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Abstract

The essential precondition of implementing intervensoriechniques of causal reasoning is that
particular variables are identified as so-callatervention variablesWhile the pertinent litera-
ture standardly brackets the question how this can be adreg in concrete contexts of causal
discovery, the first part of this paper shows that the inteieaist nature of variables cannot, in
principle, be established based only on an interventiorosibn of causation. The second part then
demonstrates that standard observational methods thatairaBayesian networks identify inter-
vention variables only if they also answer all the questivas can be answered by interventionist
techniques—which are thus rendered dispensable. The papeludes by suggesting a way of
identifying intervention variables that allows for exging the whole inferential potential of inter-
ventionist techniques.

Keywords interventionism, causal discovery, causal reasoningeBaets methods,
intervention variables, causal assumptions, Markov dandiFaithfulness condition

1 Introduction

Woodward's (2003) interventionist theory of causation hasonly stimulated the concep-
tual literature on causation in recent years, it has alsdexea significant influence on the
literature concerned with methods of causal reasoning &wbwkry. It is widely agreed
upon that intervening on causal structures in the manneemeetise by Woodward sup-
plies considerable inferential leverage when it comes twowering causal structures. If
all variables in a causal structure are systematically mdable—say, in ideal laboratory
contexts—that structure can be thoroughly and unambidyausovered and it is deter-
mined exactly how many experimental manipulations areefit to do so (cf. Eberhardt
et al. 2006; Eberhardt and Scheines 2007). Moreover, eeemémipulability of only some
variables in a structure may render it possible to uncovevaat parts of it or to disam-
biguate causal inferences that would remain ambiguous wera for the possibility to
intervene (cf. Pearl 2000; Spirtes et al. 2000, ch. 4; KokbMNyberg 2006). Likewise, inter-
ventionist techniques can be effectively implemented endlscovery of causal structures
that resist analysis by other methods (cf. Nyberg and Kofl6p0
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All of these powerful applications of interventionism cialty hinge on the possibility
to manipulate investigated causal structures in a verygodgat manner, which Woodward
(2003, 130) describes asrgical A surgical manipulation is what Woodward callsiater-
vention He spells out the conditions an intervention has to saligfyneans of the notion of
anintervention variable Roughly, an intervention variablefor X with respect toy, is a
cause ofX that is not connected B on a causal path that does not go throughnd that is
independent of any other causeYof The essential precondition of fruitfully implementing
interventionist means in causal discovery is that paictriples of variables can in fact be
established to have these very specific interventionigigtes.

While, in the literature on interventionist causal reasgniit is common to assume
that for all variables in an analyzed structure there exigtble intervention variables, the
problem of how these intervention variables can actuallydeeatified is normally brack-
eted. Still, in ordinary contexts of causal discovery, timpdrtant question is not so much
whether intervention variables exist for a variablewith respect to another variable,
but rather which variable is such an intervention variabteiwhether a concrete variable
is such an intervention variable or not—and, often, the &mswo these questions are far
from obvious. For instance, a typical interventionist i@ssign to determine the causal re-
lationship between, say, depression and insomnia would &érhinister an anti-depression
drug to relevant patients and to then investigate whether thatrtrent is accompanied by
reduced (or increased) insomnia. Plainly though, suchtastesly revealing if it has been
ascertained thak itself does not have a direct somniferous (or agitatinggaffwhich calls
for an antecedent study on the (side-)effects.ddr, important controversies in the history
of science can be understood as controversies about wloethet certain experimental ac-
tions are interventions in the surgical sense. For exantipéecontroversy between Pasteur
and Pouchet concerning the possibility of spontaneousrggoe is largely about whether
specific manipulations (letting air through sulphuric asigrming air up to a very high
temperature, filtering it through cotton. ..) succeed imalating any trace of life it may
contain while not at the same time destroying the inert ditahponent that could produce
life according to the proponents of the theory of spontasegeneration (cf. Collins and
Pinch 1993, ch. 4).

Accordingly, this paper focuses on the much neglected proldf how intervention
variables can be identified in contexts of causal discovargrder to answer this method-
ological question, we first answer the following concepimaéstion: what can justify the
belief that a given triple of variables has the interverisbproperties? It turns out that such
justifications require recourse to non-interventionisised knowledge. Therefore, the sec-
ond part of the paper draws on a currently dominant straneofinterventionist methods
of causal reasoningjz.on Bayesian networks methods (cf. Spirtes, Glymour, an@ifieb
2000; Pearl 2000), in order to tackle the problem of how irgation triples can actually be
identified.

2 Intervention triples

The standard reference for rendering the notion of a (deitaiitervention precise is Wood-
ward’s (2003) interventionist theory of causation. Theptlyds intended to illuminate “how
we think about, learn about, and reason with various causi@ms” (Woodward 2008,
194). Woodward determines what characteristics inteifoestmust have in order to have
maximal inferential purchase in contexts of causal disgoweth recourse to the two core
conceptual constituents of his interventionist theoryaifsation: the notion df/pe causa-
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tion, which has the two components difect and ofcontributingcausation, and the notion
of anintervention variable Here are the two corresponding (frequently cited) detingi
(M) and (IV):

(M) A necessary and sufficient condition far to be a (type-level) direct cause Bfwith
respect to a variable s&tis that there be a possible interventionXrthat will change
Y or the probability distribution ot when one holds fixed at some value all other
variablesZ; in V. A necessary and sufficient condition f&irto be a (type-levelxon-
tributing causeof Y with respect to variable séf is that (i) there be a directed path
from X to Y such that each link in this path is a direct causal relatigméh. ), and
that (ii) there be some intervention ohthat will changeY” when all other variables in
V that are not on this path are fixed at some value. (Woodward, %)

(IV) I is an intervention variable faK with respect toY iff (i) I causesX; (ii) certain
values off are such that whehattains those value ceases to depend on the values
of other variables that causé and instead depends only on the value taked; ki)
any directed path froni to Y goes through¥; (iv) I is statistically independent of any
variable Z that caused” and that is on a directed path that does not go thrakigh
(Woodward 2003, 98)

Relative to the notion of an intervention variable, an imégition onX with respect tar” is
then straightforwardly spelled out in terms of an interi@mivariablel for X with respect
to Y taking on some value; such thatl = z; causesX to take on some determinate value
z; (Woodward 2003, 98).

Itis plain from this that Woodward’s interventionism redien an interdefined concep-
tual core. Causation is defined in terms of the notion of arwntion which is itself defined
based on the notion of an intervention variable which, imtig defined in terms of cau-
sation. The fact that (M) and (IV) interdefine causation amtdrivention is not considered
to be problematic by Woodward. He maintains that his way teratefining causation and
intervention is not viciously circular (Woodward 2003, 2085)!

The causal information required to characterize the nagfantervention onx
with respect tdv is information about the causal relationship between thenen-
tion variablel and X, information about whether there are other causes tfat
are correlated witH, information about whether there is a causal route fiotn
Y that does not go through and so onput not information about the presence or
absence of a causal relationship betweemndY.

