 causal path betweenI andY and that every
such path goes throughX. More explicitly, (e) entails that in the causal graph overO, there
exists at least one path of one of the following forms and thatall paths betweenI andY are
of one of those types:

– I // X // Y

– I Xoo Yoo

– I Xoo // Y

– I Xoo Zoo // Y

– I Zoo // X // Y

Only two of these possibilities are compatible with the acyclicity assumption that is embed-
ded in BN methodologies. To see this, note again thatSP1 guarantees that the causal graph
G overO features a directed path fromI to X. Combining the possible paths that follow
from (e) with the directed path fromI to X contained inG yields the following graphs:

– I // X // Y

– I
**
Xii Yoo

– I
**
Xii // Y

– I
**
Xii Zoo // Y

– I 66Zoo // X // Y

Only the first and the last of the graphs in that list are DAGs; the others contain a feedback
structure that violates the acyclicity restriction. That is, if (e) holds, there is either a directed
path fromI via X to Y in G or there is a common common causeZ of I andX which, in
turn, is a cause ofY . In both cases,X is a cause ofY . Therefore, (e) implies thatX is a
cause ofY .

Overall, the probabilistic (in)dependencies representedby SP1, in combination with
the assumptions employed byS-algorithms, entail thatX is not a cause ofY (if I andY
are unconditionally independent) or they entail thatX is a cause ofY (if I andY are not
unconditionally independent). Since it is either given with the input data fed into IC thatI
andY are unconditionally independent or that they are not and since IC is independence
complete, whichever is the case will be visible inSP1. If X is a cause ofY , there is a
directed path fromX to Y in SP1; and ifX is not a cause ofY , none of the DAGs that are
represented bySP1 features a directed path fromX to Y .

A natural reaction to this finding will be to conjecture that the features depicted in figure
1, though sufficient, are not necessary to establish the interventionist nature of〈I,X, Y 〉,
based on the probabilistic input taken by BN algorithms in combination with the account
of the connection between causation and probabilities thatthese algorithms rely on. Other
types ofS-patterns might reveal thatI is an intervention variable forX with respect toY

8 For the notion of aback-door pathcf. Pearl (1993).
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without, at the same time, rendering it superfluous to actually intervene onX throughI in
order to uncover the causal relationship betweenX andY . That, however, is not the case.
Even though anS-pattern may indeed warrant the interventionist nature of〈I,X, Y 〉 without
all the features in figure 1, it nonetheless holds that allS-patterns that substantiate thatI is
an intervention variable forX with respect toY also determine whetherX is a cause ofY or
not. In other words, whenever anS-pattern validates the interventionist nature of〈I,X, Y 〉,
it renders actual interventions onX dispensable when it comes to investigating the causal
relation betweenX andY .

To show this, we establish that, together with the assumptions employed byS-algorithms
and with the conditional (in)dependencies that constitutethe input of these algorithms, the
fact that〈I,X, Y 〉 is an intervention triple either implies thatX is a cause ofY or thatX is
not a cause ofY . It then follows, by independence completeness, that whenever anS-pattern
validates the interventionist nature of〈I,X, Y 〉 it also validates “X is a cause ofY ” or it
validates “X is not a cause ofY ”. We demonstrate this on a case-by-case basis where we
distinguish between the three following cases: (1)I andY are unconditionally independent,
(2a)I andY are unconditionally dependent and they are independent conditional onX, (2b)
I andY are unconditionally dependent and they are dependent conditional onX. In case
(1), (CFC) implies thatI andY arecausally independentin the following sense: neither
of the two variables causes the other one nor do they have a common cause—be it inside
or outside ofO. When〈I,X, Y 〉 satisfies (IV.i), i.e. whenI is a cause ofX, I andY are
causally independent in this sense only if there is no directed path fromX to Y in the causal
graph overO, that is, if X does not causeY (for, otherwise, there would be a directed
path fromI via X to Y after all). In case (2a), (CMC) and (CFC) yield that, in the causal
graph overO, I andY are dependent andX is located on all the directed or back-door
paths betweenI andY . Using the example ofSP1, we have shown above that all the causal
graphs that comply with the acyclicity assumption and that feature a dependency amongI
andY that is mediated byX feature either a directed causal path fromI via X to Y or a
common causeZ of I andX which is, in turn, a cause ofY . In both of those cases,X is a
cause ofY . Finally, in case (2b), (CMC) implies thatI andY are causally dependent and
that in the causal graph overO there exists at least one directed or back-door path between
I andY that does not go throughX. If 〈I,X, Y 〉 is an intervention triple, (IV.iii) entails that
noX-path is directed fromI toY . Analogously, given (CFC), (IV.iv) implies that there does
not exist anX-back-door path betweenI andY in the causal graph overO. Therefore, (2b)
must be realized by anX-path that is directed fromY to I in the causal graph overO.9 In
combination with the fact thatI causesX and with the acyclicity assumption that is used by
S-algorithms, the existence of anX-path that is directed fromY to I implies thatX does
not causeY (for, otherwise, there would be a circle fromY to I and viaX back toY ).

