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The nature and status of psychological laws are a long-standing
controversy.  I will argue that part of the controversy stems from the
distinctive nature of an important subset of those laws, which I’ll call “supple
laws.” An emergent-model strategy taken by the new interdisciplinary field of
artificial life provides a strikingly successful understanding of analogously
supple laws in biology.  So, after reviewing the failures of the two evident
strategies for understanding supple psychological laws, I’ll turn for
inspiration to emergent-models explanations of supple laws in biology. I’ll
conclude by inferring what an emergent model of supple laws in psychology
should be like.

Supple Laws in Psychology

It has long been noticed that the regularities and patterns in our mental
lives—what I’ll call (without attempting to prejudge any questions)
“psychological laws”—need   ceteris paribus   qualifications, i.e., qualifications to
the effect that the law holds only provided “everything else is equal.”  Two
typical examples, though extremely simplified, clearly illustrate this
phenomenon:

Pure Reason: If A believes P and A believes that P implies Q,
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then   ceteris paribus    A will infer Q.

Practical Reason: If A wants G and A believes that M will produce G,
then   ceteris paribus    A will do M.

In general, all psychological laws stand in need of similar    ceteris paribus  
qualifications.

A variety of factors bring about the need for    ceteris paribus  
qualifications in psychological laws.  People sometimes fail to infer what is
implied by their antecedent beliefs because of inattention or illogic, but some
exceptions to the law of Pure Reason reflect attentive logical acumen at its
best.  For example, if agent A who believes proposition P and believes that P
implies proposition Q has good antecedent reason to    doubt   Q, A might
conclude that it is more reasonable to question P or to question whether P
entails Q.  Similarly, some exceptions to the law of Practical Reason are due to
confusion or weakness of will, but other reflect an apt balance of priorities.
To use an example from Horgan and Tienson (1989), if some agent A wants a
beer and believes that there is one in the kitchen, then A will go get
one—unless, as the    ceteris paribus   clause signals, A does not want to miss any
of the conversation, or A does not want to offend the speaker by leaving in
mid sentence, or A does not want to drink beer in front of his mother-in-law,
or A thinks he should, instead, flee the house since it is on fire, etc.

The status and source of psychological    ceteris paribus    laws are quite
controversial (see, e.g., Hempel 1965, Dennett 1971, Putnam 1973, 1975, Fodor
1981, Cartwright 1983, Horgan & Tienson 1989, 1990, Schiffer 1991, Fodor 1991,
Dreyfus 1992, Cartwright 1995, Horgan & Tienson 1996).  (I should note that
I’m concerned with the controversies about    ceteris paribus    laws that     describe    
human psychology, not the controversies discussed by Dennett (1984) about
how human intelligence     employs      ceteris paribus    reasoning.)  Misgivings
about the status of psychological   ceteris paribus   laws are quite varied, ranging
from worries about whether they are trivially or logically or analytically true,
to worries about whether they are falsifiable or usable in scientific
explanations, to worries about whether they can be precisely specified, even in
principle, in some algorithm.  A similarly bewilderingly variety characterizes
the alleged source of the    ceteris paribus    qualifications; here we find reference
to idealizations (Cartwright 1983), implementation-level malfunctions
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(Dennett 1971, Putnam 1973, 1975, Fodor 1981, Cartwright 1995), the subtle and
complex nature of human cognition (Horgan & Tienson 1989, 1990, 1996), as
well as “a background of practices which are the condition of the possibility of
all rulelike activity” (Dreyfus 1992, p. 57).

A common thread through the bulk of this diversity of opinion is the
assumption that    ceteris paribus    laws have exceptions when they “go wrong.”
Now, in a trivial sense this is right—an exception, after all, is an
exception—but in a deeper sense this is not right.  For note that exceptions to
psychological   ceteris paribus   laws fall into two quite different groups, what I’ll
call “rule-breaking” and “rule-proving” exceptions.  Consider the law of
Practical Reason, let A, G, and M be particular agents, goals, and actions, and
assume that A wants G and believes that M will produce G.  A    rule-breaking
exception     happens when A nevertheless performs some other action M*
(M*≠M) even though M is the most reasonable or sensible thing for A to do,
given the whole constellation of A’s beliefs, desires, capacities, etc.  By
contrast, a   rule-proving exception     happens when A performs M* because in
this particular situation, given the constellation of the rest of A’s beliefs,
desires, capacities, etc., M* is      more    reasonable or sensible for A to do.  One
could say that, while rule-breaking exceptions involve the “wrong” thing in
context happening, rule-proving exceptions involve the “right” thing
happening.  An exception that proves the rule is appropriate in the context
since it achieves the agent’s underlying goals better than slavishly following
the rule would have and, furthermore, the exception happens     because     it is
appropriate in this way.

Those    ceteris paribus    laws that have exceptions that prove the rule I
will call “supple.”  All    ceteris paribus   laws are vague because they describe
regularities that hold only for the most part but without delineating what
conditions give rise to exceptions.  The distinctive feature of supple    ceteris
paribus    laws is that their vagueness has a special source—a certain kind of
underlying regularity that explains the supple law.  Supple laws have three
defining features.  The first has to do with how the supple law manifests a
deeper, context-sensitive regularity.  In    typical    contexts, the underlying
regularity is manifested in the pattern of behavior described by the supple
law.  But in other contexts the same underlying regularity generates
exceptions to the supple law.  These exceptions “prove the rule” because they
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reveal the underlying regularity behind the supple law, they indicate the true
“meaning” of the supple law.

