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1 Introduction

Predicates such as ‘is bald’, ‘is a species’, ‘is tall’, ‘is red’, ‘is a planet’, ‘is a
heap’, ‘is hard’, ‘is rich’, etc., are paradigmatically vague in that they appear
to lack sharp application boundaries. This is demonstrated in our inability to
locate sharp cut-offs in fine-grained series, culminating in a sorites paradox.
For example, consider a rich woman. Surely, she cannot become poor simply
by losing one dollar, nor by losing any given dollar we might consider between
her current worth and zero. However, if we let ourselves believe that no single
micro-change can turn our rich woman poor, then we can repeat the process
until we have a rich woman with zero dollars. Surely, that is absurd; a woman
with no money is poor.

Numerous attempts to account for vagueness have been made. Many-valued
logics, for example, are motivated by the intuition that there is no fact of the
matter where the boundary of a vague predicate is, and so they introduce
extra truth-values such as ‘indeterminate’.1 Similarly, degree theories, which
introduce continuum many truth-values, proceed from the intuition that there
are no boundaries of any sort.2 The transition from one end to the other of
the spectrum of what counts as red, for example, is a continuous gradient.
Supervaluationism maintains that there is a sharp boundary under a given
way of making a predicate precise (called a ‘precisification’); vague concepts
have many possible precisifications and vagueness is indeterminacy between
which ones we should pick.3

What such accounts have in common is that they attempt to capture vague-
ness vis-a-vis a semantics or logic. That is, they attempt to formulate it in
word-world relations. However, the source of vagueness is unlikely to be se-
mantic in that sense, since it emerges from an inability to complete a kind of
categorization task that needn’t require subjects to have linguistic capacities.
A chimpanzee, for example, is not expected to be any better at picking the first
yellow (ripe) banana in a series that goes from green to yellow at a fine grain of
scale. Moreover, even if we grant a chimpanzee non-linguistic representational
capacities, failing to complete the categorization task may not be the conse-
quence of some feature of the representation, but of how the representation is
processed (an important point we return to later).

If vagueness is inherited from some other source, then we need to show
what else could generate it. In this respect, ontological views and epistemic
views of vagueness fare much better.4 From the ontological view, if there is no
fact of the matter where the edge of the cloud is, it is no surprise that neither
we nor chimpanzees can locate it; if there are no boundaries in the world, then
our representations have nothing to hook onto. Ontological views, however,

1 See Halldén (1949), Körner (1960), and Tye (1994).
2 See Goguen (1969) and Zadeh (1975).
3 See Fine (1975) and Lewis (2001).
4 For discussion of the ontological view, consider van Inwagen (1990), Morreau (2002)

Smith (2005), Tye (1990), and Zemach (1991). For defences of epistemicism, see Sorensen
(2001) and Williamson (1996).
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must make sense of what it means for vagueness to exist in the world. This
is a difficult task, since giving up the idea that there are boundaries in the
world leaves us with a seemingly unpalatable incoherency; singular terms such
as proper names, for example, would no longer be precise.5

Alternatively, epistemic views suggest that our inability to locate the sharp
boundaries of vague predicates is grounded in the limitations of what can be
known by limited cognitive agents such as us. Even epistemic views, however,
are still unsatisfactory as an explanation for why vagueness exists. Vagueness
appears to emerge from something more basic than a lack of knowledge. It
seems that the problem is not just that I don’t know where to draw the
boundary in a sorites series but that I can’t even maintain a belief or opinion
about it. If I look at a colour spectrum from orange to red, I cannot get myself
to draw a line such that I believe the line indicates the end of orange and
the beginning of non-orange. This suggests that the problem of vagueness is
grounded in something more fundamental than knowledge, i.e., vagueness does
not merely involve the inability to form a justified belief of where a boundary
is, it involves the inability to form a belief at all.6

There is, however, another possible source of vagueness. Let us suppose
that, despite appearances and intuitions, our vague predicates are sharp. We
now ask, is there any possible explanation for why we would fail to find pair-
wise cases where the relevant predicate applies to one but not the other? Con-
sider the following. It is uncontentious that when we are presented with cases
to classify (either by ostension or by invoking our imagination) the cognitive
decision procedure requires the processing of information. Such information
processing occurs over some period of time and possibly between the classifi-
cation of different cases. So, it is possible that certain changes can occur after
the classification of one case but before another, e.g., a sharp boundary might
move in the interim. Given that finding a sharp boundary in a sorites series
depends on us finding pairwise cases where the relevant predicate applies to
one but not the other, it is thus possible that no such pairs can be found with
the cognitive classification procedures we possess. This is because the sharp
boundary may shift after the classification of the first member of the pair in
such a way that the classification of the second member is in agreement with
the classification of the first.

5 Evans (1978) has probably the most well known argument against the view that objects
can be vague, which is discussed again in Lewis (1988). Briefly, the argument is that if there
are vague objects, then there could also be vague identities. A vague object like the Sahara
desert, for example, would be indefinitely identical to its sharply bounded counterpart. It
turns out however, that if objects a and b are indefinitely identical, that entails that the
two objects are not identical. This is an odd result in and of itself, but further strengthing
of the assumptions with a definitely operator leads to a flat-out contradiction. Defenses of
the view exist (Tye, 1990), but has not gained widespread agreement. See Prinz (1998) for
an overview.

6 An epistemicist may insist that I can’t maintain a belief because: (i) I can’t maintain
a justified belief, and (ii) good epistemic agents refuse to maintain unjustified beliefs. Then
the point being made can be recapitulated in terms of (i). That is, we need an explanation
for why I cannot maintain a justified belief, where justification is something that can be
entangled internally with the psychological inability we are attempting to explain.
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Notice that the above line of reasoning needn’t make a commitment that
vague predicates have sharp boundaries. Regardless of whether boundaries
are sharp, our inability to locate them may be because of the mobility of
the cognitive sortal (where ‘sortal’ stands in for ‘class’, ‘concept’, ‘category’,
‘predicate’, or ‘representation’).

Put succinctly, we name this line of thought as follows:

(Cognitive) Sortal Mobility: The mobility of cognitive sortals explains our
inability to find sharp boundaries.

This paper argues that Cognitive Sortal Mobility (heretofore abbreviated
as Sortal Mobility) is not just a mere possibility, but also a plausibility. A fast
route to this claim is to point to the fact that we, even upon trying, do not
(and maybe even cannot) find such pairwise cases. So, by inference to the best
explanation, we are instantiations of systems that process information in the
way just outlined. Such an argument, though, is admittedly too quick.

