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Abstract While standard procedures of causal reasoning as procedures analyzing
causal Bayesian networks are custom-built for (non-deterministic) probabilistic struc-
tures, this paper introduces a Boolean procedure that uncovers deterministic causal
structures. Contrary to existing Boolean methodologies, the procedure advanced here
successfully analyzes structures of arbitrary complexity. It roughly involves three parts:
first, deterministic dependencies are identified in the data; second, these dependencies
are suitably minimalized in order to eliminate redundancies; and third, one or—in
case of ambiguities—more than one causal structure is assigned to the minimalized
deterministic dependencies.

Keywords Causation · Causal reasoning · Discovery algorithms ·
Deterministic structures

1 Introduction

Since the early nineties, the philosophical literature on causal reasoning has been
dominated by inference procedures developed within a theoretical framework accord-
ing to which causal structures can be analyzed in terms of Bayesian networks.1 One
of the key studies that has influenced and structured that whole research program,
undoubtedly, is Spirtes’, Glymour’s and Scheines’ book on Causation, Prediction,
and Search (2000). That study has inspired and provoked a host of literature that has
in the mean time profoundly deepened our understanding of how, under what condi-
tions, and to what extent causal structures can be inferred from pertinent empirical

1 With respect to the notion of a Bayesian network cf. e.g. Pearl (1985).
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data. As is well known, all the different causal discovery algorithms developed in that
framework impose two important constraints on the causal structures and the data gen-
erated by these structures: The structures and the data must satisfy the causal Markov
assumption and the faithfulness assumption.2

Many causal structures undoubtedly satisfy these assumptions, but certain common
structures do not. One important type of causal structure that does not conform to both
of these assumptions is constituted by deterministic structures that are investigated on
a sufficiently fine-grained level such that deterministic dependencies actually show up
in the data. In a deterministic structure every value of at least one exogenous variable
uniquely determines the values of at least one endogenous variable.3 Such determinis-
tic dependencies may, of course, not show up in corresponding data, if, for instance, not
all variables involved in the structure are contained in the set of investigated variables or
if not all relevant factors are controlled for in a respective study. However, if determin-
istic structures are investigated against a causally homogeneous background—say, in
a laboratory context—or if only few instances of a causal structure are available—as in
small-N studies in social sciences4—to the effect that deterministic dependencies are
actually exhibited in the data, the faithfulness assumption is violated and, accordingly,
standard procedures for the discovery of causal Bayesian networks are not applicable
or generate inadequate outputs, respectively.5

This paper introduces a procedure of causal reasoning that is custom-built for deter-
ministic structures and deterministic data. As the procedure analyzes so-called coin-
cidence data, which is going to be properly characterized in subsequent sections, it
shall be labeled coincidence analysis, or CNA for short.6 While procedures uncov-
ering causal Bayes nets explicitly or implicitly presuppose a probabilistic notion of
causation, CNA draws on an account of causation that is inspired by the regularity
theoretic tradition going back to Mackie’s (1974) theory of INUS-conditions. Instead
of Bayesian networks, CNA implements Boolean techniques, predecessors of which
can be found in Quine (1952; 1959), Ragin (1987; 2000) and May (1996; 1999). In
a nutshell, the procedure consists of three parts: In a first step deterministic depen-
dencies of sufficiency and necessity are identified in the data; a second step suitably
minimalizes these dependencies in order to eliminate redundancies; and in a third
step the minimalized dependencies are causally interpreted. Before CNA is properly

2 The causal Markov assumption states that in a probability distribution P generated by a (acyclic) causal
structure S a variable Z is independent of all its non-effects in S conditional on all of Z ’s direct causes,
provided that no direct common causes of any two variables in S are left out of P . According to the faith-
fulness assumption, there are no other conditional independence relations in P than the ones implied by
the causal Markov assumption (cf. e.g. Spirtes et al. 2000, pp. 29–31; Glymour 1997, 2007).
3 For details cf. Glymour (2007, p. 236).
4 Cf. e.g. Ragin (1987).
5 Such as to illustrate violations of faithfulness by deterministic structures assume that a factor B is a
common cause of A and C , i.e. A←− B −→ C , and that B is sufficient and necessary for C . In that case,
B and A are independent conditional on C , i.e. p(A|B ∧C) = p(A|C), which is not implied by the causal
Markov assumption (cf. e.g. Spirtes et al. 2000, pp. 53–57; Glymour 2007).
6 Coincidence analysis is not abbreviated by “CA” because, in the social science literature, this acronym
is often used for correspondence analysis which must not be confused with coincidence analysis.
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introduced and illustrated in Sects. 3–9, Sect. 2 is going to briefly review its conceptual
background.

2 Conceptual background

As mentioned above, the conceptual background of the inference procedure to be
developed in this paper is located in the regularity theoretic tradition of the philosophy
of causation. According to one of the core tenets of regularity theories, causation is
deterministic. The question as to whether all causal processes indeed are ultimately
deterministic or not can be bypassed here. It seems hardly questionable that there are
at least some deterministic processes—especially at a macro level. Thus, whoever
holds that there additionally exist irreducibly indeterministic causal processes, e.g. at
a micro level, can simply view regularity theories as being concerned with the deter-
ministic structures at a macro level only. However, as is well known, the adequacy
of regularity theoretic analyses of deterministic causal structures has been broadly
criticized during the past 30 years. While I have argued elsewhere (cf. Baumgartner
2008a) that that criticism has commonly targeted oversimplified regularity theoretic
sketches, this is not the place to defend a sufficiently sophisticated regularity theory
of causation. The prospects and merits of CNA, in the end, do not hinge on whether
deterministic causal structures can successfully be reduced to regularities subsisting
in nature or not. All that matters for my current purposes is that when it comes to deter-
ministic structures regularities undoubtedly constitute an important sort of empirical
information on which inferences to underlying structures can be based.

CNA is designed to unfold deterministic causal structures on type level, i.e. it ana-
lyzes general causation. The relata of general causation can be seen to be event types
or factors for short. A factor that causes another factor is said to be causally rele-
vant to the latter. Factors are taken to be similarity sets of event tokens. They are sets
of type identical token events, of events that share at least one feature. Whenever a
member of a similarity set that corresponds to an event type occurs, the latter is said
to be instantiated. Factors are symbolized by italicized capital letters A, B, C , etc.,
with variables Z , Z1, Z2 etc. running over the domain of factors. They are negatable.
The negation of a factor A is written thus: A. A is simply defined as the comple-
mentary set of A. Alternatively, factors can be seen as binary variables that take the
value 1 whenever an event of the corresponding type occurs and the value 0 whenever
no such event occurs. That means CNA is custom-built for deterministic structures
featuring binary variables. The restriction to binary variables primarily serves concep-
tual simplicity. It allows for a straightforward implementation of Boolean optimization
techniques, which shall turn out to be of great relevance to the uncovering of determin-
istic structures. Nonetheless, the restriction to binary variables implies that structures
involving multi-valued variables must be encoded in binary terms before they can be
treated by CNA. For quite some time, however, there have been considerable efforts
in the literature on logic synthesis to generalize Boolean optimization procedures as
Quine–McCluskey optimization for systems involving multi-valued variables (cf. e.g.
Mirsalehi and Gaylord 1986 or Sasao 1999, Chap. 10). Even though—as we shall see
in Sect. 9—CNA significantly differs from the Quine–McCluskey algorithm, there
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seem to be no principled obstacles to generalizing CNA for multi-valued variables as
well. That, however, is not going to be attempted in the present context. For reasons of
simplicity, CNA shall here be tailored to the case of causal structures involving binary
variables, i.e. factors, only.

Causal analyses are always relativized to a set of investigated factors. This set
is referred to as the factor frame of the analysis. Factors are virtually never caus-
ally relevant to their effects in isolation. Rather, they are parts of whole causing
complexes—complex causes. A complex cause only becomes causally effective if
all of its constituents are co-instantiated, i.e. instantiated close-by or coincidently.
Coincidently instantiated factors are termed coincidences. As will be shown below,
coincidences constitute the empirical data processed by CNA.

Essentially, modern regularity theories analyze causal relevance with recourse to
minimalized regularities among factors. The crucial notion needed in the definiens
of causal relevance is the notion of a minimal theory.7 Briefly, a minimal theory of
a factor B is a minimally necessary disjunction of minimally sufficient conditions of
B. A conjunction of coincidently instantiated factors A1 ∧ A2 ∧ · · · ∧ An , which for
simplicity shall be abbreviated by a mere concatenation of the respective factors, is
a minimally sufficient condition of a factor B iff A1 A2 . . . An is sufficient for B, i.e.
A1 A2 . . . An → B, and there is no proper part α of A1 A2 . . . An such that α→ B. A
“proper part” of a conjunction designates the result of any reduction of this conjunc-
tion by one conjunct.8 Analogously, a disjunction of factors A1 ∨ A2 ∨ · · · ∨ An is a
minimally necessary condition of a factor B iff A1∨ A2∨· · ·∨ An is necessary for B,
i.e. B → A1∨ A2∨· · ·∨ An , and there is no proper part β of A1∨ A2∨· · ·∨ An such
that B → β. A “proper part” of a disjunction designates the result of any reduction of
this disjunction by one disjunct.

