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Abstract

To demonstrate that a proposed mechanism could explain a phenomenon,
biologists must recompose the mechanism. Traditionally they have relied on
mentally rehearsing the operations, often aided by a mechanism diagram.
Such a strategy has reached its limits in contemporary biology. For example,
through mental rehearsal alone researchers cannot determine whether a
feedback mechanism will generate sustained oscillation. Accordingly,
mechanistic inclined biologists are enriching their strategies, relying on
computational simulation and graph-theoretical analyses of networks. The
limitations of traditional approaches and the additional strategies biologists
are employing are illustrated in research on glycolytic and circadian
oscillations.
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1. Introduction

The approach of explaining phenomena by identifying and characterizing responsible
mechanisms has a long history in biology (for historical reviews, see Coleman, 1971; Allen,
1979). After Theodor Schwann (1839) identified cells as the basic units in which metabolic
processes such as fermentation occur, a host of researchers developed and deployed a very
impressive variety of strategies for structurally decomposing cells and functionally
characterizing what their components did. The discovery of chromosomes and the
characterization of the operations of mitosis and meiosis was a prominent 19t century
success. Vitalist critics persisted throughout the century in arguing that phenomena such as
fermentation could not be explained mechanistically, but Eduard Buchner’s (1897)
demonstration of fermentation in a cell-free extract inspired the quest for explanations of
cell activities in terms of chemical reactions catalyzed by enzymes. As reflected in Edmund
Cowdry’s (1924) General cytology, mechanistically inspired biologists in the first decades of
the 20t century were developing new techniques for decomposing mechanisms into their
parts (e.g., staining cell preparations to identify organelles) and operations (e.g., inhibiting
enzymes to identify steps in reactions). As reflected in Cowdry’s own chapter on the
mitochondrion and the Golgi apparatus, a major aspiration was to localize different cellular
activities in specific organelles. The development of new techniques continued in the
decades after Cowdry’s book. Cell fractionation and electron microscopy played central
roles, facilitating what George Palade (1987) described as a bridge between morphology
(providing increased detail about cell structure) and biochemistry (characterizing cell
reactions). Within the newly constituted discipline of cell biology, researchers combined
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these techniques to offer new, mechanistic explanations of phenomena such as oxidative
metabolism and protein synthesis (Bechtel, 2006).

Only much more recently did philosophers of science develop detailed accounts of
mechanistic explanations (and Machamer, Darden, & Craver, 2000; Bechtel & Abrahamsen,
2005) but they have now become a central focus of philosophical analysis. Much of the
philosophical inquiry focuses on the processes by which scientists develop mechanistic
explanations by (1) linking phenomena to be explained to mechanisms and (2)
decomposing these mechanisms into responsible parts and operations (Bechtel &
Richardson, 1993/2010; Craver & Darden, 2013). All accounts of mechanisms also
acknowledge the importance of how these components are organized in generating the
phenomena. Organization becomes a focus for biologists as they attempt to recompose a
mechanism, at least conceptually, to show that it can generate the phenomenon. But
philosophers have paid less attention to how biologists recompose mechanisms. In
contemporary research papers, in which most of the text and figures are devoted to
presenting new experimental findings about parts or operations, the researchers may
conclude with a description of a mechanism, often accompanied by a diagram. The diagram
typically does much of the work of conveying how the researchers conceive of the parts
and operations fitting together. The emphasis on recomposing mechanisms, often relying
on mechanism diagrams, is more frequent in commentaries on research papers and in
review articles.

Despite playing a central role in biologists’ attempt to recompose mechanisms,
philosophers, including philosophers discussing mechanistic explanations, have offered
little analysis of how diagrams play that role (but see Abrahamsen, Sheredos, & Bechtel, in
press). Here I note two features of diagrams that make diagrams particularly well suited for
representing the organization of a mechanism. First, abstract shapes (glyphs, Tversky,
2011) or icons are used to represent parts and arrows (often of varied formats) are
employed to show how an operation performed by one part affects other parts. Second
researchers can use the two spatial dimensions of a diagram! to represent the relations
between parts (sometimes how they are spatially related, as in Figure 1 below) and
sometimes how they are functionally related (as in Figure 2). A diagram can better present
the often very complicated relations between parts and operations of a mechanism than
text (often, if no diagram is presented, readers construct diagrams for themselves). One
important advantage of diagrams is that they allow viewers to direct their attention to
different components of the mechanism as desired. A diagram, however, is static and itself
doesn’t show how the parts, working together, are able to produce the phenomenon. To
understand this, the viewer must mentally animate the diagram (Hegarty, 1992) by
rehearsing the operations specified by the arrows in his or her imagination. An explanatory
text often includes a narration of the operations of the mechanism and serves to guide the
viewer in mentally animating the diagram.

1 Drawn or printed diagrams are limited to two dimensions (although on occasion overlays
will be used to reflect additional dimensions); sometimes researchers find it important to
represent a mechanism in three dimensions and build physical models.
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Mental animation of a diagram, guided by narration, usually suffices for establishing
understanding when the operations of the proposed mechanism are construed as executed
sequentially, “from start or set-up to finish or termination conditions” (to borrow the
language used in Machamer, Darden, and Craver’s definition of mechanism) whenever the
starting conditions are present. Assuming regular sequential operation is a good heuristic
starting point and the resulting explanations, which I refer to as basic mechanistic
explanations (Bechtel, 2011), have often seemed to suffice to explain biological phenomena.
Researchers, for example, typically view biochemical pathways as sequences of individual
reactions.