In a nutshell, thus, the basic idea behind interventionisrhat if the triple(Z, X, Y")
satisfies (IV) such that is an intervention variable fokK with respect tay’, interventions
on X through! will reveal whether or nof is a cause of’. According to Woodward, this
is possible notwithstanding the interdefined conceptuid obinterventionism, because the
fact that(Z, X, Y') is an intervention triple does neither entail nor presuppog/thing what-
soever with respect to the relationship betwéeandY . That is, interventionism’s “primary
focus ismethodologicdl (Woodward 2008, 194), and interventionist methods aim talm
larly uncover causal structures: based on clarity about#usal (in)dependencies between
I and X as well as betweeh andY’, (in)dependencies betweeéhandY can be revealed.
Or more generally, a whole causal structgrever a set of variable¥ is uncovered by first

1 Even though not all authors agree that interdefining cawsathd intervention is as unproblematic as
Woodward would like to have it (e.g. Strevens 2007, 2008 ammBgartner 2009), it is clear that Woodward
neither aims nor claims to provide a reductive analysis afation.
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identifying substructures ig that comply with (IV), and by then sequentially uncovering
further substructures @f on the basis of the relevant intervention triples.

Obviously, the crucial prerequisite for implementing thisthodological strategy is the
availability of suitable intervention variables for an §z&d structure. That is, to get inter-
ventionist methods off the ground, some triples of the satamiables for which a causal
model is being searched must be known to satisfy (V). Bezafithe interdefinition of the
notions of an intervention variable and of causation, krealge about compliance with (IV)
is causal knowledge. The next section is going to investigdtat this causal knowledge
consists in and, more specifically, what can justify thatvewgitriple in fact is an interven-
tion triple.

3 On what justifies the interventionist nature of a given triple

Knowing that(I, X, Y’) is an intervention triple amounts to being justified in bélig that

it satisfies each of the four conjuncts constituting (IV). tBése four conditions, (IV.ii)
is the least significant one. Eberhardt and Scheines (2@0&) to a variablel that only
complies with (IV.i), (IV.iii), and (IV.iv) as asoft or parametricintervention variable and
show that even soft intervention variables can provide idenable inferential leverage in
many contexts of causal discovery (similarly Korb et al. 200oreover, given that a triple
(I, X,Y) satisfies (IV.i), (IV.iii) and (IV.iv), (IV.ii) is usually tiken to be satisfiable by simply
choosing a value of that actually determines a particular valueXofHence, for simplicity,
we subsequently focus on the question of what justifies th$ of variables comply with
(IV.i), (IV.iii) and (IV.iv), i.e. we focus on soft intervetion variables only.

While the particular manner in which (M) and (IV) interdefioausation and interven-
tion may be claimed not to be viciously circular, the intdigied conceptual core of interven-
tionism triggers infinite regresses when it comes to justifythe interventionist character
of variables by application of the definitions (M) and (IV)aged on (M) and (IV), no vari-
able can ever be justified to have the interventionist pitagem a finite number of steps.
In consequence, it is never possible, in principle, to fustie belief that a particular triple
of variables is an intervention triple by applying intertienist definitions. To see this, sup-
pose we want to determine that a variabjds an intervention variable fok with respect
to Y. Condition (IV.i) stipulates that a necessary conditiontf@t to be the case i§ being
a cause ofX. According to (M), a necessary condition forto be a cause of is that there
be a possible intervention afy with respect taX, and hence an intervention variable for
I; with respect taX, call it I>. This, in turn, requireds to be a cause of;, which again
presupposes that there is an intervention varidplfor I with respect tol;, which calls
for a further intervention variablg, for I3 with respect ta/», and so on. Condition (1V.iii)
amounts to another necessary conditionifoto be an intervention variable fot with re-
spect toY': there must not be a causal path connecfingndY that does not go through
X. In order to determine whethéy satisfies that condition, first, the possilile— X — Y
connection must be suppressed (or ‘broken’) by fixing theealf X by means of a further
intervention variable’s and, second, it must be established that there is no posstble
vention onI; that change§” or the probability distribution o when one holds fixed all
other variableg.Of course, according to (M) being an intervention variable fot with
respect toy” requires there to be another intervention varialgléor 75 with respect taX,

2 For further details on testing the satisfaction of (IV) cfobdward (2003, 99-111).
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and so on. In sum, given that causation is defined in terms §f j(Mtifying that (IV) is
satisfied sets off multiple infinite regresses.

In scientific practice, a common way of solving the problemustificatory regresses
that arise when definitions are applied to relevant entisiés draw on some sort of founda-
tionalism. For instance, if we are to determine whether boweting satisfies the definition
of gold, we are first going to conduct a chemical analysis dhaivs on certain causal char-
acteristics of gold. Depending on theoretical preferenttesse causal characteristics might
then be reduced to, say, probabilistic (in)dependencibghnagain depending on theoret-
ical preferences, can be analyzed in terms of a suitableidéraxy distribution. However,
as all scientific theorizing inevitably operates within sboonceptual frame that is taken as
given and unquestioned, regresses of this ordinary typeatiefinite but terminate as soon
as some conceptual level is reached that is considered tarbitiye by whoever happens
to apply a corresponding definition. Applying the definitimigold to a ring induces a pro-
gression from one conceptual level to a subseqinel@pendentevel and stops when some
primitive level is reached. By contrast, no primitive copttel level can ever be reached if
(M) is applied in order to justify that a given triple of vabias satisfies (IV). The fact that
(M) and (IV) are interdefined induces anfinite oscillationbetween two notions, none of
which is primitive according to interventionism, which,turn, yields that no foundational-
ist solution to the problem of justifying compliance witlv{lis available.

All this demonstrates that the belief that a trigle X, Y') satisfies (IV) cannot be jus-
tified by direct applicationof (M) and (IV) to the triple(Z, X, Y"). Clearly though, in order
to determine whether a specific entity satisfies a given digimit is often not necessary to
apply the definition itself, ratheheuristicswill do. If we want to know whether a yellow
ring is made of gold, we do not necessarily have to conduceendtal analysis. Many suit-
able heuristics are available. The price of the ring will Ipeiradication, or the reputation
of the store in which it is sold. Hence, the question arisesthdr there might exist some
heuristic which may warrantyithout direct applicationof (M), that (I, X,Y’) complies
with (V). In general terms, heuristics are experienceebagchniques that sufficiently fre-
quently succeed in solving problems in a ‘cost-effectivaywcf. Wimsatt 2006, 463-465).
Their solutions do not need to be perfect, but the qualityhesé solutions must be as-
sessable independently of the heuristics, at least iniptencThe problem to solve in the
present context is determining the satisfaction of defin&i As indicated above, heuristics
often render it unnecessary to explicitly apply definitioRer instance, the problem of de-
termining whether a ring complies with the (chemical) déifam of gold can be solved by
using the ring’s price as a heuristic measure. By conduathgmical analyses and, thus,
by explicitly applying the definition of gold, it can be sedwat gold frequently has a high
price. This yields a generalizable constraint on heussdtiat evaluate the satisfaction of
definitions: in order for a non-definitional criteriah to serve as a heuristic measure for
whether relevant entities satisfy a definitignd must sufficiently frequently identify such
entities as complying and as not complying wittihat would be identified as suchtiftself
were applied and it must be possible to applat least in principle. While that constraint
is certainly satisfied in the case of gold and its price, mattee different for intervention
variables defined along interventionist lines. Indeed¢ctiresiderations of the previous para-
graphs show that there is no way to determine for even onéedirgle of variables whether
it satisfies (IV) by applying (M). In view of the lack of a sirgpositive application of (M)

3 Since the notion of causation is also of crucial importamc@V.iv) a similar regress is initiated when
it comes to determining whether a specific trigla , X, Y") satisfies (IV.iv). For brevity, we leave it to the
reader to scrutinize that additional regress.
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and (IV), there cannot exist a heuristic for assessing ttisfaetion of (M) and (IV), for
there does not exist an independent gauge for heuristiesscc