That a disjunction of minimally sufficient conditions of a factor B is minimally
necessary for B shall be symbolized by ‘⇒’ which is termed a double-conditional.
Thus, a minimal theory has the following double-conditional form:

(1) AC ∨ DE ∨ FG H ⇒ B

Informally, (1) says that whenever AC or DE or FG H are instantiated, B is instan-
tiated as well, and that whenever B is instantiated AC or DE or FG H is instantiated
as well, and that sufficient and necessary conditions contained in (1) are minimal. In
this vein, both the principle of determinism and the principle of causality are formally
captured in a straightforward way: Causes determine their effects, and if no causes
are present, the effect is not present either. Membership in a minimal theory induces
positive direct causal relevance: A factor A is (positively) directly causally relevant

7 Cf. e.g. Graßhoff and May (2001), Baumgartner and Graßhoff (2004) or Baumgartner (2008a).
8 Defining a minimally sufficient condition in terms of proper parts and not—as might be expected—in
terms of proper subsets that correspond to reductions of sufficient conditions by one or more conjuncts
allows for a simpler procedure to identify minimally sufficient conditions. For if a sufficient condition has
no sufficient proper parts, it does not have sufficient proper subsets either. Hence, in order to show that
a sufficient condition A1 A2 . . . An is minimally sufficient it suffices to establish that A1 A2 . . . An has no
proper parts—establishing that it has no sufficient proper subsets is unnecessary. For analogous reasons
minimally necessary conditions are defined in terms of proper parts and not proper subsets in the present
context.

123



Synthese (2009) 170:71–96 75

to a factor B iff A is part of a minimal theory of B.9 Hence, (1) represents a causal
structure such that AC , DE , and FG H are alternative complex causes of B. Cor-
respondingly, a factor A has negative direct causal relevance for a factor B iff A is
contained in a minimal theory of B.

Analyzing the disjunction of alternative deterministic causes of B as a necessary
condition of B amounts to claiming sufficiency of B for just that disjunction. As is
often done by critics of regularity accounts, the question might thus be raised as to how
the above account of causal relevance captures the undisputed non-symmetry of that
relation.10 For if B can be shown to be minimally sufficient for AC ∨ DE ∨ FG H ,
it might be argued that—relative to the above analysis—B is likewise to be consid-
ered causally relevant to its alternative causes. Contrary to first appearances, however,
double-conditionals as (1) are not symmetrical with respect to the expressions to the
left and the right of “⇒”. The instantiation of a particular disjunct is minimally suf-
ficient for B, but not vice versa. B does not determine a particular disjunct to be
instantiated.11 B only determines the whole disjunction of minimally sufficient con-
ditions. AC and DE and FG H are each minimally sufficient for B, the latter however
is only minimally sufficient for AC ∨ DE ∨ FG H . This non-symmetry corresponds
to the direction of determination.

Accounting for the non-symmetry of causal relevance in this vein has an important
implication as regards the minimal complexity of deterministic structures. A condition
AC that is both minimally sufficient and necessary for a factor B cannot be identified
as the cause of B, for, in that case, B is minimally sufficient and necessary for AC as
well. All empirical evidence such mutual dependencies generate are perfectly corre-
lated instantiations of AC and B—both are either co-instantiated or absent. Such data
can either stem from a structure such that AC is a cause of B or vice versa or AC
and B are parallel effects of an uncontrolled hidden cause. If no additional empirical
information such as temporal orderings of the instances of AC and B is available,
neither AC nor B can be identified as cause or effect. As is well known, similar ambi-
guities arise in case of probabilistic data analyzed by procedures uncovering causal
Bayes nets (cf. Spirtes et al. 2000). Causes and effects can only be kept apart based
on regularity or correlation data alone if the data is diverse enough such that at least
two alternative causes of each effect are contained in the corresponding factor frame.
Section 9 will be concerned in detail with ambiguities that arise when it comes to
causally analyzing data featuring deterministic dependencies.

9 In fact, in order for a minimal theory � to be causally interpretable, certain relational constraints, as
spatiotemporal proximity, have to be imposed on the events that instantiate the factors in �. For simplicity,
these constraints are neglected here. For a detailed presentation of the logical form of minimal theories
cf. Baumgartner (2008a). Furthermore, as shall become apparent in Sect. 7 below, minimalizing neces-
sary conditions paves the way for an accurate regularity theoretic treatment of common cause structures,
which—on account of Mackie’s (1974) famous Manchester Factory Hooters counterexample—have often
been considered intractable by regularity theories.
10 For details on the notion of non-symmetry cf. e.g. Lemmon (1965, p. 180). The relation of general cau-
sation, which is of interest in the present context, is non-symmetric and not asymmetric as is often claimed
in the literature. Generic causal dependencies may be cyclically structured.
11 Cf. Graßhoff and May (2001, pp. 97–99) and Baumgartner (2008a). Similar analyses of the direction of
causation have been proposed in Sanford (1976), Ehring (1982), and Hausman (1998).
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Ordinary causal structures far exceed (1) in complexity. Most causally relevant
factors are of no interest to causal investigations or are unknown. That is why mini-
mal theories either need to be relativized to a specific causal background or must be
kept open for later extensions. The latter is achieved by means of variables. Variables
X1, X2, . . . are introduced to stand for an open (finite) number of additional conjuncts
within a sufficient condition, while YA, YB , . . . are taken to stand for an open num-
ber of additional disjuncts in a minimal theory. If (1) is in this sense kept open for
additional factors, one gets:

(2) AC X1 ∨ DE X2 ∨ FG H X3 ∨ YB ⇒ B

While direct causal relevance is analyzed with recourse to membership in simple
minimal theories as (1) or (2), complex causal structures as causal chains or common
cause structures are represented by complex minimal theories. Simple minimal the-
ories can be conjunctively concatenated to complex theories: A conjunction of two
minimal theories � and � is a complex minimal theory iff, first, at least one factor in
� is part of � and, second, � and � do not have an identical consequent. The first
constraint guarantees that complex theories represent cohering causal structures and
the second restriction prohibits the conjunctive concatenation of equivalent minimal
theories and thus excludes redundancies. The following are two examples of complex
minimal theories:

(3) (AX1 ∨ DX2 ∨ YB ⇒ B) ∧ (B X3 ∨ G X4 ∨ YH ⇒ H)

(4) (AX1 ∨ DX2 ∨ YB ⇒ B) ∧ (DX3 ∨ G X4 ∨ YH ⇒ H)

(3) represents a causal chain—B is the effect factor of the first conjunct and a cause fac-
tor in the second conjunct, (4) stands for a common cause structure—D is a common
cause of B and H . In this vein, deterministic causal structures of arbitrary complexity
can be represented on regularity theoretic grounds. Accordingly, a factor A can be
said to be indirectly causally relevant to a factor B iff there is a sequence of factors
Z1, Z2, …, Zn , n ≥ 3, such that A = Z1, B = Zn , and for each i , 1 ≤ i < n: Zi is
part of the antecedent of a simple minimal theory of Zi+1.

3 The basic idea and input data

Minimal theories represent deterministic causal structures in a transparent way. Con-
junctions in the antecedent of a minimal theory stand for complex causes of the factor
in the consequent, disjunctions for alternative causes. Hence, minimal theories are
directly causally interpretable. Moreover, minimal theories impose constraints on the
behavior of the factors contained in them. For instance, (1) says that whenever AC
is instantiated, there also is an instance of B. That means, according to (1), the coin-
cidence AC B does not occur. Consequently, information about occurring and non-
occurring coincidences allows for conclusions as to the minimal theory representing
the underlying causal structure. If it is discovered, say, in a given experimental setup,
that AC is never realized in combination with B, while both AC B and AC B are found
to be empirically realized, it follows that AC is minimally sufficient for B relative
to the causal background of the corresponding setup. In this sense, minimal theories
constitute the link between the empirical behavior of the factors in an investigated
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frame and the deterministic structure behind that behavior. The empirical behavior of
the factors allows for inferring minimal theories that describe that behavior, and these
theories, in turn, are causally interpretable.