However, the very strategies of decomposing mechanisms to identify parts and operations
have continued unabated. In the case of almost all biological mechanisms, including those
thought to be well understood, researchers are discovering more and more parts.
Researchers often confront three problems in recomposing these parts into a mechanistic
explanation that they could mentally simulate. First, the parts do not operate justin a
sequence but in many parallel streams that proceed at different rates yet interact with each
other at numerous points. It is challenging to rehearse mentally multiple interacting
sequences of activity at the same time. Second, researchers frequently discover that
operations they view as later in the sequence feed back on those they view as earlier. In
such circumstances, their mental simulations have to take into account the effects of later
operations when rehearsing the earlier one. Third, many of the additional parts
researchers identify for one mechanism turn out to be parts that also belong to other
mechanisms. Mechanisms cease to have well-delineated boundaries but are embedded in
large interactive networks in which long-range connections modulate the behavior of what
were taken to be independent mechanisms (Bechtel, 2015).

Diagrams can represent multiple pathways, non-sequential organization and the
embeddedness of mechanisms in larger networks. But the challenge of understanding
them—understanding how the mechanism portrayed generates the phenomenon one is
trying to explain—begins to stress human cognitive capacities. To appreciate the problems,
one can look ahead to Figures 2 and 3 or one can think about the challenges in
understanding human agents that are engaged in complex systems—for example, an
orchestra player who not only must coordinate with her instrument but also with those
around her, whose behavior is in part affected by her own behavior. Humans cannot
mentally simulate all the operations and interactions proposed in the account of the
mechanism to determine whether the proposed mechanism would generate the
phenomenon. To make progress, researchers have had to enrich their strategies for
investigating mechanisms beyond those that worked in developing basic mechanistic
explanations.

Seeking to address of these challenges is a major motivation of biologists who have
adopted the name systems biology (see, for example, Alon, 2007; Ideker, Galitski, & Hood,
2001; Kitano, 2002).2 I focus here on two major strategies systems biologists have adopted

2 Systems biology has intellectual roots in the cybernetics and general systems theory
movements of the 20th century, and these traditions have informed some of the modeling
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to address these problems and how these complement the more traditional strategies of
mechanistic research. The first involves mathematically characterizing multiple interacting
components and simulating their collective behavior computationally while the second
involves representing components as networks of nodes and edges and deploying graph
theoretic and other tools for analyzing these graphs. I will introduce these explanatory
strategies and show how they differ from yet complement those that gave rise to the
development of basic mechanistic explanations.

In the next section I introduce the strategy of basic mechanistic explanation by describing
its application to cells and show how it contributed to the growth of biological knowledge.
In section 3 [ explore how this strategy approached its limits as researchers encountered
feedback loops that engender oscillatory behavior such as the daily raise and fall in human
bodily temperature or in the concentrations of various proteins. Body temperature and
protein synthesis are circadian phenomenon in that they are controlled by an internal
mechanism that generates oscillations of approximately 24 hours. The strategies of basic
mechanistic explanation could not determine whether the proposed mechanism would
produce the observed sustained oscillations or would dampen. In the following two
sections I will show how circadian researchers are supplementing basic mechanistic
approaches with the two additional explanatory strategies introduced above.

As I will briefly discuss in the concluding section, the introduction of new strategies for
advancing explanations is not novel. The strategies for developing basic mechanistic
explanations of cell phenomena themselves developed over the 19t and 20t century and
the mechanistic explanations of cell behavior that figure prominently in contemporary
textbooks are a product of those strategies. Researchers have turned to new strategies of
computational modeling and network analysis to cope with the success of those strategies
in discovering more and more components organized and interacting in more complex
ways. Almost certainly as biological research continues, additional strategies will be
developed. But computational modeling and network analyses are already generating
explanations that are more dynamic and integrated than the basic mechanistic
explanations advanced in the 20t century.

2. The Quest for Basic Mechanistic Explanations

The idea of putting different types of components together to accomplish what individually
they could not do has deep roots in engineering design. Ancient Greeks combined simple
machines such as the wheel and axel and the pulley into compound machines such as a
crane. Descartes vigorously advanced the idea that phenomena in the natural world,
including those associated with living organisms, also result from machines. As was true of
the mechanistic explanations espoused by Descartes, many of the early proposals of
biological mechanisms were highly speculative. By the 19th century, however, researchers
began to develop techniques that enabled them to pursue mechanistic accounts grounded
in empirical knowledge of the parts and operations. These techniques involve identifying
candidate mechanisms and then decomposing them into their parts and operations. For

approaches adopted in system biology. But far more fundamental was the development of
techniques for collecting massive data about genes, proteins, and metabolites.
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example, in the wake of the chemical revolution, chemists analyzed the constitution of
different molecules in living organisms, identified reactions that transformed one into
another, and discovered that biological tissues often contained catalysts (later termed
enzymes) that facilitated these chemical reactions (Berzelius, 1836). It was in this same
period that Schwann (1839), utilizing newly improved microscopes, identified cells as the
basic units of living systems and went on to associate them with processes that transform
food stuffs into new tissue and energy, which he named metabolism.