The second defining feature of supple laws is that their “meaning” is
teleological and derives from the telic nature of the underlying regularity.
It’s not that the underlying regularity    has    a purpose but that it     describes    the
way in which some purpose or function is achieved.  The supple law
describes how that purpose is achieved in typical contexts and rule-proving
exceptions arise in contexts in which some other means better achieves the
same purpose.  The teleology in supple laws can be mental but it can also be
merely biological, as examples below show.  (Further details of my preferred
understanding of teleology are developed in Bedau 1990, 1991, 1992a, 1992b,
1993, Bedau & Packard 1992.)  Hofstadter (1985) describes mental regularities as
“fluid” and Horgan and Tienson (1990) talk of “soft” laws of intentional
psychology.  But the teleology in supple laws makes them not just “fluid” or
“soft” but     aptly     so.  The fluidity or softness of supple laws involves the open-
ended context-sensitivity with which some purpose or function is achieved.

The third defining feature is exactly this open-ended context sensitivity
of the underlying regularity.  For one thing, the purpose in question is
achieved in an indefinite number of different ways in an indefinite number
of different contexts.  But more than this, there may be no rule or algorithm
for determining how to achieve the purpose given an arbitrary context; in
general, nothing short of trial and error will suffice.  Nevertheless, what
makes a supple law    supple     is that, in an indefinite number of different
contexts, in one way or another, the purpose captured by the underlying
regularity    is    achieved.  In other words, a law is supple only if the law actually
has rule-proving exceptions in (enough of) those contexts in which slavishly
following the rule would defeat the purpose in question.

Pure Reason and Practical Reason, our two sample psychological   ceteris
paribus    laws, can plausibly be seen as supple laws, for each can be seen as the
manifestation of a deeper regularity that concerns how some specific purpose
is achieved in an indefinitely open-ended variety of contexts.  Consider Pure
Reason first.  I assume that it’s no accident that people tend to infer the
consequences of their antecedent beliefs.  Presumably, the purpose served by
this process is something like having one’s beliefs reflect reality as accurately
as possible.  (I don’t mean that individual agent’s have this as the conscious
intention for fixing their beliefs, of course; moreover I’m not wedded to this
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particular view of the purpose of forming beliefs.)  In addition, underlying
the law of Pure Reason is a regularity about reasonable belief formation:
ceteris paribus  , people infer whatever is most reasonable given what else they
believe.  In typical contexts, then, when some person A believes both some
proposition P and that P implies another proposition Q, then A will infer Q
because     this is the most reasonable inference to make in the context.  In this
way, the law of Pure Reason is a manifestation of the deeper regularity about
reasonable beliefs.  Furthermore, the purpose behind the law of Pure Reason
derives from, and is the same as, the purpose behind the reasonable belief
regularity.  Finally, in those contexts in which it is not most reasonable to
infer Q, the reasonable belief regularity will be manifested in some other way,
such as inferring that P is false or that P does not imply Q.  This will
constitute an exception to the law of Pure Reason but one which proves the
rule.

Similarly, underlying the law of Practical Reason is a regularity about
reasonable action:    ceteris paribus   , people act in whatever way is most
reasonable given their beliefs and desires.  In addition, the purpose behind
the law of Practical Reason derives from, and is identical to, the purpose
captured by the reasonable action regularity, which is presumably something
like acting so as to best serve one’s needs and desires.  The reasonable action
regularity manifests itself in typical contexts as the law of Practical Reason, but
in other contexts the most reasonable action might break the law of Practical
Reason.

Note that   ceteris paribus   clauses appear in the statements of the
reasonable belief regularity and the reasonable action regularities, even
though these are the regularities that explain the suppleness of Pure and
Practical Reason.  This should tip us off that the   ceteris paribus    clauses in
psychological laws cover two quite different kinds of exceptions.  Rule-
breaking exceptions can still remain after all rule-proving exceptions have
been removed.  As I mentioned above, not all exceptions to supple laws ar
due to  their suppleness.  Suppleness is an    aspect    of some    ceteris paribus   laws
but it is not the    full    explanation of    ceteris paribus   qualifications in any laws.
Since there are at least two quite different kinds of reasons why    ceteris    can fail
to be     paribus  , there is no such thing as   the    analysis of   ceteris paribus    laws.

I have been arguing that the suppleness in psychological laws reflects
an open-ended dynamic in a mental system’s appropriate adaptation to novel
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contextual changes.  In fact, this supple adaptability in psychological processes
is a hallmark of their intelligence.  Descartes put his finger on precisely this
sign of true intelligence in Part V of the      Discourse on Method     when he
described the difference between human rationality and the behavior of mere
machines:

. . . although [mere machines] perform many tasks very well or perhaps
can do them better than any of us, they inevitably fail in other tasks; by
this means one would discover that they do not act through
knowledge, but only through the disposition of their organs.  For while
reason is a universal instrument that can be of help in all sorts of
circumstances, these organs require a particular disposition for each
particular action; consequently, it is morally impossible for there to be
enough different devices in a machine to make it act in all of life’s
situations in the same way as our reason makes us act.  (trans. D. A.
Cress)

Descartes does not just point out that a hallmark of rational creatures is an
open-ended flexibility in their ability to act appropriately as contexts change.
He also claims that no mere machine could exhibit this suppleness of
behavior.  I’ll argue in a moment that he is both right and wrong about this:
right because no   fixed    machine can be supple, and wrong because a suitably
changing     mechanism can be supple.  But I whole heartedly agree with
Descartes that suppleness is central sign of genuine intelligence.      Ceteris
paribus    laws are often treated as an embarrassing curiosity, to be ignored or
excused.  The lesson to be learned from Descartes is that attempts to properly
describe and explain supple psychological laws should be celebrated and made
a central focus of psychology and the philosophy of mind.

