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Abstract. We use game theory and Santa Fe Artificial Stock Market, an agent-based model of an
evolving stock market, to study the optimal frequency for traders to revise their market forecasting
rules. We discover two things: There is a unique strategic Nash equilibrium in the game of choosing
forecast revision rates, and this equilibrium is sub-optimal in the sense that traders’ earnings are
not maximized an the market is inefficient. This strategic equilibrium is due to an analogue of the
prisoner’s dilemma; the optimal global state is unstable because each trader has too much incentive
to ‘defect’ and use forecasting rules that pull the market into thesub-optimal equilibrium.

Key words: finance, efficiency, Nash equilibrium, game theory, agent-based models, prisoner’s
dilemma

1. Introduction

Traditional analyses of financial markets have argued that trading should stabilize
asset prices and bring about market efficiency (originally shown by Samuelson
(1965); see also Fama (1970) and Malkiel (1992). But evidence of market ineffi-
ciencies, such as bubbles and crashed (Chancellor (1999) for a historical account
and Campbell and Lo (1997) for a review of the empirical evidence), excess volatil-
ity (Shiller, 1989), and other non-linearities in time series data (Lo and Mackinlay,
1999; Campbell and Lo, 1997), has generated interest in sources of market ineffi-
ciency. A variety of theoritical, empirical, experimental and computational models
are now being used to argue that asset prices may be destabilized by such fac-
tors as technical trading or ‘trend following’ (Brock, Lakonishok and LeBaron,
1992; Keim and Madhaven, 1995; Soros, 1994; De Bondt and Thaler, 1995), noise-
trading (De Long et al., 1990b; De Long it et al.), the existence of fashions, fads
or sunspots (Shiller, 1989; Farmer, 1993), and the heterogeneity of beliefs in the
market (Marengo and Tordjman, 1995; Farmer, 1998). These factors are thought to
cause sustained deviations of asset prices from their fundamental values, increased
risk, and altered earnings patterns in the market, thus making markets inefficient. It
is an open question, however, whether inefficient markets can be at an equilibrium
or whether they are likely to evolve towards increased efficiency. It is also unclear
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whether in the long rung the average investor profits more in an inefficient market
than in an efficient market. We address these questions in this paper. We argue that,
although the average trader is better off in an efficient market, efficient markets
can be unstable because each individual trader can have a strong incentive to use
trading methods that create market inefficiencies. Thus markets can become and
remain inefficient.

Dropping the assumption of rational expectations and informational efficiency
in markets, we study a model of an evolving stock market consisting of ‘boundedly-
rational’ traders who learn through their market experience, continually adapting
their behavior to changing market conditions (Arthur, 1992; Sargent, 1993). We
develop a simple game-theoretic framework to study the decision-making process
of such traders. Central to our analysis is the assumption that traders lack perfect
foresight about what other traders will think and do. At the same time, since a
trader’s profits depend on the behavior of other traders, each trader should make
investment decisions on the basis of her best guess about what other traders will
be thinking and doing (Arthur, 1992; Sargent, 1993). In Keynes’ words, she must
anticipate ‘what average opinion expects average opinions to be’ (Keynes, 1936).

A market operating under these conditions is a complex adaptive system
consisting of a co-evolving ecology of heterogeneous traders. A central factor
governing the behavior of such markets is the rate at which traders revise and adapt
their market-forecasting methods. This revision rate, analogous to temperature
in physical systems, determines the market’s behavior since different forecast-
revision rates promote the use of different kinds of forecasting methods in the
population of traders. Here, using a game-theoretic framework, we study that
forecast-revision rates maximize traders’ profits. We also compare the market’s
behavior under various forecast-revision rates to determine whether the optimal
forecasting rate leads to the best state globally.

To investigate the co-evolution of the market forecasts of heterogeneous traders,
we use an agent-based computer simulation of such a market, specifically, the Santa
Fe Artificial Stock Market (Palmer et al., 1994; Arthur et al., 1997; LeBaron,
1997). This model’s key characteristic is that risk-averse traders choose their
market-forecasting rules from an evolving set of rules, depending on which ones
have proved to be the most successful predictors of recent stock-price changes.
Previous worth in this model (Palmer et al., 1994; Arthur et al., 1997; LeBaron
Arthur, and Palmer, 1998) has shown that the market’s behavior is consistent with
the theory of efficient markets if traders revise their forecasts infrequently, but its
behavior shows inefficiencies similar to real markets if traders revise their forecasts
frequently.