That means the satisfaction of (IV) cannot be justified orris&a grounds either. At
the same time, however, there exist certain triples of &/, X,Y) such that/ is de
facto known to be an intervention variable fof with respect toY. Suppose we want to
find out whether treatment with a specific drdg) (s a cause of recovery from a particular
disease R). To answer that question, subjects that suffer from theadis are randomly
assigned to treatment and control groups, say, by tossieing€). Everybody will agree
that C is an intervention variable for" with respect toR (cf. Woodward 2003, 94-98;
2008, 203-204)C causally determines the assignment to treatment or cogtonlp, C
does not directly caus®, andC is statistically independent of other causedofWe have
enough background causal knowledge to be reasonably confiuk the triple(C, T, R)
satisfies (IV). We have shown in the previous paragraphshismtausal knowledge cannot
be interventionist causal knowledge. Therefore, whoeveonvinced that coin tossing has
the interventionist propertiesannotand, as a matter of faapes notunderstand causation
on the sole basis of (M). To justify compliance with (IV) soman-interventionist theory of
causation is indispensable (cf. Cartwright 2010).

It turns out that relative to certain non-interventionisedries of causation it can in-
deed be substantiated that coin tossing is an interventigahle for treatment with respect
to recovery. Take for instance an elementary probabil@ticount as professed by Sup-
pes (1970). Given a suitable probability distribution o¢&rT and R, such a theoretical
framework determines that is a direct cause of if C is positively correlated withy",

C temporally precede®, andC is not screened off frori" by any further variable in the
structure. Furthermore, @ is screened off fronR by 7', C' can be said not to directly cause
R. Finally, if pertaining probabilistic data can be shown twfeature any other (probabilis-
tically defined) causes ak that are correlated witly, it follows that the triple(C, T, R)
satisfies (IV.i), (IV.ii), (IV.iv) and, thus, tha€’ is an intervention variable fdF with respect
to R. Of course, such a probabilistic analysis in the vein of ®3p{1970) has long been
shown not to adequately capture all causal dependenciegj.asauses that lower the prob-
abilities of their effects. Yet, irrespective of whethesitccessfully accounts for all kinds of
causal dependencies, Suppes’ theory can be used to swaigardly justify the belief that
coin tosses satisfy (IV) in randomized experiments. Moderd more sophisticated prob-
abilistic analyses as e.g. professed by Kvart (2001) orsE&B91) could also establigh
as intervention variable fdr with respect tar in a finite number of steps—even though a
corresponding argument would involve more complications.

These considerations show that as long as causation issaajuunderstood in the
vein of (M) a given triple(7, X, Y') cannot be justified to have the interventionist properties.
To justify that (7, X,Y") complies with (IV.i), (IV.iii), and (IV.iv), recourse mudte made
to non-interventionist causal knowledge. The intervemsibnature of(Z, X,Y") can, for
example, be justified based on a probabilistic account catsan.

4 |dentifying intervention triples

In the previous section, we have seen how the belief thattossing is an intervention vari-
able for treatment with respect to discovery can be justliiesbd on a (rough) probabilistic
notion of causation. This, however, does not tell us how to&sing has been selected as
a candidate intervention variable in the first place. To lehfbe whole inferential poten-
tial of interventionist methodologies we not only need toade to justify the belief that
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a given triple complies with (IV). We also require a methadlig guided manner of iden-
tifying triples that justifiably comply with (V) within a gien setV of causally modeled
variables. The previous section has shown that a methodédotifying intervention triples
within analyzed variable sets cannot rely on an interveagtoconception of causation only.
A currently dominant framework of causal inference tharsiees for causal dependencies
as defined by a non-interventionist theory of causation istituted by the procedures of
causal discovery that draw on Bayesian networks (cf. Spitéymour, and Scheines 2000;
Pearl 2000). ThesBN methodglo not implement an interventionist notion of causation
(rather, they stipulate a connection between probatsildied causation which is very simi-
lar to the one stated by Suppes’ probabilistic analysis o§ation). Moreover, they process
observational (non-experimental) data. Accordinglys théction investigates whether and
how intervention variables can be identified by means of Blthous.

4.1 Standard BN algorithms

Before we can address this question, the basic ideas benth&hods must be briefly
reviewed. To this end, some definitional preliminaries aed for. A Bayesian network
(BN) over a set of variable¥ is a pair(G, p) such that: (i)G is a directed acyclic graph
(DAG) overV, (ii) p is a probability distribution ove¥, and (iii) (G, p) satisfies thélarkov
condition (MC):

(MC) Any V in V is independent i of all its non-descendants i@ conditional on its
parents inG.4

BNs appeared in artificial intelligence in the 1980s as a mé&arepresent and handle uncer-
tainty (cf. e.g. Pearl 1988). More recently, they have comrteetemployed for the purpose of
causal inference. Algorithms for causal reasoning thgtoalBNs were developed chiefly
by two groups. Their main results are presented in Spirtes. €2000) and Pearl (2000),
respectively.

BN causal inference methods aim to infer causal structucea probabilistic depen-
dencies and independencies over a set of varid¥ileto explain how these methods work
the notions of a causal graph and of causal sufficiency argrestj For any set of variables
V, thecausal graphoverV is the directed acyclic graph ov&f in which there is an arrow
from a variableX to another variablé” if and only if X is a direct cause df relative toV.
BN methods operate under the assumption that the causetistrs they analyze can indeed
be modeled by causal graphs in this sense. Among other tliigsneans that BN methods
employ the assumption that the structures to which theyzpkeal are causally acyclic, i.e.
that they do not involve any causal cycles or feedbacks. Mae a set of variableV is
said to becausally sufficienif and only if for every common caus@ of two variablesX
andY in V it holds thatC is in V, or a cause of’ is in V, or an effect olC which is located
on all directed paths fror@ to X and on all directed paths frogito Y is in V. Against this
conceptual background, the so-caltzdisal Markov conditiofCMC) which is assumed by
all BN methods can be stated as follows (cf. e.g. Glymour 129%; Ramsey et al. 2006;
Zhang and Spirtes 2008):

(CMC) For any set of variableV, if V is causally sufficient, then any probability distri-
butionp overV that is generated by the causal grapbverV is such thatg, p)
satisfies (MC).

4 Definitions of all subsequently used graph-theoreticalomstcan be found in Spirtes et al. (2000, 5-10)
or in Pearl (2000, 12-13).
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(CMC) is a universal assumption. For expositional purpasesll be useful to also
have a label for the predicate which (CMC) claims to be satidfiy all causally sufficient
variable sets. We shall hence say that a sufficient set aibl@sV satisfies (CM@) if and
only if any probability distributiorp overV that is generated by the causal grapbverv
is such that{g, p) satisfies (MC).

In addition to (CMC), BN procedures of causal inference Ugudso exploit the as-
sumption that theausal Faithfulness conditiofCFC) holds (cf. Ramsey et al. 2006):

(CFC) For any set of variable¥, if V is causally sufficient, then all independencies in
probability distributions oveV that are generated by the causal grgpbver vV
are implied by (CMG) for V.

Analogously to (CMG), we label the predicate that (CFC) universally appliesaosally
sufficient variable sets (CRG. A sufficient set of variable¥ satisfies (CFG) if and only
if all independencies in any probability distribution gested by the causal graghoverv
are implied by (CMG) for V.