A good description and explanation of a supple ceteris paribus law of
psychology should have certain virtues.  First, it should be precise, specifying
when   ceteris   is not    paribus   , at least for those exceptions that prove the rule.
Second it should be accurate and complete, in the sense that it has no false
positives (cases falsely advertised as rule-proving exceptions) and no false
negatives (cases falsely advertised as law-conforming).  Third, it should be
principled, not arbitrary or     ad        hoc  ; it should indicate what underlying
regularity unifies the law and its rule-proving exceptions.  Finally, it should
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be feasible, consistent with what we know about the natural world, and
allowing us to test empirically the account’s accuracy and completeness.

There are two evident strategies for describing and explaining supple
psychological laws, and neither is very good.  The first strategy—what I’ll call
the common-sense strategy—engages in hand waving by employing    ceteris   
paribus    clauses within the account.  One version of the common-sense
strategy takes the supple law as a brute fact, thus sacrificing a principled
explanation of the supple law.  Another variant of this strategy avoids this
problem by appealing directly to an underlying regularity, such as the
reasonable belief and reasonable action regularities I described above.

The common-sense strategy can achieve a sort of descriptive adequacy,
as far as it goes, for its descriptions appeal to the supple law or its underlying
regularity and these do obtain.  But the strategy lacks all the virtues sought in
an account of suppleness.  First, no serious attempt is made to indicate under
what conditions rule-proving exceptions occur.  Appealing to an underlying
regularity does provide a minimal explanation of what causes rule-proving
exceptions.  But if the underlying regularities are like those I sketched above
(e.g.,    ceteris paribus   , people infer whatever is most reasonable given what else
they believe), they will invoke vague phrases like “whatever is most
reasonable” or “as appropriate” and thus will not precisely indicate when    to
expect a rule-proving exception.  This leads to the other flaws with the
common-sense strategy.  For one thing, a common-sense description and
explanation will be too imprecise to be accurate or complete.  It might not be
able to be convicted of advertising, but that is because it makes no precise and
testable advertisements.  Furthermore, its imprecision blocks us from testing
whether it fits with our understanding of the natural world, so the common-
sense strategy is unfeasible.

An alternative strategy for accounting for the suppleness of mental
processes is, in effect, to predigest the circumstances that give rise to rule-
proving exceptions and then specify (either explicitly or through heuristics)
how and when they arise in a manner that is precise enough to be expressed
as an algorithm.  This is exactly the strategy followed by so-called “expert
systems” in artificial intelligence.  This expert-systems strategy yields models
of supple psychological laws that are explicit and precise enough to be
implemented as a computer model, and this gives the strategy three
important virtues.  First, it obviously is precise, since an expert system will
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indicate precisely when    ceteris   is not    paribus   .  Second, an expert systems
account is principled, provided the experts’ information is.  Third, an expert-
systems account is feasible (barring some problem with the algorithm), so the
account’s dynamic behavior can be directly observed and tested for
plausibility.

There are well-known problem with expert-systems, though.  (See, e.g.,
Dreyfus 1992, Hofstadter 1985, Holland 1986, Langton 1989a, Horgan &
Tienson 1989, 1990, Chalmers, French, & Hofstadter 1992.)  They sometimes
work well in precisely circumscribed domains, but they systematically fail to
produce the kind of supple behavior that is characteristic of intelligent
response to an open-ended variety of circumstances.  Their behavior is
brittle—they lack the context sensitivity that is distinctive of intelligence—so
they are inaccurate and incomplete. This brittleness shows no evidence of
being merely a limitation with present expert systems; attempts to improve
matters by amplifying the knowledge base only invite combinatorial
explosion. Although precise and feasible and principled, their brittleness
makes expert-systems accounts of supple mental dynamics inaccurate and
incomplete.  Our experience with expert systems suggest that Descartes was
right that the aptness of supple psychological processes is too open-ended to
be embodied in any fixed mechanism or algorithm.