The procedure of causal reasoning to be developed here operates on pure coinci-
dence data with respect to the factors involved in a causal process whose structure is
to be revealed—hence the label coincidence analysis. Based on its input data, CNA
determines for each factor Zi in the analyzed frame involving, say, n factors which
deterministic dependencies hold between Zi and the other n − 1 factors in the frame.
Most of these dependencies will turn out not to be causally interpretable. The possibly
causally interpretable dependencies are subsequently minimalized and expressed in
terms of minimal theories, which, finally, are straightforwardly causally interpretable
as shown above.

The data processed by CNA is listed analogously to truth tables. Tables as in Table 1
are referred to as coincidence lists. The rows in a coincidence list shall be numbered
starting with the first row below the title row. The row constituted by “1 1 1” in list
(a) is row 1 (R1), the row featuring “1 0 1” is row 2 (R2), and so on. In coincidence
lists a ‘1’ in the column of, say, factor A represents an instance of A, a ‘0’ in that
same column symbolizes the absence of such an instance. Columns of coincidence
lists thus record instances and absences of the factor mentioned in the title row, while
the rows following the title row specify coincidences of the factors in the title row. For
example, the first row, R1, of (a) records the coincidence ABC , the following row,
R2, indicates the coincidence ABC .

List (a) in Table 1 clearly exhibits dependencies among its factors. For instance,
there is no row in (a) featuring ABC . That means the coincidence AB is sufficient for
C . Likewise, there is no row in (a) featuring A in combination with C , which amounts
to the sufficiency of A for C . The sufficient condition AB, hence, contains a sufficient
proper part, A, and, accordingly, is not minimally sufficient. Factor A, on the other
hand, does not have any sufficient proper parts and, thus, is minimally sufficient for C .
Analogously it can be shown that BC is minimally sufficient for A in list (a). As will
be shown below, some of these dependencies are causally interpretable, others are not.

In contrast, list (b) contains all eight logically possible configurations of the three
factors in its frame. (b) is therefore referred to as a complete coincidence list. Complete
lists do not feature dependencies among their factors. Accordingly, complete lists do
not need to be analyzed for dependencies to begin with. Dependencies only emerge in

Table 1 Simple examples of coincidence lists as processed by CNA

A B C

1 1 1
1 0 1
0 1 1
0 0 0

(a)

A B C

1 1 1
1 1 0
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1
0 0 0

(b)

A B C

1 1 1
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1
0 0 0

(c)

A B C

1 1 1
0 0 0

(d)
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incomplete lists, i.e. in lists that feature less than 2n coincidences of the n factors in their
frame. Upon investigating processes with hard to control causal backgrounds, however,
all logically possible factor combinations are no rare empirical result in scientific prac-
tice. In such cases, it is often possible to exclude certain configurations as “don’t care”
cases based on prior causal knowledge.12 Alternatively, significance levels may be
introduced that exclude rarely found configurations from consideration.13 Thus, there
are several methodologies available that reduce complete coincidence lists such as to
render them interpretable in terms of being the result of deterministic causal structures.

List (c) in Table 1 is not complete in this sense. There is no row in that list such
that A and B are instantiated without an instance of C . AB is minimally sufficient
for C relative to list (c). Finally, list (d) is incomplete as well. It is incomplete to such
an extent that too many dependencies emerge. According to list (d), every factor is
minimally sufficient and necessary for every other factor in the corresponding frame.
Given such an abundance of dependencies causes and effects cannot be distinguished.
As the previous section has shown, if causal dependencies are to be oriented on the
basis of mere coincidence data, the analyzed factor frame must include at least two
alternative causes for each effect. As in case of complete lists, prior knowledge may
provide a means to causally analyze data featuring this kind of insufficient diversity.
It is possible that, based on such knowledge, lists as (d) can be supplemented by addi-
tional rows representing coincidences that, notwithstanding the fact that they have not
been observed in a given study, are known to be empirically possible. As such data
adjustment, however, is not part of mechanically uncovering deterministic structures
but a precondition thereof, it shall not be further discussed here.

4 Empirical exhaustiveness and homogeneity

Apart from the requirement as to the minimal diversity of analyzed coincidence lists,
CNA imposes two important constraints on its input data: (I) unambiguous causal
inferences are only possible given that the coincidence data is exhaustive and (II)
the causal background of coincidence lists must be homogeneous. Let us take these
constraints in turn.

Any procedure of causal reasoning, in some way or another, assumes that its input
data is exhaustive. Probabilistic procedures presume the availability of probability
distributions over all variables in the model space, or Ragin’s (1987; 2000) QC A-
algorithm relies on the realizability of all 2m configurations of m cause variables.
Nonetheless, assumptions as regards the exhaustiveness of empirical data are hardly
ever made explicit in studies on causal reasoning.14 Such an implicit taking for granted
of the suitability of input data, however, will not do for the present context. As the
previous section has shown, deterministic dependencies among n factors emerge only
if not all 2n coincidences are contained in an analyzed list. Of course, coincidences
may not only be missing from coincidence lists due to causal dependencies among

12 Cf. Ragin (1987, pp. 113–118).
13 Cf. Ragin (2000, pp. 109–115).
14 One exception is Ragin (1987; 2000). He discusses at length how limited empirical data negatively
affects causal reasoning.
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respective factors. Exhaustive data collection may fail for a host of different reasons.
Financial or technical resources may happen to be limited in experimental sciences
or nature may be found not to provide sufficient data in non-experimental disciplines.
Inexhaustive data is likely to be one of the main reasons for hampered causal interpret-
ability of that data. Minimal theories are only unambiguously assignable to coincidence
lists provided that the latter are assumed to be empirically exhaustive in the following
sense:

Principle of empirical exhaustiveness (Pex): The collection of empirical data
to be processed by CNA faces no practical limitations whatsoever. All coin-
cidences of the analyzed factors that are compatible with the causal structure
regulating the behavior of these factors are in fact observed.

(Pex) guarantees that whenever a coincidence is missing from a CNA-processed
list, this is due to underlying causal dependencies. Clearly, (Pex) constitutes a sweep-
ing idealization with respect to data collection. Such an idealization, however, may
prove to be useful in many practical contexts. It can be implemented as a gauge by
means of which concrete data collections can be measured and thus evaluated. For
clearly, if there is reason to believe that a particular study did not collect all the rele-
vant data about an investigated structure and if there is no other source available that
supplements missing data, the corresponding structure simply cannot be fully uncov-
ered. Accordingly, while (Pex) is a necessary condition for drawing unambiguous
inferences, it is not a necessary condition for drawing (ambiguous) causal inferences
from coincidence lists. If inexhaustive lists are processed by CNA, as will be shown
in Sect. 10 below, more than one minimal theory will be assigned to such lists. The
number of minimal theories assigned to an inexhaustive list depends on the logical
possibilities of complementing a respective inexhaustive list in a causally interpretable
manner. Thus, while it is impossible to infer a single causal structure from an inex-
haustive coincidence list, a set of structures can be inferred such that all of its members
are compatible with the coincidences recorded in the inexhaustive list. Assigning sets
of causal structures to inexhaustive lists, of course, also is a form of causal inference.
Such inferences might prove to be of great practical use, for they at least shed light on
what structures cannot underly an investigated factor frame. Therefore, CNA does not
necessarily have to be based on (Pex). Nonetheless, as failures of (Pex) are a problem
of proper data collection and as the latter is not part of causal reasoning per se, but
a precondition thereof, (Pex) shall be endorsed in Sects. 5–9 which are concerned
with matters of causal reasoning only. A detailed discussion of violations of (Pex) is
postponed until Sect. 10.

While violations of (Pex) induce ambiguities in the output of CNA, yet do not
give rise to fallacious causal inferences, causal fallacies may result if the causal back-
ground of an analyzed coincidence list is not causally homogeneous. A list as (a)
in Table 1 could be generated by suitable separate manipulation of each factor. A
causal interpretation of such an ‘artificial’ list, of course, would be fallacious. Causal
relevancies would be attributed to factors in the frame which, in fact, did not contribute
to the behavior of respective effect factors. Such as to forestall causal fallacies, it must
be presumed that the behavior of the factors in the investigated frame is not con-
founded by causally relevant factors not contained in the frame. Each analysis of
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a causal structure is limited to a small subset of all factors involved in that struc-
ture. Causal structures are extremely complex. Ordinarily, only a few factors are of
interest in the course of concrete studies. While it is not necessary to assume that a
CNA-analyzed coincidence list contains all causally relevant factors involved in an
investigated structure, it must be presupposed that a CNA-analyzed coincidence list
over a frame consisting of Z1, . . . , Zn is generated against a causal background that
is homogeneous with respect to confounders not contained in {Z1, . . . , Zn}. In order
to spell out the notion of a confounder needed for our purposes, the notion of a causal
path is required: A sequence of factors 〈Z1, . . . , Zk〉, k ≥ 2, constitutes a causal path
from Z1 to Zk iff for each Zi and Zi+1, 1 ≤ i < k, in the sequence: Zi is directly
causally relevant to Zi+1. A condition X j is said to be part of a causal path, if at least
one conjunct of X j is contained in the sequence constituting that path. Now the notion
of a confounder can be clarified: If Zn is an effect, a confounder of Zn is a minimally
sufficient condition X j of Zn such that X j is causally relevant to Zn and X j is part
of a causal path leading to Zn not containing any of the factors Z1, . . . , Zn−1. That
means a factor Zo that is causally relevant to an effect Zn and that is not contained
in the investigated frame {Z1, . . . , Zn} cannot confound causal reasoning if all causal
paths connecting Zo and Zn contain at least one factor in {Z1, . . . , Zn}, i.e. if Zo is a
cause or an effect of a factor in the investigated frame. A confounder is a factor or a
conjunction of factors by means of which the investigated effect can be manipulated
independently of the factors in the frame.