There is a certain variance in the literature on BN methods ahat exactly the logical
forms of (CMC) and (CFC) are. While most authors explicitlpscribe to the universal
version of (CMC) given above, (CFC) is often not explicithated in the universal form
advanced here. Rather, authors frequently content theessalith defining the predicate
(CFCy) in order to then (implicitly) assume that particular vat@asets that are relevant to
a pertinent causal analysis satisfy (GHCHowever, as these latter presentations of causal
Faithfulness are normally not very clear about exactly Wivariable sets must be assumed
to satisfy (CFG&) in order for BN methods to be correct, we, for the time beswgjtle for
the universal version (CFC). We will consider weakening€3#tC) in section 4.2. Although
they do not explicitly give necessary and sufficient prolistic conditions for a variable&l
to cause a variabl®, (CMC) and (CFC) taken together constitute the theory obatian
that is conveyed by BN procedures of causal inference. Tléipala connection between
causation and probabilities which is very similar to the stipulated by Suppes and which
entails necessary or sufficient conditions for various ahostions (cf. Pearl 200G;,2.7).
These conditions are put to work in BN algorithms of caustrence.

There exist two types of such algorithms. To state the priifferdnce between these
types, letO be the set of variables that aseservedor measuredlin a given study: while
algorithms of the first type employ the assumption &t causally sufficient, algorithms
of the second type do not rely on that assumption. Among theridhms of the first type
are PC, SGS (Spirtes et al. 2000) or IC (Pearl 2000). Algarstiof the second type are, for
instance, Cl, FCI (Spirtes et al. 2000) or IC* (Pearl 200@y. brevity, we label algorithms
of the first typeS-algorithmsand algorithms of the second typéS-algorithms

S-algorithms take as input the dedf conditional independencies over a set of variables
O which is assumed to be causally sufficient, and they outpuaphical pattern, to which
we shall refer as as-pattern for short®> An S-pattern represents a set of DAGs o@r
all of which constitute a BN in combination with all and onlyet probability distributions
featuring exactly the independencies recordedl ithe set of DAGs represented by &n
pattern is called #Markov equivalence clasbecause for all its members (MC) entails the
same conditional independence relations among the vasaiD. S-algorithms are correct
in the following sense (cf. e.g. Spirtes, Glymour, and Sobeil991): if two variableX and

5 The idea of treating the s&tof all conditional independencies ovér as a premise is not unproblematic
in contexts of causal discovery, since what is usually afstel in such contexts are mere statistical data. How
conditional independencies @ are hypothesized based on corresponding statistical slatelevant for our
current purposes though.
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Y are connected by a graphical featgran anS-pattern,X andY are related in the causal
graphG over O in the way represented by, and if X andY are not connected by any
graphical feature in a-pattern,X andY are causally unrelated. That is, assuming that
causation and probabilities are connected in the way thstQCand (CFC) defineg is
among the graphs represented by $hpattern that as-algorithm outputs when given the
conditional independencies ovéer as input. For there to be an edge betweéemandY in
anS-pattern, it is necessary and sufficient tkatindY” are probabilistically dependent and
that no subset 00\{X, Y} screens off between them (i.e. renders them probabililstica
independent). In light of the correctness®flgorithms, that means that the impossibility
to screen off betweeX andY in O\{X, Y} is necessary and sufficient for there to be a
direct causal relation betweexi andY. Finally, S-algorithms arendependence complete
they output all the causal conclusions that can be drawn fh@in probabilistic input (cf.
Meek 1995; Verma and Pearl 1992; Glymour 2010, 183).

Contrary toS-algorithms, \/S-algorithms do not employ the assumption ti@tis
causally sufficient. From the skbf conditional independencies over, they build anV S-
patternwhich is a graphical representation of a class of DAGs eaebhith is defined over
the union ofO and of a set of so-calleldtent variables. In combination with (MC), each
of the graphs represented by AfS-pattern entails exactly the independencies recorded in
I for the variables irD. N/S-algorithms are correct in the following sense (cf. e.grtepi
Meek, and Richardson 1995): if two variabl&andY are connected by a graphical fea-
ture ¢ in an V'S-pattern,X andY are related in the way represented dyn the causal
graphg overO U CCgq, WhereCCg designates a set such that for any common cause
of two variablesX andY in O it holds thatC, or a cause of”, or an effect ofC which
is located on all directed paths fro@ito X and on all directed paths frof to Y is in
CCo. Moreover, if X andY are not connected by a graphical feature in\a§-pattern,
X andY are causally unrelated. That means that the causal grapter the causally suf-
ficient setO U CCg is among the graphs represented by\as-pattern. As a result of not
assuming tha© is causally sufficient, the so-callehservational equivalence classbsat
N S-algorithms infer each contain an infinite number of DAGs-ritary to the Markov
equivalence classes inferred 8yalgorithms. Moreover)N S-patterns are more ambiguous
thanS-patterns: while there is an arrow betweErandY in anS-pattern only if this arrow
appears in all the DAGs it represents, an analogous arrow M&pattern only means that
all the represented DAGs feature either a path directed fkoto Y or (at least) one sub-
graph featuring a path from a varialdleto X and a path fronC' to Y whereC is not inO.
That is, whereas in case of the assumed causal sufficier@yaofrobabilistic dependency
of X andY conditional on every subset @ \ {X,Y} is necessary and sufficient for a
direct causal relation betweeniandY’, such a probabilistic dependencyX®fandY’, when
O is not assumed to be causally sufficient, only determinegsXhia a direct cause of in
OUCCq,orY isadirect cause ok in OUCCg, or X andY have (at least) one common
cause outside db. N'S-algorithms infer thafX is a direct cause df only under very spe-
cial probabilistic conditions (cf. Pearl 2000, 55). Wheegé conditions are met, the arrow
from X to Y in the correspondingv'S-pattern is marked with a special graphical feature.
Finally, at least somg/S-algorithms, e.g. FCI, have also been proven to be indepeede
complete (cf. Zhang 2008; Claassen and Heskes 2011; Gly2od, 186Y

6 Strictly speaking, the algorithm that Zhang (2008) proweseé independence complete is not FCI as
e.g. presented in Spirtes et al. (2000), but an extendedoweo$ FCI that implements two additional tail
inference rules. Moreover, note that when we subsequaailyabout\ S-algorithms we are only referring
to algorithms that are provably independence complete.
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Fig. 1 A diagram that represents relevant feature$Pf; : there is a directed path frothto X, any sort of
path or none at all betweek andY’, and no path betweehandY that does not go through .