We build on this work in two ways. First, we investigate the optimal rate at
which traders should revise their repertoire of market-forecasting rules. We find
that a rapid forecast revision rate is the unique symmetrical strategic equilibrium
in the game of choosing a forecast revision rate. Since rapid forecast-revision is a
unique symmetrical strategic equilibrium, the market will fall into this equilibrium.
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Our explanation of the mechanisms creating this equilibrium is broadly consistent
with various recent work (De Long et al., 1990b; Shiller, 1989; Kirman, 1991;
Youssefmir, Huberman, and Hogg, 1998).

Second, we investigate what happens when all traders use the optimal forecast-
revision rate and the market is in its strategic equilibrium. We find that the market
is noisy and risky in this equilibrium, with a high variance in prices and high levels
of technical trading. Thus, the equilibrium defined by the optimal forecast-revision
rate is inefficient compared to hypohetical equilibria with other forecast-revision
rates, for excessive variance in prices and higher market noise in this equilibrium
cause traders to earn significantly less wealth and therefore lower utility. Because
of these diminished earnings, the market equilibrium is suboptimal, yet the fact that
this is a unique stable equilibrium means that the prospects of the market evolving
towards higher efficiency are dim. Our explanation of this results is that frequent
revision of market-forecasting rules brings about high levels of technical trading
which then generates positive feedback in price streams, destabilizing prices and
thus worsening every trader’s predictions of future price movements. Beause their
forecasts are less accurate, all traders earn less than they would in a more efficient
market. This explanation is also consistent with various recent works (Arthur, 1988;
De Long et al., 1990a; De Long et al., 1991; Youssefmir, Huberman, and Hogg,
1998).

Section 2 below describes the Santa Fe Artificial Stock Market and explains
how we use it to study market equilibria, Section 3 identifies and characterizes the
equilibria we find in the market, and Sections 4 and 5 explain our findings and
discuss their relevance to real financial markets.

2. The Model and Theoretical Framework

We focus on two main aspects of the decision making of traders: the formation
of expectations of future prices, and the revision of those expectations over time.
In the following two subsections, we first describe the agent-based model which
carries out the formation and actual evolution of trader’s expectations. Then we
explain the game-theoretic framework we use to find the optimal rate of revising
market expectations.

2.1. THE SANTA FE ARTIFICIAL STOCK MARKET

This section briefly describes the Santa Fe Artificial Stock Market, developed by
Brian Arthur, John Holland, Blake LeBaron, Richard Palmer, and Paul Taylor.
More detailed descriptions are available elsewhere (Palmer et al., 1994; Arthur
et al., 1997). When describing model parameters below, we indicate the spe-
cific parameter values used in the present work with typewriter font inside [like
this].1
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The Santa Fe Artificial Stock Market is an agent-based model in which traders
continually explore and devlop rules to forecast future prices in a financial markets,
buy and sell assets based on the predictions of their most accurate rules, and revise
or discard these rules based on their accuracy. Each trader acts independently, but
the returns to each traders depend on the decisions made simultaneously by all the
other traders in the market.

The market contains a fixed number N [25] of traders each of whom is endowed
with an initial sum [10,000] of money (in arbitrary units). Time is discrete. Traders
may invest their money either in a risk-free asset or a risky stock. The risk-free asset
is perfectly elastic in supply. It pays a constant interest rate r [10%] and is assessed
a constant ‘opportunity cost’ c [10%] (r and c are set equal as a normalization). The
risky stock, of which there are a total of N shares, pays a stochastic dividend dt that
varies over time according to a stationary first-order autoregressive process with a
fixed coefficient [0.95]. The past- and current-period realization of the dividend is
known to the traders at the time they make their investment decisions.

At each time step each trader must decide to allocate her wealth between the
risky stock an the risk-free asset. She does this by forecasting the price of the
stock in the next time period with a certain forecasting rule (described below).
Forecasts are used to make an investment decision through a standard risk aversion
calculation. Each trader possesses a constant absolute risk-aversion (CARA) utility
function of the form

U(Wi,t+1 = −exp(−λWi,t+1) , (1)

where Wi,t+1 is the wealth of trader i at time t + 1 and λ [0.5] is the trader’s degree
of risk aversion. In order to determine i’s optimal stock holding i,t at time t , this
utility function is maximized subject to the following constraint:

Wi,t+1 = xi,t (pt+1 + dt+1) + (1 + r)(Wi,t − ptxi,t ) , (2)

where xi,t is trader i’s demand for the stock at time t . If we assume that trader’s i’s
predictions at time t of the next period’s price and dividend are normally distributed
with (conditional) mean and variance, R[pt+1+dt+1] and σ 2

i,t,p+d , and if we assume
that the distribution of forecasts is normal, then, as Arthur et al. (1997) explain,
trader i’s demand for the stock at time t should be:

xi,t = Ei,t (pt+1 + dt+1) − pt+1) − pt(1 + r)

λσ 2
i,t,p+d

, (3)

where pt is the price at time periode t . The bids and offers submitted by traders
need not be integers; the stock is perfectly divisible.