A more thorough argument is presented in this paper, which has three
main threads, briefly summarized here. The first makes use of a synthetic
methodology: we construct a (theoretical) model that is based on mental mech-
anisms which, quite plausibly, underlie our classification faculties (outlined
in the paragraph below).7 The second establishes that agents implementing
the model are able to adapt their classification dispositions to incoming data
streams, which, given our everyday changing environment, makes them better
off than agents with static classifications. The third thread looks at the kind
of data that cognitively mobile agents would produce and argues that humans
produce such data as well, particularly in the context of the sorites paradox.

As far as the inability of locating supposedly sharp boundaries goes, this
turns out to be a by-product. When an agent implementing the model con-
siders certain cases in a sorites series, the relevant classes (and hence their
boundaries) are updated. Considering certain cases can thereby bring about a
kind of interaction effect: searching for a boundary can cause the boundary to
move.8 In fact, I will prove from the model, that the interaction effect renders
an agent unable to locate a boundary beyond a limited degree of precision.
Assuming that an agent must proceed through some indirect method of inves-
tigation to get information about their sortals (i.e., that neither the cognitive
representation nor the updating processes are immediately transparent to an
agent) and that the agent is unable to directly control the updating of the rel-
evant sortal (i.e., an agent cannot voluntarily fix classificatory dispositions),
then the agent is not in a position to find a boundary, even if there is one.

We thereby establish that Sortal Mobility is a plausible thesis about why
we are unable to locate boundaries of vague predicates by: i) arguing for the
plausibility that we are implementations of the kind of model constructed; and
ii) showing that we would thereby not be able to locate boundaries beyond a
degree of precision even if they were sharp.

7 ‘Synthetic methodology’ is an allusion to the work of Braitenberg (1984).
8 This is closely related to ideas in contextualism, discussed in section 4.
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The rest of this paper proceeds as follows. In Section 2 I develop an idealized
cognitive model with the kind of features described. I then prove, in Section
3, that if the model were implemented in an (artificial) agent, it could locate
its sortals only up to a bounded degree of precision. The model is sufficiently
general; systems of the same type will be confronted with the same limitations
given a particular method of investigating their sortals. In Section 4, I further
present the case that humans are plausibly like the model. This is done by (i)
briefly looking at the literature, and (ii) pointing out that the model (with an
additional assumption about generalizations) predicts sorites susceptibility –
the fact that the inductive step in a sorites paradox is compelling when cases
are considered at a fine enough level of grain.

2 Adaptive Categorization

We begin by developing an idealized model of a system that, if implemented,
would exhibit classification behaviour akin to the cognitive systems of hu-
mans. We will see how a system (artificial or natural) with limited resources
can significantly shift its classificatory dispositions. This is because of a sys-
tem’s ability to adapt to changes in its environment. (Where no philosophical
scruples arise, we say that the system shifts its concepts or categories, instead
of ‘classificatory dispositions’. Such terminology allows a more natural way of
talking, but is not required. What matters to our construction is that there
are changes in classificatory dispositions.)

2.1 Economical Representations

To start, let us give our system a way of categorizing an infinite number
of cases, including those that have not yet been encountered. Of course given
finite resources, it is impossible (and even if it were possible, it would be grossly
uneconomical) to represent an infinite collection of cases with an equinumerous
collection of encodings. Apples, to take one example, can vary infinitely by
their colour, shape, etc., so it is plainly impossible to pre-program the system
with an explicit encoding for each case.9 So what we seek is a way to represent
an infinite number of cases by some finitary means.

One method of representing an infinite number of cases (either countable
or uncountable) through finitary means has been presented by prototype and
exemplar theories. The core idea is to take some cases (i.e. a prototype or an
exemplar) and a rule that determines how much, and in what ways, new cases

9 In fact, that would be to miss the purpose of representation altogether; the generality
of a representation, i.e., that it can apply to numerous cases, is what makes it useful to an
agent. We see this idea already back in Kant in his distinction between concepts (which are
general) and intuitions (which are singular) (Kant, 1996, B377).
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are allowed to vary from these paradigms.10 In this way, a new case can be
recognized even if that case has never been explicitly encoded in the system.

We can illustrate how such a system might look with a toy example. Sup-
pose the task of our artificial system is to classify people that are deemed as
middle aged (MA). We could have the system represent the age range by
explicitly encoding each of the years, so that MA = (35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55). Then, when presented
with a case, this system checks that it satisfies middle aged by looking to see
whether it appears on the list. Alternatively, we can save resources by having
the system put a few cases on a list and apply a rule to it.11 For example, we
could have MA = (40, 47, 50)± 5, where the list is designated by “()” and the
rule operating on that list is here indicated by ±. The rule ‘±5’ says to include
those cases that are 5 more than the highest member on the list and 5 less
than the lowest member on the list. (The rule ±5 is obviously very simple and
purposely so. It is meant to be illustrative only and not representative of the
rules operating in more complex systems.) Admittedly, the age scale chosen,
i.e. years, is discrete and fairly coarse grained. This means that the economical
advantage of the second route is only slightly better. The advantage increases
however if we change to a scale that is finer grained, e.g. days. This is because
we would now require more cases to be on the list, i.e., we would have to put
48 years and 234 days on the list, 48 years and 235 days, etc. In the extreme
case however, notice that, if the scale were dense (and hence ‘infinitely fine
grained’), then only the second route could finitely represent the infinitely
varying cases.

It should be noted that our toy example involves a category that, at least in
part, can be represented quantitatively. It is not obvious how we would encode
representations for predicates such as ‘is funny’ without having corresponding
quantitative metrics. This is an important but separate issue. We continue
to develop our model using quantifiable metrics, leaving aside the task of
applying the same principles to predicates that don’t obviously have metrics
of this sort. After all, the predicates of primary interest are those that are

10 Of course both theories, either broadly construed or in their more detailed developments,
differ on how exactly cases are encoded in the system. Prototype theories rely on a process of
abstraction to generate a summary representation of statistically significant properties which
are then used to determine the concept. In this way, the “prototype” need not correspond
to specific cases. Exemplar theories do not rely on an abstract summary, but rather take
exemplars to govern a concept. Exemplars are encoded property descriptions of a case or
cases. The essential difference between exemplars and prototypes is that the former are
encodings of many encountered cases where prototypes are encodings of parameters that
characterize those cases. See Smith and Medin (1981) for a general overview and Smith
and Medin (1999) for further discussion of the differences between prototypes and exemplar
theories. See Malt (1989) who argues for both prototypes and exemplars and that subjects
can use either in categorization tasks. See Barsalou (1990) who argues that we cannot
empirically distinguish between exemplar and abstracted representations.
11 Lists don’t literally contain cases like Dorothy, Lassie the dog, or grandma. Talking

about adding or taking cases off a list is shorthand for the representational operations in a
system of encodings.
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sorites susceptible, and a sorites series is usually presented with predicates
that have explicitly quantifiable metrics.