Certain patterns output by BN algorithms are sufficient toy/\sraightforwardly con-
clude that a triple of variable&/, X,Y’) is an intervention triple. More precisely, certain
patterns enable to identify triples of variables as beirdhghbat, based on the notion of cau-
sation that is employed by BN algorithms, the probabilistjgut that these algorithms take
is enough to justify their interventionist nature. For arste, take one of the simplest BN al-
gorithms, theS-algorithm IC (Pearl 2000, 50), and suppose that it outputs-patternSP,
which has the features depicted in figuré Against the background of (CMC), (CFC), and
the assumed causal sufficiency®f it can be concluded fror8P; that(/, X,Y) is a (soft)
intervention triple, i.e. tha{/, X,Y") satisfies (IV.i), (IV.iii), and (IV.iv). To see this, note
first that in light of the correctness of IC the directed patinfI to X in figure 1 entails that
I'is a cause of: it is visible in SP; that (I, X, Y) satisfies (IV.i). Second, the correctness
of IC also yields that the absenceSi; of a path between andY that does not go through
X, i.e. the absence of what we shall henceforth calkapath betweenl andY’, warrants
the conclusion thaf is not a cause of” along anX-path. Therefore, (1V.iii) is also satisfied
in SP;. Finally, to see that from the features of the triple X, Y') in figure 1 it can likewise
be inferred that (IV.iv) holds, suppose that—in violation(kv.iv)— I is correlated with a
causeZ of Y that is located on aX-path. (CMC) and the correlation dfand Z entail
that either (a)l is a cause ofZ, or (b) Z is a cause of, or (c) I andZ have a common
cause (cf. Williamson 2005, 51-52). None of these, howesaar,in fact be the case. (a) is
excluded because, in combination withbeing a cause of along anX-path, (a) yields
that 7 is a cause ot” on anX-path. Yet, in light of the fact thaZ, X, Y") complies with
(IV.iii), this cannot be the case. Furthermore, it followsrh both (b) and (c) that andY
have a common cause on Anpath. The sufficiency assumption exploited$»algorithms,
in turn, implies that this common cause, or one of its causesne of its effects that is also
a common cause dfandY’, is contained in the s& of analyzed variables. However, due to
the correctness of IC, thatandY have a common cause d on anX-path is incompatible
with the absence of aR -path betweerd andY in SP;. (b) and (c) are thereby excluded.
We can, hence, conclude that there indeed does not existadhar that caused” along
anX-path and that is correlated with Thus,(I, X, Y") satisfies (IV.iv).

Yet, identifying variables that can be justified to be intrtion variables on the basis
of BN methods, notwithstanding the ease with which this cadne, comes with a catch.
For, as we shall see in the remainder of this section, whemeitputs of BN algorithms are
determinate enough to establish the interventionist eaifia triple(7, X, Y'), these outputs
also determine whethex is a cause o or not. That is, BN methods, when identifying
I as an intervention variable fot with respect ta’, also render it expendable to actually
intervene onX via I to test whetherX causesy’. We first show this for outputs of BN
procedures that have the properties depicted in figure 1lhmrddemonstrate that the same
holds for BN outputs in general.

If, as illustrated in figure 1, none of the DAGs representethbys-patternSP4 features
anX-path betweed andY and, accordingly, the causal graph o@does not feature such
a path, (CMC) entails that either (d)andY are unconditionally independent or (e) they

7 Note that figure 1 does not dep®8P itself. Rather, it represents relevant propertieS B¥; .
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are unconditionally dependent but independent conditionaX. Against the background

of (CFC), (d) implies that andY are causally independent, which yields that there does
not exist a directed causal path frdnto Y. As figure 1 ensures that there is a directed path
from I to X in the causal graph oveD, it follows from the correctness of IC that there
cannot exist a directed causal path frafrto Y (for otherwise, contra (d), there would be a
path from[ via X to Y after all). That is,X is not a cause of . By contrast, (e) entails that
there exists at least one directed or back-Bl@ausal path betweehandY and that every
such path goes througki. More explicitly, (e) entails that in the causal graph o@erthere
exists at least one path of one of the following forms and aéiaiaths betweeii andY are

of one of those types:

- [—X——Y
- I=——X=<=—Y
- [~ X ——=Y
-1 X Z Y
-1 Z X Y

Only two of these possibilities are compatible with the dicjty assumption that is embed-
ded in BN methodologies. To see this, note again #1af guarantees that the causal graph
G over O features a directed path fromto X. Combining the possible paths that follow
from (e) with the directed path frorhto X contained ing yields the following graphs:

- [——-X——=Y

-1 X<~—Y

- I T X——>Y
1

\\_/X(—Z—)Y

-1 Z X Y
\_/

Only the first and the last of the graphs in that list are DAGs;dthers contain a feedback
structure that violates the acyclicity restriction. Thatif (e) holds, there is either a directed
path from! via X to Y in G or there is a common common caugef I and X which, in
turn, is a cause of'. In both casesX is a cause ot". Therefore, (e) implies thaX is a
cause ofY".

Overall, the probabilistic (in)dependencies represeie&P, in combination with
the assumptions employed yalgorithms, entail thak is not a cause oY (if 7 andY
are unconditionally independent) or they entail thats a cause ot” (if 7 andY are not
unconditionally independent). Since it is either givenhathie input data fed into IC thdt
andY are unconditionally independent or that they are not andesi@@ is independence
complete, whichever is the case will be visibleS#,. If X is a cause of’, there is a
directed path fromX to Y in SP4; and if X is not a cause of’, none of the DAGs that are
represented bgP, features a directed path fromto Y.

A natural reaction to this finding will be to conjecture tha features depicted in figure
1, though sufficient, are not necessary to establish theveréonist nature of7, X,Y),
based on the probabilistic input taken by BN algorithms imbmation with the account
of the connection between causation and probabilitiestheste algorithms rely on. Other
types of S-patterns might reveal thdtis an intervention variable fok with respect toy’

8 For the notion of dack-door patfcf. Pearl (1993).
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without, at the same time, rendering it superfluous to alstirstiervene onX through in
order to uncover the causal relationship betw&eandY'. That, however, is not the case.
Even though a-pattern may indeed warrant the interventionist naturd ok, Y') without

all the features in figure 1, it nonetheless holds thaFghatterns that substantiate tHais

an intervention variable fak with respect td” also determine whethé¥ is a cause o¥” or

not. In other words, whenever @hpattern validates the interventionist nature bfx,Y’),

it renders actual interventions o dispensable when it comes to investigating the causal
relation betweerk andY'.

To show this, we establish that, together with the assumggonployed bys-algorithms
and with the conditional (in)dependencies that constitiséeinput of these algorithms, the
fact that(7, X, Y’) is an intervention triple either implies that is a cause of” or thatX is
not a cause of . It then follows, by independence completeness, that wiegrsnS-pattern
validates the interventionist nature @f, X,Y’) it also validates X is a cause ot or it
validates X is not a cause o¥”. We demonstrate this on a case-by-case basis where we
distinguish between the three following cases:[(AndY are unconditionally independent,
(2a) I andY are unconditionally dependent and they are independenitammal on X, (2b)

I andY are unconditionally dependent and they are dependent tcamalion X. In case
(1), (CFC) implies thatl andY” are causally independerinh the following sense: neither
of the two variables causes the other one nor do they have emoontause—be it inside
or outside ofO. When(I, X, Y) satisfies (IV.i), i.e. wherT is a cause ofX, [ andY are
causally independent in this sense only if there is no digepaith fromX to Y in the causal
graph overO, that is, if X does not caus& (for, otherwise, there would be a directed
path fromI via X to Y after all). In case (2a), (CMC) and (CFC) yield that, in thesa
graph overO, I andY are dependent andl is located on all the directed or back-door
paths betweem andY'. Using the example &8P, we have shown above that all the causal
graphs that comply with the acyclicity assumption and teatdre a dependency amonhg
andY that is mediated by feature either a directed causal path frémia X toY or a
common caus¢ of I and X which is, in turn, a cause df. In both of those case¥ is a
cause ofY. Finally, in case (2b), (CMC) implies thdtandY are causally dependent and
that in the causal graph ovér there exists at least one directed or back-door path between
I andY that does not go through. If (I, X, Y) is an intervention triple, (1V.iii) entails that
no X -path is directed fronf to Y. Analogously, given (CFC), (IV.iv) implies that there does
not exist anX-back-door path betweehandY in the causal graph ove. Therefore, (2b)
must be realized by a-path that is directed frori to I in the causal graph oved.® In
combination with the fact thdt causesX and with the acyclicity assumption that is used by
S-algorithms, the existence of aa-path that is directed frorir to I implies thatX does
not causé&” (for, otherwise, there would be a circle frorhto I and viaX back toY).