The notion of a confounder is to be understood relative to a corresponding effect.
Basically, any factor in an analyzed frame can be seen as an effect of an underlying
structure. However, as will be shown below, there are several constraints subject to
which a factor can be excluded from the set W of potential effects contained within a
given factor frame prior to causally analyzing that frame. Still, depending on the spe-
cific Zi ∈W analyzed in the course of a particular run of CNA, different factors are
to be seen as confounders and, accordingly, must be homogenized. Generally: Input
data processed by CNA is assumed to be generated against causally homogeneous
backgrounds in the sense of (Hc):

Homogeneity (Hc): The background of a causally analyzed list of m coinci-
dences over a factor frame containing the set W of potential effects is causally
homogeneous iff for every confounder X j of every factor in W: X j is absent
in the background of one coincidence iff X j is absent in the backgrounds of all
other m − 1 coincidences.

While only homogeneous coincidence lists are causally analyzable, (Hc) does not
guarantee the causal analyzability of coincidence lists. Rather, (Hc) prevents causal
fallacies. Therefore, a coincidence list may well be homogeneous in terms of (Hc), even
though confounders are instantiated in its background—as long as these confounders
are instantiated in the backgrounds of all coincidences. If confounders are universally
instantiated, effects will be present in all coincidences, irrespective of whether the
other factors in the frame are present or absent. In this case no dependencies emerge
and thus no inferences as to underlying causal structures are drawn. As a consequence,
no causal fallacies are committed either.
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Table 2 Two coincidence lists
that cannot be causally analyzed,
for none of the involved factors
can be interpreted as an effect of
an underlying causal structure in
accordance with (Hc)

A B C

1 1 1
1 0 1
0 1 1
1 1 0

(a)

A B C

1 0 0
0 1 0
0 0 1
0 0 0

(b)

(Hc) excludes a number of coincidence lists from causal analyzability. The lists fed
into CNA may well reveal certain backgrounds to be causally inhomogeneous. Con-
sider, for instance, the lists in Table 2. Assume B to be an effect of the causal structure
generating list (a) in Table 2. A comparison of the coincidences recorded in rows 1
(R1) and 2 (R2) shows that, if B in fact were the effect of the underlying structure,
list (a) would violate (Hc). The only factor varying in R1 and R2 is B; no other factor
in the frame {A, B, C} is accountable for that variation of B, therefore, it must be
due to a varying confounder of B in the unknown or unconsidered background of list
(a). That means assuming B to be an effect contradicts the homogeneity assumption.
In contrast, if B is taken to be a cause factor of the underlying structure, (Hc) is not
violated. Thus, assuming (Hc) to hold for list (a) implies that B cannot be seen as a
possible effect. The same holds for the other two factors in {A, B, C}. In R1 and R3
A is the only varying factor, while no other factor, apart from C , varies in R1 and R4.
Hence, there is no factor in list (a) that could possibly be an effect of an underlying
causal structure in accordance with (Hc). Analogous considerations apply to list (b)
of Table 2.

That means there cannot be a causal structure underlying either list (a) or (b) that
would be compatible with (Hc). Neither list comprises a factor that could be seen as
an effect in accordance with (Hc), i.e. W= ∅. Whenever for every factor Zi contained
in the factor frame of a coincidence list C there are two rows Rk and Rl in C such
that Zi is the only factor varying in Rk and Rl, the background against which the data
in C is collected cannot be homogeneous, for there is no causal structure that could
possibly generate C and accord with (Hc). I shall in this context speak of inhomo-
geneous coincidence lists. (Hc) excludes all inhomogeneous coincidence lists from
being processed by CNA. It must be emphasized, however, that the homogeneity of
coincidence lists is an assumption to which every inference of CNA must be rela-
tivized. It might well be that a list which is not inhomogeneous in the sense defined
above, as e.g. list (a) in Table 1, in fact is the result of an uncontrolled variation of
background confounders. In this sense, only a sufficient and no necessary condition
for the inhomogeneity of a coincidence list is given above. Causal inferences drawn
by CNA will always be of the form “Given that (Hc) is satisfied, such and such are
the underlying causal structure(s)”. Homogeneity is never beyond doubt.

Generally, determining whether empirical exhaustiveness and homogeneity are
satisfied ultimately calls for some form of inductive justification which, however,
is not going to be discussed in the present context. Empirical exhaustiveness and
homogeneity shall simply be taken to bear the inductive risk that comes with drawing
causal inferences based on CNA.
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5 Identification of potential effects

After having clarified the presuppositions on which CNA rests, we can now proceed
to introduce the inference rules of CNA. As anticipated in the previous section, a first
algorithmic step consists in parsing through the factor frame of a coincidence list in
order to determine which of the factors could possibly operate as effects within the
causal structure to be revealed. This step yields a set W of factors whose dependen-
cies on the other factors in the frame are then successively determined by CNA. The
identification of potential effects shall not be considered a proper part of CNA, for
any sort of context-dependent empirical information or even prior causal knowledge
is allowed to enter the determination of W. For instance, if, in a given experimental
setup, a factor Zi is generally instantiated temporally before every other factor in an
analyzed frame {Z1, . . . , Zn}, Zi cannot function as an effect within the underlying
structure. Or prior causal knowledge could be available that establishes the members
of a proper subset of {Z1, . . . , Zn} as root factors, i.e. as factors that are causes, but no
effects within a causal structure. In both cases there is no need to integrate respective
factors in W. CNA does not have to evaluate dependencies among factors that can
be excluded from the set of potential effects to begin with. These context-dependent
constraints on W are not systematizable or, at least, a systematization shall not be
attempted here. Accordingly, no recursively applicable or computable rule can be pro-
vided, which essentially is why the determination of W is not seen as a proper part of
CNA.

Still, the determination of W is not only regulated by spatiotemporal peculiarities
of an analyzed process or by prior causal knowledge. As the previous section has
shown, factors can be excluded from the set of potential effects based on homogeneity
considerations: In order for a factor Zi to be a potential effect, it must not be the
case that the corresponding coincidence list contains two rows such that Zi is the only
varying factor in those rows. Furthermore, since CNA shall be designed to infer causes
of both positive and negative factors, W, in principle, may contain both positive and
negative factors. However, to every minimal theory of a positive factor Zi , there exists
an equivalent minimal theory of Zi , and vice versa.

(5) AC ∨ DE ⇒ B
(6) AD ∨ AE ∨ C D ∨ C E ⇒ B

(5) and (6) are logically equivalent and one of these expressions is a minimal theory if
and only if the other one is too.15 Hence, for simplicity’s sake, CNA can be confined
to identify minimal theories of either positive factors or their negative counterparts.
For this reason, we stipulate that positive factors only shall be included in W.

These considerations taken together yield the following standard as regards the
determination of W. In order to indicate that the non-computable identification of
the set of potential effects is a precondition of launching CNA, yet not a proper part
thereof, it shall be referred to as “step 0*”.

15 For a detailed proof of the existence of an equivalent minimal theory of a negative factor to every minimal
theory of a positive factor cf. Baumgartner (2006, Chap. 3).
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Step 0*—Identification of potential effects: Given a coincidence list C over a
factor frame {Z1, . . . , Zn}, identify the subset W ⊆ {Z1, . . . , Zn} such that for
every Zi : Zi ∈W iff

(1) The totality of available information as to the spatiotemporal ordering of the
instances of the factors in {Z1, . . . , Zn} and the available prior causal knowl-
edge about the behavior of the factors in {Z1, . . . , Zn} does not preclude Zi

to be an effect of the underlying causal structure.
(2) C does not contain two rows Rk and Rl such that Zi is the only factor varying

in the coincidences recorded by Rk and Rl.
(3) Zi is a positive factor.

