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Abstract

In our target article, we argued that the number sense represents
natural and rational numbers. Here, we respond to the 26 com-
mentaries we received, highlighting new directions for empirical
and theoretical research. We discuss two background assump-
tions, arguments against the number sense, whether the approx-
imate number system (ANS) represents numbers or
numerosities, and why the ANS represents rational (but not irra-
tional) numbers.

We are humbled to have received 26 commentaries from 62
researchers, among them many of our academic heroes.
Unsurprisingly, these commentaries reflect a diversity of opinion.
Some endorse and build upon the main conclusions of our paper;
others highlight points of disagreement. Although we remain con-
fident in our main theses, we learned a great deal from our com-
mentators – about soft spots in our arguments, points that require

development, where we could have been clearer, and avenues for
future research. We’re extremely grateful for their insights.

Our replies follow the order of our target article. We discuss
two background assumptions, arguments against the number
sense, whether the approximate number system (ANS) represents
numbers or numerosities, and why the ANS represents rational
(but not irrational) numbers.

R1. Background assumptions

Explanation needs to start somewhere, and our discussion presup-
posed that the ANS is representational and that it sometimes oper-
ates in perception, enabling numbers to enter perceptual contents.
Some commentators challenged these background assumptions.

R1.1. Is the ANS representational?

While the idea that the ANS represents anything at all is relatively
uncontroversial among ANS researchers (but see Beck [2015] for
a defense), Jones, Zahidi, and Hutto (Jones et al.) suggest that
our commitment to representations imports unnecessary “philo-
sophical baggage.” They recommend instead embracing an anti-
representational Radical Enactivism.

In general, we’re dubious when people tell us we can avoid phil-
osophical baggage by embracing views with “radical” in the name.
Jones et al.’s “radical” vision is that we acquire a perceptual sensi-
tivity to numbers simply by virtue of our sensitivity to the affor-
dances they enable: “The ‘sevenness’ is not a property of the
apples, nor of the perceiver, but of what the perceiver can do
with them.” The trouble is: It’s essentially open ended what you
can do when you perceive there to be seven of something. So we
don’t see how the perception of number can be specified in these
terms. Furthermore, representation is fundamental to explanations
of the ANS’s internal computations. For instance, when children
use their ANS to add the number of blue dots and red dots in a
sequence of events (e.g., Barth et al., 2005), it’s not just that they’re
afforded with (say) the sevenness of the blue dots, the tenness of
the red dots, and then magically afforded with the seventeenness
of the red and blue dots; they engage in a computational transition,
in which internal states of the organism interact in content respect-
ing ways. This presupposes representation.

R1.2. Are numbers perceivable?

Aulet and Lourenco, Marshall, Novaes and dos Santos, and
Opfer, Samuels, Shapiro, and Snyder (Opfer et al.) all ques-
tioned our assumption that numbers are perceivable.

Because numbers are higher-order, Novaes and dos Santos
and Marshall think they cannot be perceived. Marshall proclaims
that “second-order entities are no part of the sensible realm,”
while Novaes and dos Santos write that numbers “emerge only
after an agent has adopted a given sortal” and thus are not “out
there, inexact or otherwise, to be represented.” But we find this
puzzling. Surely, it’s an objective fact that the apples on the
kitchen counter total five in number. This fact is “out there”
and does not require anyone’s mind to “emerge.” It’s also the
sort of thing one should expect perceptual systems to be capable
of picking up on. We’re not sure why anyone would think other-
wise unless they were committed to an outdated view of percep-
tion according to which perception only represents properties
for which we have dedicated sensory transducers. But perception
is not sensation. At least since Helmholtz, we’ve known that
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perception is a constructive and ampliative process whose outputs
go beyond its inputs. The visual system makes assumptions that
are non-demonstrative but generally ecologically valid. Some of
these assumptions concern default sortals that individuate the
incoming sensory array into objects and are used to enumerate
concrete pluralities. There is no mystery concerning how some-
thing higher-order could be perceivable.

Aulet and Lourenco object that our contention that we per-
ceive numbers “conflates the percept with the concept.” But stud-
ies show adaptation to number in external coordinates (Burr &
Ross, 2008; DeSimone et al., 2020), including cross-modal adap-
tation (Arrighi et al., 2014), which naturally controls for most
non-numerical confounds. Because adaptation is a mark of the
perceptual (Block, 2014), these studies suggest that we really do
perceive numbers.

Opfer et al.’s rich commentary questions whether numbers
are perceivable on different grounds. Because we assume numbers
enter perception through property attribution, they accuse us of
assuming the Identity Thesis, according to which, “Natural num-
bers are identical to cardinality properties.” They object that the
Identity Thesis is linguistically problematic because it’s felicitous
to say things like (1) but not (2).

(1) The number of women at the party is four.
(2) ?? The number of women at the party is the number four.

We’re wary of drawing strong metaphysical conclusions from facts
about how people talk (does the language faculty have a hotline to
the Forms?) but happily concede that the Identity Thesis might be
false. Plausibly, being eight in number is a property, while the
number eight is an (abstract) particular. But, contrary to what
Opfer et al. suggest, we don’t think we’re committed to denying
this or affirming the Identity Thesis. We simply maintain that
perception attributes properties like being eight in number, and
that the attributed properties are complex, and include reference
to natural numbers. For example, the attribution is eight in num-
ber includes reference to the number eight even though it is not
identical to the number eight. (Compare: The property of being
as rich as Jeff Bezos is not identical to Jeff Bezos; but when you
wish you were as rich as Jeff Bezos you refer to Jeff Bezos.)
When we said that “the ANS refers to numbers… by enabling
numbers to enter into contents via property attribution,” this is
what we meant.

Opfer et al. raise a further objection that may now seem press-
ing: if (as we suggested in our target article) there’s a puzzle about
how numbers qua abstracta could be referred to in perception,
and we maintain that attributing cardinality properties involves
referring to numbers, how do we avoid our original puzzle? The
answer lies in the fact that the puzzle was not supposed to be
that it’s mysterious how perception could refer to abstract entities.
Rather, our worry was that it’s mysterious how perception could
veridically refer to abstract entities on their own, without simulta-
neously referring to something concrete. That’s why we said, you
can’t “perceive the number seven itself – on its own.” To veridi-
cally refer to the number seven in perception, you need to simul-
taneously perceive a concrete plurality. When you perceive the
apples as being seven in number, you refer to a concrete plurality
of apples and attribute a property to it, with reference to the num-
ber seven occurring within that attribution. (Admittedly, we could
have been clearer on this point.)