In sum, if (I, X, Y') is an intervention triple, the probabilistic (in)dependes that con-
stitute the input ofS-algorithms determine either that causes” or thatX does not cause
Y. As a consequence, if these probabilistic (in)dependsreigail that(/, X,Y) is an in-
tervention triple, then they also entail thetcauseg” or thatX does not causg. Thus, the
independence completenessaélgorithms yields the following: whenever aapattern is
determinate enough to ensure thatX,Y') is an intervention triple, it is also determinate

9 Itis an open question whethérshould be considered an intervention variableXnith respect toy”
if there is a directed path fro to I, i.e. if Y is a cause off. On the one handy” being a cause of
is compatible with(I, X, Y") being an intervention triple in the sense provided by Woadisadefinition
(IV), which supplies the notion of an intervention variable are concerned with here. On the other hand,
Scheines (2005, 932) argues thabeing a direct cause df gives rise to a form of treatment-bias that can
induce fallacies in causal reasoning. Settling this issustiie left to another occasion.
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enough to ensure th& causesy” or thatX does not caus®. WhetherX causesy” can
therefore be read off the-pattern itself—independently of any actual intervengiom X .

It remains to be seen whether the same holdsAfai-algorithms. As a result of not
assuming the causal sufficiency Of N S-patterns represent classes of DAGs which are
not defined ovelO, but over supersets @. The (true) causal graph ov€¥ U CCo—

a common cause completion @—is among the graphs represented by\a§-pattern. It
turns out that the exact same case-by-case reasoning wgikaapplied to the causal graph
over O can be repeated for the causal graph @ver CCq. Irrespective of whethe® is
causally sufficient or not it holds that in case (1) (CFC) implthat/ andY are causally
independent. This is only compatible withbeing a cause oK (as entailed by IV.i) if
there is no directed path fro¥ to Y in the causal graph oved U CCq. Hence, X is
not a cause ot’. Similarly, whetherO is causally sufficient has no bearing whatsoever
on the fact that (2a)—in combination with (CMC) and (CFC)—plies that/ andY are
causally dependent and that, in the causal graph ©@verCCqp, X lies on all directed or
back-door causal paths betweeandY . SinceN S-algorithms employ the same acyclicity
assumption as-algorithms, it still holds that all the DAGs that can realthis consequence
of (2a) feature a directed path froi to Y. Accordingly, there exists a directed path from
X toY in the causal graph ové U CCg. Finally, what can be inferred from (2b) based on
(CMC) and (CFC) is not affected by the causal insufficiencpagither. (2b) entails that
andY are causally dependent via at least ongath. All suchX -paths that are compatible
with (IV.iii) and (1V.iv) are directed fromY” to I which, in combination with (IV.i) and the
acyclicity restriction, yields that there is no directedipfiom X to Y in the causal graph
over O U CCq. Hence, X does not caus&. As N S-algorithms are also independence
complete, it holds that whethéf caused” or not is visible in everyV S-pattern that entails
that (I, X,Y’) is an intervention triple. Whenever aviS-pattern is determinate enough to
warrant thatZ, X,Y') is an intervention triple, it is also determinate enough &orant that
X cause¥ or thatX does not causk.

All of this shows that the problem we diagnosed $#, based on the features depicted
in figure 1 generalizes to all BN-based identifications aéiméntion variables. Even though
BN methods can identify, in a given setof analyzed variables, triples of variables whose
interventionist nature is justified by probabilistic infioation in combination with (CMC)
and (CFC), this BN-guided identification of interventionriables always overshoots its
mark. Whenever the output of a BN procedure—be it an algorithithe S- or of the N'S-
type—determines that a particular trigle, X, Y) in O is an intervention triple, this same
output either establishes that is a cause ot or that X is not a cause of.1° Thereby,
identifying I as an intervention variable oR with respect toY” by means of BN algo-
rithms answers the very question that an interventionighoteof causal reasoning is de-
signed to answer by intervening ahwith respect ta” via I. BN methods not only identify
(I, X,Y) triples as intervention triples but, when they do so, thep aénder interventionist
techniques dispensable when it comes to resolving whefheauses’.

10 scheines (2005, 928) makes a sort of converse observafittholigh we have no general characteri-
zation of the conditions under which a causal inferenc&te— Y can be made in observational studies,
it turns out that when the inference is possible it is oftemedr by the existence of what | calldetectible
instrumental variablghat stands in the same relationshipXoandY in the observational study as does the
ideal intervention onX in the experimental study.” While Scheines says that ifehieran arrow fromX
to Y in a BN pattern, this i®fteninduced by the fact that the corresponding BN algorithm teteaed an
intervention variable forX with respect toY” in O, we have proven that if, X,Y") is entailed to be an
intervention triple, the corresponding BN pattedvaysdetermines whethek causes’.
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It might be objected that this finding is at odds with the paputlea of using inter-
ventions as a means to disambiguate causal inferencegthairr ambiguous based on BN
procedures alone (cf. Pearl 2000; Spirtes et al. 2000; Bbdtfrlet al. 2006; Eberhardt and
Scheines 2007). However, as anticipated in the introdugctiw literature on disambiguating
causal inferences on the basis of interventionist teclesigioes not address the problem of
identifying intervention variables. Rather, it simply pupposes that for all variables in an
analyzed set of variabled suitable intervention variables are availablgsideof O. The
suggestion then is that if the causal structure regulatindpehavior of the members 6fis
not unambiguously determinable based on available pris@bdata, corresponding causal
inferences can be disambiguated by means of those int@mergriables that are assumed
to exist outside 00. Yet, the question as to how the interventionist nature es¢hlatent
variables is detected or warranted is sidestepped. By asttthis is exactly the question
addressed in this paper. It is clear from the outset that Bithoas can only be serviceable
in answering this question as far as the identification efrivention variablemsidea given
O is concerned. And here, as this section has shown, BN methvaishoot the mark.

4.2 BN algorithms with weakened assumptions

The general methodological strategy employed by inteforist techniques is to modularly
uncover a whole causal structugebased on substructures @fthat comply with (V). So
far, this paper has shown that identifying these interegngi substructures in a method-
ologically guided manner that paves the way for unfoldirgthole inferential potential of
interventionist techniques is more problematic than migive been expected.

The main reason why BN methods overshoot the mark when it saméentifying
substructures complying with (IV) is that those methodg o#l what might be calletbtal
causal assumptions. On the one hand, (CMC) and (CFC) arersalvin the sense that
they relate the probability distributions and the causapbs ovemll (causally sufficient)
variable sets. On the other hand, (CMC) and (CFC) are holisthe sense that they connect
features of probability distributions to relationshipsag all variables in a graph, rather
than to relationships among a proper subset of those vagabls such, BN assumptions
equally guarantee the causal interpretability of all greghfeatures in patterns output by
BN algorithms. And the previous subsection has shown thidt Soand ' S-patterns have
graphical features which, when interpreted causally,ilethtat a triple (I, X,Y") complies
with (V) only if these patterns also have graphical feasundnich (again when interpreted
causally) determine whethef is a cause ot” or not. That means, both in the case®f
and N S-algorithms, the total assumptions employed by BN methoggart an inference
to the interventionist nature of a tripld, X, Y) only if they likewise support an inference
to “X is a cause o¥” or to “ X is not a cause of”.