6 Identification and minimalization of sufficient conditions

After having identified a non-empty set of potential effects, CNA proper sets in. In
a first stage, sufficient conditions for each member of W are identified and minimal-
ized. In order to illustrate this first stage, let us look at a concrete example. Assume
the coincidence list depicted in Table 3 to be our input data. None of the factors in
our exemplary frame {A, B, C, D, E} shall be excluded from effect position by prior
causal knowledge or additional information as to spatiotemporal orderings. Nonethe-
less, the set of potential effects does not correspond to the factor frame of Table 3, i.e.
W = {A, B, C, D, E}. For reasons of compatibility with (Hc), A, B, and D cannot
be effects. For each of these factors there is a pair of rows in Table 3—〈R1,R4〉 for
A, 〈R1,R3〉 for B, 〈R1,R2〉 for D—such that the respective factor is the only varying
factor. Thus, interpreting one of these factors to be an effect of the underlying struc-
ture would contradict CNA’s homogeneity assumption. C and E , thus, are the only
potential effects of the structure generating Table 3, i.e. W = {C, E}. For each of the
factors in W minimally sufficient conditions are now identified. This is done in four
steps: (1) a factor Zi ∈ W is selected, (2) sufficient conditions of Zi are identified,
(3) these sufficient conditions are minimalized, (4) the procedure is restarted at (1)
by selecting another Z j ∈W, until all factors in W have been selected. Let us take a
detailed look at these four steps.

Step 1—Selection of a potential effect: Randomly select one factor Zi ∈
W such that Zi has not been selected in a previous run of steps 1–4. Zi is
termed effect*, the factors in {Z1, . . . , Zi−1, Zi+1, . . . , Zn} are referred to as
remainders.16

Step 2—Identification of sufficient conditions: Identify all sufficient condi-
tions of the effect* Zi according to the following rule:

16 Selected factors are labeled effects* to indicate that they possibly are the effects of the causal struc-
ture generating the input list. Effects* do not necessarily turn out to be (actual) effects at the end of a
CNA-analysis. For instance, the set of effects* contained in list (d) of Table 1 contains all factors in the
frame—provided no further information is available that distinguishes among causes and effects. Yet, none
of these effects* is identified as an actual effect by CNA, because causes and effects cannot be kept apart
relative to that list.
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Table 3 Exemplary
coincidence list to be analyzed
by CNA

A B C D E

1 1 1 1 1
1 1 1 0 1
1 0 1 1 1
0 1 1 1 1
0 1 1 0 1
1 0 1 0 0
0 0 0 1 1
0 0 0 0 0

(SUF) A coincidence Xk of remainders is sufficient for Zi iff the input
list C contains at least one row featuring Xk Zi and no row featuring
Xk Zi .

The order of selecting effects* in step 1 does not matter, as long as it is guaranteed
that, eventually, all members of W are selected. According to (SUF), a coincidence
of remainders can only be sufficient for an effect* if it is instantiated at least once.
Moreover, a coincidence of remainders contained in the input list is not sufficient for a
selected effect* if it is also instantiated in combination with the absence of that effect*.

Let us perform these two steps on our example of Table 3 by first selecting C as
effect*. Step 2 identifies six sufficient conditions of C , i.e. there are six coincidences
of remainders that conform to (SUF): AB DE , AB DE , AB DE , AB DE , AB DE ,
AB DE . The first row (R1) of Table 3 features the coincidence AB DE in combination
with C and there is no row such that AB DE is contained therein in combination with
C . AB DE , thus, is a sufficient condition of C according to (SUF). Analogous con-
siderations apply to the other sufficient conditions mentioned above: R2 is constituted
by AB DE , R3 by AB DE , R4 by AB DE , R5 by AB DE , and R6 features AB DE
without either of these conditions being contained in combination with C in Table 3.

Before sufficient conditions of the remaining effect* E are identified, we proceed
to minimalize the sufficient conditions of C .

Step 3—Minimalization of sufficient conditions: The sufficient conditions of
Zi identified in step 2 are minimalized according to the following rule:

(MSUF) A sufficient condition Z1 Z2 . . . Zh of Zi is minimally sufficient
iff neither Z2 Z3 . . . Zh nor Z1 Z3 . . . Zh nor . . . nor Z1 Z2 . . . Zh−1 are
sufficient for Zi according to (SUF).

Or operationally put:

(MSUF′) Given a sufficient condition Z1 Z2 . . . Zh of Zi , for every Zg

∈ {Z1, Z2, . . . , Zh}, h ≥ g ≥ 1, and every h-tuple 〈Z1′ , Z2′ , . . . , Zh′ 〉
which is a permutation of the h-tuple 〈Z1, Z2, . . . , Zh〉: Eliminate Zg

from Z1 Z2 . . . Zh and check whether Z1 . . . Zg−1 Zg+1 . . . Zh Zi is con-
tained in a row of C. If that is the case, re-add Zg to Z1 . . . Zg−1 Zg+1 . . .

Zh and eliminate Zg+1; if that is not the case, proceed to eliminate Zg+1
without re-adding Zg . The result of performing this redundancy check
on every factor contained in Z1 Z2 . . . Zh is a set of minimally sufficient
conditions of Zi .
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(MSUF) is nothing but an adaptation of the notion of a minimally sufficient condi-
tion as defined in Sect. 2 to the context of coincidence lists. (MSUF′), on the other
hand, can be seen as an operational expression of the analysans of the notion of a
minimally sufficient condition implemented in (MSUF). That is, (MSUF) might be
rephrased as follows: A sufficient condition Z1 Z2 . . . Zh of Zi is minimally sufficient
iff it results from an application of (MSUF′). At the expense of high computational
complexity, the formulation of (MSUF′) is kept as simple as possible above. The order
in which factors are eliminated from sufficient conditions matters as to the minimal-
ization of such conditions—thus the systematic permutation of elimination orders.17

In many cases, however, it is not necessary to completely perform that permutation.
For instance, assume an h-tuple T1 = 〈Z1, . . . , Zd , Zd+1, . . . , Zh〉 has been mini-
malized by means of (MSUF′) up to element Zd , that minimalization of T1 can be
taken over for all h-tuples T2 = 〈Z1, . . . , Zd , Zd+1′ , . . . , Zh′ 〉 that coincide with T1
up to element Zd without reapplying (MSUF′) to T2. Or suppose it has been found
that X1 = Z1 . . . Zd is a minimally sufficient condition of an investigated effect and a
sufficient condition X2 = Z1 Z2 . . . Zh containing Z1 . . . Zd is to be minimalized by
means of (MSUF′). In that case, it is not effective to minimalize X2 by first eliminating
the factors not contained in X1, for this elimination order would just yield X1 again.

Further optimizations of (MSUF′) are conceivable, yet are not going to be discussed
here—they will have to await another paper. More importantly, the intuition behind
(MSUF′) can be more colloquially captured: Every factor contained in a sufficient
condition of Zi is to be tested for redundancy by eliminating it from that condition
and checking whether the remaining condition still is sufficient for Zi or not. A suffi-
cient condition of Zi is minimally sufficient iff every elimination of a factor from that
condition results in the insufficiency of the remaining condition.

Performing step 3 on our exemplary case is straightforward. Step 2 yielded six
sufficient conditions of C . For brevity, I only illustrate the minimalization of these six
conditions by means of two examples. First, take AB DE . That this sufficient con-
dition is not minimally sufficient for C is seen by removing, say, D and finding that
AB E itself is sufficient for C , for Table 3 does not contain a row featuring AB E in
combination with C . AB E still is not minimally sufficient. For instance, both B and
E can be removed without sufficiency being lost. There is no row in Table 3 featuring
AC , which induces that A is sufficient and, since it is a single factor that does not
contain proper parts, minimally sufficient for C . There are other ways to further min-
imalize AB E : A removal of A and E still yields a sufficient condition of C . There is
no row in Table 3 featuring BC . Therefore B is minimally sufficient for C . Second,
let us look at the second sufficient condition of C identified by (SUF). AB DE is not
minimally sufficient because AB can be removed without sufficiency for C being
lost. There is no row in Table 3 featuring DE in combination with C , which induces
that DE is sufficient for C . If DE is further reduced, sufficiency is lost. R7 features

17 This is an important deviation from the minimalization of sufficient conditions in the vein of the Quine–
McCluskey optimization of truth functions. Quine–McCluskey optimization only eliminates conjuncts of
a sufficient condition if the latter reduced by the respective conjunct is actually contained in the truth table.
As will become apparent in Sect. 9, this restriction is a serious limitation of the minimizability of sufficient
conditions involved in chainlike causal structures.
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C E and R8 C D. DE , hence, is minimally sufficient for C . Minimalizing the other
sufficient conditions of C by analogously implementing (MSUF′) does not yield any
further minimally sufficient conditions. All in all, therefore, minimalizing the suffi-
cient conditions of C generates the following three minimally sufficient conditions:
A, B, and DE .