Now, even though our worry didn’t concern how perception
could refer to abstract objects full stop, this is a worry others

might have. But note two things. First, the worry is not unique to
perception. Others have worried about how we can think about
numbers given that they are abstract objects (Benacerraf, 1973).
There is, thus, a version of this puzzle that arises for everyone.

Second, with respect to the specific puzzle of perceiving num-
bers, we don’t see it as fundamentally different from the puzzle of
how one can be perceptually related to other abstracta, such as
shapes and colors. Even Opfer et al.’s linguistic point doesn’t dis-
tinguish between these.

(3) The {color/shape} of the ball is {orange/a sphere}.
(4) ?? The {color/shape} of the ball is the {color orange/shape a

sphere}.

Admittedly, colors and shapes are often taken to be universals
rather than abstract particulars, and if that’s right, the two puzzles
are not identical. To say exactly how they differ, however, would
require staking out various controversial positions in metaphysics
and the philosophy of mathematics. In an article addressed to an
interdisciplinary audience, we tried to bracket such issues. But the
two perceptual relations (to shapes/colors and numbers) strike us
as sufficiently similar that we’ve been able to sleep at night. Still,
this issue deserves further attention and we’re grateful to Opfer
et al. for highlighting it.

R2. Arguments against the orthodox view

In our target article, we cleared space for the orthodox view that the
ANS represents numbers by noting a lack of compelling arguments
to the contrary. Thus, our target article replied to three arguments
which have been pressed against this orthodox view – the argu-
ments from congruency, confounds, and imprecision.

Notably, few commentators came out in support of these argu-
ments. Indeed,Marinova, Fedele and Reynvoet (Marinova et al.)
suggest that we “somewhat misinterpreted” the “key message” of
the congruency and numerical interference studies they have
been involved with – studies which formed the backbone of the
arguments from congruency and confounds. Their commentary
is helpful because it serves to distinguish two closely related
views these studies could be seen to support. A radical interpreta-
tion uses them to argue that the ANS fails to exist or represent
numbers at all. This radical interpretation seems to be in play
when, for instance, Gebuis et al. (2016) claim that congruency
studies of this sort indicate that “the output” of the ANS “is not
an abstract number” (p. 28). By contrast, a modest interpretation
simply takes these results to support an indirect model of ANS
processing, on which numerical quantity is derived from contin-
uous percepts. Our aim was to tease these possibilities apart and
rebut the radical interpretation. It’s good to learn that researchers
behind some of these studies also want to distance themselves
from the radical interpretation.

Marinova et al. also helpfully observe – and we agree – that it
may not be necessary to choose between direct and indirect mod-
els of the ANS. Rather, there could be multiple ways perception
extracts number, some direct and some indirect.

Aulet and Lourenco were more dubious. They note (correctly)
that on our view “whether elephants, mice, or apples” are being
counted, the ANS can attribute a numerical value to these “irre-
spective of their physical differences.” Against this, they claim
that “number is not (perceptually) independent of other magni-
tudes,” citing evidence that number and area are perceived as inte-
gral dimensions. Two dimensions are integral when they cannot
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be represented independently and separable otherwise. But repre-
senting A and B as integral dimensions doesn’t preclude repre-
senting A. Loudness and pitch are integral dimensions, and
each is perceptually represented. Two integral dimensions may
even be represented by distinct vehicles, with their integrality
(often measured by interference effects) deriving from causal or
structural relations among vehicles (Lande, 2020).

Aulet and Lourenco criticize one reason we provided for
thinking that number is represented by the ANS. In our target
article, we emphasized work by Cicchini et al. (2016) and others,
suggesting that when subjects estimate the area, density, and
number of dots in a visual array, they are more sensitive to num-
ber than area or density, and thus do not simply represent area
and density, but also number. Against this, Aulet and Lourenco
cite evidence that when perceived area is distinguished from
true area, we are less sensitive to number. Barth and
Shusterman bolster the objection, citing a wider range of studies
in support of this claim. Thus, both commentaries suggest that
when perceived area is distinguished from mathematical area,
it’s not true that we’re more sensitive to number than area or
other non-numerical confounds.

These are fascinating issues. But it’s vital to keep three things in
mind. First, the correct interpretation of these studies remains
hotly contested, so it’s probably too early to draw strong
conclusions. For instance, Park (in press) objects that studies
which control for perceived area tend to introduce massive incon-
gruencies between number and non-numerical magnitudes – so,
given that incongruencies of this sort suppress numerical
sensitivity (DeWind et al., 2015), counterevidence of this sort prob-
ably underestimates true numerical sensitivity. Second, our target
article did acknowledge some of the counterevidence these authors
cite. For instance, we discussed Yousif and Keil’s study, suggesting
that subjects are more sensitive to “additive area” than number.
But, as we noted then, Yousif and Keil are clear that their results
cannot be fully explained by non-numerical confounds and still
require that numbers are represented. But third, even if none of
this were so, the idea that number is uniquely salient was just
one reason we gave for rejecting the arguments from congruency
and confounds (the arguments in which these studies featured).
The arguments also fail for independent reasons. For example,
the argument from congruency overgeneralizes in absurd ways;
and the argument from confounds relies on an ad hoc strategy of
explaining away success in number tasks that struggles to explain
key findings (e.g., cross-modal comparisons and dumbbell effects).

R3. Number versus numerosity

We next proposed that the ANS represents numbers rather than
numerosities or other exotic entities. To this end, we observed
that the ANS tracks the cardinal number of entities in concrete
pluralities (albeit imprecisely), supports arithmetic computations,
and exhibits a higher-order sensitivity that’s characteristic of
number representation. We also argued that the thesis that the
ANS represents number admits of no plausible alternatives, pro-
motes integration with other sciences, and avoids a curious double
standard with respect to the treatment of non-numerical quanti-
ties. Our commentators pushed back on many of these claims.