2.2 Waste versus Recycle

Now suppose our system has gone through the process of classifying a new
case. What might happen with the results of that processing? One option
is that the system produces a single-serve representation only to then forget
it (by not storing it or any traces of it). The alternative is that the system
adds the new case (or information about it) to the ones it already encodes as
explicit exemplars. To track these two options, let us consider two separate
systems: one that trashes information after it uses it, the other that updates
itself in reaction to the explicitly considered case. Let these be called Waste
and Recycle respectively.

As a way of illustrating the difference between Waste and Recycle, we
consider again the toy example (keeping in mind that they are oversimplified
versions of much more complex systems like ourselves). Suppose both systems
have the task of classifying people as middle aged, and that each have the
following hard-represented in them: MA = (40, 47, 50)± 5. We now put them
to work. Each time Waste encounters a case in the interval [35,55], e.g. 46,
it will classify that case as ‘middle-aged’. Cnce that determination is made,
and once it has had the appropriate causal effects, it then trashes the data
just produced, so that further classifications are unaffected by it. Recycle, on
the other hand, has the same classification process, but instead of deleting the
data, it assimilates it by adding it to the list. The list is updated so as to
reflect the fact that a concrete instance of 46 was classified as a positive case.
Hence, after this change, MA = (40, 46, 47, 50) ± 5. This will turn out to be
advantageous.

Recycle’s updating procedure will cause its behaviour to deviate over time.
For example, given that Recycle’s initial list and rules is MA = (40, 47, 50)±5,
when we give it cases like 42, 49, or 44, the list begins to expand, but the cases
it would classify as middle aged, namely those that fall in the interval [35,
55], stay the same. But the interval would change if we give it a case like 53;
because it is a positive case that is nonetheless higher than any case explicitly
on the list, Recycle updates, and then the rule ‘±5’ takes 53 as the highest
and not 50, changing the interval of cases it would classify as middle aged
to [35, 58]. (For simplicity, nothing has been said about how cases are taken
off the list. This can be represented by a competing list (such as elderly)
which, as it expands, takes cases away from middle aged.)

Waste’s dispositions are static in that it will always classify 55 as middle
aged, but never 56 since it falls outside [35,55]. Recycle on the other hand will
differ because its dispositions will change as a result of cases it has previously
classified. So where Waste’s classificatory dispositions are independent of its
past, Recycle’s are dependent on it.
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Recycle’s capacity to change its dispositions gives it a significant advan-
tage over Waste when operating in a changing environment. For if new cases
keep continuing to be only somewhat like old cases, then Recycle will update
to match that trend, allowing it to intelligently adapt.12 This advantage is
discussed in more detail in section 4.

In the next section, we regiment ideas about updating with an idealized
cognitive model. We can then examine some relevant consequences with more
rigour. The fundamental result will be that boundaries are not findable when
searched for at a fine grain of scale.

2.3 Generalization and Adaptive Lists

Let us develop a model based on adaptive lists. An adaptive list is a list of
encodings of cases (list of cases for shorthand) that can update, like Recy-
cle’s. Adaptive lists are intended to capture two primary ideas. The first is
that a list governs what falls in an extension in the same way that a proto-
type or exemplar does – by encoding certain cases which then, together with
a deviation rule, determine the membership conditions. The second is that
adaptive lists change the system’s classificatory dispositions by updating in
response to incoming data. As such, the account is distinguished from other
archetype-theories that posit unchanging archetypes or exemplars.

We use adaptive lists to help us generalize from our Recycle system. To
begin, let us distinguish between the adaptive list and the projection. The
adaptive list A contains those cases that are explicitly encoded in the system
at a time (e.g. Recycle’s list at a time for middle aged contained 40, 47,
50). A projection, on the other hand, is the “projected” output of a rule
that takes the explicit cases as input – it is all the admissible cases that the
system would classify positively (e.g. all the cases in the range of (40, 47, 50)±
5).13 Now, we need a way of capturing how information about new cases is
assimilated, so let us introduce an update procedure. An update is a two-
step process: First, certain cases of the projection are selected and a ‘new’
adaptive list A′ is reconstructed. (How cases of the projection are selected can
occur in a variety of ways, but none are essential to the model.) Second, a
‘new’ projection is recalculated from the adaptive list A′, from which cases
will again be selected, and so on.14 In this way, updating an adaptive list can

12 One might be inclined to object that such trend-matching could lead to complete ex-
pansion or contraction, which is neither advantageous, nor an accurate reflection of our
categorization faculty. This objection is addressed in section 4.3.1.
13 I talk as if an projection were a projected entity of a (mental) representation. However,

a projection is just the set of cases that an agent is disposed to accept as being equivalent.
14 It may turn out that some updates are redundant. In this case, the projection at tn is

extensionally identical to the projection at tn+1 because they include the same cases. An
update is non-redundant when this fails to hold.
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shift its projection, which is what allows the system to adapt to changes like
those we have considered.15

The main idea can be understood as an instance of more pervasive phe-
nomena: some concrete facts about a system determine its dispositions which,
when triggered, alter the concrete facts about the system, which in turn alter
its dispositions. Such cycling appears to be ubiquitous in nature and organized
systems generally. Consider your eating cycle as an example. Your recent meals
influence what you would be disposed to eat. What you are disposed to eat
constrains (or even determines) what you do eat. What you do eat determines
what your recent meals are. And what your recent meals are influence what
you are disposed to eat. So, triggering different eating dispositions in the past
can result in different eating dispositions in the future. The same is true of
adaptive lists. The cases it is disposed to admit constrain the cases it does
admit, which then influence the cases it is disposed to admit.

3 Sortal Mobility and Bounded Precision

In this section some basic limitations about how we can investigate our catego-
rization faculties are briefly discussed. I then prove that when such limitations
are reflected in the model, further limitations follow. The most important lim-
itation we are interested in is that the location of a boundary cannot be found
when the degree of adaptability (i.e., the amount that a projection shifts from
updating the adaptive list) is greater than the grain of the scale on which
the boundary is searched. Hence, even if boundaries were sharp, they would
not be findable if our conceptual mechanisms were governed by an adaptive
dispositional mechanism of the sort suggested in the previous section.

3.1 Learning by Testing

We want our model to be informative about us and how we investigate our
mental states. An integral part of learning about one’s own mental states is
testing. Our dispositions to reason, act, or make decisions in a particular way
are manifested in counterfactual circumstances, and so we imagine ourselves
in such circumstances to acquire information.