The aggregate demand for the stock must equal the numbers of shares in the
market. Traders submit their decisions to the market specialist – an extra agent in
the market who functions as a market maker. The specialist collects bid and offers
from traders. Since the total demand is not to exceed the number of shares avail-
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able, the specialist determines the market clearing price by solving the following
equation together with Equation 3:

N∑

i=1

xi,t = N. (4)

Note that this process assumes that the specialist has access to the demand func-
tions of the agents in the market. We believe this assumption is justified since
market makers have a keen sense of the demand functions of traders in real worls
markets and avoid using inventory to balance day-to-day demand.

Each trader has a set of [100] forecasting rules. Each forecasting rule in the set
has the following form:

IF (the market meets state Di) THEN (a = aj , b = bl),

where Di is a description of the state of the market and aj and bl are the values of
the forecasting variables a and b. The values of a and b are used to make a linear
forecast of the next period’s price and dividend using the equation:

E(pt+1 + dt+1) = a(pt + dt) + b. (5)

The values of the variables a and b in a trader’s initial set of forecasting rules are
selected randomly from a uniform distribution of values centered on the values that
would create a homogeneous rational-expectations equilibrium in the market (for
details on this process, refer to Arthur et al., 1997). As time progresses, the traders
discard ineffective forecasting rules and try out new forecasting rules, so the values
of a and b in a trader’s set of rules evolve, as described below.

A market descriptor Di matches a state of the market by an analysis of price and
dividend history. A market state consists of a set of market conditions, and a market
descriptor is a Boolean function of those market conditions. There are fourteen
different market conditions that are used to define market states, so forecasting
rules can distinguish 214 different market states. A market descriptor is represented
as an array of fourteen bits, corresponding to the fourteen market conditions, with
1 signaling that the condition in question obtaines, 0 indicating that the condition
fails, and # indicating that the condition is to be ignored.

The breadth and generality of a market descriptor depends positively on the
number of # symbols in its market descriptor; descriptors with many 0s and 1s
match more narrow and specific market states. As the traders’ sets of forecasting
rules evolve, the number of 0s and 1s in the rules can change, making the rules
sensitive to either more specific or more general market states. An appropriate
reflection of the complexity of the population of forecasting rules possessed by
the traders is the number of market states that their rules can distinguish, which is
related to the number of bits that are set to 0 or 1 in the rules’ market descriptors.

The market conditions defining market states fall into two main categories:
technical conditions and fundamental conditions. Technical conditions pertain to
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the recent history of the stock price, and the bits reflecting technical conditions
are called technical bits. Technical market conditions concern issues taking one of
these two forms:

‘Is the price greater than an n period moving-average of past prices?’ where n

∈ {5,20,100,500}.
‘Is the price higher than it was n periods ago?’,

where n ∈ {5, 20}.
Fundamental market conditions pertain to the relationship between the stock’s
price and its fundamental value; the bits reflecting them are called fundamental
bits. Fundamental market condtions all concern issues of this form:

‘Is the price greater than n times its fundamental value?’,
where n ∈ { 1

4 ,
1
2 , 3

4 , 7
8 , 1, 9

8 }.
(A third monitor category with two market conditions have their corresponding
bits set either always on and always off, reflecting the extent to which traders act
on useless information.)

Forecasting rules with descriptors that use technical bits (i.e., with technical bits
set to 0 or 1) are called technical rules, and rules with no such bits set are called
fundamental rules. Fundamental trading rules detect immediate over- or under-
valuation of a stock; they are sensitive to the current price and dividend but ignore
any trends in those quantities. Technical rules can detect recent patterns of increase
or decrease in stock prices and might predict a continuation or reversal of the trend
(depending on the associated values of a and b).

A simplified example might help clarify the structure of the market forecasting
rules. Suppose that there is a three-bit market descriptor.2 The first bit corresponds
to the fundamental market condition in which the price is 75% higher than its
fundamental value, the second bit corresponds to the technical condition in which
the price is greater than the 20-period moving average of past prices, and the third
bit corresponds to the technical condition in which the price has gone up over the
last 50 periods. Then the descriptor #10 matches all those market states in which
the price exceeds its 20-period moving average of past prices but it has not risen
over the last 50 periods. Note that the # symbol makes this descriptor insensitive to
whether the price is 75% greater than its fundamental value. Putting this together,
the full decision rule

IF #10 THEN (a = 0.96, b = 0)

has the following meaning: If the stock’s price exceeds its 20-period moving aver-
age but has not risen over the past 50 periods, then the (price + dividend) forecast
for the next period is 96% of the current period’s price. Since this rule’ market
descriptor uses some technical bits, this is considered to be a technical trading rule.