R3.1. Higher-order sensitivity

One reason to think the ANS represents number is that the ANS
is sensitive to the higher-order character of number. Numerical

quantities are assigned relative to a sortal, and this distinguishes
them from other kinds of quantity. To illustrate, note that the
group entering the restaurant is one party of diners, four couples,
and eight people, while the group’s weight remains constant irre-
spective of which sortal we apply. That the ANS is sensitive to this
higher-order feature of number is especially clear from the dumb-
bell studies reviewed in our target article (Franconeri et al., 2009;
He et al., 2009). Judgments of the number of items are influenced
by whether they are connected to one another (even though sub-
jects are told to ignore the connecting lines), suggesting that the
system takes a stand on how items are individuated.

Marshall complains that we “hang an awful lot” on these
dumbbell studies in making this point, but he doesn’t question
our logic or criticize the studies themselves. By contrast,
Buijsman objects that the dumbbell studies only contain “a rela-
tively small number of connected dots/squares” and that, as such,
performance might result from the object-tracking (or subitizing)
system rather than the ANS. But this worry appears to be based
on a misinterpretation of the original studies. Buijsman writes,
“the fourth experiment of Franconeri et al. (2009) has four circles,
and in the connected format these form two dumbbell shapes.”
While that accurately describes the figure accompanying
Franconeri et al.’s fourth experiment, the text clarifies that the
actual stimuli consisted of 12, 24, or 48 circles, of which 0, 25,
50, 75, or 100% were connected.

This is not a one-off finding. Fornaciai et al. (2016) report that
numerical adaptation effects are influenced by whether the post-
adaptation stimuli consist of 20 unconnected dots or 10 pairs of
connected dots. Fornaciai and Park (2018) confirmed that dis-
plays of 16 or 32 dots were underestimated when they were con-
nected (compared to displays containing unconnected dots). In
fact, the stimuli needn’t really be connected. Kirjakovski and
Matsumoto (2016) found that pacman-like stimuli that only
appeared to be connected via Kanisza-like illusory contours also
caused subjects to underestimate their total.

Aulet and Lourenco object that the dumbbell studies do not
reveal that the ANS has a higher-order character because “if num-
ber perception was genuinely second-order, then it should be just
as easy to continue perceiving the number of dots, instead of
being biased towards the number of dumbbells.” But this worry
conflates two things: whether the ANS is higher-order, and
whether the sortals it uses are under voluntary control.
Crucially, the ANS could be higher-order even if the sortals it
uses aren’t under voluntary control.

Consider that the visual system is biased toward individuating
the world into what are sometimes called Spelke objects –
bounded, coherent, three-dimensional, continuous wholes
(Carey, 2009; Spelke, 1990; but see Green, 2018.) Consequently,
when the ANS takes inputs from the visual system, it enumerates
Spelke objects by default. That is what the dumbbell studies show
because connecting two items turns them into a single Spelke
object. These studies evince a higher-order character to the refer-
ents of ANS representations because they show that the ANS is
applying a sortal – the sortal Spelke object. This default can be
overridden to some extent (subjects do not treat 10 pairs of con-
nected circles as numerically identical to 10 unconnected circles),
but not completely. Moreover, it is only the default in certain cir-
cumstances. The ANS also spontaneously enumerates events such
as rabbit jumps, heard tones, and, as Burr, Anobile, Castaldi,
and Arrighi demonstrate, self-generated actions such as hand
taps. Thus, the sortal used by the ANS is capable of varying,
even if (like most of the mind) it isn’t under full voluntary control.
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R3.2. Numerosity

In our target article, we objected to the idea that the ANS repre-
sents numerosities rather than numbers themselves. For one, we
objected that, while the term “numerosity” is widely used, no
one seems to know what a numerosity is. This prompted many
commentators to tell us just what a numerosity is, although
their disagreements are notable, suggesting that insofar as
researchers associate a distinctive meaning with “numerosity,”
it’s not universally shared.

In their commentaries, Núñez, d’Errico, Gray, and Bender
(Núñez et al.) and Novaes and dos Santos trace the term
“numerosity” to S. S. Stevens. As Núñez et al. report, Stevens
(1939/2006, p. 23) defined numerosity as “a property defined by
certain operations performed upon groups of objects.” We’ll con-
fess, this doesn’t exactly clear things up for us.

Some commentators had more to say. Novaes and dos Santos,
along with Bermúdez and Opfer et al., suggest that numerosities
are cardinalities. By contrast, Núñez et al. double down on the
idea that the ANS is quantical rather than numerical, while
Buijsman and Gross, Kowalsky, and Burge (Gross et al.) defend
the view that numerosities are pure magnitudes. We discuss each
of these proposals in the following sub-sections. First, however, we
want to reply to two further commentaries that defend the con-
cept of numerosity without neatly fitting into these three
proposals.

Barth and Shusterman wonder whether researchers share an
“understanding of what ‘numerosity’ means.” Given the variety of
proposals made by our commentators, we think it’s clear they do
not. The common term masks a diversity of concepts. Still, Barth
and Shusterman think that the term should be retained.
According to them, “number” is ambiguous because it can refer
to a number word, a numeral, a mathematical entity, or a prop-
erty of a stimulus. They think it is useful to have a term that refers
just to the last of these, and that “numerosity” is up to the task.

Our view is that words and numerals are clearly not numbers –
no more than the word “square” has four equal sides or the dinner
bell is fit to eat. Therefore, we don’t think anyone should be con-
cerned about confusion on that front. (If one is concerned, using
“number word” and “numeral” for number words and numerals,
respectively, should guard against mix-ups.) We do think there’s a
difference between mathematical entities and properties of stim-
uli, but that’s not a distinction that’s unique to numbers. When
a mathematician says, “A square is a plane figure with four
equal sides and right angles,” she’s talking about a mathematical
entity, not a property of a stimulus. But the tiles on Rachael Ray’s
kitchen floor can have the property of being square just as surely
as they can have the property of being 30 in number. Would
Barth and Shusterman also want to introduce the term “squar-
eosity” to capture the shape property that these stimuli can
have? If not, why introduce “numerosity” to capture their numer-
ical property? Barth and Shusterman don’t say.