This is also reflected in the way we access and acquire knowledge about
the content of our concepts. Consider the post-Gettier investigation of our

15 One might ask whether adaptive lists are sets. Adaptive lists persist through time,
they are not “destroyed” when the encodings are changed. This means their identities are
not determined extensionally, and consequently that they are not sets. What ontological
commitments we have regarding adaptive lists, especially given that a projection can shift,
is a question that deserves more exploration in its own right. The current objection however,
is to represent the operational nature of a classification system. For that reason I leave the
question about ontology to the side.
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concept of knowledge.16 We learn about the concept of knowledge by testing
our dispositions to accept (hypothetical) examples as instances of it.17

So, let us make the same hold true of Recycle. That means that the way
Recycle will learn about its own categorization faculty is by testing its dispo-
sitions to accept cases. Note that, although Recycle is initially ignorant of how
it classifies, this does not presuppose that a boundary could not be located.
We are simply stipulating that Recycle does not start by being omniscient
about its inner states, and that it learns by doing tests on itself.

Now, the performance of such tests have an interesting interaction effect.
Given Recycle’s architecture, whenever it tests to see if it is disposed to accept
a case, and that case is accepted, then the relevant adaptive list is updated
to reflect that. Consequently, a test is an indication of some of Recycle’s clas-
sificatory dispositions at the time of the testing, but the testing itself affects
its classificatory dispositions. The result is that tests can affect the initial
conditions of subsequent tests.

This is like a combination of the observer-effect (where the phenomenon
being observed is affected by the very act of observing) and the primacy or re-
cency effect (where earlier stimuli can affect responses to later stimuli). These
classification tests have this interaction-effect because they require the use of
the very faculty they are testing – the categorization faculty. And the catego-
rization faculty is “in the dark” about whether it is being deployed for mere
testing or genuine use – it functions just the same whether it is “in the wild”
or in the comfort of an armchair. So such a test has two consequences: one is
that it generates data and another is that it updates the system.

3.2 The Bounded Precision Theorem

We can now prove that certain systems like Recycle have interesting limitations
given their architecture. The most significant result we show is that it is not
possible to find a boundary (i.e., a pair of neighbouring cases such that they
are given different classification results) when the level of search grain is equal
to or finer than the level at which our model updates. To show this, we require
a little more terminology, guided by our construction of Recycle and adaptive
lists.

Case Testing: To test a case is to check whether it is a member of a list’s
projection. A test, O, is taken at a particular time or from a particular state,
t, and takes cases, a, b, c, d, . . ., as input. A test has two consequences. First,
it gives either a positive result for membership, >, or a negative result for
non-membership, ⊥. E.g. Ot(a) = ⊥, which can be read as “Testing case a at
time or state t yields a negative result”. Second, a test can signal an update
for the relevant tested list.

16 See Sturgeon (1993) and Goldman (1988) for discussion.
17 Interestingly, peoples’ dispositions, and accordingly their intuitions, vary widely about

which examples are and are not instances of knowledge (Goldman, 2003), which is evidence
that people encode different membership conditions.
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Updating: When a case is close to the boundary, the boundary of the
relevant list is shifted by some non-zero magnitude. The amount of shift is
determined by some multiple of a grain, which is the amount that a list can
update given the relevant factors. Finer grained updates are shifts by smaller
amounts than coarser grained updates. Every (non-redundant) update has a
minimal unit of shift, which is equal to the grain.18 For example, if the degree
of grain went to the first decimal place, then a minimal unit of shift would be
a tenth.

Finding a Boundary: To find a boundary on some relevant scale involves
two steps: i) A case a is picked for a test Ot with a positive result, >; ii) another
case b for a subsequent test Ot+1 is picked and has a negative result, ⊥. The
result of these two steps is an interval that approximates the location of the
boundary.19

Finding boundaries can be done to varying degrees of precision, where
precision is determined by the size of the interval. For example, the (upper)
boundary of middle aged on a scale of years would be found if the two-step
process produces the interval [43,63]. Precision increases inversely with the
magnitude of the interval, e.g. [44,61] is more precise than [43,63]. Maximum
precision is achieved when the interval is equivalent to a minimal unit of
grain of the scale in question. For example, on the scale of years as expressed
with positive integers, [55,56] would be maximally precise. (Where the scale is
dense, there is no maximal precision, since there is no smallest grain. Instead,
there are arbitrarily high degrees of precision, since intervals can be arbitrarily
small.)

We can now prove that whenever the grain of the scale on which a boundary
is considered is equal to or finer than the amount it shifts from updating, the
boundary cannot be found with maximal precision. To see this briefly and
intuitively, suppose we give our model a pair of cases to test, n and n + 1,
where the distance between them is equal to or finer than a grain on a scale of
updating. If n is tested first and it is a positive case near enough to a boundary,
then a boundary shift is signaled in the direction of expansion. Consequently,
the boundary will shift so that it includes both n and n+1 (since the distance
of a shift is at least as large as the distance between n and n + 1). Then n + 1
will be given the same classification as n. The same holds if n+1 is tested first
and is a negative case near enough to a boundary (where the boundary shifts
in the direction of contraction). Hence, testing any pair of cases n and n + 1
at a level of grain equal to or finer than the level of update will not reveal a
boundary.

18 Any time we speak of an update, we mean a non-redundant one.
19 With the way we have designed the system, updating occurs when a test yields a positive

result. To handle cases of updating where the first test yields a negative result, we consider
the complementary concept for which it is a positive result and then proceed likewise. This
is not an ad hoc amendment, for it is quite plausible that a concept and its complement
are connected by a rule so that updating one automatically updates the other. We simply
consider tests with positive results first for ease of proof.
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More thoroughly, to claim that a boundary can be found with maximal
precision on some scale is to have two conditions satisfied:

(C1) testing a pair of cases results in an interval, i.e. a space between which
the boundary is found, and

(C2) the magnitude of the interval is equal to (or finer than) the grain of the
scale on which the cases are tested.

Theorem 1 (Bounded Precision Theorem) For any j grained updating
and a k grained scale, if j ≥ k, then the boundary cannot be found with maximal
precision on the k grained scale.

Proof We proceed by assuming that both C1 and C2 are met when j ≥ k. C1
says we have tested a pair of cases with one of the following results:

(i) Ot(a) = >, Ot+1(b) = ⊥, or
(ii) Ot(b) = >, Ot+1(a) = ⊥

Consider (i). Since by assumption C2 is also met, then a and b must define an
interval equal to (or smaller than) 1k grain of scale. That also means a is closest
to the boundary (otherwise, we would have to suppose that there is another
case ‘wedged’ in between, but then j would have to be finer than k, contrary
to our assumption). If anything signals an update by being close enough to the
boundary, the closest case does. Hence, Ot(a) would have signaled an update
at t. An update causes the boundary to shift by at least the magnitude of 1j
grain unit of updating. Given that the boundary shifts away from accepted
cases, b must be at least 1j unit of antecedent distance away from a given that
j ≥ k and Ot+1(b) = ⊥. Hence, after the shift, it is at least 1j+1k distance
away. 1j unit + 1k unit is greater than 1k unit (whenever j is positive, which it
is since we’re dealing with absolute values). But then C2 is not satisfied, since
the distance between a and b is greater than a single k grain unit, i.e., it is not
maximally precise. Hence (i) is not a possible result given our assumptions. The
proof goes likewise for result (ii). Since (i) and (ii) are exhaustive, satisfying
C1 excludes the satisfaction of C2.