In sum, if〈I,X, Y 〉 is an intervention triple, the probabilistic (in)dependencies that con-
stitute the input ofS-algorithms determine either thatX causesY or thatX does not cause
Y . As a consequence, if these probabilistic (in)dependencies entail that〈I,X, Y 〉 is an in-
tervention triple, then they also entail thatX causesY or thatX does not causeY . Thus, the
independence completeness ofS-algorithms yields the following: whenever anS-pattern is
determinate enough to ensure that〈I,X, Y 〉 is an intervention triple, it is also determinate

9 It is an open question whetherI should be considered an intervention variable onX with respect toY
if there is a directed path fromY to I, i.e. if Y is a cause ofI. On the one hand,Y being a cause ofI
is compatible with〈I,X, Y 〉 being an intervention triple in the sense provided by Woodward’s definition
(IV), which supplies the notion of an intervention variablewe are concerned with here. On the other hand,
Scheines (2005, 932) argues thatY being a direct cause ofI gives rise to a form of treatment-bias that can
induce fallacies in causal reasoning. Settling this issue must be left to another occasion.
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enough to ensure thatX causesY or thatX does not causeY . WhetherX causesY can
therefore be read off theS-pattern itself—independently of any actual interventions onX.

It remains to be seen whether the same holds forNS-algorithms. As a result of not
assuming the causal sufficiency ofO, NS-patterns represent classes of DAGs which are
not defined overO, but over supersets ofO. The (true) causal graph overO ∪ CCO—
a common cause completion ofO—is among the graphs represented by anNS-pattern. It
turns out that the exact same case-by-case reasoning we havejust applied to the causal graph
overO can be repeated for the causal graph overO ∪ CCO. Irrespective of whetherO is
causally sufficient or not it holds that in case (1) (CFC) implies thatI andY are causally
independent. This is only compatible withI being a cause ofX (as entailed by IV.i) if
there is no directed path fromX to Y in the causal graph overO ∪ CCO. Hence,X is
not a cause ofY . Similarly, whetherO is causally sufficient has no bearing whatsoever
on the fact that (2a)—in combination with (CMC) and (CFC)—implies thatI andY are
causally dependent and that, in the causal graph overO ∪ CCO, X lies on all directed or
back-door causal paths betweenI andY . SinceNS-algorithms employ the same acyclicity
assumption asS-algorithms, it still holds that all the DAGs that can realize this consequence
of (2a) feature a directed path fromX to Y . Accordingly, there exists a directed path from
X toY in the causal graph overO∪CCO. Finally, what can be inferred from (2b) based on
(CMC) and (CFC) is not affected by the causal insufficiency ofO either. (2b) entails thatI
andY are causally dependent via at least oneX-path. All suchX-paths that are compatible
with (IV.iii) and (IV.iv) are directed fromY to I which, in combination with (IV.i) and the
acyclicity restriction, yields that there is no directed path fromX to Y in the causal graph
over O ∪ CCO. Hence,X does not causeY . As NS-algorithms are also independence
complete, it holds that whetherX causesY or not is visible in everyNS-pattern that entails
that 〈I,X, Y 〉 is an intervention triple. Whenever anNS-pattern is determinate enough to
warrant that〈I,X, Y 〉 is an intervention triple, it is also determinate enough to warrant that
X causesY or thatX does not causeY .