After having identified the minimally sufficient conditions of a first factor Zi ∈W,
the same needs to be done for all other effects*. We thus need a loop that brings
CNA back to step 1, if not all factors in W have been assigned minimally sufficient
conditions yet.

Step 4—(MSUF)-Loop: If all Zi ∈ W have been selected as effects* proceed
to step 5, otherwise go back to step 1.

Applying this loop to our example yields six sufficient conditions of E . Each row
featuring E comprises a sufficient condition of remainders: ABC D, ABC D, ABC D,
ABC D, ABC D, ABC D. For example, R2 of Table 3 is constituted by ABC D and
there is no row featuring ABC D along with E , or R3 comprises ABC D and no
row in Table 3 contains ABC D in combination with E . The sufficiency of the other
conditions is analogously demonstrated. Employing (MSUF) or (MSUF′) to min-
imalize these conditions brings forth three minimally sufficient conditions of E :
B, D, and AC . The list in Table 3 contains no rows featuring either B E , DE , or
AC E .

As an overall result of performing the first stage (steps 1 to 4) of CNA on our
exemplary case, we have thus identified the following minimally sufficient conditions
of the factors in W:

A, B, DE for C,

B, D, AC for E .

7 Identification and minimalization of necessary conditions

As the famous Manchester Hooters counterexample against Mackie’s (1974)
INUS-theory of causation18 demonstrates and as articulated in the analysis of causal
relevance given in Sect. 2, minimally sufficient conditions are not generally causally
interpretable. Only minimally sufficient conditions that are moreover non-redundant
parts of minimally necessary conditions are amenable to a causal interpretation. After
having identified minimally sufficient conditions, we thus now proceed to first form
necessary conditions of the effects* from their minimally sufficient conditions and
then minimalize these necessary conditions. Since factor frames processed by CNA
are incomplete with respect to underlying causal structures, i.e. there supposedly will
always be many causally relevant factors not contained in input lists, effects* can
only be assigned necessary conditions relative to the homogeneous backgrounds of
corresponding coincidence lists. This is easily accomplished by disjunctively
combining the minimally sufficient conditions of each effect*, yielding one neces-
sary condition relative to an input list C and its background for each factor Zi∈W.

18 Cf. Mackie (1974), Baumgartner and Graßhoff (2004, Chap. 5).
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Step 5—Identification of necessary conditions: Identify a necessary condition
of each effect* Zi by disjunctively concatenating Zi ’s minimally sufficient con-
ditions according to the following rule:

(NEC) A disjunction X1 ∨ X2 ∨ · · · ∨ Xh of minimally sufficient con-
ditions of Zi is necessary for Zi iff C contains no row featuring Zi

in combination with ¬(X1 ∨ X2 ∨ · · · ∨ Xh), i.e. no row comprising
X1 X2 . . . Xh Zi .

Performed on our example, step 5 issues A ∨ B ∨ DE and B ∨ D ∨ AC as neces-
sary conditions of C and E , respectively. Such as to determine whether the minimally
sufficient conditions assigned to the effects* at the end of the previous section in fact
are non-redundant parts of necessary conditions, these necessary conditions have to
be minimalized.

Step 6—Minimalization of necessary conditions: The necessary conditions of
every Zi ∈W identified in step 5 are minimalized according to the following rule:

(MNEC) A necessary condition X1 ∨ X2 ∨ · · · ∨ Xh of Zi is minimally
necessary iff neither X2 ∨ X3∨ · · · Xh nor X1∨ X3∨ · · · Xh nor … nor
X1 ∨ X2 ∨ · · · ∨ Xh−1 are necessary for Zi according to (NEC).

Or operationally put:

(MNEC′) Given a necessary condition X1∨X2∨· · ·∨Xh of Zi , for every
Xg ∈ {X1, X2, . . . , Xh}, h ≥ g ≥ 1, and every h-tuple 〈X1′ , X2′ , . . . ,
Xh′ 〉which is a permutation of the h-tuple 〈X1, X2, . . . , Xh〉: Eliminate
Xg from X1∨X2∨· · ·∨Xh and check whether there is a row in C featur-
ing Zi in combination with¬(X1∨ · · ·∨ Xg−1∨ Xg+1∨ · · ·∨ Xh), i.e.
a row comprising X1 . . . Xg−1 Xg+1 . . . Xh Zi . If that is the case, re-add
Xg to X1 ∨ · · · ∨ Xg−1 ∨ Xg+1 ∨ · · · ∨ Xh and eliminate Xg+1; if that
is not the case, proceed to eliminate Xg+1 without re-adding Xg . The
result of performing this redundancy check on every minimally suffi-
cient condition contained in X1 ∨ X2 ∨ · · · ∨ Xh is a set of minimally
necessary conditions of Zi .

In analogy to (MSUF), (MNEC) is nothing but an adaptation of the notion of a min-
imally necessary condition as defined in Sect. 2 to the context of coincidence lists.
(MNEC′), on the other hand, can be seen as an operational expression of the analysans
of the notion of a minimally necessary condition implemented in (MNEC). That means
(MNEC) might be rephrased as follows: A necessary condition X1 ∨ X2 ∨ · · · ∨ Xh

is minimally necessary iff it results from an application of (MNEC′). The formulation
of (MNEC′) has been kept as simple as possible at the expense of its computational
complexity. Analogous optimizations as in case of (MSUF′) are possible with respect
to (MNEC′). The intuition behind (MNEC′) can also be more colloquially captured:
Every minimally sufficient condition contained in a necessary condition of Zi is to
be tested for redundancy by eliminating it from that condition and checking whether
the remaining condition still is necessary for Zi or not. A necessary condition of Zi
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is minimally necessary iff every elimination of a minimally sufficient condition from
that necessary condition results in the loss of necessity of the remaining condition.

Let us illustrate the minimalization of necessary conditions by first performing step
6 on the necessary condition A ∨ B ∨ DE of C . That disjunction is not minimally
necessary for C , because it contains a necessary proper part: A ∨ B. Whenever C is
instantiated in Table 3, there is an instance of either A or B. Table 3 does not contain
a row featuring ABC . DE does not amount to a non-redundant part of a minimally
necessary condition, for whenever DE is instantiated in combination with C , there
also is an instance of A∨B. The same results from applying (MNEC′) to A∨B∨DE .
When eliminating A we find that the rest is no longer necessary for C , because R3

of Table 3 features B DE and C or, more specifically, B DE and C . Hence, A is

re-added. The same is found upon removing B. R5 features ADE and C or ADE
and C , respectively. Removing DE , however, does not result in a loss of necessity.
Therefore, DE is not re-added. For analogous reasons, B ∨ D∨ AC does not amount
to a minimally necessary condition of E either. B ∨ D ∨ AC contains a necessary
proper part: B ∨ D. There is no row in Table 3 featuring B DE . AC is not part of a
minimally necessary condition of E , for whenever AC is instantiated, so is B ∨ D,
but not vice versa. All in all, therefore, we get the following minimally necessary
conditions for our example:

A ∨ B for C,

B ∨ D for E .

8 Framing minimal theories and causal interpretation

In the remaining step of CNA minimal theories are framed from the minimally neces-
sary disjunctions of minimally sufficient conditions identified for each Zi ∈W in step
6. This is done by means of a twofold procedure: First, simple minimal theories are
formed for each Zi ∈W, and second, if the minimal theories � and � of two different
factors in W have a non-empty intersection of factors, � and � are combined to form
the complex minimal theory � ∧ �, such that � ∧ � conforms to the requirements
imposed on the notion of a complex minimal theory in Sect. 2.

Step 7—Framing minimal theories: The minimally necessary disjunctions of
minimally sufficient conditions of each Zi ∈W identified in step 6 are assem-
bled to minimal theories as follows:

(1) For each Zi ∈ W and each minimally necessary disjunction X1 ∨ X2 ∨
· · · ∨ Xh , h ≥ 2,19 of minimally sufficient conditions of Zi : Form a simple
minimal theory � of Zi by making X1 ∨ X2 ∨ · · · ∨ Xh the antecedent of a
double-conditional and Zi its consequent: X1 ∨ X2 ∨ · · · ∨ Xh ⇒ Zi .

(2) Conjunctively combine two simple minimal theories � and � to the complex
minimal theory � ∧� iff � and � conform to the following conditions:

19 The constraint as to a minimum of two alternative minimally sufficient conditions for each effect* does
justice to the minimal complexity of a causal structure required such that its direction is identifiable (cf.
Sect. 2).
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(a) at least one factor in � is part of �;
(b) � and � do not have an identical consequent.