Example 1 Consider a slightly modifed system, Recycle∗, where middle
aged is represented as MA = (46, 48, 50) ± 1. Suppose that when Recycle∗

tests cases near the boundary (where conservatively, ‘near’ means at the very
least ‘touching the boundary’) it updates by adding them to the list. Now
suppose we gave Recycle∗ the task of finding a boundary for middle aged
on the scale of years as expressed in natural numbers. Then Recycle is able to
successfully find a boundary, which happens to be between 51 and 52 before
testing, with an interval that has a magnitude of at least 2. This is because,
according to the supposed updating procedure, when 51 is tested the bound-
ary shifts so that the highest member of the list is now 51. Consequently, MA
comes to include 52. This means that the next available case that would give
a negative test result is 53. So, either Recycle tests 52 for the second test, in
which case it doesn’t get the contrastive result, or it tests 53 or greater and
gets the contrastive result, in which case the interval is not maximally precise.
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Recycle’s updating limits the level of precision with which a boundary can be
found, which is the Bounded Precision Theorem.

In contrast to our inability to find boundaries on fine grains of scale, when
we consider cases on coarse grains, it turns out that we can locate boundaries.
For example, we can find the boundary for red when we consider a series
consisting of 8 crayons that go from red to green. In other words, an (in)ability
to find boundaries is grain sensitive; finding a boundary requires a coarse-
enough grain of scale. This turns out to be a trivial corollary of the Bounded
Precision Theorem.

Corollary 2 (Grain Sensitivity) If a boundary can be found with maximal
precision for some k grained scale, then j < k, i.e. the j grain of the update
procedure is finer than the k grained scale.

Proof Contrapositive of Bounded Precision Theorem.

Example 2 If the grain of updating were somehow more fine grained than
the scale on which it operates, e.g. all else from example 1 were the same but
the minimal update was 0.5 years, then a boundary could be located because
56 would give a negative result (at least for the first pair of tests). Corollary 2
says that when a boundary is found with maximal precision, then the grain of
the update rule is finer than the scale in question. That is in fact the case - a
scale of half-years is finer than a grain on the scale of years. So boundaries can
be located with maximal precision, but only when considered on coarse scales
– we, for example, can locate the boundary for middle aged when thinking
in terms of decades (a scale with ten-year units), but not in minutes (a scale
with units consisting of 0.000001903 years).

Corollary 3 If a boundary can be located on all scales with non-zero units of
grain, then the update rule is null, i.e. there is no shifting.

Proof We proceed by reductio. Suppose a boundary can be located on all scales
with non-zero units of grain and an update rule is not null. Then i < k for
any non-zero k (from corollary 2). But that means i = 0, since it is smaller
than all possible non-zero values of k, which contradicts the assumption that
the update grain is not null.

Example 3 Suppose we have some class that never updates, e.g., 1hour.
Then we could select any arbitrarily fine grained scale, e.g. milliseconds, and
still locate the boundary. This is a good result since mathematical concepts
are presumably like this for humans. Such concepts, being perfectly stable, are
perfectly precise.

3.3 Our Model and Sortal Mobility

Let us take stock. It has been suggested that a system with adaptive concepts
recycles information whenever it classifies a case. The corresponding result
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of this recycling process is that the boundary of the concept shifts, i.e. the
dispositions of the system deploying the concept change. As we will see below,
this is on the whole advantageous, since it allows a system to adapt to the
incoming data. But it also means there are certain limitations pertaining to
the investigation of the nature of an adaptive concept. For example, in the
toy examples we have considered with Recycle and Waste, there are tasks that
Recycle cannot complete that a static system like Waste can. If we ask Recycle,
for example, to find the boundary for middle aged with a precision equal to
the scale in question, it will fail. But we also learned that this is not so if
Recycle were only required to find the boundary on the scale of decades. This
is because the minimum update on Recycle’s scale of years is much smaller
than the precision demanded by the task, so the shifting does not disrupt the
search for maximal precision.

Sortal Mobility says that an inability to locate sharp boundaries is ex-
plained by the mobility of cognitive sortals (where for ease we have inter-
changed ‘sortal’, ‘concept’, and ‘class’). On the model we have considered, we
can assume that a boundary is sharp and show that nevertheless it can not be
found beyond a degree of precision. So, an inability to locate sharp boundaries
is not necessarily because there are none, it could be because finding them
requires a degree of precision that is equal to or dwarfed by their degree of
mobility. We have thus established that if we are like the model, then we
should not expect to locate sharp boundaries (even if those boundaries are
indeed sharp). In the next section we provide reasons for thinking that we are
indeed like the model.

4 How Plausible Is It That We Are Like the Model?

We have developed Recycle, an idealized model on which we can suppose that
boundaries are sharp but are nevertheless not findable beyond a degree of
precision (where that degree is set by the mobility of the sortal). We now
consider the question of whether it is plausible that we are implementations
of Recycyle-like systems. The literature, which includes philosophy, artificial
intelligence, and psychology, suggests an affirmative answer – we are such
systems. In addition, we show that on the assumption that we are such systems
(along with a methodological assumption about refuting generalizations), we
get an explanation for why the sorites paradox is compelling. Hence Cognitive
Sortal Mobility is a plausible thesis.

4.1 We Classify Dynamically

In philosophy, contextualism about vagueness is a good example of a view
which holds that we classify dynamically (Keefe, 2000). A contextualist claims
that the boundary of a vague predicate cannot be found because its content
or extension shifts as the speaker considers cases in a sorites series (i.e., se-
ries of cases where each case is similar to its immediate neighbours but not
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necessarily its extended neighbours). One reason for why the shift occurs is
because the speaker or agent updates the relevant (implicit) comparison class
(Ludlow, 1989). For example, when uttering the sentence, ‘that elephant is
heavy and that feather is too’ the speaker updates the relevant comparison
class throughout the utterance, making the content of it something akin to
that elephant is heavy for an elephant and that feather is heavy for a feather.
According to a contextualist, vague predicates do something similar when we
apply them through a sorites series.