I want to promote a third strategy for describing and explaining supple
psychological laws.  I’m not in a position today to give a concrete illustration
of this strategy, so I will do the next best thing and give a concrete illustration
of an analogous strategy in an analogous context: emergent artificial life
models of supple biological laws.  I’ll call this approach the emergent-model
strategy since its leading idea is that supple macro-level laws implicitly
emerge from an evolving population of explicitly interacting micro-level
entities.  The result is to view the supple law as produced by a mechanism—a
micro-level population of interacting agents—but a mechanism with a build-
in capacity to make adaptive changes as the environmental context alters.
Emergent models provide a distinctive, indirect but constructive kind of
explanation of supple phenomena.  My overall conclusion will be that the
emergent-model strategy is an adequate way, and the only evident adequate
way, to understand supple laws, and my central argument will be an appeal to
the analogy with artificial life.
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Emergent Models of Supple Biological Laws

Evolving populations display various macro-level patterns on an
evolutionary time scale.  For example, adaptive innovations that arise
through genetic changes tend,   ceteris paribus  , to persist and spread through
the population so as to maximize the population’s adaptive fit with its
environment.  Of course, these patterns are not precise and exceptionless
universal generalizations; they hold only for the most part.  When their
vagueness is due to context-dependent fluctuations in what is appropriate,
the macro-level evolutionary dynamics are supple in the sense intended
here.  These sorts of supple dynamics of adaptation result not from any
explicit macro-level control (e.g., God does not adjust allele frequencies so as
to make creatures well adapted to their environment); rather, they emerge
statistically from the micro-level contingencies of natural selection.

The new interdisciplinary field of artificial life is exploring a certain
characteristic kind of computer model of evolutionary dynamics.  These
emergent models (as I’ll call them) consist of a micro-level and a macro-level.
(I should stress that I am using “micro” and “macro” in a generalized sense.
Micro-level entities need not be literally microscopic; individual organisms
are not.  “Micro” and “macro” are relative terms; an entity exists at a micro-
level relative to a macro-level population of similar micro-level entities.
These levels can be nested.  Relative to a population, an individual organism
is a micro-level entity; but an individual organisms is a macro-level object
relative to the micro-level genetic elements (say) that determine the
organism’s behavioral strategy.)  Emergent models generate complex macro-
level dynamics from simple micro-level mechanisms in a characteristic way.
This form of emergence arises in contexts in which there is a system, call it     S    ,
composed out of micro-level parts.  The number and identity of these parts
might change over time.     S    has various macro-level states (macrostates) and
various micro-level states (microstates).      S    ’s microstates are the states of its
parts.      S    ’s macrostates are structural properties constituted wholly out of
microstates; macrostates typically are various kinds of statistical averages over
microstates.  Further, there is a relatively simple and implementable micro-
level mechanism, call it       M      , which governs the time evolution of     S    ’s
microstates.  In general, the microstate of a given part of the system at a given
time is a result of the microstates of nearby parts of the system at preceding
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times.  Given these assumptions, I will say that a macrostate     P     of system     S    
with micro-level mechanism       M       is emergent if and only if     P     (of system     S    ) can
be explained from      M     , given complete knowledge of external conditions, but     P    
can be predicted (with complete certainty) from       M           only    by simulating       M      ,
even given complete knowledge of external conditions.  So, we can say that a
model is emergent if and only if its macrostates are emergent in the sense just
defined.

Although this is not the occasion to develop and defend this concept of
emergence (see Bedau 1997), I should clarify three things.  First, “external
conditions” are conditions affecting the system’s microstates that are
extraneous to the system itself and its micro-level mechanism.  One kind of
external condition is the system’s initial condition.  If the system is open, then
another kind of external condition is the contingencies of the flux of parts and
states into     S    .  If the micro-level mechanism is nondeterministic, then each
nondeterministic effect is another external condition.

Second, given the system’s initial condition and other external
conditions, the micro-level mechanism completely determines each
successive microstate of the system.  The macrostate    P    is a structural property
constituted out of the system’s microstates.  Thus, the external conditions and
the micro-level mechanism completely determine whether or not     P     obtains.
In this specific sense, the micro-level mechanism plus the external conditions
“explain”     P    .  One must not expect too much from these explanations.  For one
thing, the explanation depends on the massive contingencies under the
initial conditions.  It is awash with accidental information about     S    ’s parts.
Furthermore, the explanation might be too detailed for anyone to survey or
grasp.  It might even obscure a simpler, macro-level explanation that unifies
systems with different external conditions and different micro-level
mechanisms.  Nevertheless, since the micro-level mechanism and external
conditions determine    P   , they explain    P   .

Third, in principle we can always predict    S   ’s behavior with complete
certainty, for given the micro-level mechanism and external conditions we
can always simulate    S    as accurately as we want.  Thus, the issue is not
whether     S    ’s behavior is predictable—it is, trivially—but whether we can
predict     S    ’s behavior only by simulating    S   .  When trying to predict a system’s
emergent behavior, in general one has no choice but simulation.  This notion
of predictability only through simulation is not anthropocentric; nor is it a
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product of some specifically human cognitive limitation.  Even a Laplacian
supercalculator would need to observe simulations to discover a system’s
emergent macrostates.

Norman Packard devised a simple emergent model of evolving
sensory-motor agents which demonstrates how supple, macro-level
evolutionary dynamics can emerge implicitly from an explicit micro-level
model (Packard 1989, Bedau & Packard 1992, Bedau, Ronneburg, & Zwick
1992, Bedau & Bahm 1994, Bedau 1994, Bedau & Seymour 1994, Bedau 1995).
What motivates this model is the view that evolving life is typified by a
population of agents whose continued existence depends on their sensory-
motor functionality, i.e., their success at using local sensory information to
direct their actions in such a way that they can find and process the resources
they need to survive and flourish.  Thus, information processing and
resource processing are the two internal processes that dominate the agents’
lives, and their primary goal—whether or not they know this—is to enhance
their sensory-motor functionality by coordinating these internal processes.
Since the requirements of sensory-motor functionality may well alter as the
context of evolution changes, continued viability and vitality requires that
sensory-motor functionality can adapt in an open-ended, autonomous
fashion.  Packard’s model attempts to capture an especially simple form of
this open-ended, autonomous evolutionary adaptation.

