Skip to main content
Log in

A functional account of degrees of minimal chemical life

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

This paper describes and defends the view that minimal chemical life essentially involves the chemical integration of three chemical functionalities: containment, metabolism, and program (Rasmussen et al. in Protocells: bridging nonliving and living matter, 2009a). This view is illustrated and explained with the help of CMP and Rasmussen diagrams (Rasmussen et al. In: Rasmussen et al. (eds.) in Protocells: bridging nonliving and living matter, 71–100, 2009b), both of which represent the key chemical functional dependencies among containment, metabolism, and program. The CMP model of minimal chemical life gains some support from the broad view of life as open-ended evolution, which I have defended elsewhere (Bedau in The philosophy of artificial life, 1996; Bedau in Artificial Life, 4:125–140, 1998). Further support comes from the natural way the CMP model resolves the puzzle about whether life is a matter of degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bedau M. A. (1996) The nature of life. In: Boden M. (eds) The philosophy of artificial life. Oxford University Press, New York, pp 332–357

    Google Scholar 

  • Bedau M. A. (1998) Four puzzles about life. Artificial Life 4: 125–140

    Article  Google Scholar 

  • Bedau M. A. (2007) What is life?. In: Sarkar S., Plutynski A. (eds) A companion to the philosophy of biology. Blackwell, New York, pp 455–471

    Chapter  Google Scholar 

  • Bedau, M. A., Cleland, C. E. (eds) (2010) The nature of life: Classical and contemporary perspectives from philosophy and science. Cambridge University Press, Cambridge

    Google Scholar 

  • Benner S. A., Ricardo A., Carrigan M. A. (2004) Is there a common chemical model for life in the universe?. Current Opinion in Chemical Biology 8: 672–689

    Article  Google Scholar 

  • Cairns-Smith A. G. (1985) Seven clues to the origin of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Deamer D. (2005) A giant step towards artificial life?. Trends in Biotechnology 23: 336–338

    Article  Google Scholar 

  • Farmer D., Belin A. (1992) Artificial life: The coming evolution. In: Langton C., Taylor C., Farmer J. D., Rasmussen S. (eds) Artificial life II. Addison Wesley, Redwood City, CA, pp 815–840

    Google Scholar 

  • Gánti T. (2003) The principles of life, with commentary by James Griesemer and Eörs Szathmáry. Oxford University Press, Oxford

    Google Scholar 

  • Joyce G. F. (1994) Forward. In: Deamer D. W., Fleischaker G. R. (eds) Origins of life: The central concepts. Jones and Bartlett, Boston, pp xi–xii

    Google Scholar 

  • Koshland D. E. Jr. (2002) The seven pillars of life. Science 295: 2215–2216

    Article  Google Scholar 

  • Langton C.G. (1989) Artificial life. In: Langton C. G. (eds) Artificial life (Santa Fe Institute studies in the sciences of complexity, proceedings vol. IV). Redwood City CA, Addison-Wesley, pp 1–47

    Google Scholar 

  • Luisi P. L. (1998) About various definitions of life. Origins of Life and Evolution of the Bioisphere 28: 613–622

    Article  Google Scholar 

  • Luisi P. L. (2006) The emergence of life: From chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maynard Smith J. (1975) The theory of evolution (3rd ed.). Penguin, New York

    Google Scholar 

  • Mayr E. (1982) The growth of biological thought. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E. (1997) This is biology: The science of the living world. Harvard University Press, Cambridge

    Google Scholar 

  • McCaskill J. S. (2009) Evolutionary microfluidic complementation toward artificial cells. In: Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (eds) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge, pp 253–294

    Google Scholar 

  • National Research Council of the National Academies (2007). Introduction to the limits of organic life in planetary systems. The National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=11919. Accessed September 2009.

  • Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (2009a) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  • Rasmussen S., Bedau M. A., McCaskill J. M., Packard N. H. (2009b) Roadmap to protocells. In: Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (eds) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge, pp 71–100

    Google Scholar 

  • Rasmussen S., Chen L., Nilsson M., Shigeaki A. (2003) Bridging nonliving and living matter. Artificial Life 9: 269–316

    Article  Google Scholar 

  • Ray T.S. (1992) An approach to the synthesis of life. In: Langton C.G., Taylor C., Farmer J.D., Rasmussen S. (eds) Artificial life II (Santa Fe Institute studies in the sciences of complexity, proceedings vol. X). Addison-Wesley, Redwood City CA, pp 371–408

    Google Scholar 

  • Ruiz-Mirazo K., Peretó J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–346

    Article  Google Scholar 

  • Sagre D., Ben-Eli D., Lancet D. (2000) Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Sciences USA 97: 4112–4117

    Article  Google Scholar 

  • Sterelny K. (1995) Understanding life: Recent work in philosophy of biology. British Journal of the Philosophy of Science 46: 115–183

    Article  Google Scholar 

  • Szostak J. W., Bartel D. P., Luisi P. L. (2001) Synthesizing life. Nature 409: 387–390

    Article  Google Scholar 

  • Taylor C. (1992) “Fleshing out” artificial life II. In: Langton C., Taylor C., Farmer J. D., Rasmussen S. (eds) Artificial life II. Addison Wesley, Redwood City, CA, pp 25–38

    Google Scholar 

  • Wimsatt W. C. (1987) False models as means to truer theories. In: Niteckiand M., Hoffman A. (eds) Neutral modes in biology. Oxford University Press, Oxford, pp 23–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bedau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedau, M.A. A functional account of degrees of minimal chemical life. Synthese 185, 73–88 (2012). https://doi.org/10.1007/s11229-011-9876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9876-x

Keywords

Navigation