At the same time, the total nature of BN assumptions yields tthey are very strong.
Accordingly, they have been much criticized and variousnterexamples to both (CMC)
and (CFC) have been offerétiMoreover, in light of their strength, BN assumptions are
difficult to justify. Indeed, the justifications that havedpeadvanced in the literature have

11 Concerning (CMC), see in particular Cartwright (1999a; BOGFreedman and Humphreys (1999);
Williamson (2005, 4.2). As to (CFC), see Freedman (1997)@adwright (2001), as well as Spirtes et al.
(2000, 38-42) and Pearl (2000, 63-64) for typologies ofvaie counterexamples.
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given rise to some controversi&sThis is consequential for our present purposes because
BN-based identifications of interventionist triples prbevia proper justification of the belief
that the corresponding triples indeed have the interveistigproperties only if the assump-
tions employed by BN algorithms can themselves be justified.

A natural reaction to the justificatory questions assodiatih the strength of BN as-
sumptions is to weaken those assumptions: the weaker teeyhar easier it is to justify
them. For quite some time, therefore, proponents of BN nuitthave undertaken consider-
able efforts to exploit causal assumptions that are wealker {CMC) and (CFC). In partic-
ular, as indicated before, they sometimes do not rely on miversal version of (CFC), but
content themselves with assuming that particular variabte that are relevant for a given
causal analysis satisfy (CkQ. Or, Ramsey et al. (2006) and Zhang and Spirtes (2008)
identify two components of (CRg called Adjacency-and Orientation-Faithfulnessonly
the former of which must be assumed to be satisfied by paatiealriable sets because the
latter is empirically testable. Still, though, tests thatedmine whether a given variable set
satisfies Orientation-Faithfulness are only correct utiseassumption that this set satisfies
both Adjacency-Faithfulness and (CNE

Here we can confine ourselves to noting that the total assongpresented in the pre-
vious subsection, though sufficient, aret necessaryor the causal interpretation of the
output of a BN algorithm when run on a particutar—let alone for the causal interpretation
of the specific graphical features that identify interventvariables. To establish the inter-
ventionist nature of a triplé/, X, Y), it is not necessary to assume anything about how, in
general, probability distributions relate to whole caugaphs generated by (causally suf-
ficient) variable sets. Roughly, all that is required forttharpose are assumptions about
how the probabilistic (in)dependencies among the varsaipi¢hat particular triple relate to
the corresponding causal (in)dependencies. Hence, thenptisns needed to infer from a
BN-output that(Z, X,Y) complies with (V) are (much) weaker than the assumptions ad
vanced in the previous subsection. Moreover, as we shalslsedly, there exist patterns
output by BN algorithms which, in combination with those weaBN assumptions, yield
that (7, X,Y’) is an intervention triple without, at the same time, deteing whetherX is
a cause of’.

Whenever a concrete context of causal discovery allowsifdifying the weaker but not
the total BN assumptions, it may happen thatX, Y) is identifiable as intervention triple
without it being equally determinable wheth€rcaused”. More precisely, whenever causal
assumptions that suffice to infer from the pattern output BNaalgorithm that(7, X,Y")
is an intervention triple do not suffice to infer (from the sapattern) thaf causesy” or
that X does not caus&, a researcher can be in an epistemic position to justifiatdyd
the conclusion that is an intervention variable fak with respect toy” while not being
in a position to decide whethe¥ causes’. In such cases, intervening on through is
non-redundant in order to determine whetlecauses”. That is, BN methodologies do not
generally make modular interventionist techniques of abteasoning dispensable when it
comes to assessing whether one variable causes anothes. é)igt epistemic contexts in
which BN methods identify intervention variables and whéch such that this identification
does noipso factorender the corresponding interventions expendable.

To conclude this paper we substantiate this claim by way okayj simple example.
LetO be{I, J, X, Y} and suppose that, when given the probabilistic indepenegamong

12 For justifications of (CMC), see e.g. Pearl (2000, 44, 61-6jrtes et al. (2000, 33-40). As to (CFC),
see in particular Spirtes et al. (2000, 41-42). The argunmefai/or of (CFC) that is given in this passage was
rejected by Freedman (1997) and Cartwright (1999b, ch. 8120
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J /
Fig. 2 ExemplaryS-pattern output by IC fo© = {I, J, X, Y'}.

the members 00 as an input, theS-algorithm IC outputs the pattern depicted in figure 2.
This pattern is itself a DAG and, accordingly, it is the onligraent of the set of DAGs that it
represents. It indicates thaand X, J and X, X andY cannot be screened off @, that!
andJ are unconditionally independent, thiaandY andJ andY are screened off by X},
and that/ and J are dependent conditional oxi. Moreover, the subgraph over the triple
(I, X,Y) in that S-pattern has all of the features of figure 1, for which we shibrethe
previous subsection that they—in combination with (CM©C}-C) and the assumption that
0 is causally sufficient—entail thdtis a cause o, that there is no causal-path fromI

to Y, and thatl is not correlated with any other caugeof Y that is located on aiX-path,
i.e. that(I, X,Y) satisfies (IV.i), (IV.iii), and (IV.iv). That is, figure 2 hagraphical features
which, when interpreted against the background of the IBNadssumptions, are sufficient
to establish that is an intervention variable fak with respect tay".

However, there exist weaker assumptions that also warnarnnference from figure 2
to the interventionist nature df. To show this, we introduce the following predicates that
are jointly weaker than the combination of predicates ugMlassumptions claim to be
satisfied by all pairs or triples of variables in the corresfing sets:

OrientationMarkov.or_.CommonCause (OMCC):(A, By, By) satisfies (OMCC) relative
to variable seW iff:
if
(1) A andB; cannot be screened off M\{A, B; } and
(2) A andB; cannot be screened off M\{A, B2} and
(3) B; and B, can be screened off iIW\{Bj, B2, A}
then
(4) Ais anunshielded collider, i.e.
(a) Ais an effect ofB; or A and B; have a common cause outside\ofand
(b) Ais an effect ofB; or A and B, have a common cause outside\of
, and
(5) By and B, are not causally related i¥f, and
(6) By and B, do not have a common cause outsidévof

CausalSufficiency (CS){ A, B} satisfies (CS) relative t¥ iff: every common causé’' of
A and B (if there is any) either is ifV, or has a cause which is ¥, or has an effect
which is located on all directed paths frathto A and on all directed paths frodi to
B and which is inV.

Path Faithfulness (PF):{A, B} satisfies (PF) relative t¥ iff: if V screens off between
and B, then there do not exist directed or back-door causal patvedenA and B that
do not go throughv'.

Asymmetry (AS){A, B) satisfies (AS) iff: if A causesB, thenB does not caus4.

ExistentialCommonCausePrinciple (ECCP): { A, B} satisfies (EPCC) iff: ifA and B are
probabilistically dependent, then eithéris a cause of3, or B is a cause ofd, or they
have a common cause.