If the market state in a given period matches the descriptor of a forecasting rule,
the rule is said to be activated. Many of a trader’s forecasting rules may be activated
at a single time, thus giving the trader many possible forecasts to choose among.
The forecasting rule that trader actually uses in chosen at random from among the
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currently activated rules with a probability proportional to the rule’s accuracy. Once
the trader has chosen a specific rule to use, the rule’s a and b values determine the
trader’s forecast, which then determines her investment decision at that time. A
forecasting rule’s accuracy is defined as the moving average of the variance of the
error (the difference between the forecast price and the true price):

accuracy = (A× (old v)) + ((1 – A) × current squared error) (6)

with A = exp(–1/τ (v)) for a healing-time parameter τ (v). Accuracy is a weighted
average of previous forecasting errors defined over a window of previous perfor-
mance, and the healing-time parameter τ (v) specifies the size of this window.

A Genetic Algorithm (GA) allows each trader’s population of forecasting rules
to evolve and improve. Whenever the GA is invoked, it substitutes new forecasting
rules for a fraction [12%] of the weakest forecasting rules in the trader’s pool of
rules. A rule’s strength indicates how well it has been performing, and it is similar
to its accuracy except that the current estimated variancev of each rule’s error (the
difference between true prices and the rule’s forecasted prices) is transformed using
the relation:

strength = C – (v × bitcost × specificity), (7)

where bitcost [0.01] is the cost of using a certain bit (in the real world, this would
be the cost of acquiring new information), specificity is the number of conditions
in the rule set either on or off, and C is a constant chosen to make the strength
positive.

New rules are created from the more succesful rules in the trader’s pool of rules.
Pairs of successful rules (chosen randomly with a probability proportional to their
strength) play the role of ‘parents’ and the new rules that they spawn are modified
versions of their parent rules. The forecasting parameters a and b of the offspring
rules are a linear combination of the forecasting parameters of the parent rules. The
offsprings’ market descriptors are just like their parents, except for the effects of
two genetic operations: with some probability [0.1] one-point crossover combines
subparts of the two parent descriptors, and with another probability [0.03] mu-
tation randomly and uniformly changes some bits in the market descriptors. New
rules are all assigned an initial accuracy value equal to the average accuracy in the
existing population of rules.

The operation of the GA may be compared to a real-world consultant. The GA
is designed so that, over time, poorly performing rules are replaced by rules that
are likely to perform better, much as a client following the advice of a consultant
replaces poorly performing trading methods with those that are likely to be more
profitable. The frequency with which the GA is invoked, then, corresponds to the
rate at which trading methods are revised.

It is important to note that traders in this model learn in two ways: First, as each
rule’s accuracy varies from time period to time period, each trader preferentially
uses the more accurate of the rules available to her; and second, on an evolutionary
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time scale, the pool of rules as a whole improves through the action of the genetic
algorithm.

2.2. A METHOD FOR STUDYING MARKET EQUILIBRIA

In this paper we focus on one particular aspect of a trader’s strategy for trading
in the market: the rate of revision of the market-forecasting rules used to predict
the market’s behavior and thereby determine the investment decision. This is an
important decision faced by real traders. Since revising forecasting rules take time
and effort, using the right forecast-revision rate can increase earnings. But choosing
the right forecast-revision rate is complicated. Since a trader’s earnings is affected
by the behavior of all other traders, her optimal revision-rate would depend on that
of all other traders. Trading, however, is accompanied with a great deal of secrecy,
and making assumptions of what all other traders are doing is difficult and risky.

To study how rational traders would choose their forecast-revision rate in the
face of this uncertainty, we adopt a game-theoretic framework and ask if a trader
has an optimal revision rate regardless of the revision rate of other traders. For the
purpose of this investigation, a trader’s strategy is the adoption of a specific market-
forecast revision rate. Since the forecast-revision rate in the Santa Fe Artificial
Stock Market is controlled by the interval at which the Genetic Algorithm (GA)
is invoked for each trader, a trader’s strategy in this model amounts to adopting
a given GA-invocation interval, which we will call K. We investigate a trader’s
optimal GA-invocation interval K by evaluating different possible choices for K

on the assumption that other traders all have adopted some given but unknown
baseline GA-invocation interval, which we will call K̄ .3 If we assume that there are
S relevantly different possible GA-invocation intervals, then our trader confronts
a classic S × S decision problem, with columns indexed by possible situations
characterized by K̄ and rows indexed by possible choices characterized by K. To
make a rational decision in this context, a trader needs to know the relative value or
payoff of all possible choices in all possible situations. Our criterion for social and
individual welfare is a trader’s final accumulated wealth, which includes wealth
from all sources (interest payments from risk-free assets, returns from stocks, and
cash holdings). So, to determine a trader’s rational strategy in this decision matrix
we need to observe the trader’s final wealth in the S × S possible scenarios.