The model consists of a finite two-dimensional world with a
periodically replenished resource distribution and a population of agents.  An
agent’s survival and reproduction are determined by the extent to which it
finds enough resources to stay alive and reproduce, and an agent’s ability to
find resources depends on its sensory-motor functionality—that is, the way in
which the agent’s perception of its contingent local environment affects its
behavior in that environment.  An agent’s sensory-motor functionality is
encoded in a set of genes, and these genes can mutate when an agent
reproduces.  Thus, on an evolutionary time scale, the process of natural
selection implicitly adapts the population’s sensory-motor strategies to the
environment.  Furthermore, the agents’ actions change the environment
because agents consume resources and compete with each other for space.
This entails that the mixture of sensory-motor strategies in the population at
a given moment is a significant component of the environment that affects
the subsequent evolution of those strategies.  Thus, the fitness function in
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Packard’s model—what it takes to survive and reproduce—is constantly
buffeted by the contingencies of natural selection and unpredictably changes
(Packard 1989).

All macro-level evolutionary dynamics produced by this model
ultimately are the result of explicit micro-level mechanisms acting on
external conditions.  The model starts with a population of agents with
randomly chosen sensory-motor strategies, and the subsequent model
dynamics explicitly controls only local micro-level states: resources are locally
replenished, an agent’s genetically encoded sensory-motor strategy
determines its local behavior, an agent’s behavior in its local environment
determines its internal resource level, an agent’s internal resource level
determines whether it survives and reproduces, and genes randomly mutate
during reproduction.  Each agent is autonomous in the sense that its behavior
is determined solely by the environmentally sensitive dictates of its own
sensory-motor strategy.  On an evolutionary time scale these sensory-motor
strategies are continually refashioned by the historical contingencies of
natural selection.  The model generates macro-level evolutionary dynamics
only as the indirect product of an unpredictably shifting agglomeration of
directly controlled micro-level events (individual actions, births, deaths,
mutations).  The model has no provisions for explicit control of macro-level
dynamics.  Moreover, macro-level evolutionary dynamics are typically
emergent in the sense that, although constituted and generated solely by the
micro-level dynamic, they can be derived only through simulations.

It should be noted that Packard’s model is not intended as a realistic
simulation of some actual biological population.  Rather, it is an “idea”
model, aiming to capture the key abstract principles at work in evolving
systems generally.  Packard’s model is in effect a thought experiment—but an
emergent    thought experiment (Bedau 1998).  As with the armchair thought
experiments familiar to philosophers, Packard’s model attempt to answer
“What if X?” questions, but what is distinctive about emergent thought
experiments is that what they reveal can be discerned only by simulation.

I will illustrate the emergent supple dynamics in Packard’s model in
some recent work concerning the evolution of evolvability.  The ability to
successfully adapt depends on the availability of viable evolutionary
alternatives.  An appropriate quantity of alternatives can make evolution
easy; too many or too few can make evolution difficult or even impossible.
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For example, in Packard’s model, the population can evolve better sensory-
motor strategies only if it can test sufficiently many sufficiently novel
strategies; in short, the system needs a capacity for evolutionary “creativity.”
At the same time, the population’s sensory-motor strategies can adapt to a
given environment only if strategies that prove beneficial can persist in the
gene pool; in short, the system needs a capacity for evolutionary “memory.”

Perhaps the simplest mechanism that simultaneously affects both
memory and creativity is the mutation rate.  The lower the mutation rate, the
greater the number of genetic strategies remembered from parents.  At the
same time, the higher the mutation rate, the greater the number of creative
genetic strategies introduced with children.  Successful adaptability requires
that these competing demands for memory and creativity be suitably
balanced.  Too much mutation (not enough memory) will continually flood
the population with new random strategies; too little mutation (not enough
creativity) will tend to freeze the population at arbitrary strategies.  Successful
evolutionary adaptation requires a mutation rate suitably intermediate
between these extremes.  Furthermore, a suitably balanced mutation rate
might not remain fixed, for the balance point could shift as the context of
evolution changes.  One would think, then, that any evolutionary process
that could continually support evolving life must have the capacity to adapt
automatically to this shifting balance of memory and creativity.  So, in the
context of Packard’s model, it is natural to ask whether the mutation rate that
governs first-order evolution could adapt appropriately by means of a second-
order process of evolution.  If the mutation rate can adapt in this way, then
this model would yield a simple form of the evolution of evolvability and,
thus, might illuminate one of life’s fundamental prerequisites.

Previous work (Bedau & Bahm 1994) with fixed mutation rates in
Packard’s model revealed two robust effects.  The first effect was that the
mutation rate governs a phase transition between genetically ordered and
genetically disordered systems.  When the mutation rate is too far below the
phase transition, the whole gene pool tends to remain frozen at a given
strategy; when the mutation rate is significantly above the phase transition,
the gene pool tends to be a continually changing plethora of randomly related
strategies.  The phase transition itself occurs at a characteristic mutation rate.
The second effect was that evolution produces maximal population fitness
when mutation rates are around values just below this transition.  The
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upshot of these two effects is that evolutionary adaptation tends to be
maximized when the gene pool is “at the edge of disorder.”