An updating comparison class is not the only contextualist explanation
for why vague predicates shift. Some contextualists have suggested that vague
predicates involve variation in elements of ‘conversational score’ (Lewis, 1979;
Shapiro, 2006, 2003). Others have suggested that since vagueness can occur
without a shift in context (where ‘context’ is externally construed), we also
need an account of variation in psychological context (i.e., we should construe
‘context’ broadly so that it also includes mental states Raffman (1996, 2004)).
So different accounts of variation are on the market. Nonetheless, all of them
suggest that there is some kind of dynamic shifting that vague predicates
undergo when we apply them to sorites series.

The claim that such shifting can and does occur is substantiated by demon-
strations of it, both in philosophical and psychological domains. Swain et al.
(2008) found that intuitions about how to classify cases of knowledge can vary
according to whether, and which, other thought experiments were considered
beforehand. This has also been documented more generally in psychology when
people attempt to give definitions for their own categories (Barsalou, 1987,
1993). Moreover, people’s classification behaviour exhibit hysteresis effects.
Raffman (1994) for example, suggests that when a subject classifies a series of
colour patches that go from red to orange, the place where the subject switches
from calling the colour red to calling it orange is different when going in the
other directio. This is thought to be because of ‘a kind of judgmental inertia’
which is created from the starting point (Raffman, 1994). This data suggests
that we are systems whose classification dispositions not only can change, but
that they do change in response to recent classifications. This was the very
idea behind adaptive lists.

Yet, the shifting of a predicate, in and of itself, is not an explanation for why
boundaries are not found. One needs to claim that a vague expression has the
effect of changing its location so that it is not where we look.20 In other words,
it needs to be shown how the interaction effect that occurs by searching for a
boundary is the very explanation for why a boundary is not found. The proof
of the Bounded Precision Theorem does this. It demonstrates how interaction
effects prevent the model from finding boundaries with maximal precision. To
the extent that it is plausible that predicates do shift, it is plausible that we
are more complicated versions of our idealized model, and consequently that
the Bounded Precision Theorem holds of us as well. Moreover, although we

20 Variations on this idea are discussed, though not necessarily endorsed, in Graff (2002);
Kamp (1981); Raffman (1994, 1996); Stanley (2003); Ludlow (1989).
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do not provide a proper treatment of inertia effects here, it is easy to see that
they would arise in systems that implement our model.

What is novel to this account is that no appeal is made to context or
content as traditionally construed in (formal) semantics.21 In fact, we have
largely ignored views regarding the semantic content of vague predicates, but
with justification. In the introduction we gave an argument for thinking that
an inability to locate sharp predicate boundaries is not closed off to linguis-
tic competence – presumably, non-linguistic creatures can still sort the world
and, to the extent that their classification dispositions can be investigated, it
is unlikely that they will be found sharp. So, although vagueness occurs in
language, and although we have appealed to particularly salient features of
language to motivate the claim that we classify dynamically, it is unlikely that
the (only) source of vagueness is in the semantic content of language.

In short, Sortal Mobility is a more general thesis that considers the underly-
ing mental mechanisms of sorting. It claims that the apparent absence of sharp
boundaries in classification can follow more straightforwardly from cognitive
processing and flexibility. Our proofs of the Bounded Precision Theorem and
its corollaries established this claim for an idealized model, but they also lead
us to expect analogous limits on the relationship between sortal mobility and
discriminatory precision in more realistic sorting systems. We needn’t have
a thesis of the semantic contents of vague predicates to provide the relevant
explanation we are interested in.22

21 The work of Raffman (1996, 2004) comes closest, since mental states are included as
constituents of contexts. However, this account focuses solely on the inner workings.
22 The reader may nevertheless want to know which semantic views are compatible with

Sortal Mobility. Obviously, it is compatible with contextualist views of the kind mentioned.
One might even extend our model, for example, to something like what appears in the work
of Barker (2002). Roughly speaking, we could let the sortal be a gradable adjective in a
shared discourse and let the updating rules of our model be determined by how uses of the
term update the shared knowledge in discourse.
Generally speaking, however, Sortal Mobility is compatible with a view that vague predi-
cates express properties whose extensions have exact boundaries, where the given property
a predicate expresses varies across contexts. It is also compatible with views where the prop-
erties expressed do not vary across contexts, though one needs to be more subtle about what
the constituents of a context are. If mental states are constituents of context, than clearly a
change in mental state is a change in context, which is the preceding contextualist view. If,
however, the properties expressed by vague predicates do not vary by context, then there
seem to be at least two options. One is to give up that properties have crisp boundaries.
Though compatible, this would unnecessarily double up explanatory work for our inabil-
ity to locate sharp boundaries. The second option is to maintain that properties are crisp
and then explain why appearances are to the contrary. This would need to allow for some
separation between the property and its representation, which is perfectly compatible with
Sortal Mobility.
Alternatively, one may hold that predicates do not express properties at all. Semantic content
may be, for example, entirely ‘in the head’. The details such a view would take us too far
adrift. Suffice it to say that Sortal Mobility is relatively non-committal to views on semantic
content, as it is a claim about our classification dispositions and not the meanings of terms.
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4.2 Dynamic Classification is Advantageous

In section 2 it was suggested that Recycle’s capacity to change its dispositions
gives it a significant advantage over Waste when operating in a changing en-
vironment. This is because Recycle will update to match trends of changes,
allowing it to intelligently adapt. This claim is motivated by the fact that a
system like Recycle has already been realized in artificial intelligence.

A group of engineers attempted to build soccer-playing robots that could
distinguish between the field, goal, ball, and other players.23 There were sev-
eral challenges that needed to be faced, particularly in colour classification (a
primary method of distinguishing the listed features). One method of colour
classification was to provide a predefined subdivision of colour space that was
calibrated to the lighting conditions of an arena. However, algorithms that
relied on such static colour classifications quickly ran into difficulties when
the lighting changed (Heinemann et al., 2007). This would be an example of
a system like Waste – one that doesn’t update as it classifies cases, relying on
an unchanging environment in which the same inputs should always map to
the same judgments. In a changing environment, such systems behave poorly.

A Recycle-like algorithm, on the other hand, provided robots with the
ability to adapt to changing lighting conditions.24 The algorithm was named
“The Automatic Color Training Algorithm”, or the ACT algorithm for short
(Heinemann et al., 2007). The basic task of ACT was to create a fast and au-
tomatically training (and retraining) look-up table that dynamically mapped
colours in the environment (even as they changed) to different colour classes.
ACT could be described in the following way. Given some arbitrarily chosen
number of colour classes, the algorithm finds that incoming light inputs cluster
because certain input frequencies (the colour of the field, the opposing players
shirts, etc.) are more common than others.25 The algorithm applies a devi-
ation rule to each cluster, determining the acceptable values for each colour
class. But in order to track changes in lighting, the algorithm continually re-
calculates the class to incorporate incoming colour values. So, if the incoming
values gradually change over time (due to a fade in lighting, for example), the
corresponding colour class continually updates to reflect that change. This is
a system like Recycle where information about incoming cases is assimilated
and used to update the classification mechanism; the ACT algorithm takes
some cases and applies a rule (in this case a deviation rule) to determine the
category, and importantly, it allows the category to adapt by updating the
case list.