The process of each trader attempting to find her optimal strategy creates a
symmetric simultaneous-move N-person game, and we ask whether a trader in this
game has a dominant strategy (i.e., a strategy that outperforms all other possible
strategies no matter what strategies other traders follow). In a symmetric n-person
game, a single trader’s dominant strategy is also the dominant strategy of the other
traders; a dominant strategy for one is a dominant strategy for all. The existence of
such a dominant strategy creates a symmetric Nash equilibrium in the market, i.e.,
an equilibrium in which no trader can gain by unilaterally switching strategies.



FINANCIAL MARKETS CAN BE AT SUB-OPTIMAL EQUILIBRIA 13

To find the dominant strategy in the Santa Fe Artificial Stock with N traders,
we fix the background GA-invocation K̄ of N-traders and systematically vary the
GA-invocation rate K of a single trader, observing how the single trader’s wealth
varies as a function of K given K̄ . This allows us to fill out the payoffs in the K̄

column in the S × S decision matrix. We systematically do this for the columns
corresponding to each possible baseline GA-invocation rate K̄ in the population
of n-1 traders. Other than varying the GA-invocation rates K̄ and K, we hold all
model parameters constant in all the market simulations.

To summarize the information in the S×S decision matrix in a reaction function
for the single trader, we determine a trader’s optimal GA-invocation interval K ′ for
each baseline GA-invocation interval K̄ . The reaction function assigns to every
value of K̄ that GA-invocation interval K ′ at which a trader maximizes her wealth.
In effect, we collapse the rows in the S × S table and record the row index (K
value) of the highest value in each K̄ column. This yields for each K that rate K ′
at which a trader’s earnings are maximized.

There is a symmetric Nash equilibrium in the market wherever the population’s
baseline GA-invocation interval K̄ equals the profit-maximizing GA-invocation
interval K ′ of the single trader, i.e., at those values of K for which K̄ = K ′. A
symmetric Nash equilibrium is stable because each trader uses the same strategy
to maximize her utility, regardless of what other traders in the market are doing.
No matter which trader we consider, it is not possible for her to increase her utility
by pursuing any other strategy, and so there is no incentive for her to leave the
equilibrium.

The values of K̄ that we studied were K̄ = 5, 10, 50, 100, 250 and 5 000. For
each values of K̄ , we examined about a dozen different GA-invocation rates K

for the singular trader, and for each choice of K̄ and K we ran about a half-dozen
simulations of the market, with different random number seeds, observing the sin-
gular trader’s earnings. The singular trader’s optimal GA-invocation rate K ′ for
each population baseline rate K̄ was identified by finding her maximum earnings
as a function of K.

Finally, we studied the properties of the strategic equilibria we found by com-
paring them with hypothetical equilibria at other GA-invocation intervals. Since a
strategic equilibrium in our framework exists only when all traders revise their mar-
ket forecasts at the same rate, we gave all traders the same GA-invocation interval
and studied the market’s behavior at various GA-invocation intervals. Specifically,
at different GA-invocation intervals we observed the variance of the price stream,
the complexity of the evolved forecasting rules, and the wealth earned by traders.
The specific GA-invocation intervals at which we explored hypothetical equilibria
were K = 10, 25, 50, 100, 250, 500, 750, 1 000, 1 500, 2 500, 5 000, and 10 000.4 At
each value of K we simulated the market 30 different times, each time for 300 000
time steps.5 By 300 000 time steps the market has approached an asymptotic state,
in which there is significantly less flux in market forecasting strategies. We are most
interested in this model’s intermediate time horizon, before this asymptotic state
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Figure 1. A trader’s reaction function, indicating her optimal GA-invocation interval, K ′,
given the baseline GA-invocation interval, K̄ , used by all other traders. The symmetric Nash
equilibrium is where K̄ = K ′ = 100.

dominates, since this more nearly approximates the continual changes in players
and trading strategies in real markets. The behavior observed in the artificial market
might be different on much shorter or much longer horizons.

3. Results

3.1. A UNIQUE MARKET EQUILIBRIUM EXISTS

Figure 1 presents the reaction function for a trader in the market, i.e., the trader’s
optimal GA-invocation interval K ′ given that all other traders are using some
fixed background GA-invocation interval ′barK. This reaction function has three
notable aspects.

First, when other traders in the market are using a relatively small rule-updating
interval (K̄ < 100), i.e., they are revising their forecasts frequently, the single trader
profits from using a larger interval, thus updating her forecasts less frequently. We
believe the explanation for this is that most traders in this regime are updating their
rules too frequently to be able to exploit the longer-term patterns in the market. By
invoking the GA at a slower rate, the single trader is able to exploit these longer-
term patterns and, since she does not have enough market-impact to alter those
patterns that she detects, she profits significantly.