Schwann could go no further in explaining the metabolic power of cells than to appeal to
their distinctive chemical composition, which he proposed resulted from a process of cell
formation through an iterative depositing of different materials around a core as in crystal
formation. Further advances awaited the development of new tools of biochemistry and
cell biology. Starting around the beginning of the 20t century, biochemists identified
biochemical groups that are transferred between substrates in reactions and by the 1930s
Gustav Embden, Otto Meyerhof, and numerous other investigators had pieced together an
account of the glycolytic pathway, a sequence of reactions transforming glucose to
pyruvate that yielded modest production of ATP, the molecule that provides energy for
other cellular functions. The introduction of the new techniques of cell fractionation and
electron microscopy, beginning in the 1940s, was pivotal in generating a basic
understanding of the mechanisms responsible for the subsequent oxidation of pyruvate to
carbon dioxide and water coupled with much more synthesis of ATP than glycolysis
(Bechtel, 2006). Cell fractionation enabled researchers to differentiate fractions with
different enzymatic composition that originate in different organelles of the cell while
electron microscopy permitted visual identification of these organelles and their structure.
In particular, cell fractionation allowed the localization of the citric acid (Krebs) cycle and
electron transport to the mitochondrion while electron microscopy revealed the distinctive
organization involving the inner membrane protruding into the cell interior. As shown in
Figure 1, the citric acid cycle was localized to the inner matrix while electron transport and
the coordinated phosphorylation reactions to the cristae.
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Figure 1. Conception of the mechanisms involved in basic energy metabolism as

arrived at by the 1960s using the tools of cell fractionation and electron microscopy.
As discussed above, decomposition is only part of the strategy for constructing mechanistic
explanations. The behavior of a mechanism depends on how components are organized
and how operations performed by one part affect others. Important graphical components
of Figure 1 are the arrows that link the different operations, establishing what Machamer et
al. refer to as productive continuity. To understand the activity of the mechanism,
researchers mentally animate the operations. A researcher familiar with the different
operations in Figure 1 can envisage a molecule of glucose being oxidized to yield two
molecules of pyruvate, which, after being transformed into acetyl-CoA, enter the citric acid
cycle, etc. Once research has succeeded in identifying a mechanism, decomposing it into its
parts and operations, and recomposing these into an organized set of productively
continuous operations that researchers can mentally animate, the search for a mechanistic
explanation seems to have reached a successful conclusion.3

2. Pushing Basic Mechanistic Explanation to Its Limits

The account of metabolism in the previous section followed the strategy of basic
mechanistic explanation in offering a largely feed-forward account from start to
termination conditions. The one exception is that the citric acid cycle involves a feedback
loop in which the initial component of the cycle is regenerated from a product and new
incoming acetyl CoA. As typically approached, however, this does not present any special
challenges as someone animating the diagram needs only follow the Krebs cycle far enough
to where it outputs to other operations. In this section I will consider how further pursuit
of mechanistic research did push the basic mechanistic strategy to its limits when research
on glycolysis revealed the type of complex dynamics (the periodic increase and decrease in
concentrations of intermediary metabolites) and linked these to feedback loops. I then turn
to a different phenomenon, circadian rhythms, where the complex dynamics was known
from the outset. In both cases, mechanistic strategies could generate part but not all of
what was needed for an explanation.

The reason the discovery of complex dynamics posed a problem for basic mechanistic
explanation is that in pursuing such accounts researchers assume that mechanisms
function in a regular manner. Any change in how the mechanism responds is assumed to be
due to the external input, not processes endogenous to the mechanism. Whenever glucose
is available to the first reaction in the glycolytic pathway, the subsequent reactions are
thought to occur seriatim. To a first approximation, many biological mechanisms do
operate in this manner, presenting ideal conditions for the successful application of
mechanistic research strategies. However, the data biologists record often manifests
substantial variability. Researchers often attribute this to measurement errors or dismiss it
as noise. In some cases, however, a pattern is found that reveals underlying dynamical

3 Biochemists since the beginning of the 20t century have invoked mathematical
representations to characterize operations within a mechanism. For example, the Michelis-
Menten equation is employed to determine how the concentration of the substrate affects
the rate of production of the product. But this mathematical analysis is not required for
understanding the behavior of the mechanism, characterized qualitatively.
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behavior that is fundamental to the phenomenon. This happened in research on glycolysis.
While measuring concentrations of glycolytic intermediates in yeast using
spectrophotometric techniques, Amal Ghosh and Britton Chance (1964) discovered that the
concentration of NADH oscillated with a period of about a minute. Benno Hess, Arnold
Boiteur and J. Kriiger (1969) subsequently demonstrated periodic oscillations in the
concentrations of other reactants. Moreover, neighboring reactants in the glycolytic
pathway oscillated in phase with each other, whereas those on opposite sides of two major
reactions were phase reversed (i.e., 180° out of phase). One of these is the reaction in which
fructose-6-phosphate (F6P) is phosphorylated to fructose-diphosphate (FDP) at the
expense of transforming ATP to ADP through the action of the enzyme
phosphofructokinase (PFK).

By focusing on PFK, researchers were able to extend the mechanistic explanation to partly
account for this oscillation. PFK is an allosteric enzyme that contains binding sites for
multiple molecules and the binding at some sites causes conformation changes at other
sites, altering reactivity at those sties. In particular, PFK binds with three of the products of
the main reaction, namely FDP and ADP, as well as AMP (a product generated by removing
another phosphate group from ADP). When PFK is bound to FDP, ADP, and AMP the
reaction from F6P to FDP runs faster. The downstream effect of this positive feedback loop
is to increase the production of NADH and, even further downstream, the synthesis of ATP
from ADP or AMP. This further effect realizes a long-range negative feedback loop that
counters the short-term positive feedback loop; their joint action is first to speed up NADH
synthesis and then to slow it down. This verbal narrative suggests how the parts of the
glycolytic system combine to produce oscillations, but it is important to note that there is
an alternative possibility—that the system reaches an equilibrium at which NADH
concentrations stop oscillating. This presents a limit to the basic mechanistic strategy: it is
not able to determine which outcome will be realized.