23 See RoboCup (www.robocup.org). It is an international research initiative targeted to
combine technology from artificial intelligence and robotics. The ultimate goal is to create
soccer-playing humanoid robots that can eventually play at a competitive level with human
players.
24 Natural lighting in particular changes much more frequently than controlled indoor

lighting.
25 The way ACT does this is by calculating the mean value.



18 Bert Baumgaertner

In a similar area of artificial intelligence, researchers have experimented
on humanoid robots that played the grounded colour naming game (Bleys
et al., 2009). The goal of the game is to have a population of artificial agents
coordinate and develop a colour lexicon that is sufficiently shared to allow
for successful communication. Bleys et al. (2009) found that robots which
invent and coordinate their colour categories from scratch using their individ-
ual perceptions achieve the highest amount of communicative success. Such
robots create colour categories using ideas from prototype theory; each colour
category has a representative member and a standard one-nearest neighbour
algorithm is used to classify a given object according to which representative
it is closest to. Over the course of a series of games, prototypes shift relative
to the success of the category in a game. Interestingly, the researchers found
that the resulting colour ontologies of these robots reflect the environment in
which they were developed, and moreover, these closely match those of the
English language.

These examples are instances of our generalized construction of Recycle
and adaptive lists. We too used the idea from prototype theory to represent
an infinite number of cases by encoding a few paradigm cases and a rule. This
way of modeling categorization has received a great deal of positive attention
throughout the latter half of the 20th century.26 One reason for its success
is that it postulates cognitive systems that satisfy a general principle of cate-
gory formation: ones that exhibit cognitive economy. The principle of cognitive
economy states that an organism’s categories ought to provide maximum in-
formation with the least cognitive effort (Rosch, 1999). Organisms that satisfy
this principle better than others have an obvious advantage – they require
fewer resources.

Prototype theory, broadly construed, is a plausible account of categoriza-
tion behaviour.27 We have seen that implementations of it, combined with ways
of updating prototypes, have shown to be fruitful ways to design minds that
are responsive to changing environments. Prototypes that update are taken
to be a good thing. Hampton, for example, has said that, ‘The boundaries [of
our concepts] remain fluid for good reasons. When the world changes, or we
discover new facts about it, our concepts can adapt to the change while their
identity is still tracked.’ (Hampton, 2007, p.377) Since we have evidence that
our concepts update and we nevertheless seem to be able to track their iden-
tities, it is at least plausible then, that we are implementations of Recycle-like
systems.

26 One obvious reason why it received all the attention it did was because it overthrew the
classical view that concepts or categories encode the necessary and sufficient conditions for
their application. See Margolis and Laurence (1999) for further reasons why prototypical
theories received widespread attention. See Rosch and Mervis (1975) for the influence of
Wittgenstein in this regard.
27 One difficulty of the view is that it is not compositional (Fodor and Lepore, 1996), which

has been disputed (Hampton and Jönsson, 2009; Hampton, 2007). We can safely ignore
this debate, since we are not concerned with the thesis that concepts, the constituents of
compositional thoughts, are prototypes. Even if that thesis turns out to be false, prototype
theory stands as a thesis of categorization behaviour.
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4.3 Why the Sorites Paradox is Compelling

A vague concept, like the ones listed in the introduction, can be used to run
a sorites paradox. First, we select a member of some concept as a base case
(typically an exemplar of the concept). Then, we proceed in step-wise fashion,
using an inclusion principle that says small differences can be neglected, to
derive an unacceptable conclusion (this is called the inductive step). Here is
an example of a sorites paradox using the concept middle aged.

P1 45 years of age is middle aged (Base Case)
P2 If n years of age is middle aged, then n + 1 years of age is middle aged

(Inductive Step)
C 100 years of age is middle aged

Presumably, the conclusion of this sorites is false, so one of the premises must
be denied. Which one?

P1 looks obviously true – if there is any age that is middle aged, surely
45 is a clear example. Nonetheless, suppose we deny P1, which entails that
45 years of age is not middle aged. This consequence is just as bad as (if not
worse than) the conclusion, which says that 100 years of age is middle aged.
So the denial of P1 leads to a consequence that is as bad or worse than the
conclusion which forced us to deny a premise. On the presumption that the
conclusion is unpalatable, we should not be left with something even more
difficult to swallow.

The other option is to deny P2. P2 certainly has intuitive appeal; it seems
that for any arbitrary case n, if n is a member of the projection of a sorites
concept, then its closest negligibly different neighbour, n+1, is also a member.
This is particularly obvious when we change our measure of middle age from
the scale of years to scales like: months, weeks, days, hours, minutes, seconds,
etc. – surely (it seems) one second can’t make the difference to being middle
aged! So, if the inclusion principle uses some scale that fails to capture the
intuition that a small difference can be neglected (as might be the case for
decades), a more fine-grained scale can be selected to then run the sorites.
So note that the more fine-grained a scale is, the more acceptable we find
the inductive step to be. However, despite its intuitive appeal, the simplest
solution to the paradox, given the strength of P1, is to deny P2.

Consider how Recycle would respond to the sorites paradox. When it checks
P1, it turns out true. If we ask it to find a counterexample for P2, it will fail.
It could never find a counterexample because whenever it tested for some case
n, its classificatory dispositions would update accordingly. When the grain of
updating matches or exceeds the grain of testing, then n + 1 would already
be in the projection by the next test. So since Recycle implements adaptive
lists and these can update whenever a case near the boundary is checked, we
have an explanation as to why no counterexample can be found to P2. To find
a counterexample would be to violate the Bounded Precision Theorem. Note
that the sense of “could not” is not a metaphysical impossibility, but one based
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on contingent facts of Recycle’s design. A design we motivated from evidence
of our own.

The proposed explanation for why it seems impossible for us to deny the
inductive step is based on two facts. One, in order to deny a generalization,
we tend to require one or more counterexamples to the claim. Second, our
attempts to find counterexamples would be thwarted if we were Recycle-like
systems, since finding a counterexample amounts to finding a boundary to
maximal precision (which goes against the Bounded Precision Theorem). The
strength of this inference to the best explanation is heightened by the mutually
supporting claims that we are Recycle-like systems and the explanation for why
the sorties paradox is compelling.