Identifying intervention variables 17

If suitable pairs and triples of variables @ satisfy these predicates, it can be concluded
from figure 2 thaf , X, Y’} is an intervention triple. To see this, consider the follogvfive
causal assumptions:

(i) (I,X,J) satisfies (OMCC) relative tO@;

(i) {I,X} satisfies (CS) relative tO;

(iiiy {I,Y} satisfies (PF) relative tpX};

(iv) (I, X) satisfies (AS);

(v) for everyZ thatis a cause df’ along anX-path,{I, Z} satisfies (ECCP).
(i) to (v) provide a connection between causal facts andgiibistic facts. Unlike the con-
nection between causal facts and interventionist factsslstipulated by (M) or the connec-
tion between causation and probabilities that is estadudidly Suppes’ theory or by (CMC)
and (CFC) taken together, the connection that is provid€d by (v) is particular rather than
universal and local rather than global. The only conseqaiémis has in regard to justifying
that(7, X, Y’ is an interventionist triple consists in simplifying thasfificatory task.

Together with the probabilistic (in)dependencies that regresented by figure 2, it

can be inferred that/, X,Y") is an interventionist triple. From (i) and the probabilisti
(in)dependencies i® that are represented by figure 2 it follows thais a cause ofX
or I and X have a common cause outside@f Yet, in light of (ii) the latter can be ex-
cluded, to the effect thall, X, Y") satisfies (IV.i). Moreover, (iii) in combination with the
fact thatX screens off betweehandY entails:

(1) There do not exist directed or back-door causgpaths betweeri andY'.

() immediately yields that there does not exist a cabS@lath that is directed fromito Y,
i.e.that(, X,Y") satisfies (1V.iii). Finally, under the assumptions listédee, (I, X, Y') also
satisfies (IV.iv). To see this, note that (v) excludes thet accidentally correlated with any
other causeZ of Y that is located on aiX -path. As a consequenckgan only be correlated
with such a cause& of Y—in violation of (IV.iv)—if I is a cause ofZ, or Z is a cause
of I, or I andZ have a common cause. Yet, as we shall see shortly, all of thesssble
violations of (IV.iv) contradict {). First, suppose that is a cause ofZ (which has been
defined to be a cause ®f on anX-path). It follows that/ is a cause ot on anX-path,
which is incompatible withi(). Second, assume thétis a cause of. It follows that either a
directed causal path from to Y contains/ but notX, or Z is a common cause dfand ofY’
while causingy” along anX -path. The first disjunct entails that there existsXpath that
is directed from/ to Y, which is ruled out by {). The second disjunct is compatible with
(1) only if X is an intermediate between andI; but (IV.i), which we validated above, in
combination with (iv) excludes tha is located on the directed path frafto 1. Therefore,
both disjuncts of the disjunction entailed Bybeing a cause af are incompatible with).
Third, suppose that and’ have a common causg. (1V.i) and (iv) again exclude thax
is an intermediate on the path fraghto /. Furthermore, ag is defined to be located on an
X-path toY, X cannot be an intermediate betwe@rand Z either. Therefore,t} equally
excludes thatZ and I have a common caugg. That is, if (IV.iv) is violated by any of the
three causal structurings that can possibly lead to a etiwal of I and another causg of
Y, (1) is also violated. But we have already establishgdésed on (iii) and figure 2. By
contraposition we thus get thék, X, Y') satisfies (IV.iv). In sum, in combination with the
assumptions (i) to (v), th&-pattern of figure 2 establishes thais an intervention variable
for X with respect tay".

The assumptions (i) to (v), though sufficient, are not neaxgstor the validity of the
inference to the interventionist nature of the triple X, Y'), i.e. they could be further weak-
ened. Yet, all that is important for us here is that they aiesaly weak enoughotto validate
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the inference from figure 2 taX' is a caus&™”. Or differently put, assumptions (i) to (v) do
not warrant the causal interpretation of the artéw— Y in figure 2. To see this, note that
(i) to (v) do not entail any of the following:

(vi) if X andY cannot be screened off 0, thenX is a direct cause df in O, orY is a
direct cause oX in O, or X andY have a common cause outside@f
(vii) if there exists a subset @ \ {I, Y} containingX that screens off betweenandY’,
then(Z, X,Y’) does not form an unshielded colliderat
(viii) if there exists a subset @d \ {.J, Y’} containingX that screens off betweehandY’,
then(J, X,Y) does not form an unshielded collidert

However, violations of these conditions render the prdisin (in)dependencies repre-
sented in figure 2 compatible withh not causingY'. For instance, if condition (vi) is vi-
olated, the fact thak andY cannot be screened off i@ does not entail thak is a cause
of Y, orY is a cause off, or X andY have a common cause outside®f Accordingly,
the arrow fromX to Y in figure 2 is compatible with the causal independenc& aindY'.
Similarly, if conditions (vii) and (viii) are violated, therobabilistic (in)dependencies repre-
sented by figure 2 are compatible with X, Y") and(J, X, Y") forming unshielded colliders
at X, to the effect that” or a cause ol located outside 00O causesX. In other words,
the causal interpretation of the arrow fraknto Y in figure 2 requires that conditions (vi)
to (viii) are satisfied. Yet, this is not ascertained by theseh assumptions (i) to (v). That
is, (i) to (v) are causal assumptions which are sufficiennferifrom figure 2 that is an
intervention variable foX with respect td’’, but at the same time (i) to (v) do not validate
the inference from figure 2 taX is a cause of™.

All of this illustrates that BN methodologies, when empldyia combination with as-
sumptions that are weaker than usual BN assumptions, doeeessarily render interven-
tionist techniques dispensable. A researcher can be iniatespc position to justifiably
infer from a BN output thaf is an intervention variable o with respect tor” while not
being in a position to infer from that output th&tcauses” or thatX does not caus¥. In
such an epistemic context, intervening Brthrough! is a relevant and non-redundant way
of investigating the causal relation betwe€randY'.

5 Conclusion

The availability of intervention variables is the essdrnpigrequisite for unfolding the in-
ferential potential of interventionist methods of caugasoning. The first part of this paper
has shown that the belief that a triglg, X, Y') is an intervention triple can only be justified
if recourse is made to a non-interventionist account of atmis. Moreover, we have seen
that, depending on the background knowledge at hand abowa{, X,Y), its interven-
tionist nature is more or less easily established on na@mniattionist grounds. Determining
whether administering a particular anti-depression dugnts as an intervention variable
for depression with respect to insomnia presupposes extiestddies on the side-effects of
that drug. By contrast, that coin tossing is an interventisrable for treatment with respect
to recovery is justifiable based on an elementary probébib&count of causation because
we have the relevant background knowledge concerning titeapilistic dependencies and
independencies among these variables.

Consequently, the second part of the paper has then turribd toost standard proce-
dures of causal discovery that process observational dat&N methods. We have shown
that methodically identifying interventionist triples logeans of these procedures renders
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interventionist techniques dispensable. BN methods nelganisal assumptions that are so
strong that they substantiate the interventionist natéird ,0X, Y') only if they support the
inference to X causesY’” or to “X does not caus&”. We have also seen, though, that
relevant BN assumptions can be weakened—and thus rendemredemsily justifiable—to
the effect that outputs of BN procedures may idenfifgs intervention variable fak with
respect toY” without, at the same time, deciding wheth€rcausesy’. This finding sug-
gests that whether interventionist techniques are fillytipplicable in a given context of
causal discovery, in the end, is determined by the epistbai&ground of that discovery
context. If BN methods are used to identify interventioniafles, it is profitable to imple-
ment interventionist techniques only if that epistemickggound allows for justifying BN
assumptions which, like (i) to (v), authorize the infereaehe interventionist nature of
(I,X,Y), but does not allow for justifying BN assumptions whichgligvi), (vii) and (viii),
support the causal interpretation of the graphical featleging X andY in a corresponding
BN output.
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