In our exemplary case, step 6 of CNA generates one minimally necessary
disjunction of minimally sufficient conditions for each Zi ∈ W. As we shall see
in Sect. 9, step 6 sometimes identifies more than one minimally necessary disjunc-
tion for certain Zi ∈W. Yet, before we look at ambiguities arising when it comes to
framing minimal theories let us conclude the analysis of our first exemplary coinci-
dence list. Step 7.1 straightforwardly yields one simple minimal theory for C and E
each: A ∨ B ⇒ C , B ∨ D ⇒ E . While these theories hold for the specific causal
background of Table 3, it must not be the case that A and B are themselves sufficient
for C , or B and D are sufficient for E . Moreover, there may well be further mini-
mally sufficient conditions of both C and E . Therefore, suspending the relativization
to the background of Table 3 and expressing these dependencies in their general and
background independent form leads to:

(7) AX1 ∨ B X2 ∨ YC ⇒ C
(8) B X3 ∨ DX4 ∨ YE ⇒ E

The simple minimal theories of C and E share one common factor. The causal structure
regulating the behavior of E is not independent of the structure behind the behavior of
C and vice versa. The behavior of the factors in Table 3, thus, is regulated by a complex
structure. Accordingly, step 7.2 of CNA urges us to conjunctively combine (7) and
(8) to a complex minimal theory. All in all, step 7 assigns the following complex and
background independent minimal theory to the coincidence list in Table 3:

(9) (AX1 ∨ B X2 ∨ YC ⇒ C) ∧ (B X3 ∨ DX4 ∨ YE ⇒ E)

After having assigned a minimal theory to a coincidence list, the by far most intri-
cate hurdles on the way to uncovering the deterministic causal structure behind that
list have been overcome. As we have seen in Sect. 2, there exists a straightforward syn-
tactical convention as regards the causal interpretation of minimal theories. Minimal
theories render causal structures syntactically transparent:

Step 8*—Causal interpretation: Disjuncts in the antecedent of simple minimal
theories are to be interpreted as alternative (complex) causes of the factor in the
consequent. Conjuncts constituting such disjuncts correspond to non-redundant
parts of complex causes. Triples of factors 〈Zh, Zi , Z j 〉, such that Zh appears
in the antecedent of a minimal theory of Zi and Zi is part of a minimal theory
of Z j , are to be interpreted as causal chains.

This interpretation rule is not to be seen as part of CNA proper. Nonetheless, it ful-
fills an essential function on the way to a causal inference. For this reason, the rule
concerning causal interpretation is starred.

CNA thus determines the coincidences in our exemplary Table 3 to be the result of
a deterministic common cause structure: A and B are parts of alternative causes of C ,
while B and D are parts of alternative causes of E . Steps 0* to 7 assign a minimal
theory to a coincidence list and step 8* causally interprets that theory.
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9 Multiple theories

As is well known from the literature on causal Bayesian networks, empirical data is
not always unambiguously identifiable to be the result of one particular causal struc-
ture. At times, data could stem from more than one structure. Such ambiguities are
not a particularity of the probabilistic data processed by procedures analyzing causal
Bayes nets, for, as the exemplary coincidence list analyzed in this section illustrates,
ambiguities can also arise in case of deterministic data. Consider the list in Table 4. It
covers the same factor frame as Table 3 and only differs from the latter with respect
to one single row: R6. In order to determine the set W of potential effects, it again is
assumed that no factor in {A, B, C, D, E} is excluded from effect position by prior
causal knowledge or spatiotemporal constraints. For reasons of compatibility with
(Hc), however, factors A, B, and D cannot be effects. Thus, as in case of Table 3, C
and E are the only potential effects, i.e. W = {C, E}.

Performing steps 2 and 3 on C and E yields the following:

Sufficient conditions of C : AB DE , AB DE , AB DE , AB DE , AB DE , AB DE .
Minimally sufficient conditions of C : A, B, DE .
Sufficient conditions of E : ABC D, ABC D, ABC D, ABC D, ABC D, ABC D,
ABC D.
Minimally sufficient conditions of E : A, B, C , D.

After having identified minimally sufficient conditions, CNA proceeds to first form
and then minimalize necessary conditions for each effect*.

Necessary condition of C : A ∨ B ∨ DE .
Minimally necessary condition of C : A ∨ B.
Necessary condition of E : A ∨ B ∨ C ∨ D.
Minimally necessary conditions of E : A ∨ B ∨ D, C ∨ D.

The necessary condition of C , A ∨ B ∨ DE , contains a necessary proper part, viz.
A ∨ B. Whenever C is instantiated in Table 4, there is an instance of either A or B.
DE does not amount to a non-redundant part of a minimally necessary condition,
for whenever DE is instantiated in combination with C , there also is an instance of
A ∨ B. The necessary condition of E , A ∨ B ∨C ∨ D, not only contains one but two
necessary proper parts: C ∨ D and A ∨ B ∨ D. There is no row in Table 4 featuring
C DE or AB DE . Whenever E is instantiated, there is an instance of C ∨ D and of
A ∨ B ∨ D. These two ways to minimalize A ∨ B ∨ C ∨ D stem from the fact that

Table 4 A second exemplary
coincidence list over the same
factor frame as the list in Table 3

A B C D E

1 1 1 1 1
1 1 1 0 1
1 0 1 1 1
0 1 1 1 1
0 1 1 0 1
1 0 1 0 1
0 0 0 1 1
0 0 0 0 0
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Fig. 1 A causal chain and a
common cause structure that
both could underly the
coincidences recorded in Table 4
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C

B
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(b)(a)

there are biconditional dependencies among the minimally sufficient conditions of E .
Within the homogeneous background of Table 4, C is instantiated if and only if A∨ B
is instantiated.

Drawing on this inventory of minimally necessary conditions CNA frames one
simple minimal theory for C and two for E :

(10) AX1 ∨ B X2 ∨ YC ⇒ C

(11) AX3 ∨ B X4 ∨ DX5 ∨ YE ⇒ E

(12) C X6 ∨ DX7 ∨ YE ⇒ E

The simple minimal theories of C and E share common factors. The behavior of the
factors in Table 4, thus, is regulated by a complex causal structure. In order to deter-
mine what that structure looks like, the simple minimal theories of C and E are to
be conjunctively combined to form a complex theory. Here an ambiguity emerges:
(11) and (12)—if causally interpreted—identify different direct causal relevancies for
E . While according to (11) A and B are directly causally relevant to E , (12) instead
holds C to be directly relevant to E . The coincidences in Table 4 are either generated
by a causal chain such that A and B are parts of alternative causes of C while C and
D are contained in alternative causes of E , or they are generated by a common cause
structure such that A and B are parts of alternative causes of C while A, B, and D are
contained in alternative causes of E . The two causal structures possibly underlying
the list in Table 4 are graphed in Fig. 1.

Step 7 of CNA reflects that ambiguity by assigning the following two alternative
complex minimal theories to the list of Table 4.

(13) (AX1 ∨ B X2 ∨ YC ⇒ C) ∧ (C X3 ∨ DX4 ∨ YE ⇒ E)

(14) (AX1 ∨ B X2 ∨ YC ⇒ C) ∧ (AX5 ∨ B X6 ∨ DX4 ∨ YE ⇒ E)

Based on the list of Table 4 alone it is not determinable whether the behavior of
A, B, C, D, E is regulated by a chain or a common cause structure. If no prior causal
knowledge is available that disambiguates the inference, a disambiguation has to await
later expansions of the factor frame and a pertinent collection of further data. If it is,
for instance, found that by manipulating a further factor F it is possible to manipulate
C while E remains unchanged, the structure behind Table 4 can unambiguously be
identified as a common cause structure. I systematically investigate the ambiguities
that may arise in the course of uncovering deterministic causal chains in Baumgartner
(2008b).
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Before we move on to consider the consequences of violations of (Pex), emphasis
must be put on a major difference between Ragin’s QC A-algorithm and CNA that
is exhibited by this second exemplary application of CNA. An application of the
QC A-algorithm presupposes that factors (or variables) that function as causes in an
investigated structure are independent and are, thus, co-instantiable in all logically
possible combinations.20 This assumption allows for a recourse to the well-known
Quine–McCluskey optimization of truth functions in order to minimalize sufficient
conditions within the QC A framework.21 This independence assumption, however,
has the considerable drawback that causal chains cannot be analyzed by means of
QC A, for chains involve dependencies among cause factors. As soon as the indepen-
dence assumption is dropped—as done in the context of CNA—Quine–McCluskey
optimization no longer eliminates all redundancies. The exemplary coincidence list
in Table 4 features a dependency among A ∨ B and C which all could function as
causes within the underlying structure. There is no row in Table 4 reporting a coin-
cidence of, say, A and C . Quine–McCluskey optimization only eliminates redundant
conjuncts of sufficient conditions if a respective truth table contains two rows which
differ only with respect to presence and absence of that conjunct. Thus, minimalizing
the sufficient conditions of E in Table 4 along the lines of Quine–McCluskey would
not identify, say, A as a minimally sufficient condition of E , notwithstanding the fact
that Table 4 does not contain a coincidence of A and E . Rendering coincidence lists
generated by causal chains amenable to a Boolean analysis, accordingly, calls for a
custom-built minimalization procedure that differs from a standard Quine–McCluskey
optimization insofar as it systematically tests conjuncts Zi of a sufficient condition Xi

for eliminability, irrespective of whether the corresponding coincidence list contains
another sufficient condition X j that only differs from Xi with respect to presence and
absence of Zi .