Second, when other traders in the market are using a large rule-updating inter-
val, i.e. they are updating their forecasting rules relatively slowly (K̄ > 100), it is
profitable for a single trader to revise here forecasts more frequently. Our explana-
tion of this is similar to the previous case. The single trader detects the short-term
patterns in the market while those traders who are updating their forecasts in-
frequently are incapable of exploiting these short-term patterns. By frequently
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updating her rules, the single trader however, can exploit these patterns. Since she
is the only one who is exploiting them, she does not alter them, and thus earns
significant profits.

The third and most important conclusion from the graph is that a trader’s opti-
mal GA-invocation interval K ′ matches the background GA-invocation interval K̄

in the population at one and only one value: K ′ = K̄ = 100.6 At this background
GA-invocation interval, a single trader cannot gain by either raising or lowering
her forecast-revision rate; her best choice is to keep updating her rules at the same
rate as everyone else. But since all traders are in symmetric situations, the single
trader’s optimal strategy is also the optimal strategy of all other traders. The use of
this strategy by all the traders in the market leads the market to a unique symmetric
Nash equilibrium.

It is easy to see why the equilibrium described above is the market’s one and
only stable state. In all other states there is an incentive (usually, a strong incentive)
for a trader to deviate from the baseline GA-invocation interval in the market. Since
all traders feel this same incentive, and since all traders are self-interested, the
traders’ strategies will be in a stable and steady state only when they converge
on the GA-invocation rate that maximizes earnings regardless of the strategies
followed by other traders. For example, if one trader assumed that other traders
were slow at revising their forecasts, it would be in her interest to start revising her
forecast factor. But since this is the choice that confronts everyone in the market,
everyone would start revising their forecasts faster. A similar situation would occur
when a single trader assumed that everyone else is revising their forecasts very
fast. She would slow down her revision rate, but for the same reasons, so would
everyone else in the market. The only strategic equilibrium occurs when no trader
has any incentive left to change her strategy from that adopted by the rest of the
population. This is the equilibrium we observe at K =100.

It is important to note that the fact the market is at a strategic equilibrium does
not imply that prices, trading volumes or any other aspect of the market besides
those strategies are stable, nor does it imply that the market is in any sense ef-
ficient. In fact, in the following section we show that many important aspects of
the market’s behavior in this equilibrium are unstable and this makes the market
inefficient.

3.2. THE MARKET EQUILIBRIUM IS SUB-OPTIMAL

Figures 2 and 3, show how the variance of the price stream and the complexity of
the trader’s evolved marked-forecasting rules vary as a function of the rate at which
forecasting rules are evolving, i.e., the GA-invocation rate, K. The general pattern
in these data is consistent with previous work (Palmer et al., 1994; Arthur et al.,
1997; Joshi and Bedau, 1998; LeBaron, Arthur, and Palmer, 1998).

The most significant earlier finding was that this market exhibits two quite
different kinds of behavior, corresponding to different rates at which market-
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Figure 2. Variance of the stock price time series as a function of Ga-invocation interval, K .
The data shown average values from the last 50 000 time steps in 30 simulations each lasting
30 000 time steps; error bars indicate a 95% confidence band. Note that the price stream
variance is highest when the GA is being invoked frequently, i.e., in the Complex regime,
roughly 10 ≤ K ≤ 100, and that the variance is significantly lower when the GA is being
invoked infrequently, i.e., in the RE regime, roughly 1 000 ≤ K ≤ 10 000.

forecasting rules are being revised by the genetic algorithm (GA). Although there
is a gray area of intermediate GA-invocation rates at which the market’s behav-
ior is somewhat ambiguous, this gray area separates two clearly different kinds
of markets. When the GA-invocation interval is large (1 000 ≤ K ≤ 10 000) so
forecasting rules are evolving relatively slowly, prices are more stable (Figure 2),
evolved forecasting rules are less complex (Figure 3), and the levels of technical
trading are significantly lower (Figure 3). In addition, earlier work has shown that
trading volumes are low and there is little evidence of non-linearity, lepto-kurtosis,
volatility persistence or volume-volatility correlation in this market regime (Palmer
et al., 1994; Arthur et al., 1997; LeBaron, Arthur, and Palmer, 1998). Since this
kind of behavior resembles the predictions of the theory of efficient markets,
this has been termed the ‘Rational Expectations’ or ‘RE’ regime of the Santa Fe
Artificial Stock Market.