Gallistel also defends the term “numerosity,” arguing that
“coherent discussion” requires a three-way distinction between
numerons, numbers, and numerosities. A numeron is “a symbol
in a computing machine like the brain.” This strikes us as a help-
ful concept. Just as we use numerals (e.g., in Arabic notation) in
language, the brain uses numerons in its internal code.
Numerons are thus vehicles of representation – symbols in the
language of thought. But Gallistel also says that numbers are sym-
bols. This leaves us confused. If numerons and numbers are both
symbols, aren’t they the same thing? And wouldn’t numbers then

be vehicles of representation too? This seems like a mistake, anal-
ogous to confusing a rose with the word “rose.” Symbols refer to
numbers, but they aren’t identical to numbers. After all, different
symbols can refer to the same number (e.g., “4,” “four,” and “IV”),
and the same symbol can refer to different numbers in different
notations (e.g., “100” refers to one hundred in decimal notation
and to four in binary).

Finally, Gallistel claims that a numerosity is “the number you
get when you correctly count” a collection. But, if a numerosity is
just a number, Gallistel has one more distinction than he needs.

Gallistel provides one further reason to think that we need
“numerosity” in addition to “number.” Just as psychophysicists
use “brightness” for the percept and “luminance” for the distal
stimulus, they need “number” for the percept and “numerosity”
for the distal stimulus. But, while some objective magnitudes
have an associated term that naturally applies to the percept
(e.g., luminance/brightness, sound wave amplitude/loudness,
and sucrose concentration/sweetness), others do not (e.g., dis-
tance/?, duration/?, and area/?). And yet psychophysicists seem
to get along just fine measuring these percepts. As such, we
should ask what feature of the percept “numerosity” is supposed
to capture. Is it the vehicle? Gallistel already gave us “numeron”
for that. Perhaps, instead, it’s the phenomenal character of the
percept (as it might be with “brightness”)? But, beyond the oddity
of using “number” to refer to a phenomenal property, it’s far from
clear that there’s a phenomenal character that’s common to how
number is represented in vision, audition, action, and so on. The
distinction between number and numerosity serves no apparent
purpose.

R3.3. Cardinalities

Novaes and dos Santos write that “in the contemporary literature
one finds ‘numerosity’ defined as a synonym for cardinality.” In
defense of this claim, they cite Nieder (2016, p. 366), who writes,
“Cardinality (also known as numerosity) corresponds to the
empirical property of quantity, and is the number of countable
elements in a given group (for example, five runners).”

On one interpretation of this passage, cardinalities are just a
specific type of number: cardinal numbers. And to represent a
cardinality is to represent a cardinal number. This interpretation
is obviously consistent with the hypothesis that the ANS repre-
sents numbers.

On a second interpretation, cardinalities are properties of con-
crete pluralities rather than numbers themselves. This would put
Novaes and dos Santos in line with Barth and Shusterman and
Opfer et al. Here, a distinction is drawn between the number five
(a mathematical entity) and being five in number (a property of a
concrete pluralities). To represent the cardinality of the runners is
to represent the runners as being five in number – that is, as hav-
ing a particular property. As we noted in section R1.2, we agree
that the ANS attributes cardinality properties in this sense; but
we maintain that in so doing it refers to numbers. Therefore,
this proposal is also compatible with our hypothesis.

Is there some other way to use cardinality as an alternative to
number? The notion of a cardinality derives from set theory, and
Novaes and dos Santos suggest appealing to the set-theoretic
notion of one-to-one correspondence, such that two sets have
the same cardinality if and only if their members can be put in
one-to-one correspondence. Bermúdez develops this suggestion,
showing how it predicts that the ANS can represent comparative
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properties, but not absolute properties. That’s because a computa-
tion of one-to-one correspondence can tell you whether two col-
lections are equinumerous or not, but not how many elements are
in either one. Bermúdez argues this proposal is consistent with
much of the data associated with the ANS, including the many
studies that require subjects to determine which of two presented
pluralities is greater, and Weber’s Law itself.

One might worry that this proposal falsely predicts that
numerical comparisons will be precise, because the operation of
one-to-one correspondence is precise. (It grounds some defini-
tions of the integers.) Carey and Barner (2019) reject the proposal
on exactly these grounds, writing that “the ANS lacks a mecha-
nism like one-to-one correspondence that can establish the
exact equality of sets” (pp. 826–827). But we see no reason that
noise couldn’t corrupt a computation that places representations
in one-to-one correspondence, thereby giving rise to the impreci-
sion associated with the ANS.

There are, however, two difficulties with the proposal. First,
while numerous studies show that ANS representations can be
stored in working memory, working memory for seen objects
degrades quickly after three or four objects (Alvarez &
Cavanagh, 2004; Vogel et al., 2001). A large collection of objects
is not represented in memory in full detail, but as an “ensemble”
using summary statistics (Alvarez, 2011). For example, the mean
area of a collection of dots might be recorded in memory, but not
the individual areas (Ariely, 2001). And similarly for orientation,
brightness, location, and other properties. But, if the collection of
individual objects in a display aren’t stored in memory, then the
comparative cardinality view cannot explain how subjects per-
form numerical comparisons once that collection is no longer
perceivable. Consider the studies by Barth et al. (2005) that
Bermúdez cites. In the very first experiment, preschoolers see
some dots on a screen, then see those dots being covered, and
then see some new uncovered dots. They then have to say whether
the covered dots are more or less numerous than the uncovered
dots. To do this, they must maintain in memory either a represen-
tation of the covered dots themselves or a summary representation
of the covered dots’ number. If they maintained a representation
of the covered dots themselves, then they could put those dots in
one-to-one correspondence with the still-visible dots to determine
their comparative cardinality. But the displays contained up to 58
dots, well above the limits of visual working memory. Therefore,
memory must instead store a summary representation of their
total number.