Glycolytic oscillation was discovered in the context of an already worked out mechanism
and it remains unclear whether it plays a functional role in the metabolism of yeast. But in
the case of many other physiological functions, oscillations clearly play a functional role.
For example, rhythmic contraction of muscles is crucial for the circulation of blood.
Increasingly neuroscientists are discovering that sub-threshold oscillations of ions in
neurons, detectable by EEG or in resting state fMR], figure in the coordination of processing
in different regions of the brain. From here out I will focus on a system whose primary
function is to maintain an oscillation, circadian rhythms. These are oscillations with a
period of approximately 24 hours that are generated endogenously in many living
organisms, can be entrained to the light-dark cycle in the environment, and regulate many
physiological and behavioral activities.

One of the first challenges circadian researchers faced was to establish that these daily
rhythms, observed in physiological measures such as body temperature or in physical
behaviors such as running, are generated within the organism and are not simply
responses to cues from the environment. The crucial evidence was provided by the fact that
the period found though studies of behavior in conditions in which cues have been
removed (referred to as free-running conditions) varied slightly from 24 hours. After



Bechtel: Enriching the Strategies for Creating Mechanistic Explanations in Biology p-8

establishing that these rhythms are endogenous, research turned to figuring out the
mechanism (which, early on, was referred to as a clock).

Initially, progress in identifying and decomposing the clock was slow. Research on fruit
flies resulted in one of the first breakthroughs occurred. Fruit flies exhibit circadian
oscillations in locomotive behavior as well as in timing of their eclosion from their pupae.
Ronald Konopka and Seymour Benzer (1971) identified a gene, period (per), which, when
mutated in different ways, resulted in slow or fast rhythms or arrhythmic behavior. Once
cloning became available, Paul Hardin, Jeffrey Hall, and Michael Roshash (1990)
demonstrated that both per mRNA and the protein PER oscillate with a period of 24 hours,
with the concentration of the mRNA peaking about four hours before the concentration of
the protein peaks. Knowing that negative feedback is a design principle that can generate
oscillations, Hardin et al. proposed that the mechanism had the form of a transcription-
translation feedback loop (TTFL) according to which PER feeds back to inhibit the
transcription of per.

To see how such a mechanism could generate oscillations, one can try to simulate its
operation mentally. Start in the state in which the concentration of PER is low. Since there
is little inhibition on the rate of per transcription and translation, the concentration of PER
gradually increases. But as it does so, it increasingly inhibits per transcription, stopping the
increase in its concentration. Since PER gradually degrades, the concentration will now
start to decline. As it declines, the inhibition is reduced, and the concentration of PER
begins to rise again. As with glycolytic oscillation, basic mechanistic explanation reaches a
limit in that one could also tell a narrative in which the mechanism approaches a steady
state and stopped oscillating. [ return to this in the next section, but first will follow the
history a bit more to see how the conception of the circadian clock expanded.

One shortcoming of the TTFL proposed by Hardin et al. was that researchers could not find
a DNA-binding site on the PER protein. Such a site is required if PER is to bind to the
promoter of its own gene and block its own transcription. This gap in the account was only
filled when Joseph Takahashi’s group (Vitaterna, King, Chang, Kornhauser, Lowrey,
McDonald, Dove, Pinto, Turek, & Takahashi, 1994) undertook a comparable search for
mutants in mice and identified a gene they named Clock (Circadian Locomotor Output
Cycles Kaput).#* Mutations to Clock resulted in altered circadian rhythms but, more
importantly, CLOCK possessed the needed region to bind to the promoter (known as an E-
box) on per. A homolog of Clock was soon identified in fruit flies, and within a few years,
three homologs of per were found in mammals. Together these genes and proteins
constitute the major negative feedback loop shown in the top portion of Figure 2 (the figure
shows PERs as dimerizing with CRYs, and CLOCK with BMAL1). Figure 2 presents many but
not all the parts and operations that had been identified and fit into an account of the
circadian mechanism by 2005. As the figure makes clear, these additional parts figure in
various feedback loops, both positive and negative.

4 The naming convention for genes in fruit flies is to use lower case italics. In mammals,
gene names are also in italics but begin with an initial capital. Protein names
conventionally are all in roman capital letters.
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As noted above, although this diagram shows many of the crucial parts and operations, it is
static. The viewer must supply the dynamics as she tries to mentally simulate the
operations. The additional feedback loops make this task even more difficult, and they have
not alleviated the problem that one could equally simulate sustained oscillations or ones
that dampen to a steady state.
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Figure 2. A mechanism diagram of the mammalian circadian clock showing the
principal genes and proteins that figure in feedback loops as understood circa 2005.

In this section I have considered two cases in which the strategies of basic mechanistic
research were pushed to their limits. With the discovery of the occurrence of oscillation in
glycolysis, researchers were able to localize the responsible enzyme and provide a
qualitative narrative of how it operated. In the case of circadian rhythms, researchers
likewise began with a single feedback loop and could offer a narrative as to how it
generated oscillations. But in neither case could they differentiate this narrative from one
in which the system approached a steady state at which oscillations ceased. A further limit
was reached when researchers identified multiple feedback loops in a diagram such as
Figure 2. Mentally simulating more than one feedback loop operating at once is challenging.
Moving forward to show how these mechanisms generated the phenomena required
supplementing the strategies for developing mechanistic explanations with new
explanatory strategies.

3. Explaining Dynamic Behavior through Computational Simulation

The previous section revealed one respect in which oscillatory phenomena stretches basic
mechanistic explanation to its limits. Feedback systems generate oscillations, but many
dampen over time as the system reaches a steady state. From mentally simulating a
mechanism such as than shown in Figure 2, or even the initial proposal for a feedback loop
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involving per alone, one cannot tell whether the oscillation will be maintained or whether it
will reach a point at which the increase of PER from transcription and translation is
perfectly compensated by the rate at which it degrades.