On the other hand, when the GA-invocation interval is small (10 ≤ K ≤ 100)
so forecasting rules are evolving relatively quickly, the variance of the price time
series is relatively high (Figure 2). In addition, the complexity of the forecasting
rules produced by the course of evolution is relatively high (Figure 3), as is the
level of technical trading (Figure 3). Earlier work has also shown that trading vol-
umes are higher and there is evidence of non-linearity, lepto-kurtosis, persistence
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Figure 3. Complexity of evolved marked-forecasting rules as a function of GA-invocation
interval, K . The data shown averages values from the last 50 000 steps in 30 simulations
each lastin 300 000 time steps; error bars, which overlap for some values of K , indicate a
95% confidence band. A rule’s complexity is measured by the number of technical trading
bits (triangles) and fundamental trading bits (circles) set in the rule’s market descriptor. The
number of bits set is normalized (i.e., divided) by the total number of bits available. At the start
of a simulation before the forecasting rules start evolving, the average number of technical
and trading bits set is 10 (slightly below the midline in this plot). Note that evolution raises
the forecasting rule complexity when the GA is being invoked frequently, i.e., in the Complex
regime, roughly 10 ≤ K ≤ 100, and that evolution lowers the forecasting rule complexity
when the GA is being invoked infrequently, i.e., in the RE regime, roughly 100 ≤ K ≤
10 000.

of volatility, and significant volume-volatility correlation when the GA-invocation
interval is small and market forecasts are being revised quickly (Palmer et al.,
1994; Arthur et al., 1997; LeBaron, Arthur, and Palmer, 1998), so this has been
called the market’s ‘Complex’ regime. For convenience and consistency with this
earlier work, here we will follow this terminology of ‘Complex’ and ‘RE’ markets.

The unique strategic equilibrium in the rate of forecast evolution at K = 100
clearly falls within the Complex regime of the market (10 ≤ K ≤ 100). What is
important to note here is that this Complex equilibrium is characterized by much
lower earned wealth than in the RE regime (Figure 4). Thus, in a straightforward
sense, this market equilibrium is sub-optimal. One can justify the claim that this
equilibrium is sub-optimal in some other ways as well. For one thing, the relatively
high variance of the price stream makes all investments relatively risky. Also, since
the complexity of the evolved forecasting methods is significantly higher, it is
reasonable to assume that the cost of formulating and testing these forecasting
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Figure 4. Accumulated wealth of traders in the market as a function of GA-invocation interval
K . The data shown averages values from the last 50 000 time steps in 30 simulations each
lasting 300 000 time steps; error bars indicate a 95% confidence band. (Wealth values shown
are in 10 000s of the model’s arbitrary monetary units). Note that wealth is lowest when the
GA is being invoked frequently, i.e., in the Complex regime, roughly 10 ≤ K ≤ 100, and
that wealth is significantly higher when the GA is being invoked infrequently, i.e., in the RE
regime, roughly 1 000 ≤ K ≤ 10 000. Comparison with Figure 2 shows that wealth is roughly
inversely proportional to price variance.

methods would be higher. But the bottom line is that everyone in this symmetric
Nash equilibrium is earning less money. Clearly, the equilibrium is sub-optimal.

4. Discussion

If the unique strategic equilibrium in this market is inefficient and sub-optimal, as
we have argued, then two important questions arise: First, exactly what causes the
reduced wealth at the Nash equilibrium? Second, is there any way that the market
can be moved to a more efficient outcome?

Our answer to the first question is presented in more detail elsewhere (Joshi,
Parker and Bedau, 1998), but the following is a summary. When traders revise
their their forecasting rules very frequently, levels of technical trading are high
(Palmer et al., 1994; Arthur et al., 1997; Joshi and Bedau, 1998; LeBaron, Arthur,
and Palmer, 1998). As more traders adopt technical rules, the incentives for tech-
nical trading can reinforce themselves in a new way. In effect, if enough traders in
the market buy into similar enough technical trading rules, positive feedback can
make the rules self-fulfilling prophecies. For example, if all traders believe that
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the price of a stock will go up, they will all want to buy the stock, creating an
excess demand and driving its price up – thereby making their belief in a price
increase true. But now, the self-fulfilling prophecies created by technical trading
dramatically increase the variability of prices in the market, causing bubbles and
crashes. This increased market noise decreases the accuracy of all forecasting rules,
and this, in turn, drives down all traders’ wealth because less accurate rules are
less profitable. The gains from self-reinforcing technical trends are short-lived; in
the long run, correction towards fundamental value bursts the bubbles. In other
words, technical trading creates a negatie externality in the market by altering the
patterns that market forecasts exploit. It worsens everyone’s forecasts by driving
prices away from their fundamental value and increasing noise. When all traders
engage in significant technical trading, they worsen each other’s forecasts, there is
a loss of efficiency, and the average earnings in the market are lowered.