All of this shows that the problem we diagnosed forSP1 based on the features depicted
in figure 1 generalizes to all BN-based identifications of intervention variables. Even though
BN methods can identify, in a given setO of analyzed variables, triples of variables whose
interventionist nature is justified by probabilistic information in combination with (CMC)
and (CFC), this BN-guided identification of intervention variables always overshoots its
mark. Whenever the output of a BN procedure—be it an algorithm of theS- or of theNS-
type—determines that a particular triple〈I,X, Y 〉 in O is an intervention triple, this same
output either establishes thatX is a cause ofY or thatX is not a cause ofY .10 Thereby,
identifying I as an intervention variable onX with respect toY by means of BN algo-
rithms answers the very question that an interventionist method of causal reasoning is de-
signed to answer by intervening onX with respect toY via I. BN methods not only identify
〈I,X, Y 〉 triples as intervention triples but, when they do so, they also render interventionist
techniques dispensable when it comes to resolving whetherX causesY .

10 Scheines (2005, 928) makes a sort of converse observation: “Although we have no general characteri-
zation of the conditions under which a causal inference toX → Y can be made in observational studies,
it turns out that when the inference is possible it is often driven by the existence of what I call adetectible
instrumental variablethat stands in the same relationship toX andY in the observational study as does the
ideal intervention onX in the experimental study.” While Scheines says that if there is an arrow fromX
to Y in a BN pattern, this isoften induced by the fact that the corresponding BN algorithm has detected an
intervention variable forX with respect toY in O, we have proven that if〈I,X, Y 〉 is entailed to be an
intervention triple, the corresponding BN patternalwaysdetermines whetherX causesY .
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It might be objected that this finding is at odds with the popular idea of using inter-
ventions as a means to disambiguate causal inferences that remain ambiguous based on BN
procedures alone (cf. Pearl 2000; Spirtes et al. 2000; Eberhardt et al. 2006; Eberhardt and
Scheines 2007). However, as anticipated in the introduction, the literature on disambiguating
causal inferences on the basis of interventionist techniques does not address the problem of
identifying intervention variables. Rather, it simply presupposes that for all variables in an
analyzed set of variablesO suitable intervention variables are availableoutsideof O. The
suggestion then is that if the causal structure regulating the behavior of the members ofO is
not unambiguously determinable based on available probabilistic data, corresponding causal
inferences can be disambiguated by means of those intervention variables that are assumed
to exist outside ofO. Yet, the question as to how the interventionist nature of these latent
variables is detected or warranted is sidestepped. By contrast, this is exactly the question
addressed in this paper. It is clear from the outset that BN methods can only be serviceable
in answering this question as far as the identification of intervention variablesinsidea given
O is concerned. And here, as this section has shown, BN methodsovershoot the mark.

4.2 BN algorithms with weakened assumptions

The general methodological strategy employed by interventionist techniques is to modularly
uncover a whole causal structureG based on substructures ofG that comply with (IV). So
far, this paper has shown that identifying these interventionist substructures in a method-
ologically guided manner that paves the way for unfolding the whole inferential potential of
interventionist techniques is more problematic than mighthave been expected.