The main alternative to which scientists turn when mental simulation fails is
computational simulation. When applied in cell and molecular biology, modelers create
differential equations to describe how the concentrations of individual components are
affected by the concentrations of one or more other components. What one realizes quickly
with feedback systems is that if one assumes that all the equations are linear, oscillations
resulting from feedback will quickly dampen. One or more non-linear equation is required.
To determine how the TTFL proposed by Hardin et al. would behave, Albert Goldbeter
(1995) constructed a computational model> consisting of five differential equation. The
first equation represents how per mRNA (M) changes as a result of being increased by the
rate of transcription of the gene per (first term after the equal sign) and decreased by the
rate of decay of the protein PER (second term):

dM K M

— =yt —

dT K+ P} K, +M
Vs, Vm, Kj, and Kp, as well as n, are parameters, and the choice of values for parameters has a
significant effect on how the simulation behaves. I will, however, only comment on n, which
appears as the coefficient of the variable Py in the denominator of the first term. Py
represents the concentration of PER in the nucleus. Putting it in the denominator has the
effect of reducing the increase of M as Py increases, thereby capturing the role of PER in the
nucleus in inhibiting its own transcription. How much of an inhibitory effect Py has is
critically affected by the coefficient n, known as the Hill coefficient, which reflects how
many molecules of PER are required to inhibit per transcription. In the second term M
appears in the numerator as well as the denominator, where a parameter is added to it.
This has the effect of increasing the rate of decay in a non-linear manner as the amount of
M increases. Using what he claimed were biologically plausible values for parameters and
applying each of the five equations iteratively, Goldbeter showed they generated stable
oscillations in variables such as M.

The introduction of more components into the mechanistic account raised the possibility
that the new system would yield dampened oscillations. Accordingly, Jean-Christophe
Leloup and Goldbeter (2008), added additional equations and used simulations to show
that the expanded computational model would, with what again were assumed to be
biologically plausible parameters, generate sustained oscillations. Leloup and Goldbeter
also incorporated components in this model enabling them to account for the entrainment
of the oscillator by light and for known circadian pathologies such as delayed sleep-phase
syndrome.

5 The term model is used in a wide variety of ways. Explanatory accounts, such as those
presented in a mechanism diagram, are often referred to as (mechanistic or explanatory)
models. Sets of equations that describe a mechanistic model and are used to generate a
simulation are referred to as a computational model, which is often abbreviated as just
model. It is usually clear from context what is meant by the term. In this section, model
refers to a computational model.
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Goldbeter deployed these computational models to understand how an already proposed
mechanism would behave. They provide what Adele Abrahamsen and [ have referred to as
dynamic mechanistic explanations (Bechtel & Abrahamsen, 2010). By using that term, we
sought to emphasize the complementary roles of computational modeling in ascertaining
the dynamics of a system and mechanistic analysis of its composition. Although the roles
are complementary, computational models contribute to explanations in a very different
manner than does the identification of the parts and operations of the mechanism.
Mechanistic explanations have often been presented as an alternative to the type of
deductive-nomological (DN) explanations that figured in earlier philosophy of science.
According to the DN model, explanation involved deriving a description of a phenomenon
from statements of one or more laws and initial conditions. Basic mechanistic explanations
do not invoke laws or perform derivations. Computational simulations are more closely
aligned with DN explanations than mechanistic explanations (Krakauer, Collins, Erwin,
Flack, Fontana, Laubichler, Prohaska, West, & Stadler, 2011). First, while the equations
used in computational simulations are typically not what one would characterize as laws,
but rather mathematically characterized regularities, they are a basis for deriving results.
Second, equations, like laws, are general. They specify relations between values of variables
without specifying the parts whose properties are varying. Different parts with varying
properties may be characterized by the same generalization. Third, invoking Craver’s
distinction between how-possibly and how-actually accounts, computational models
provide how-possibly accounts—whether they characterize a putative or an actual
mechanism, what they show is that such a mechanism could generate the phenomenon.

The explanatory import of computational modeling in biology extends beyond contexts in
which it is used to understand the behavior of a hypothesized mechanism. I will briefly
highlight four additional roles. Sometimes they are the object of experiments that are
designed to better understand how the modeled mechanisms functions. This involves
intervening on the computational model by, for example, investigating the effects of other
parameter values or of removing or adding components to the model. As experimental
researchers discovered more components of the mammalian circadian clock, modelers
tried strategies such as fixing the values of variables for some of the components in their
models to see if that affected the ability of the model to generate sustained oscillations. It is
much easier to intervene on a computational model than on the biological tissue. The
results of such experiments on computational models only provide information about what
would happen in a real biological preparation to the extent that the model correctly
describes the actual biological system. Yet, by drawing attention to what is possible under
the current hypothesis, they can play an important role in the interactive engagement of
modeling and experimentation.

A second additional use of computational models is to identify and characterize design
principles (Green, Levy, & Bechtel, 2014). Increasingly biologists are approaching biological
systems with the mindset of engineers. When engineers design systems, they often put
together modules that are themselves composed of components, but organized according
to principles from which their behavior in various contexts can be determined. Biologists
can make use of such principles to understand how mechanisms they encounter operate.
Uri Alon (2007) pioneered the investigation of motifs: small networks of two, three, or four
nodes that are organized in a particular way (e.g., two units negatively feeding back on each
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other). Through computational simulations (typically models using either Boolean or
differential equations), he and others have determined how motifs will behave in any
system in which parameter values fall within a specified range. When researchers identify
an instance of such a motif in a biological system, they can immediately infer its behavior.
Design principles are not tied to any particular mechanism but abstract from them;
nonetheless, they can be applied in understanding the behavior of actual mechanisms in
which components are organized in the manner specified.