Second, when Bermúdez writes, “Clarke and Beck readily con-
cede that there is no evidence that the ANS is sensitive to the suc-
cessor function or to basic arithmetical operations,” he’s only half
right. We did concede that the ANS isn’t sensitive to the successor
function. But we noted “that ANS representations enter into
arithmetic computations such as greater-than and less-than com-
parisons, addition, subtraction, multiplication, and division.” This
matters because most arithmetic computations require more than
one-to-one correspondence. While other set-theoretic operations
might be appealed to (e.g., addition might be explained in terms
of the union operation), this approach gets trickier when we con-
sider that ANS representations are believed to enter into arith-
metic computations with other magnitudes. For example, there
is evidence that the mind takes representations of number and
divides by its representations of duration to yield representations
of rate (Gallistel, 1990). We find it hard to envision how compar-
ative cardinalities can explain such computations. (Núñez et al.
claim it’s a “biological no-go” to suppose that the nervous system

implements arithmetic operations such as division. But they don’t
explain why; nor do they provide an alternative explanation of the
many studies we cited that are indicative of such operations.)

R3.4. The quantical

Núñez et al. accuse us of “biological misconceptions,” “mathe-
matical naïveté,” “serious inconsistencies,” having “only [one]
novel claim,” “erroneous” characterizations, “misrepresent[ing]”
distinctions, “an unnecessary condescending tone,” and torturing
puppies for fun. (We’re reading between the lines on that last
one.)

In an earlier article, Núñez argued that the capacities associ-
ated with the ANS “are not about numbers, but are about quan-
tity, and therefore should not qualify as numerical… I propose to
refer to these biologically endowed capacities as quantical”
(Núñez, 2017, p. 419; emphasis in original). We interpreted
these claims as implying that the ANS does not represent number,
and instead represents something “quantical.” Núñez et al. stress
that “quantical” is an adjective to describe non-numerical quanti-
ties, and not a noun as we sometimes used it in our article. Fair
enough. But, if the ANS is about something “quantical” rather
than something numerical, what exactly does it represent?
Núñez (2017) tells us that “quantical” pertains to quantity. But
as we stressed in section 5.3 of our target article, just saying
that the ANS represents quantities doesn’t capture its second-
order sensitivity or distinguish it from systems that represent
magnitudes such as distance or duration.

Núñez et al. offer some clarificatory remarks. For one, they say
that the quantical–numerical distinction is not about (im)preci-
sion. This was one of Núñez’s (2017) stated reasons for thinking
that the ANS is non-numerical, when he wrote, “A basic compe-
tence involving, say, the number ‘eight,’ should require that the
quantity is treated as being categorically different from ‘seven,’
and not merely treated as often – or highly likely to be – different
from it” (p. 417). And again, when he wrote that quantifying “in
an exact and discrete manner” is part of the “minimal criteria” for
a capacity to be numerical (p. 418). In section 5.3 of our target
article we argued that this is not a good reason to reject the
hypothesis that the ANS represents numbers. Núñez et al. seem
to agree.

Núñez et al. claim that the core difference between quantical
and numerical cognition lies in the distinction between non-
symbolic and symbolic reference. By a “symbol” they seem to
mean public symbols from a spoken or written language, and
not internal mental symbols such as Gallistel’s numerons.
(Thus, they deny not only that the ANS is symbolic, but also
that subitizing is symbolic even though subitizing has been argued
to recruit demonstrative-like mental symbols [Pylyshyn, 2007].)
The way they use the quantical–numerical distinction is open to
two interpretations, however, one weak and one strong.

According to the weak interpretation, the distinction is merely
supposed to emphasize that the capacities that come online with
public numerical symbols are importantly different from the
capacities associated with the ANS. We agree wholeheartedly
and said as much in our target article. Mastering a public numer-
ical system makes it possible to do things that one could not do
before. According to the strong interpretation, not only are the
capacities different, but also the capacities associated with the
ANS are not numerical, and so the ANS does not represent num-
bers. For reasons glossed above, we interpret Núñez (2017) as
endorsing this stronger interpretation. But, as we note in our
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target article, the stronger claim faces two problems Núñez et al.
don’t address. First, it struggles to explain the higher-order sensi-
tivity of the ANS. And second, it owes an account of what the
ANS represents, if not numbers. Saying that it is “quantical” is
insufficient because that either reduces to the trivial claim that
internal mental representations are not public symbols (if “quant-
ical” is just taken to mean not symbolic) or else fails to distinguish
the capacities associated with the ANS from the capacities associ-
ated with systems devoted to quantities like duration or distance
(if “quantical” means quantitative).

R3.5. Pure magnitudes

Most researchers who claim that the ANS represents numerosities
fail to adequately explain what a numerosity is. Burge (2010) is an
exception. His proposal that the ANS represents Eudoxan pure
magnitudes is substantive and specific. We view this as the leading
competitor to our proposal that the ANS represents number.
Buijsman and Gross et al. defend it.

Gross et al. argue that pure magnitudes are preferable to nat-
ural numbers for two reasons. First, the ANS isn’t sensitive to the
full structure of the natural numbers. For example, its capacities
do not include “counting, one-to-one matching, or a successor
operation.” By contrast, they claim pure magnitudes have all the
structure needed to explain the ANS, and no more. We disagree.
Pure magnitudes are extremely fine grained. The ancient Greeks
introduced them to capture ratios that we would now express
using irrational numbers. But, as we argued, there is no evidence
that the ANS is sensitive to irrational numbers. Pure magnitudes
have more structure than is reflected in the ANS (Beck, 2015).

Second, Gross et al. argue that perception already represents
pure magnitudes when it represents continuous magnitudes like
length and weight. To motivate this claim, they appeal to
Peacocke’s (1986) thesis that perception is unit-free. (When you
see the length of a piano, you don’t represent that length in
meters, yards, or any other units.) But, given a background real-
ism about magnitudes like length, the view that perception repre-
sents these can also respect the unit-free character of perception.
Veridical perception of length is unit-free because length itself is
unit-free (Peacocke, 2020). Pure magnitudes aren’t needed.
Furthermore, even if pure magnitudes were needed to represent
continuous magnitudes, it wouldn’t follow that they are also
needed for the ANS unless continuous magnitude representations
and the ANS draw on the same representational elements. While
this hypothesis has been defended (Feigenson, 2007; Walsh,
2003), some recent evidence speaks against it. For example,
Odic (2018) found that the precision of continuous and numeri-
cal magnitude representations follows distinct developmental
trajectories.

We argued that the ANS represents numbers rather than pure
magnitudes because only numbers have a second-order character
and the ANS exhibits sensitivity to a second-order property of
collections. Buijsman thinks the pure magnitude hypothesis
“cannot (yet) be dismissed” because he is skeptical that ANS rep-
resentations are genuinely second order. But, as we explain above
(section R3.1), these concerns are misplaced.