The main reason why BN methods overshoot the mark when it comes to identifying
substructures complying with (IV) is that those methods rely on what might be calledtotal
causal assumptions. On the one hand, (CMC) and (CFC) are universal in the sense that
they relate the probability distributions and the causal graphs overall (causally sufficient)
variable sets. On the other hand, (CMC) and (CFC) are holistic in the sense that they connect
features of probability distributions to relationships among all variables in a graph, rather
than to relationships among a proper subset of those variables. As such, BN assumptions
equally guarantee the causal interpretability of all graphical features in patterns output by
BN algorithms. And the previous subsection has shown that both S- andNS-patterns have
graphical features which, when interpreted causally, entail that a triple〈I,X, Y 〉 complies
with (IV) only if these patterns also have graphical features which (again when interpreted
causally) determine whetherX is a cause ofY or not. That means, both in the case ofS-
andNS-algorithms, the total assumptions employed by BN methods support an inference
to the interventionist nature of a triple〈I,X, Y 〉 only if they likewise support an inference
to “X is a cause ofY ” or to “X is not a cause ofY ”.

At the same time, the total nature of BN assumptions yields that they are very strong.
Accordingly, they have been much criticized and various counterexamples to both (CMC)
and (CFC) have been offered.11 Moreover, in light of their strength, BN assumptions are
difficult to justify. Indeed, the justifications that have been advanced in the literature have

11 Concerning (CMC), see in particular Cartwright (1999a; 2001); Freedman and Humphreys (1999);
Williamson (2005, 4.2). As to (CFC), see Freedman (1997) andCartwright (2001), as well as Spirtes et al.
(2000, 38-42) and Pearl (2000, 63-64) for typologies of relevant counterexamples.
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given rise to some controversies.12 This is consequential for our present purposes because
BN-based identifications of interventionist triples provide a proper justification of the belief
that the corresponding triples indeed have the interventionist properties only if the assump-
tions employed by BN algorithms can themselves be justified.

A natural reaction to the justificatory questions associated with the strength of BN as-
sumptions is to weaken those assumptions: the weaker they are, the easier it is to justify
them. For quite some time, therefore, proponents of BN methods have undertaken consider-
able efforts to exploit causal assumptions that are weaker than (CMC) and (CFC). In partic-
ular, as indicated before, they sometimes do not rely on the universal version of (CFC), but
content themselves with assuming that particular variablesets that are relevant for a given
causal analysis satisfy (CFCV). Or, Ramsey et al. (2006) and Zhang and Spirtes (2008)
identify two components of (CFCV) calledAdjacency-andOrientation-Faithfulness, only
the former of which must be assumed to be satisfied by particular variable sets because the
latter is empirically testable. Still, though, tests that determine whether a given variable set
satisfies Orientation-Faithfulness are only correct underthe assumption that this set satisfies
both Adjacency-Faithfulness and (CMCV).

Here we can confine ourselves to noting that the total assumptions presented in the pre-
vious subsection, though sufficient, arenot necessaryfor the causal interpretation of the
output of a BN algorithm when run on a particularO—let alone for the causal interpretation
of the specific graphical features that identify intervention variables. To establish the inter-
ventionist nature of a triple〈I,X, Y 〉, it is not necessary to assume anything about how, in
general, probability distributions relate to whole causalgraphs generated by (causally suf-
ficient) variable sets. Roughly, all that is required for that purpose are assumptions about
how the probabilistic (in)dependencies among the variables in that particular triple relate to
the corresponding causal (in)dependencies. Hence, the assumptions needed to infer from a
BN-output that〈I,X, Y 〉 complies with (IV) are (much) weaker than the assumptions ad-
vanced in the previous subsection. Moreover, as we shall seeshortly, there exist patterns
output by BN algorithms which, in combination with those weaker BN assumptions, yield
that〈I,X, Y 〉 is an intervention triple without, at the same time, determining whetherX is
a cause ofY .

Whenever a concrete context of causal discovery allows for justifying the weaker but not
the total BN assumptions, it may happen that〈I,X, Y 〉 is identifiable as intervention triple
without it being equally determinable whetherX causesY . More precisely, whenever causal
assumptions that suffice to infer from the pattern output by aBN algorithm that〈I,X, Y 〉

is an intervention triple do not suffice to infer (from the same pattern) thatX causesY or
thatX does not causeY , a researcher can be in an epistemic position to justifiably draw
the conclusion thatI is an intervention variable forX with respect toY while not being
in a position to decide whetherX causesY . In such cases, intervening onX throughI is
non-redundant in order to determine whetherX causesY . That is, BN methodologies do not
generally make modular interventionist techniques of causal reasoning dispensable when it
comes to assessing whether one variable causes another. There exist epistemic contexts in
which BN methods identify intervention variables and whichare such that this identification
does notipso factorender the corresponding interventions expendable.