In the light of our earlier suppositions about balancing the demands for
memory and creativity, this work suggest that evolutionary memory and
creativity are balanced at the edge of genetic disorder.  To test this balance
hypothesis, Packard’s model was modified so that each agent has an
additional gene encoding its personal mutation rate (Bedau & Seymour 1994).
In this case, two kinds of mutation play a role when an agent reproduces: the
child inherits its parents’ sensory-motor genes, which mutate at a rate
controlled by the parent’s personal (genetically encoded) mutation rate; and
the child inherits its parent’s mutation rate gene, which mutates at a rate
controlled by a population-wide meta-mutation rate.  Thus, first-order
(sensory-motor) and second-order (mutation rate) evolution happen
simultaneously.  So, if the balance hypothesis is right and mutation rates at
the critical transition produce optimal conditions for sensory-motor
evolution because they optimally balance memory and creativity, then we
would expect second-order evolution to drive mutation rates into the critical
transition.  It turns out that this is exactly what happens.

Examination of many, many simulations confirms the pattern
predicted by the balance hypothesis:  Second-order evolution tends to drive
mutation rates to the edge of disorder, increasing population fitness in the
process.  If natural selection is prevented from shaping the distribution of
mutation rates in the population, the mutation rates wander aimlessly due to
random genetic drift.  But the mutation dynamics are quite different when
natural selection operates.  Although the population is initialized with quite
high mutation rates well into the disordered side of the spectrum, as the
population becomes more fit (i.e., more efficiently gathers resources) the
mutation rates in the population drop into the ordered side of the mutation
spectrum.

If the balance hypothesis is the correct explanation of this second-order
evolution of mutation rates into the critical transition, then we should be
able to change the mean mutation rate by dramatically changing where
memory and creativity are balanced.  In fact, the mutation rate does rise and
fall along with the demands for evolutionary creativity.  For example, when
we randomize the values of all the sensory-motor genes in the entire
population so that every agent immediately forgets all the genetically stored
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information learned by its genetic lineage over its entire evolutionary history,
the population must restart its evolutionary learning job from scratch.  It has
no immediate need for memory (the gene pool contains no information of
proven value); instead, the need for creativity is paramount.  Under these
conditions, we regularly observe a striking sequence of events: (a) the residual
resource in the environment sharply rises, showing that the population has
become much less fit; (b) immediately after the fitness drop the mean
mutation rate dramatically rises as the mutation rate distribution shifts
upward; (c) by the time that the mean mutation rate has risen to its highest
point the population’s fitness has substantially improved; (d) the fitness
levels and mutation rates eventually return to their previous equilibrium
levels.

These results show that the mutation rate distribution shifts up and
down as the balance hypothesis would predict.  A change in the context for
evolution can increase the need for rapid exploration of a wide variety of
sensory-motor strategies and thus dramatically shift the balance toward the
need for creativity.  Then, subsequent sensory-motor evolution can reshape
the context for evolution in such a way that the balance shifts back toward the
need for memory.

This all provides evidence for the following supple law of second-order
evolution (at least in the modified Packard model):

Edge of Disorder: Mutation rates evolve   ceteris paribus    to the edge of
disorder.

The Edge of Disorder law is supple because it is the manifestation of a deeper
regularity that concerns how some specific purpose is achieved in an
indefinitely open-ended variety of contexts.  The underlying regularity here is
that,    ceteris paribus   , mutation rates evolve in such a way that evolutionary
memory and creativity are optimally balanced for successful adaptability.
This point at which the mutation rate balances evolutionary memory and
creativity is typically at the edge of genetic disorder, but an indefinite variety
of environmental contingencies can shift the point of balance.  In other
words, the Edge of Disorder law is vulnerable to exceptions that prove the
rule.  Not only are there rule-breaking exceptions in which evolutionary
memory and creativity are not balanced (e.g., micro-level stochasticity, a break
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down in the micro-level mechanism implementing the process of second-
order evolution, etc.); there are also rule-proving exceptions caused by
memory and creativity being balanced somewhere other than the edge of
disorder.

As with all    ceteris paribus    laws, the Edge of Disorder law is not precise
and exceptionless.  Furthermore, when    ceteris    is not    paribus   , it is generally
unpredictable how contextual contingencies will relocate the balance between
evolutionary memory and creativity.  No evident fixed mechanism could
guaranteed to find the appropriate mutation rate.  Yet it remains a lawful
regularity that mutation rates evolve to the point of balance,    ceteris paribus   .
The explanation for this is that the process of evolution is continually
changing the system’s micro-level mechanism.  The micro-level mechanism
in this case is the population of agents with their genetically encoded sensory-
motor strategies and their genetically encoded mutation rates.  As the
environmental context of this mechanism changes, the mechanism itself is
subject to continual alteration by first- and second-order evolution.  There is
no algorithm for determining what adaptation will prevail in which context,
which alteration in the mutation rate genes will emerge, but trial and error
and natural selection can be counted on—  ceteris paribus   —to continually
create appropriate mutation rates as novel situations unfold.  This open-
ended supple flexibility in the dynamics of the evolution of evolvability is the
deep reason why the memory/creativity balance regularity resists any precise
and exceptionless formulation.