Gross et al. grant that the ANS exhibits second-order sensitiv-
ity, but claim that this is equally well captured by the pure mag-
nitude hypothesis. On their view, perception represents a variety
of magnitude types in terms of pure magnitudes, including dis-
tance, weight, duration, and “aggregate membership.” (Whereas
sets are abstract, an aggregate is roughly what we called a

“concrete plurality,” or a spatiotemporally located collection.)
When pure magnitudes measure continuous magnitudes like dis-
tance, weight, and duration, sortals are not involved. But, when
they measure aggregate membership, sortals must be involved.
Thus, Gross et al. conclude that representations of pure magni-
tudes can also exhibit second-order sensitivity.

We’re not so sure. To see why, it’s helpful to distinguish the
genus pure magnitude, which divides “into discrete and continu-
ous subspecies” and “is not specific to any further type of magni-
tude – such as spatial extent or size, temporal duration, weight, and
so forth” (Burge, 2010, p. 482), from various species of pure mag-
nitude, such as duration and weight. We interpreted Burge (2010)
as claiming that the ANS represents the genus pure magnitude. On
that interpretation, we think our original criticism stands. The
genus pure magnitude does not differentiate between being first
order or second order; but the ANS is second order; so ANS rep-
resentations are, in that respect, not well captured by the genus.

By contrast, Gross et al. seem to take the ANS to represent a
particular species of pure magnitude – namely, the discrete spe-
cies that measures “aggregate membership” (see also Ball). This
evades our criticism because the discrete species is second
order. But, as we understand it, this discrete species of pure mag-
nitude just is natural number. What makes numbers a species of
pure magnitude is that they can stand in ratios (analyzed in terms
of equimultiples). But the ancient Greeks held that there is more
to numbers than that. For example, they maintained that numbers
are composed from discrete units. While it’s true that they didn’t
attempt a reductive definition of number in terms of the successor
relation or one-to-one correspondence (that would have to wait
for the late nineteenth century), it doesn’t follow that they were
talking about something else. Therefore, if Gross et al. take the
ANS to represent the discrete species of pure magnitude that mea-
sures aggregate measurement, that sounds to us like another way
of saying that the ANS represents natural numbers.

R3.6. The scientific-ontology bias

We argued that entities that appear in our scientific ontology
should be favored as contents of the ANS. We agree with Gross
et al. that this consideration is only prima facie. It can be overruled
by other considerations. While we take it to be an advantage of our
hypothesis that it meets this consideration, we never meant to claim
the advantage as unique. Other hypotheses may meet it too.

Brown objects that psychologists justifiably attribute contents
that are not part of our scientific ontology. For example, develop-
mental psychologists attribute representations that do not differ-
entiate between heat and temperature. But, in that case, there is
overwhelming evidence that children systematically conflate heat
and temperature, so neither content on its own is appropriate.
The consideration we adduced is thus overruled. But we argued
at length that the ANS does not systematically conflate number
with other magnitudes.

Brown also considers color vision. If we say that the ANS rep-
resents numbers, shouldn’t we also say that color vision represents
wavelengths? We think not. The way the ANS represents number
(and, for that matter, the way perception represents distance,
duration, weight, and a host of other magnitudes) is lawlike. By
contrast, the relation between wavelength and color percepts is
notoriously arbitrary.

If a bias toward scientific ontology can be overruled, is it
needed? One reason to think so is that mental representation is
always noisy and imprecise. The mind is an imperfect instrument
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with limited resources. Thus, one can always improve the fit of a
content assignment by inventing a new concept that accommo-
dates the noise and imprecision. But that would lead to overfit-
ting, idiosyncratic contents, and a missed opportunity to
capture genuine connections between the mind and world. The
bias serves a useful purpose.

R3.7. Modes of presentation

In claiming that the ANS represents number, we did not mean to
deny differences between ANS representations and mature num-
ber concepts. We simply argued that these could be captured by
differences in their modes of presentation. Such differences are
important, and we certainly didn’t mean to treat them as “an
afterthought” (Barth & Shusterman). On the contrary, we
emphasized differences in mode of presentation.

Jones et al. think our appeal to modes of presentation is prob-
lematic. As they see it, “the distinction between the ‘sense’ and
‘reference’ of neural representations is an ad hoc construction
without any independent justification.” They grant that modes
of presentation are legitimate when applied to person-level states,
like experiences or beliefs, but deny that this is so when applied to
sub-personal representations.

We disagree. For one, sub-personal states can differ in format
(Marr, 1982), and this implies differences in mode of presentation
because computational work is needed to translate between format
types. Elsewhere, both of us have argued that ANS representations
differ from conceptual thoughts in precisely this way (Beck, 2015;
Clarke, forthcoming). But ANS representations are also not purely
sub-personal. When you perceive a group of dots, they look to be a
certain number to you and not just some component of your brain/
mental machinery (see the demonstration in Burr and Ross, 2008).

Peacocke helpfully characterizes ANS representations as hav-
ing the form roughly that many Fs and teases apart three aspects
of their modes of presentation. ANS representations are unspecific
(they don’t refer to one specific number), non-canonical (they
don’t use a canonical system of representation to refer to num-
bers), and non-recognitional (the ANS doesn’t enable subjects to
reliably recognize the same number presented at two different
times). Peacocke suggests that these three features should be dis-
tinguished conceptually because they co-occur only contingently.
There could be a numerical perceptual system that was specific
(unlike the ANS) but also non-canonical and non-recognitional.
Its mode of presentation would have the form that many Fs.
It’s unclear to us, however, what would ground the specificity of
this hypothetical system. If you say, “That many Fs,” the specific-
ity plausibly derives from your mature counting abilities, or at
least an ability to place items in one-to-one correspondence. In
communities lacking those abilities, an utterance of “That many
Fs” would not be specific. By contrast, if we are meant to imagine
that the specificity is grounded in the perceptual system’s discrim-
inative abilities (in the way that having perfect pitch grounds ref-
erence to a specific pitch in someone who says “that pitch”), then
the system is plausibly recognitional too. While this doesn’t show
that it’s impossible for being specific, recognitional, and canonical
to come apart in the ways Peacocke suggests, there may be impor-
tant and deep connections among them.