To conclude this paper we substantiate this claim by way of a (very) simple example.
LetO be{I, J,X, Y } and suppose that, when given the probabilistic independencies among

12 For justifications of (CMC), see e.g. Pearl (2000, 44, 61-62), Spirtes et al. (2000, 33-40). As to (CFC),
see in particular Spirtes et al. (2000, 41-42). The argumentin favor of (CFC) that is given in this passage was
rejected by Freedman (1997) and Cartwright (1999b, ch. 5; 2001).
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I

**❱❱
❱❱

❱❱
❱❱

❱❱
❱

X // Y

J

44❤❤❤❤❤❤❤❤❤❤

Fig. 2 ExemplaryS-pattern output by IC forO = {I, J,X, Y }.

the members ofO as an input, theS-algorithm IC outputs the pattern depicted in figure 2.
This pattern is itself a DAG and, accordingly, it is the only element of the set of DAGs that it
represents. It indicates thatI andX, J andX, X andY cannot be screened off inO, thatI
andJ are unconditionally independent, thatI andY andJ andY are screened off by{X},
and thatI andJ are dependent conditional onX. Moreover, the subgraph over the triple
〈I,X, Y 〉 in thatS-pattern has all of the features of figure 1, for which we showed in the
previous subsection that they—in combination with (CMC), (CFC) and the assumption that
O is causally sufficient—entail thatI is a cause ofX, that there is no causalX-path fromI

to Y , and thatI is not correlated with any other causeZ of Y that is located on anX-path,
i.e. that〈I,X, Y 〉 satisfies (IV.i), (IV.iii), and (IV.iv). That is, figure 2 hasgraphical features
which, when interpreted against the background of the usualBN assumptions, are sufficient
to establish thatI is an intervention variable forX with respect toY .

However, there exist weaker assumptions that also warrant the inference from figure 2
to the interventionist nature ofI. To show this, we introduce the following predicates that
are jointly weaker than the combination of predicates usualBN assumptions claim to be
satisfied by all pairs or triples of variables in the corresponding sets:

OrientationMarkov or CommonCause (OMCC):〈A,B1, B2〉 satisfies (OMCC) relative
to variable setV iff:
if

(1) A andB1 cannot be screened off inV\{A,B1} and
(2) A andB2 cannot be screened off inV\{A,B2} and
(3) B1 andB2 can be screened off inV\{B1, B2, A}

then
(4) A is an unshielded collider, i.e.

(a) A is an effect ofB1 or A andB1 have a common cause outside ofV, and
(b) A is an effect ofB2 or A andB2 have a common cause outside ofV

, and
(5) B1 andB2 are not causally related inV, and
(6) B1 andB2 do not have a common cause outside ofV.

CausalSufficiency (CS):{A,B} satisfies (CS) relative toV iff: every common causeC of
A andB (if there is any) either is inV, or has a cause which is inV, or has an effect
which is located on all directed paths fromC to A and on all directed paths fromC to
B and which is inV.

Path Faithfulness (PF):{A,B} satisfies (PF) relative toV iff: if V screens off betweenA
andB, then there do not exist directed or back-door causal paths betweenA andB that
do not go throughV.

Asymmetry (AS):〈A,B〉 satisfies (AS) iff: ifA causesB, thenB does not causeA.

ExistentialCommonCausePrinciple (ECCP): {A,B} satisfies (EPCC) iff: ifA andB are
probabilistically dependent, then eitherA is a cause ofB, or B is a cause ofA, or they
have a common cause.
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If suitable pairs and triples of variables inO satisfy these predicates, it can be concluded
from figure 2 that{I,X, Y } is an intervention triple. To see this, consider the following five
causal assumptions:

(i) 〈I,X, J〉 satisfies (OMCC) relative toO;
(ii) {I,X} satisfies (CS) relative toO;

(iii) {I, Y } satisfies (PF) relative to{X};
(iv) 〈I,X〉 satisfies (AS);
(v) for everyZ that is a cause ofY along anX-path,{I,Z} satisfies (ECCP).