A third use of computational models is closely related to the search for design principles,
While one can construct detailed computational models that adhere closely to the details of
a particular mechanism, one can also relax those constraints to develop models that
generalize across a broader range of phenomena. This involves abstracting (Levy & Bechtel,
2013) or coarse graining (Krakauer, Collins, Erwin, Flack, Fontana, Laubichler, Prohaska,
West, & Stadler, 2011) by, for example relaxing constraints of the range of variables or
considering parameters in an extended range. When successful, this approach can reveal
general principles. Biology is often contrasted with physics insofar as there do not seem to
be a small set of basic principles (laws) that can be applied universally. But that does not
mean one cannot achieve varying degrees of generality and computational models provide
one vehicle for doing so.

A final use of computational models is to provide an understanding of global states of
systems and how systems might evolve. A useful way to represent the behavior of a
complex system with many components each changing their state over time is in terms of a
state space in which each dimension corresponds to a variable characterizing the system.
The current state of the system will correspond to a point in the space and change in the
system will correspond to a trajectory through the possible states of the system. By
studying trajectories in state space, investigators can identify the structure in the state
space—for example, discovering that it contains attractor states to which the system will
evolve from a variety of other states (the basin of the attractor). This structure can be
productively represented as a landscape in which the points at which the system will
stabilize located at the bottom of valleys. Although one can develop a state-space
representation of an empirically-studied system, it is much easier to run multiple
simulations with a computational model of a dynamical system. Using the simple
computational model of the TTFL that Goldbeter advanced in 1995, he was able to map a
landscape that contained a limit cycle attractor—a closed loop of states in state space
corresponding to the oscillation of per mRNA and PER concentrations. The cycle is called a
limit cycle since from a variety of starting points not on the cycle, the system will evolve
towards the cycle. In more complex dynamical systems, there are multiple attractors in the
landscape. Moreover, one can represent alterations to the system as changes in the identity
and location of attractors. By constructing computational models of hypothetical complex
systems, and studying the resulting landscapes and how they can change, one can acquire
intuitive ideas about is happening in natural systems (e.g., that the perturbation that leads
to cancerous growth creates a new attractor) (Huang & Kauffman, 2012).

Computation modeling invokes a very different explanatory strategy than the mental
animation of mechanism diagrams that figured in basic mechanistic explanation. It
emphasizes the abstract, possible system, not the concrete actual mechanism. When
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directed at particular mechanisms, it can provide information about how the mechanism
will behave that cannot be generated from the mechanistic account itself. Through its
extended uses it can facilitate the discovery of generalized principles and enable
researchers to address additional questions about possible systems that lie beyond the
scope of basic mechanistic accounts.

4. Explaining the Integration of Mechanisms through Graph-Theoretic Analyses

In this section | address a second limitation that often confronts basic mechanistic
explanations—that the same strategies used for initially identifying parts of a mechanism
end up identifying a large-holistic system implicated in multiple phenomena, not just the
one under investigation. Mechanistic research often assumes that biological mechanisms
are independent entities that, when provided the right inputs, depend only on their inner
workings to generate the phenomenon they are invoked to explain. That is, it assumes
there is a natural boundary to a mechanism and that the parts one identifies reside within
it. In some cases, research on a mechanism begins with a delineated structure (e.g., a cell
organelle or a brain region) and a characterization of what it does. But in many cases, as in
the investigations of circadian rhythms discussed above, research begins with a part of the
mechanism (e.g., a gene), and the mechanism is identified by determining which other
parts (1) interact with that part in generating the phenomenon and (2) change the
phenomenon when they are altered. When researchers turn to recomposing the
mechanism, they seek to identify the place of these entities within the mechanism.

The problem with the strategy just outlined is that it is extremely sensitive to the
techniques available at a time to identify components that have an effect on the
phenomenon being explained and to measure those effects. Traditional strategies such as
inhibiting or stimulating parts were limited to investigating a small number of potential
parts. Often this would yield on the order of ten parts, as seen in Figure 2 in the case of
circadian rhythms. With the development of new techniques in the 2000s, however,
researchers have identified many more genes that have effects on circadian oscillations.
For example, using small interfering RNAs to knock-down 17,631 known and 4,837
predicted human genes in U20S (human osteosarcoma) cells containing a luciferase
reporter attached to the known clock gene Bmall, John Hogenesch, Steve Kay, and their
collaborators identified nearly 1000 genes that resulted in low amplitude circadian
oscillations (Zhang, Liu, Hirota, Miraglia, Welch, Pongsawakul, Liu, Atwood, Huss, Janes, Su,
Hogenesch, & Kay, 2009). Due to challenges in analyzing period in these cases, they were
not further analyzed. They focused instead on 343 genes that clearly increased the
amplitude or altered the period of circadian rhythms (they only counted the gene if it
produced deviations more than three standard deviations from the mean).

The researchers selected 17 genes on which to perform a dose-dependent knockdown and
in 16 cases established dose-dependent effects comparable to those that previous research
had found with genes already regarded as clock genes. In addition, the researchers
analyzed protein interactions and determined that some of the proteins synthesized from
these genes interacted directly with known clock genes whereas others are further
removed. Many of them are part of pathways such as those for insulin and hedgehog
signaling, cell cycle, and folate metabolism. For example, down regulating several
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components of the insulin pathway (JNK, IKK, MTOR, APKC, and PYK) results in longer
period oscillations while down regulating another, PFK, results in shorter period
oscillations. Since these are also pathways that previously had been shown to be regulated
by the circadian clock, Zhang et al. conclude: “Collectively, we conclude the clock is
massively interconnected and functionally intertwined with many biological pathways” (p.
207).