R4. What kind(s) of number?

The preceding discussion notwithstanding, many commentators
sympathize with our suggestion that the ANS represents numbers.

But our target article considered a further question: What kinds of
number does it represent? We speculated that the system goes
beyond representing natural numbers by representing rational
numbers. At the same time, we expressed skepticism that the
ANS goes so far as representing irrational numbers and, hence,
the reals more generally. Various commentaries pick up on
these claims.

R4.1. Rational numbers

Some commentators welcome our suggestion that the ANS repre-
sents rational numbers. Libertus, Duong, Fox, Elliott,
McGregor, Ribner, and Silver highlight evidence that ANS acuity
predicts math skills at school, and suggest that it may be fruitful to
explore whether the ANS’s involvement in rational number pro-
cessing relates to children’s later understanding of fractions and
decimals. This could be an important application of the
conjecture.

In a similarly constructive spirit, Zhang draws on measure-
ment theory to offer a technical proposal for how rational num-
bers might be constructed from placing ANS representations in
the numerator and denominator of a fraction. Meanwhile,
Yousif notes that the ANS’s (alleged) representation of rational
numbers offers to reframe findings typically interpreted as con-
gruency effects. A bias toward treating smaller objects as fewer
may result not from congruency effects of area/volume on num-
ber, but from interpreting the smaller objects as partial objects.
This possibility is certainly worth testing. We also agree with
his suggestion that more attention should be paid to the concept
of a visual/perceptual object (Green, 2018, 2019).

Extending our conjecture, Pinhas, Zaks-Ohayon, and Tzelgov
review fascinating evidence that the ANS represents zero. If that’s
right, we should say that the ANS most basically represents non-
negative integers (0, 1, 2, …) rather than natural numbers. But, if
zero enters into rational number representations in the way pos-
itive integers might, an intriguing possibility arises: Zero might
feature as the denominator of a fraction, enabling the ANS to rep-
resent infinity!

Ball, Gómez, Lyons, and Peacocke took a more skeptical tone.
In our target article, we proposed that, while the ANS most basi-
cally represents natural numbers, those natural numbers can enter
into ratios, indicating that the system represents rational numbers
as well. But these commentators worry that representing a ratio of
natural numbers is not the same as representing a rational
number.

As Peacocke puts the concern: “Appreciation that 6:4, 12:8, 3:2
are all the same ratio is not yet encoding that ratio as a single
number 1 ⅔.” He then proceeds to claim that the evidence we
cited in favor of our proposal only supports the conjecture that
the ANS represents ratios, not rational numbers as we suggest.
But what’s required for representing something as a rational num-
ber as opposed to a mere ratio? At one point, Peacocke says that
this would involve representing these “as having a certain position
in a rational number line.” This suggests that if the ANS could go
beyond matching ratios (e.g., representing that 6:4 and 12:8 are
equal) by ordering these into greater/lesser relations (e.g., repre-
senting that 6:4 < 7:4), then this would go some way toward show-
ing that the ANS is capable of representing rational numbers. But,
if this were all that’s required, our proposal would be favored by
the studies we described in which subjects use their ANS to gam-
ble on the more favorable of two ratios (Matthews & Chesney,
2015; Szkudlarek & Brannon, 2021).
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Lyons thinks the evidence we cited fails to show that rational
numbers are represented because it fails to show that the ANS
represents non-natural rational numbers greater than 1. But
there are non-natural rational numbers less than 1 (e.g., ½). So,
even if Lyons were right, the ANS could still represent some non-
natural rational numbers. Moreover, the fact that subjects can
gamble on the more favorable of two ratios suggests that they
can distinguish a ratio of (say) 2:3 from a ratio of 3:2, and thus,
if they represent any rational numbers at all, they do not merely
represent non-natural rational numbers less than 1.

Gómez notes that distance effects (a signature of the ANS)
show up when subjects compare certain symbolic numerical rep-
resentations (e.g., single Arabic digits), but appear less consis-
tently when they compare symbolic fraction representations.
This leads him to infer that the ANS may not represent rational
numbers. But, whether the ANS represents rational numbers is
one thing; whether it maps those representations onto symbolic
fractions is another.

Ball offers a means of adjudicating whether the ANS repre-
sents rational numbers or just ratios. He notes that extensive mag-
nitudes (numerical or otherwise) can be added to one another,
while intensive magnitudes cannot. But rational numbers are
extensive (½ and ¼ can be summed) while ratios are not (1:2
and 1:4 cannot be summed). To decide whether the ANS repre-
sents ratios or rational numbers, we should thus investigate
whether the ANS can add rational numbers.

In short, we love this suggestion. While we don’t know of exist-
ing evidence that speaks directly to Ball’s point, it nicely distin-
guishes ratios from rational numbers and is empirically testable.
(See footnote 6 of our target article for a complementary sugges-
tion about how to distinguish ratios from fractions.)

R4.2. Precision

Lyons takes the ANS’s imprecision to imply that it represents
“approximate number” (e.g., 13ish), suggests that this is at odds
with our proposal, and claims that this is something which cannot
be “easily squared” with our suggestion that the ANS represents
rational numbers – a conjecture which attributed “greater preci-
sion [to the ANS]… when what was needed was less.” But we
suggested that the ANS might represent “numerical intervals
(5–9, 1.25–1.75, etc.) (Ball, 2017), or probability distributions
over numerical intervals.” Either option would involve the ANS
referencing numbers, and be compatible with the representation
of rational numbers. If Lyons has something else in mind by
“approximate number” and “13ish,” it’s not clear to us what it is.

Lyons also claims that ANS imprecision should be attributed
to ANS content, and not ANS vehicles. This leads naturally to
the view that the ANS represents a (probability distribution
over) a range of values. When you see 10 dots flashed on a screen,
you represent there being 8 to 12 dots (or a bell-shaped probabil-
ity distribution that peaks at 10). But that can’t fully capture the
imprecision in the ANS. For if it did, then when queried as to the
number of dots, you should be able to reliably report the mid-
point of the range or the peak of the distribution (i.e., 10). But
subjects cannot do that. Some of the imprecision associated
with the ANS is exogenous to its content.