(i) to (v) provide a connection between causal facts and probabilistic facts. Unlike the con-
nection between causal facts and interventionist facts that is stipulated by (M) or the connec-
tion between causation and probabilities that is established by Suppes’ theory or by (CMC)
and (CFC) taken together, the connection that is provided by(i) to (v) is particular rather than
universal and local rather than global. The only consequence this has in regard to justifying
that〈I,X, Y 〉 is an interventionist triple consists in simplifying that justificatory task.

Together with the probabilistic (in)dependencies that arerepresented by figure 2, it
can be inferred that〈I,X, Y 〉 is an interventionist triple. From (i) and the probabilistic
(in)dependencies inO that are represented by figure 2 it follows thatI is a cause ofX
or I andX have a common cause outside ofO. Yet, in light of (ii) the latter can be ex-
cluded, to the effect that〈I,X, Y 〉 satisfies (IV.i). Moreover, (iii) in combination with the
fact thatX screens off betweenI andY entails:

(†) There do not exist directed or back-door causalX-paths betweenI andY .

(†) immediately yields that there does not exist a causalX-path that is directed fromI to Y ,
i.e. that〈I,X, Y 〉 satisfies (IV.iii). Finally, under the assumptions listed above,〈I,X, Y 〉 also
satisfies (IV.iv). To see this, note that (v) excludes thatI is accidentally correlated with any
other causeZ of Y that is located on anX-path. As a consequence,I can only be correlated
with such a causeZ of Y —in violation of (IV.iv)—if I is a cause ofZ, or Z is a cause
of I, or I andZ have a common cause. Yet, as we shall see shortly, all of thesepossible
violations of (IV.iv) contradict (†). First, suppose thatI is a cause ofZ (which has been
defined to be a cause ofY on anX-path). It follows thatI is a cause ofY on anX-path,
which is incompatible with (†). Second, assume thatZ is a cause ofI. It follows that either a
directed causal path fromZ toY containsI but notX, orZ is a common cause ofI and ofY
while causingY along anX-path. The first disjunct entails that there exists anX-path that
is directed fromI to Y , which is ruled out by (†). The second disjunct is compatible with
(†) only if X is an intermediate betweenZ andI; but (IV.i), which we validated above, in
combination with (iv) excludes thatX is located on the directed path fromZ to I. Therefore,
both disjuncts of the disjunction entailed byZ being a cause ofI are incompatible with (†).
Third, suppose thatZ andI have a common causeC. (IV.i) and (iv) again exclude thatX
is an intermediate on the path fromC to I. Furthermore, asZ is defined to be located on an
X-path toY , X cannot be an intermediate betweenC andZ either. Therefore, (†) equally
excludes thatZ andI have a common causeC. That is, if (IV.iv) is violated by any of the
three causal structurings that can possibly lead to a correlation ofI and another causeZ of
Y , (†) is also violated. But we have already established (†) based on (iii) and figure 2. By
contraposition we thus get that〈I,X, Y 〉 satisfies (IV.iv). In sum, in combination with the
assumptions (i) to (v), theS-pattern of figure 2 establishes thatI is an intervention variable
for X with respect toY .

The assumptions (i) to (v), though sufficient, are not necessary for the validity of the
inference to the interventionist nature of the triple〈I,X, Y 〉, i.e. they could be further weak-
ened. Yet, all that is important for us here is that they are already weak enoughnot to validate
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the inference from figure 2 to “X is a causeY ”. Or differently put, assumptions (i) to (v) do
not warrant the causal interpretation of the arrowX −→ Y in figure 2. To see this, note that
(i) to (v) do not entail any of the following:

(vi) if X andY cannot be screened off inO, thenX is a direct cause ofY in O, or Y is a
direct cause ofX in O, orX andY have a common cause outside ofO;

(vii) if there exists a subset ofO \ {I, Y } containingX that screens off betweenI andY ,
then〈I,X, Y 〉 does not form an unshielded collider atX;

(viii) if there exists a subset ofO \ {J, Y } containingX that screens off betweenJ andY ,
then〈J,X, Y 〉 does not form an unshielded collider atX.