Even though its suppleness means that the Edge of Disorder law and its
underlying memory/creativity balance regularity cannot be explicitly stated
precisely, accurately, and completely, the emergent model which produces
them is itself an   implicit   description and explanation of the law and its
underlying regularity—and one with all the virtues such accounts should
have.  We must remember to distinguish the model’s micro- and macro-
levels.  At any given time the model’s micro-level mechanism is completely
precise and fully explicit.  The Edge of Disorder law and the balance regularity,
by contrast, are emergent macro-level phenomena which lack the micro-level
mechanism’s precision and explicitness.  Nevertheless, since the model
generates the law and the regularity, it implicitly describes and explains them,
and it does so in a way that is fully consistent with all that we know about the
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natural world.  Thus the emergent model is a feasible account of the supple
macro-level law.

In addition, the model’s description of the law can be made as precise,
accurate and complete as desired.  On the one hand, the law is a statistical
pattern in the model’s macro-level behavior, one with an indefinite
complexity, so no finite description of the pattern can capture all of it.  On the
other hand, running the model again and again from different places in
parameter space allows us to observe as much of the pattern’s structure as we
want.  Furthermore, the operation of the model shows you exactly when
ceteris    is not     paribus   , so you can simply observe under what conditions the
system does or does not evolve to the edge of genetic disorder.  In this way
you can fill out your understanding of both rule-breaking and rule-proving
exceptions as much as desired.

The model is somewhat like a recursive grammar for an infinite
language.  A grammar is a compact, precise, complete and accurate description
and explanation of the structure of a language, and generating more and
more sentences wth the grammar provides a more and more accurate picture
of the language.  There is no guarantee one’s proposed grammar will
accurately capture the intented language.  Similarly, it is an empirical
question how well a given emergent model captures a specific macro-level
phenomenon.  But the model’s feasibility enables us to test the account’s
accuracy and completeness using ordinary empirical methods, and we must
continue revising the model if we observe false positives or false negatives in
the model’s macro-level patterns.  We obviously should not accept a model
until we are confident that it accurately and completely generates the desired
macro-level pattern.  So, when the empirical evidence supports a model, it
ipso facto     supports the model’s accuracy and completeness.  Finally, the
emergent model provides a principled explanation of the Edge of Disorder
law, exceptions and all.  Since one and the same model generates both the law
and its exceptions, the model is a concrete embodiment of what unifies the
manifold instances of the law as well as its various exceptions.  In addition, as
the evidence reviewed above indicates, one and the same memory/creativity
regularity produces both the law and its rule-proving exceptions, so the Edge
of Disorder law is not arbitrary or    ad hoc  .

The emergent-models strategy for explaining supple laws also avoids
the familiar controversies about   ceteris paribus   laws.  First, I take it to be
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obvious that the law is neither trivially true, nor tautologous, nor analytic.
The law is rather surprising, in fact, and could well have been false.  Second,
the law is clearly falsifiable.  For example, it would be falsified if increasing
the demands for memory (or creativity) did not typically cause mutation rates
to evolve down (or up).  Third, the law has explanatory power: it explains the
typical second-order evolutionary changes in the mutation rate distribution
in the population.  Finally, although the law is non-algorithmic in the sense
that it cannot be generated by any fixed algorithm, we have seen that it can be
generated by a process involving the continual modification of micro-level
mechanisms through the process of natural selection.

The Edge of Disorder law is just one example of a supple law described
and explained by an emergent model. Many other characteristic features of
living systems can be captured in a similar fashion as emergent phenomena
in artificial life models; see, e.g., Farmer, Lapedes, Packard, & Wendroff (1986),
Langton (1989b), Langton, Taylor, Farmer, & Rasmussen (1992), Varela &
Bourgine (1992), and Brooks & Maes (1994).  In every case, supple macro-level
dynamics emerge from, and are explained by, an evolving micro-level
mechanism consisting of a parallel, distributed network of communicating
agents deciding how to behave in their local environment based on selective
information from their local environment.  This growing empirical evidence
from artificial life continually reinforces the conclusion that emergent
models can provide a good description and explanation of supple dynamics.

Toward Emergent Models of Supple Psychological Laws

The main conclusion of the previous section is that only artificial life’s
emergent models provide good descriptions and explanations of supple
biological laws; all other evident alternative strategies lack some of the
virtues we should seek in such accounts.  The central claim I will defend in
this concluding section is that only analogous emergent models provide good
descriptions and explanations of supple laws in psychology.  Although this
claim is backed by evidence, it is just a conjecture.  The macro-level behavior
of emergent models is especially difficult to predict     a priori  , for by definition
an emergent model’s macro-level behavior can be settled only through the
process of simulation.  So prognosticating about what emergent models can
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or cannot do is risky.  The acid test of such claims is to “put your model where
your mouth is” (Bedau 1998).  Although I have no such a models to offer
today, the advantages and distinctive features of artificial-life-like emergent
models can be illuminated by comparisons with recent work in cognitive
science and neuroscience.

My central argument has two main premises:  Emergent artificial life
models are the only evident way to understand supple laws in biology, and
they do an impressively good job.  Furthermore, supple biological laws are
strikingly analogous to supple psychological laws.  I conclude that analogous
emergent models promise to be the only possible way to understand supple
laws in psychology.  Let me be the first to admit two inherent weaknesses of
this argument: it combines an argument from analogy with an argument
about “the only straw afloat,” and both are inconclusive.  A significantly
stronger argument must wait until we actually have a concrete emergent
model to examine.  In the meantime, though, we should note that the two
premises do have significant support and thus do transfer some significant
support to my conclusion.