R4.3. Is the RPS part of the ANS?

Commentators such as Dramkin and Odic, Hecht, Mills, Shin,
and Phillips (Hecht et al.), and Hubbard and Matthews raise

a quite different worry for our hypothesis. They concede that
rational numbers are represented but deny that the ANS itself pro-
duces these representations. Rather, they think that there is a sep-
arate domain-general ratio processing system (RPS) that does all
the computing over ratios (for numbers, durations, distances,
etc.).

It’s important to recognize that this algorithmic-level hypoth-
esis is consistent with our computational-level hypothesis that the
ANS represents ratios. The key to seeing this is noting that “ANS”
is ambiguous. We use it to refer to a system that is individuated in
terms of its function: representing and computing over numbers
in accordance with Weber’s Law. But these commentators use it
to refer to a module that’s individuated by its inputs, outputs,
and algorithms. On their proposal, what we call the ANS is real-
ized by (at least) two modules: a number-specific module (which
confusingly is also sometimes called the ANS) and a domain-
general module for processing ratios (the RPS). Of course, the
RPS could be a component of non-numerical systems too. (The
respiratory system is distinct from the circulatory system, but
the lungs belong to both).

On our usage, the ANS is distinctive because it concerns num-
bers (rather than other magnitudes) and because it obeys Weber’s
Law (unlike other numerical or quasi-numerical systems, such as
the subitizing system). Our conjecture was thus not wedded to any
given account of the system’s underlying architecture. By analogy,
we noted that the visual system is often said to be unified by its
computational level description, despite comprising myriad sub-
modules (Clarke, 2021; Marr, 1982).

Henik, Salti, Avitan, Oz-Cohen, Shilat, and Sokolowski
acknowledge the point about levels of description but reject the
proposed unity of the ANS, claiming that neurophysiological evi-
dence supports a multi-system architecture which involves at least
one generalized magnitude system (cf. Walsh, 2003). But, even
bracketing evidence that tells against a generalized magnitude sys-
tem (Odic, 2018; Pitt et al., 2021), such possibilities are precisely
what a computational level description of the system leaves open
(Marr, 1982).

In emphasizing a computational level description of the ANS
we didn’t mean to suggest that an algorithmic or neurophysiolog-
ical description of the system is unimportant. Indeed, our target
article offered some brief speculations on this point. For instance,
we tentatively suggested that the ANS’s representation of rational
numbers may derive from its first assigning natural numbers to
concrete pluralities and only then deriving ratios or rational num-
bers from the relations between these. In so doing, our specula-
tions went beyond a bare computational level description,
suggesting possible stages of processing in the ANS’s analysis of
rational numbers. These speculations were put under pressure
by Hubbard and Matthews. They noted evidence that one’s
capacity to discriminate ratios is not correlated with one’s acuity
discriminating natural numbers under relevant conditions, and
that ANS training does not transfer to ratio tasks. Insofar, as
these studies are successfully measuring numerical ratios, they
are hard to square with our tentative proposal. Note, however,
that they are also hard to square with the proposal by Hecht
et al. and Dramkin and Odic that there is a domain-general
RPS that takes inputs from a variety of magnitude-specific mod-
ules. For that proposal also predicts that ANS acuity and numer-
ical ratio acuity should be correlated. In any case, we agree with
Hubbard and Matthews that “More research is necessary for the
final adjudication” and look forward to learning about future
findings in this area.
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R4.4. Irrational numbers

In proposing that the ANS represents rational numbers, we
stopped short of claiming that it represents irrational numbers
and, hence, the reals more generally. Gallistel now agrees. But,
while we take it to be a contingent matter that the ANS cannot
represent irrational numbers, Gallistel thinks this nomologically
necessary, claiming that no irrational number “can be represented
exactly by any physically realized system.”

We’re reluctant to go this far. The symbols “π” and “√2” rep-
resent exact irrational numbers. Perhaps, Gallistel simply means
that use of the symbol by a physical system will never be perfectly
precise. But, short of assuming the sensitivity principle, which we
were at pains to reject (and which no commentaries sought to
defend), it’s hard to see why this should rule out the representa-
tion of irrational numbers.

Our proposal was that extant behavioral evidence fails to support
the suggestion that the ANS represents irrationals. In saying this, we
acknowledged that future research could, potentially, uncover evi-
dence in favor of this suggestion. For instance, if behavioral evidence
were to suggest that the ANS is involved in calculating square roots,
this might provide evidence that we had not gone far enough.

Dramkin and Odic object to our emphasis on behavioral stud-
ies. They point out that behavioral measures can struggle to dis-
ambiguate performance from competence and may, therefore,
lead us to underestimate the full range of numbers the ANS rep-
resents. This is a genuine methodological worry. But, to overcome
these limitations, Dramkin and Odic claim that emphasis should
be diverted away from behavioral evidence and instead placed on
psychophysical models of ANS performance which treat “percep-
tual signals as highly continuous and in the domain of the reals.”

While we don’t wish to downplay the importance of psycho-
physical models, we’re not convinced. The potential problems
are two-fold. First, models are always idealizations (Weisberg,
2013). They allow us to abstract away from details of the real
world, and it’s not always clear whether details of the model
reflect simplifying assumptions or not. A good model answers
not only to reality, but also to the convenience of the modeler.
Thus, the “highly continuous” signals in models may not reflect
psychological reality. Second, it’s important to distinguish the
question of whether a model posits internal signals that are con-
tinuous from the question of whether the model posits represen-
tational contents that are continuous. A continuous vehicle can
represent discrete contents. Thus, even if the models to which
Dramkin and Odic allude were committed to a continuous per-
ceptual signal, it wouldn’t follow that they were committed to
continuous contents.

R5. Concluding remarks

Our defense of the view that the ANS represents number, and our
attempts to clarify the kinds of number it represents, have divided
opinion. While we remain optimistic about the main proposals in
our target article, understanding what the ANS represents strikes
us as an important and neglected issue regardless. Therefore, if
our discussion has helped highlight what is (and isn’t) at issue
in these debates, and inspired the pursuit of further empirical
and conceptual lines of inquiry, we’d take our efforts, and those
of our commentators, to have been worthwhile.

Acknowledgments. The authors thank Brian Huss and Kevin Lande for
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