However, violations of these conditions render the probabilistic (in)dependencies repre-
sented in figure 2 compatible withX not causingY . For instance, if condition (vi) is vi-
olated, the fact thatX andY cannot be screened off inO does not entail thatX is a cause
of Y , or Y is a cause ofX, or X andY have a common cause outside ofO. Accordingly,
the arrow fromX to Y in figure 2 is compatible with the causal independence ofX andY .
Similarly, if conditions (vii) and (viii) are violated, theprobabilistic (in)dependencies repre-
sented by figure 2 are compatible with〈I,X, Y 〉 and〈J,X, Y 〉 forming unshielded colliders
at X, to the effect thatY or a cause ofY located outside ofO causesX. In other words,
the causal interpretation of the arrow fromX to Y in figure 2 requires that conditions (vi)
to (viii) are satisfied. Yet, this is not ascertained by the causal assumptions (i) to (v). That
is, (i) to (v) are causal assumptions which are sufficient to infer from figure 2 thatI is an
intervention variable forX with respect toY , but at the same time (i) to (v) do not validate
the inference from figure 2 to “X is a cause ofY ”.

All of this illustrates that BN methodologies, when employed in combination with as-
sumptions that are weaker than usual BN assumptions, do not necessarily render interven-
tionist techniques dispensable. A researcher can be in an epistemic position to justifiably
infer from a BN output thatI is an intervention variable onX with respect toY while not
being in a position to infer from that output thatX causesY or thatX does not causeY . In
such an epistemic context, intervening onX throughI is a relevant and non-redundant way
of investigating the causal relation betweenX andY .

5 Conclusion

The availability of intervention variables is the essential prerequisite for unfolding the in-
ferential potential of interventionist methods of causal reasoning. The first part of this paper
has shown that the belief that a triple〈I,X, Y 〉 is an intervention triple can only be justified
if recourse is made to a non-interventionist account of causation. Moreover, we have seen
that, depending on the background knowledge at hand about a given 〈I,X, Y 〉, its interven-
tionist nature is more or less easily established on non-interventionist grounds. Determining
whether administering a particular anti-depression drug counts as an intervention variable
for depression with respect to insomnia presupposes extended studies on the side-effects of
that drug. By contrast, that coin tossing is an interventionvariable for treatment with respect
to recovery is justifiable based on an elementary probabilistic account of causation because
we have the relevant background knowledge concerning the probabilistic dependencies and
independencies among these variables.

Consequently, the second part of the paper has then turned tothe most standard proce-
dures of causal discovery that process observational data,viz.BN methods. We have shown
that methodically identifying interventionist triples bymeans of these procedures renders
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interventionist techniques dispensable. BN methods rely on causal assumptions that are so
strong that they substantiate the interventionist nature of 〈I,X, Y 〉 only if they support the
inference to “X causesY ” or to “X does not causeY ”. We have also seen, though, that
relevant BN assumptions can be weakened—and thus rendered more easily justifiable—to
the effect that outputs of BN procedures may identifyI as intervention variable forX with
respect toY without, at the same time, deciding whetherX causesY . This finding sug-
gests that whether interventionist techniques are fruitfully applicable in a given context of
causal discovery, in the end, is determined by the epistemicbackground of that discovery
context. If BN methods are used to identify intervention variables, it is profitable to imple-
ment interventionist techniques only if that epistemic background allows for justifying BN
assumptions which, like (i) to (v), authorize the inferenceto the interventionist nature of
〈I,X, Y 〉, but does not allow for justifying BN assumptions which, like (vi), (vii) and (viii),
support the causal interpretation of the graphical featurerelatingX andY in a corresponding
BN output.
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