One might suspect that Recycle’s sorites susceptibility may not be compa-
rable to ours. After all, we don’t seem to need to test cases to realize that a
counterexample to the sorites won’t (or can’t) be found. Moreover, once we’ve
recognized a vague concept, whether in the form of the sorites paradox or not,
we don’t seem to need to test cases to know that some other vague concept
will be sorites susceptible.

I agree that humans have a high capacity for generalizing from relatively
few samples, a feature we have left out of the model entirely. Such a capac-
ity allows us to be good at detecting which concepts are going to be sorites
susceptible without looking at their particular cases, and it also means that
given a particular concept, we don’t need to check every case to know that we
are unable to find a counterexample. But how could we make a generalization
from no sample data at all? We would have nothing to generalize from.

So the story of our own sorites susceptibility needs two parts. One is that
we need at least a few samples from which we can generalize that no sharp
boundaries can be found. (This generalization can then cover concepts that we
recognize as being relevantly similar.) The second is that the generalization
is never challenged by counterexamples. So, a lack of finding counterexamples
provides both the germ and maintenance of the story. It is this key fact that
we have sought to explain with our model.

Moreover, the kind of sorites susceptibility we have captured in our model
is, as in humans, grain sensitive. When we consider subtracting large incre-
ments of money, such as tens of thousands of dollars at a time, then it is easier
for us to hold a belief which subtraction makes our woman poor. However,
when we consider smaller increments, such as dollars or cents, then it becomes
much less intuitive for us to say that there is such a particular amount. The
fact that this very human feature of the sorites paradox has an analogue that
naturally falls out of the idealized model not only makes it plausible that we
are appropriately like it, but that its sorites susceptibility is comparable to
ours.

4.3.1 Objection: Forced Marches

One might object that a our model of a sorites susceptible concept can or
will reduce it to triviality or some sort of incoherence. The reasoning goes
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as follows. If no counterexample can be found, then there is no way to halt
the complete expansion (or contraction) of a class by a forced march, i.e., an
iteration of tests that incrementally move the boundary until all possible cases
are inside (or outside) the class. Since, by the Bounded Precision Theorem, no
counterexample can be found, there is no way to halt a forced march.

Consider the contrapositive of the main premise in this objection: if a forced
march can be halted, then a counterexample can be found for the inductive
step. This conditional is plausibly false in the case of humans. If I am marched
through a series of cases for middle aged and reach some number like 68, it
is natural for me to stop the march and say that something has gone wrong -
68 is not middle aged. Since I denied 68 but included 67, you would be right
to ask me whether these serve as the counterexample to the inductive step.
But it is perfectly coherent for me to retract my inclusion of 67 and say that
I must have gone wrong somewhere in the march, but I don’t know where.
Hence a forced march can be halted without producing a counterexample; the
objection doesn’t hold for humans.

As it stands, forced marches may be possible in principle in our idealized
model, but there are some contingent features that make it highly implausible
to occur. One is that Recycle’s algorithm only allows a concept to become
all-inclusive if one assumes that cases remain on a list eternally while it runs
through a very large number of precisely ordered iterations of tests. Nothing
has been said about how long the life cycle of a list member is (or how many
iterations of the algorithm it would require to expand to some size). It is
possible, for example, that membership expires without reinforcement, i.e.,
some cases may be forgotten about in time or might need to be dropped to
include other cases. So, if members leave the list with appropriate rapidity,
all-inclusion will rarely or never occur.

Furthermore, other concepts might compete for the same members, in-
finitely frustrating any winner-takes-all situation. For example, adaptive lists
such as young and old might be tied to middle aged via a rule that says
‘no case may be on more than one of these lists at a time’. This rule forbids
young, middle aged, and old from simultaneously overlapping. In this way
the expansion of a concept is limited by the activity of competing concepts
(c.f. a suggestion by Williamson (1996): one way to stop a sorites paradox is
for it to collide with another sorites paradox in the opposite direction (p.87)).
In fact, if such a rule is combined with a method of testing pairs of cases via
random sampling, then it becomes astronomically unlikely that just the right
order of pairs of cases is selected that force all-inclusion (since pairs from the
other direction would push the boundary back). The point is that in a more
complex system of concepts, some stability can be reached and maintained by
the concepts exerting tension on one another.28

28 One might not find this response entirely compelling. If concepts compete for members,
the result might be that we end up with (briefly) immobile boundaries, and a forced march
would reveal them. For example, let us consider a scenario as above, where we march our
model’s middle age class from 45 up to 68, at which point its old age class kicks in and
forces it to say that 68 is not middle aged (although it has just said ‘yes’ that 67 is middle
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In short, we concede that the simplified model is vulnerable to forced
marches. The response, however, is that this worry dissolves when the ide-
alization is relaxed and we consider more realistic sorting systems. And more
importantly, contrary to the forced march worry, we expect that the Bounded
Precision Theorem and its corollaries will hold as we move from the idealiza-
tion to real sorting systems.

For example, it is plausible that our categorization faculties make use of
numerous cognitive and metacognitive processes when we categorize (some of
which we may be aware of, others not). A metacognitive process may pick up on
a particular trend in the cases we are attending to and make predictions about
what cases may or may not lie ahead. Taking such ‘sneak peaks’ at cases in the
distance could spoil the precise ordering of positive cases that are needed to do
a forced march. Alternatively, some processes may be equipped with thresholds
that require a certain number of tests before firing an answer. Such repeated
testing could inadvertently update related concepts, which could feedback on
the concept under investigation. The point is that these more sophisticated
processes do not help in removing interaction effects, which are at the heart
of our results. Rather, they increase their complexity.

5 Conclusion

Cognitive Sortal Mobility is the claim that the mobility of cognitive sortals
explains our inability to find sharp boundaries. We argued for the plausibility
of this thesis by constructing an idealized model that can have very real, yet
very mobile, sharp boundaries. Nevertheless, we proved that such boundaries
are not findable beyond some degree of precision.

Throughout our construction, we focused on a simplified implementation
of the model, which we called Recycle, and compared it to the alternative,
Waste. We noted that Recycle’s class was adaptable, which gave it an advan-
tage over Waste’s static class. Furthermore, our construction of Recycle also
yielded an innocent side-effect: sorites susceptibilty. We also looked at evidence
which suggests that we are systems appropriately like the idealized model. The
idealized model reflected cognitive features that have been documented in the
literature. Moreover, we used it to show how the sorites paradox can be com-
pelling despite the existence of sharp boundaries. It is plausible then, that
humans are implementations of the model. So even if our sortal boundaries
were sharp, we would nevertheless be unable to find them.
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aged). Has the forced march thereby exposed a boundary? If it has, it is very short lived.
By having considered 68 as old aged, the old age class may expand its boundary as well,
requiring the middle age class to retract. So if we were to test the model’s middle age
class against 67 again, the model would respond in the negative.
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