These results present a new challenge in conceptualizing the clock mechanism. It would not
be productive to simply add all of these genes and proteins to what is regarded as the clock
mechanism. As noted, many are part of other mechanisms; such a move would quickly lead
to treating the whole cell or organism as the mechanism for all phenomena. The great
success of mechanistic research has stemmed from its ability to decompose systems into
relevant mechanisms and their parts and to show how these contribute to the phenomena
under investigation. If biology is to continue to build upon this success, researchers need
ways to draw boundaries around mechanisms in order to generate recognizably if more
complex mechanistic explanations. How can they do so?

As in many other fields, biologists are increasingly invoking tools to analyze networks to
understand biological mechanisms (Barabasi & Oltvai, 2004; Mitra, Carvunis, Ramesh, &
Ideker, 2013; Prokop & Csukas, 2013). Most fundamentally, network approaches provide
new tools for representing biological organization. They also provide new tools to reason
about organization and its consequences for the behavior of mechanisms. To illustrate the
potential of this approach, I start with the network diagram (reproduced in Figure 3) that
Zhang et al. used to present their results. Shown in light and dark blue are the proteins that
are normally construed as constituting the circadian clock (ARNTL and ARNTL2 are
alternate names for BMAL1 and BMAL2; NR1D2 and NR1D2 are alternate names for Rev-
Erba and Rev-Erbf). In purple, red, and green they show proteins that when knocked down
increased the amplitude or altered the period of the clock. In pink are proteins that link
those proteins that affect the clock when knocked down and the core components of the
clock.
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‘ Core clock component ' Short-period hit — Protein-protein interaction
O Other clock component ‘ Long-period hit — Phosphorylation reaction
‘ High-amplitude hit —— Trans-activation
O Common interacting protein — Trans-repression

Figure 3. Zhang et al.’s (2009) representation of the various proteins that when
knocked-down have effects on circadian rhythms. See text and legend for details.

The first important role of network representations in biology is to provide new
perspectives on organization both within and between mechanisms. These perspectives
draw from graph theory, which provides a number of measures for analyzing network
organization. In the vocabulary of graph theory, networks consist of nodes (the circles in
the above diagram) and edges (the lines connecting the circles). One graph-theoretic
measure, cluster analysis, identifies as modules nodes that are highly interconnected
(clustered). As a result of these connections, modules represent candidate mechanisms.
Sometimes the mechanisms identified in this manner correspond roughly to those
identified by the classical procedure of starting with the phenomenon and finding parts
that affect it. The highly connected nodes in the center, colored in light or dark blue,
correspond to the traditionally construed clock mechanism. Network analysis, however, is
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most useful when it offers accounts that differ with those advanced directly from
mechanistic research. One such role is to identify additional components beyond those
differentiated by classical mechanistic research (see, for example, Ravasz, Somera, Mongru,
Oltvai, & Barabasi, 2002; Kelley & Ideker, 2005). Other times modules may point to the
existence of functional organization within and between mechanisms that may not have
been discovered by traditional approaches (Costanzo, Baryshnikova, Bellay, Kim, Spear,
Sevier, Ding, Koh, Toufighi, Mostafavi, Prinz, St Onge, VanderSluis, Makhnevych,
Vizeacoumar, Alizadeh, Bahr, Brost, Chen, Cokol, Deshpande, Li, Lin, Liang, Marback, Paw,
San Luis, Shuteriqi, Tong, van Dyk, Wallace, Whitney, Weirauch, Zhong, Zhu, Houry, Brudno,
Ragibizadeh, Papp, Pal, Roth, Giaever, Nislow, Troyanskaya, Bussey, Bader, Gingras, Morris,
Kim, Kaiser, Myers, Andrews, & Boone, 2010).

Another important measure used in graph analysis that provides insights to the
organization within and between mechanisms is degree distribution—the distribution of
the number of edges from a given node. Early graph theorists assumed that degree would
be distributed normally, but in many networks it is not normally distributed. Rather, a few
nodes have unusually high degree. These nodes are referred to as hubs and they may serve
either to integrate a module/mechanism (TP53 in the upper left in Figure 3) or to facilitate
integration between modules/mechanisms (CNSK2A1 on the right). Some components of
the core clock, such as Per1, have both extensive connections to other components of the
clock and to units elsewhere, suggesting an important role in integrating clock components
with components of other mechanisms that are both regulated by and regulate clock
function.

Second, networks are not only the product of numerous experimental inquiries, but they
can also serve as a guide both to further experimentation and modeling. A network
representation reveals many unsuspected indirect connections between nodes and so can
guide inferences about how the effects of perturbing one node will spread to others. In
many cases, modeling of the network will provide a guide to what sorts of effects one
should expect. Researchers often annotate network representations with information from
Gene Ontology about where in the cell genes are expressed, the functions the proteins
perform, and the larger biological processes in which they figure. Particularly valuable
from the point of view of understanding mechanisms is that Gene Ontology represents
parts and functions hierarchically, which then supports predictions as to the effects of
perturbing individual genes (Yu, Kramer, Dutkowski, Srivas, Licon, Kreisberg, Ng, Krogan,
Sharan, & Ideker, 2016). Given that Gene Ontology involves curated information about the
entities and their functions that have been identified in experimental research, it is not
surprising that the hierarchical units more or less correspond to traditional mechanisms.
What is less to be expected that new data driven approaches to generating ontologies, such
as NeXO (Dutkowski, Kramer, Surma, Balakrishnan, Cherry, Krogan, & Ideker, 2013), also
yield hierarchical structures corresponding to mechanisms. When combined with
information from these ontologies, network representations enable researchers to make
new inferences about the effects of perturbations (e.g., knocking out of two genes) not only
within traditionally characterized mechanisms but also across mechanisms.