The second question is whether the socially optimal outcome (where all traders
revise their market-forecasting rules infrequently) can ever prevail in the market.
Our answer to this question is that this is highly unlikely, given the large number
of players that are interacting with each other. Traders are generally self-interested,
desiring to maximize their own profits rather than the average profits in the market
as a whole. It would be almost impossible to induce all traders in the market to
co-operate by slowing down the rate at which they revise their market-forecasting
rules, because it is not in their individual interests to do so. The situation is anal-
ogous to an N-person prisoner’s dilemma: when each trader aacts independently
and rationally, everyone makes the same choice and a sub-optimal outcome pre-
vails. And although co-operation can spontaneously emerge among self-interested
players in iterated two-person prisoner’s dilemmas (Axelrod, 1984), in analogous
iterated N-person games co-operation is almost impossible to achieve (Lindgren,
1998).

It is important to keep in mind that the problem of determining the optimal
forecast-revision rate is not posed or solved by the traders in the artificial market
we simulate. The revision rate for each trader in the model is fixed for the duration
of each simulation, so our study does not investigate the dynamical process by
which the traders would converge on the optimal revision rate. Nevertheless, by
studying the long-term effects of various combinations of revision rates, we have
discovered that frequent forecast revision is a stable and unique strategic equilib-
rium. Given that this equilibrium exists, it is reasonable to expect that it would
be discovered in a decentralized market with boundedly rational traders provided
they could experiment with different revision rates and compare their long-term
payoffs. Investigating the dynamical process of converging on the equilibrium is
an important topic for future work, and a natural and straightforward way to study
this would be to change the Santa Fe Artificial Stock Market to allow the traders to
modify their learning rate according to some adaptive algorithm.
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5. Summary and Conclusion

Our simulations using the Santa Fe Artificial Stock Market suggest that financial
markets can end up in situations analogous to prisoner’s dilemmas in which fre-
quent revision of forecasting rules and extensive technical trading lead to increased
price variability and thus reduced earnings. When traders do not know a priori
what other traders are doing, their optimal strategy is to revise forecasting rules
frequently. But when this dominant strategy prevails and market beliefs co-evolve
rapidly, the market falls into a symmetric Nash equilibrium with relatively low av-
erage earnings for traders. This happens because frequent forecast-revision creates
high levels of technical trading, and this creates a negative externality in the market
by causing positive-feedback and destabilizing prices, thus decreasing all traders’
earnings.

Though the Santa Fe Artificial Stock Market and game-theoretic framework
considered in this paper are both simplifications of realworld markets, we believe
that they capture some important elements of decision making in those markets.
Both the Santa Fe Artificial Stock Market and our game-theoretic analysis mimic
the uncertainty, bounded rationality, and agent heterogeneity that underlie learning
and decision making in most real markets. The genetic algorithm in the model
we study is a mechanical yet sophisticated process for learning better market-
forecasting rules. Our analysis shows that there is a strategic equilibrium in the
rate of this learning process, one which mirrors some of those very aspects of real
markets that violate the predictions of traditional market models.

Much research remains to be done in establishing the robustness of these results
to variations both in the model’s parameters and in the structural design of the
model itself. It is not yet clear to what extent our results depend on the particular
model parameters we used, nor is it yet clear to what extent changing the structure
of the mode would change our results. In related work we have separated the effects
of technical trading from the forecast-revision rate and shown that technical trading
by itself can create an analogous prisoner’s dilemma (Joshi, Parker and Bedau,
1998), and our current work includes investigating the endogenous evolution of
the forecast-revision rate, to observe if and how the market finds the strategic
equilibrium we identified here. In general, it would be very interesting to use a
variety of theoretical and empirical methods to investigate the effects of market-
forecast revision rates on market equilibria in other artificial models and in real
markets. All of this subsequent research acquires a special importance from our
preliminary conclusion that, even when traders would be better off if this could be
prevented, frequent revision of market-forecasting rules can be inevitable.
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Notes
1 The source code for the Santa Fe Stock Market model and the entire set of model parameter set-

tings for work done here are available through the internet at www.santafe.edu/sfi/research/-
stockmarket/.

2 Recall that the forecasting rules in the model we study actually use fourteen-bit descriptors.
3 For simplicity, we restrict our attention here to the case in which a trader can assume that

all other traders are following the same strategy, defined by K̄. We are in the process of examing
the more general situation in which a trader assumes that the population of other traders might be
following some mixed strategy defined by an arbitrary collection of different GA-invocation rates,
and the preliminary results of this work corroborate our conclusions here.

4 At significantly higher or lower value of K the market behavior is determined by special
boundary conditions (Joshi and Bedau, 1998).

5 Each simulation of the market took on average about one hour on a DEC Alpha.
6 We have not tried to determine what sets the time-scale at 100, nor how this time-scale depends

on the parameters of the stock market.
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