10 Empirical exhaustiveness violated

As indicated in Sect. 4, assuming the exhaustiveness of analyzed data (Pex) is a pre-
condition of an unambiguous inference to a deterministic structure. Nonetheless, (Pex)
is not a necessary assumption on which an application of CNA must be based, for
even inexhaustive data provides some information as to underlying causal structures.
In order to illustrate this, consider the four coincidences listed in Table 5 which are
all likewise contained in Tables 3 and 4. Against the assumably homogeneous back-
grounds of the coincidences in Table 5 A and B are each minimally sufficient for the
other three factors, while the dependencies among C , D, and E are symmetric and,
thus, not causally interpretable. Accordingly, CNA assigns the following complex
minimal theory to Table 5:

20 May’s four-field method (cf. May 1999) also requires potential causes of an investigated effect to be
independent in this sense. Structures featuring dependencies among causes such as causal chains, hence,
can neither be directly analyzed by QC A nor four-field testing. For a discussion of the limitations of the
four-field method when it comes to uncovering chains cf. Baumgartner and Graßhoff (2004, Chap. 12).
21 Cf. Quine (1952, 1959), Ragin (1987).
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Table 5 An exemplary
inexhaustive coincidence list

A B C D E

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 0 0

(15) (AX1∨B X2∨YC ⇒ C)∧(AX3∨B X4∨YD ⇒ D)∧(AX5∨B X6∨YE ⇒ E)

If (Pex) is assumed to be satisfied, (15) constitutes CNA’s final output. Yet, if (Pex)
is not taken for granted, subsequent extensions of the list in Table 5 are possible. Addi-
tional coincidences, of course, may drastically change CNA’s output. Depending on
whether Table 5 is complemented in terms of, say, Tables 3 or 4, CNA determines the
structure underlying an accordingly complemented list to be the result of a common
cause structure or a chain, respectively. In both cases, A and B are no longer held to
be causally relevant to D. Nonetheless, the causal relevance of A and B to C and E
is untouched by extending Table 5 in the sense of either Table 3 or 4.

Table 5 only features four of the 32 logically possible coincidences over the frame
{A, B, C, D, E}. If (Pex) is not taken for granted, any of the 28 remaining coinci-
dences may be observed later on and integrated into Table 5. However, only a small
subset of all these logically possible extensions would be causally interpretable. Sup-
pose, for instance, that all 28 remaining coincidences are in fact incorporated in Table 5.
The result is a complete coincidence list, which, as shown in Sect. 3, does not fea-
ture any deterministic dependencies. The same consequence follows from extending
Table 5 in terms of lists (a) or (b) in Table 6. Neither (a) nor (b) are causally interpret-
able because none of the involved factors can be seen as an effect of an underlying
structure. For all factors there is a pair of rows, such that the corresponding factor is
the only varying factor in that pair.22 Thus, lists (a) and (b) are inhomogeneous and,
accordingly, W= ∅. An extension of Table 5 as indicated in (c), on the other hand, does
not altogether resist a causal interpretation. A and B are still minimally sufficient for
C , D, and E , yet factor D cannot be an effect of the underlying structure any longer.
The newly added coincidence features D as the only varying factor when compared to
the last coincidence listed in (c). Thus, (c) is not homogeneous with respect to D. D
cannot be integrated into an underlying structure as root factor either, for it is not part
of a minimally sufficient condition of any of the possible effects contained in (c). In
consequence, CNA assigns a minimal theory to (c) that corresponds to (15) reduced by
the middle conjunct. In the same vein, extensions of Table 5 may be inhomogeneous
in regard to any other effects in (15).

These examples of violated empirical exhaustiveness demonstrate that causal rea-
soning based on insufficient data is radically underdetermined. Nonetheless, inex-
haustive lists allow for excluding some causal structures from possibly underlying a
respective list. For example, no extension of the list in Table 5 will ever reveal D to
be a cause of either A or B. The assumed homogeneity of Table 5 determines that,

22 Cf. Sect. 4.
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Table 6 (a) and (b) are two
extensions of Table 5 that are not
causally interpretable; (c) does
not allow for an integration of D
into the underlying causal
structure

Added coincidences are marked
with “+”

A B C D E

1 1 1 1 1
+ 1 1 0 1 1
+ 1 1 1 0 1
+ 1 1 1 1 0

1 0 1 1 1
0 1 1 1 1
0 0 0 0 0

(a)

A B C D E

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1

+ 0 0 0 0 1
+ 0 0 0 1 0
+ 0 0 1 0 0

0 0 0 0 0

(b)

A B C D E

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1

+ 0 0 0 1 0
0 0 0 0 0

(c)

even though A and B may or may not be contained in an underlying causal structure,
if they are thus contained, they are root factors of that structure. For both A and B
there is a pair of rows in Table 5 such that they are the only varying factors in that pair,
and, as upon extending coincidence lists no coincidences are removed, all extensions
of Table 5 will be inhomogeneous with respect to A and B. Accordingly, CNA can be
said to identify all causal structures not featuring causal relevance of either C , D, or
E to A and B as possibly underlying the coincidences in Table 5. That set of causal
structures also includes the empty structure, i.e. the structure such that A, B, C , D,
and E are mutually causally independent.

Depending on the previous causal knowledge about the structure under investiga-
tion the amount of possible extensions of a given coincidence list may be narrowed
down significantly. Certain causal reasoning methodologies available in the literature,
hence, propose to supplement inexhaustive data by assumptions embedded in the avail-
able causal knowledge about the examined process.23 Thus, the underdetermination
of causal reasoning based on inexhaustive data may be compensated by additional
causal assumptions. Or put differently, the amount of elements in the set of struc-
tures assigned to an inexhaustive list as shown in Table 5 can be reduced if it is e.g.
known beforehand that certain factors cannot be causally related or that some factor
can only be the effect and not the cause of some other factor. However, whenever such
previous causal knowledge is not available, inexhaustive empirical data inevitably
underdetermines causal inferences.

11 Summary

The causal structures and the data analyzed in this paper all violate the causal
faithfulness assumption and, accordingly, are not processable by standard algorithms
analyzing causal Bayesian networks as presented e.g. in Spirtes et al. (2000). The pro-
cedure developed in this paper renders deterministic causal structures mechanically
analyzable notwithstanding the fact that they violate faithfulness. CNA implements
Boolean techniques and is custom-built for deterministic structures. Contrary to other
algorithms embedded in the Boolean tradition as Ragin’s QC A-algorithm, CNA does
not presuppose that factors operating as causes in an investigated structure are indepen-

23 Cf. e.g. Ragin (1987, Chap. 7; 2000, pp. 139–141, 198–202, 300–308).
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dent. Dropping that independence assumption, on the one hand, renders CNA capa-
ble of analyzing chainlike structures, on the other hand, prevents CNA from simply
drawing on standard Quine–McCluskey optimization when it comes to minimalizing
deterministic dependencies.

Sections 3 and 4 have shown that not every coincidence list is causally analyzable.
Moreover, in Sect. 9 we have seen that not all coincidence lists can be unambigu-
ously identified to be the result of one specific causal structure. Like algorithms for
causal Bayes nets, CNA sometimes assigns multiple structures to corresponding data.
Accordingly, CNA cannot be seen as a complete inference procedure in the sense
that it assigns a specific deterministic structure to a coincidence list whenever the
coincidences in that list are in fact the result of such a structure. Empirical data may
be insufficient to unambiguously uncover its causal regularities. However, the claim
defended in this paper is that CNA is a correct causal inference procedure in the sense
that whenever CNA assigns a set containing one or more deterministic structure(s)
to a homogenous coincidence list, that list is in fact generated by a member of that
set.
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