What would an artificial-life-like emergent model of supple
psychology look like?  Its central move would be to shatter the seemingly
indivisible Cartesian ego and construe it as an emergent macro-level effect of
an adapting micro-level population of interacting proto-mental agents.  It is
unclear what the micro-level agents should be (although almost certainly not
neurons) or how they should interact.  It is also unclear by exactly what
process they should adapt; perhaps Lamarkian selection should replace the
natural selection in artificial life models, and presumably multiple levels of
selection should interact simultaneously on different time scales.  What is
clear is that the familiar ceteris paribus laws of psychology should be
recognizable as the emergent effect of an adapting population of interacting
micro-level agents competing for influence in a context-dependent manner.

Artificial-life-like emergent models would have some similarity with
certain existing models, such as those of Hofstadter and his students
(Hofstadter 1985, Mitchell 1993, French, 1995), classifier systems (Holland
1986), and  connectionist (neural network, parallel distributed processing)
models (Rumelhart & McClelland 1986; Anderson & Rosenfeld 1988), so the
important features of what I’m calling emergent models can be highlighted by
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comparing them with these other models.  I’ll focus on connectionist models
since they are especially well-known.

Emergent models of mental phenomena and connectionist models
have some striking similarities.  First, both tend to produce fluid macro-level
dynamics as the implicit emergent effect of micro-level architecture.  In
addition, both employ the architecture of a parallel population of
autonomous agents following simple local rules.  For one thing, the agents in
an emergent model bear some analogy to the units in a connectionist net.
Furthermore, the agents in many artificial life models are themselves
controlled by internal connectionist nets (e.g., Todd & Miller 1991; Ackley &
Littman 1992; Belew, McInerney, & Schraudolph 1992; Cliff, Harvey, &
Husbands 1993; Parisi, Nolfi, & Cecconi 1992; Werner & Dyer 1992).  In
addition, for decades connectionism has explored recurrent architectures and
unsupervised adaptive learning algorithms, both of which are echoed in a
general manner in much artificial life modeling.

But there are important differences between typical artificial life
models and many of the connectionist models that have attracted the most
attention, such as feed-forward networks which learn by the back-propagation
algorithm.  First, the micro-level architecture of artificial life models is much
more general, not necessarily involving multiple layers of nodes with
weighted connections adjusted by learning algorithms.  Second, emergent
models employ forms of learning and adaptation that are more general than
supervised learning algorithms like backpropagation.  This frees artificial life
models from certain common criticisms of connectionism, such as the
unnaturalness of the distinction between training and application phases and
the unnatural appeal to an omniscient teacher.  Third, typical connectionist
models passively receive prepackaged sensory information produced by a
human designer.  In addition, they typically produce output representations
that have meaning only when properly interpreted by the human designer.
The sort of emergent models characteristic of artificial life, by contrast,
remove the human from the sensory-motor loop.  A micro-level agent’s
sensory input comes directly from the environment in which the agent lives,
the agent’s output causes actions in that same environment, and those
actions have an intrinsic meaning for the agent (e.g., its bearing on the agent’s
survival) in the context of its life.  Through their actions, the agents play an
active role in controlling their own sensory input and reconstructing the own
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environment (Bedau 1994, 1996b).  Finally, the concern in the bulk of existing
connectionist modeling is with equilibrium behavior that settles onto stable
attractors.  By contrast, partly because the micro-level entities are typically
always reconstructing the environment to which they are adapting, the
behavior of the emergent models I have in mind would be characterized by a
continual, open-ended evolutionary dynamic that never settles onto an
attractor in any interesting sense.

Neuroscientists sometimes claim that macro-level mental phenomena
cannot be understood without seeing them as emerging from micro-level
activity.  Churchland and Sejnowski (1992), for example, argue that the brain’s
complexity forces us to study macro-level mental phenomena by means of
manipulating micro-level brain activity.  Their position has a superficial
similarity to the emergent models perspective, but there is an important
difference between the two.  For Churchland and Sejnowski, manipulating
the mind’s underlying micro-level activity is merely a temporary practical
expedient, a means for coming to grasp the mind’s macro-level dynamics.
Once the micro-level tool has illuminated the macro-level patterns, it has
outlived its usefulness and can be abandoned.  No permanent, intrinsic
connection binds our understanding of micro- and macro-levels.  By contrast,
my thesis is that the mind’s macro-level dynamics can be adequately described
or explained only by making essential reference to the micro-level activity
from which it emerges.  The micro-level mechanism in the emergent model
is a complete and compact description and explanation of the macro-level
dynamics.  Since these global patterns are supple, they inevitably have rule-
proving exceptions.  Thus, to get a precise and detailed description of the
macro-level laws, there is no alternative to simulating the model.  In this
way, the micro-level model is ineliminably bound to our understanding of
the emergent supple laws.

At this stage of development the emergent-model strategy for
understanding supple psychological processes raises at least as many
questions as it answers.  Our final judgment of it must await the time when
we have concrete models to explore.  But we can conclude today that this
strategy shows some striking promise.  This is encouraging, for the
suppleness of psychological processes is at once both enigmatic and essential
to the intelligence of life and mind.
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