The challenge I raised at the beginning of this section was where to draw the boundaries
around a mechanism once we recognize how the components of a mechanism are
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interconnected with other entities in large networks. In the above paragraphs I noted that
modules in graph representations often correspond to mechanisms initially identified in
more traditional ways. But given that there are a number of entities outside the modules
that affect activity within, researchers must often exercise discretion was to where to draw
the boundaries. Recent research, for example, has identified several instances in which an
operation within the circadian mechanism depends directly on a component usually
treated as part of the metabolic mechanism. One involves the binding of the dimer of Clock
and Bmall to the E-box on per and other genes, as shown in Figure 2. Clock has been
identified as a histone acetyl transferase—by adding acetyl groups to the chromatin, it
affects how tightly the chromatin is bound and hence whether genes such as Per can be
transcribed. This function of Clock is regulated by SIRT1 binding to it. The concentration of
SIRT1 is itself dependent on levels of NAD*, a central component in glycolysis and other
metabolic pathways (Bellet, Orozco-Solis, Sahar, Eckel-Mahan, & Sassone-Corsi, 2011). If
one focuses on the way in which NAD* modulates SIRT1 activity, and thereby modulates
circadian rhythms, then one might include it in the circadian mechanism. If the research
question involves how transcription of circadian genes is modulated, a researcher might
include not just SIRT1 but even the metabolic processes such as glycolysis that oxidize and
reduce NAD* in the relevant mechanism. Decisions as where to locate the boundaries of
mechanisms are constrained by both the interconnectivity of components in larger
networks and the questions researcher are investigating.

The characterization and analysis of network organization constitutes a different strategy
than traditionally employed in mechanistic research. As in the case of computational
modeling, in network analysis, researchers abstract from the specific composition of the
mechanism and focus on the ways edges connect nodes. The goal of network analysis is to
identify organizational principles at an abstract or coarse-grained levels and determine the
behaviors they make possible. The application of these results to specific actual networks
that realize a pattern of organization involves a reasoning process much like derivation.
The resulting abstract analysis plays a different explanatory role than the specification of
the parts and operations. By identifying a mechanism with a module in a network, one can
use the network representation to identify ways in which the module is affected by other
modules. To investigate how such modulation is actually achieved, researchers need to
engage further with mechanistic strategies that identify specific parts and operations.
Network analysis performs a function complementary to traditional mechanistic inquiry,
revealing multiple ways in which a mechanism is situated among other mechanisms and
creating conditions in which researchers can select which entities to treat as a mechanism
and investigate further.

5. Expanding mechanism’s explanatory strategies

The strategies scientists pursue to explain the phenomena of interest to them change over
time. Cytology and cell biology through the 19t and 20t centuries witnessed the
cultivation of new techniques to identify mechanisms and decompose them into their parts
and operations. This is evident in General Cytology and again with the introduction of
electron microscopy and cell fractionation. These techniques enabled cell biologists to
identify organelles and localize specific chemical reactions in each. Based on these results,
researchers set about recomposing mechanisms, often using diagrams and mentally



Bechtel: Enriching the Strategies for Creating Mechanistic Explanations in Biology p-18

rehearsing the operations depicted (Figure 1). They offered accounts of how cells perform
a wide range of activities that fit the pattern of basic mechanistic explanations. Even as
contemporary cell researchers move beyond these accounts, they remain success stories.

But as a result of developing new techniques for decomposing cells to identify genes and
proteins, especially those that operate on a mass scale, cell biologists found that the parts
and operations could no longer be recomposed into basic mechanistic explanations. The
discovery of multiple operations occurring in parallel, feedback relations between
operations regarded as later onto those regarded as earlier, and interactions with
components regarded as parts of other mechanisms rendered the project of invoking
mental simulation to animate static diagrams insufficient. One could not settle whether the
mechanism would generate, for example, sustained circadian rhythms or dampened
oscillations.

To address these questions, biologists availed themselves of new strategies that could
complement those of basic mechanistic explanation. I have focused on two, computational
simulation and network analysis, that are playing important roles in contemporary systems
biological approaches to explaining cellular phenomena such as circadian rhythms. [ have
emphasized the differences between these strategies and mechanistic strategies of the past.
Both computational simulations and network analyses abstract from the details of the
composition of mechanisms and appeal to general principles. Researchers apply the results
of such abstraction to understand the operation of specific mechanisms through processes
like derivation. From a computational analysis, researchers can find out how a proposed
mechanism will behave and explore other possibilities. From a network analysis,
researchers can make inferences based on characteristic modes of organization and
propose plausible boundaries for mechanisms while recognizing that they are situated in
an environment that affects their operation.

Deploying new strategies to advance explanatory objectives is a recurring them in biology.
What is important to recognize is that the conception of explanation is also being extended.
Recomposition achieved through computational modeling and network analysis differs
from that achieved by mentally animating a mechanism. Nonetheless, contemporary cell
biology is still mechanistic. In particular, biologists are still decomposing biological systems
into parts and operations (with high-throughput procedures, this process is accelerated).
And the resulting explanation still appeal to these parts and operations. And when possible,
biologists still attempt to mentally rehearse the operations in mechanism diagrams. The
new techniques complement existing mechanistic strategies. The resulting perspective is a
pluralistic one in which different explanatory strategies each makes a complementary
contribution to the pursuit of mechanistic explanation in contemporary cell biology.
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