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Abstract Dynamical collapse models embody the idea of a physical collapse of the
wave function in amathematicallywell-definedway. They involvemodifications to the
standard rules of quantum theory in order to describe collapse as a physical process.
This appears to introduce a time reversal asymmetry into the dynamics since the
state at any given time depends on collapses in the past but not in the future. Here we
challenge this conclusion by demonstrating that, subject to specifiedmodel constraints,
collapse models can be given a structurally time symmetric formulation in which the
collapse events are the primitive objects of the theory. Three different examples of time
asymmetries associated with collapse models are then examined and in each case it is
shown that the same dynamical rule determining the collapse events works in both the
forward and backward in time directions. Any physically observed time asymmetries
that arise in such models are due to the asymmetric imposition of initial or final time
boundary conditions, rather than from an inherent asymmetry in the dynamical law.
This is the standard explanation of time asymmetric behaviour resulting from time
symmetric laws.
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1 Introduction

Awave functionundergoing collapse appears to be at oddswith time reversal symmetry
for the reason that a collapse corresponds to an updating of the wave function and the
wave function at any given time only depends on collapse events in the past. For a
physical collapse process this reflects an objective time asymmetry in the evolution
of the wave function, undermining the common claim that the fundamental laws of
physics are time symmetric.

Taking the idea of physical collapse seriously results in so-called dynamical collapse
models. These are an attempt to adapt the dynamical rules of quantum theory in order
to describe the collapse of the wave function as a physical process. The aim is to
provide a mathematically well-defined dynamical description of the evolving wave
function, capable of explaining both collapse and unitary behaviour in a way that is
independent of observers or measuring devices. The equation of motion should be
well approximated by the Schrödinger equation for systems involving few particles
and it should naturally describe rapid collapse of macro pointer states in quantum
experiment situations. The best known examples are the GRWmodel [1] and the CSL
(continuous spontaneous localisation) model [2,3] (For general reviews of collapse
models see [4,5]).

By treating the collapse of the wave function as a genuine physical process these
models inherit a time reversal asymmetry in the wave function dynamics. Whilst
this fits an intuitive view whereby the present state depends on the past and not on
the future, it presents a problem in understanding the origin of this time asymmetry
given that, aside from physical collapse, the fundamental laws of physics are time
symmetric (taken to mean CPT symmetric in a standard model context). Furthermore,
the famous result of Aharonov, Bergmann, and Lebowitz (ABL) [6] shows that the
quantum mechanical estimates of measurement results can be presented in a time-
symmetric way. The usual way in which quantum mechanics is applied involves the
construction of ensembles of pre-selected states. This enables us to make predictions
about future states. In the ABL formalism, states are both pre and post selected, and
it is shown that expressions for estimates of measurement results in the intervening
period are structurally time symmetric.Whilst this picture gives no account of how the
time symmetry is exhibited in the evolution of the state, it indicates a time symmetry
of quantum theory at the empirical level.

In light of these concerns we will re-examine the time asymmetry of collapse
models. In fact we will show that collapse models can be understood without reference
to a preferred direction of time. In order to do this we make use of a number of ideas:

♦ Collapses happen randomly. A typical feature of collapse models is that the
wave function undergoes spontaneous collapses in some preferred basis. This
process may be discrete or continuous. The probability for any given collapse to
happen should be given by the Born rule. For example, in the GRWmodel [1] the
preferred basis is the particle position basis and the collapse process is discrete.
The wave functionψt (x1, . . . , xN ) for N distinguishable particles usually satisfies
the Schrödinger equation but from time to time, and with fixed probability per unit
time for each particle, it makes a jump of the form
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ψt+ = ji (z)ψt . (1)

Each particle i has its own random sequence of jumps occurring at a different set
of random times. The jump operator j is of the form

ji (z) = exp
(
−(z − xi )

2/2a2
)

/(πa2)1/4, (2)

with a some fixed length scale. The action of j is therefore to quasi project the
wave function for particle i about some position z. The collapse centre z is chosen
randomly from a probability distribution

∫
dx1 · · · dxN | j (z − xi )ψt |2∫

dx1 · · · dxN |ψt |2 . (3)

This is precisely the Born rule probability for a quasi projection of the form j .
The fixed rate of collapses can be chosen such that individual particles are rarely
affected, but a bulk mass with large numbers of particles suffers frequent jumps.
In this way macroscopic pointers rapidly commit to definite readings.
♦ The set of collapse outcomes provide an empirically adequate description of
the world. The wave function is an object that does not exist in ordinary position
space. However, the jumps in the GRW model are localised in space and time.
The locations of the collapse centres z play the role of measurement outcomes in
the effective position measurements that spontaneously occur in the GRWmodel.
It therefore makes sense to treat them as the mathematical counterparts to real
world events [7]. On a fine-grained scale the world appears as if composed from
many discrete points. The local density of these points give a representation of the
location of matter. In this picture the role of the wave function is in determining
the probabilities for the various collapse locations. In general we will call z the
collapse outcome or the collapse data. The collapse outcomes are the primitive
objects in the theory. They alone are sufficient to form an empirically adequate
description real world events.
In some other collapse models, notably the CSL model and the lattice model
discussed below [8–10], the jumps act on a quantum field variable and occur
throughout space and time. The resulting collapse outcomes take the form of a
classical stochastic field. Again we expect to recover a picture of the world from
this classical stochastic field by some coarse graining procedure.
♦ The wave function encodes the past history of collapses giving maximal infor-
mation about future collapse events. As pointed out in Ref. [10], if a collapse
model is considered as a stochastic law for generating the collapse centres, then
the wave function can be relegated to the initial time fromwhich it does not need to
evolve. The collapsing evolution of the wave function corresponds to an updating,
conditioned on the history of realised collapses, of the rule for determining the
probability of future collapses. The evolving wave function is then just a conve-
nient calculation tool for making the theory Markovian. Going further it can be
speculated that the wave function might be abandoned altogether [11].
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On the basis of these ideas we will present a manifestly time symmetric framework
for a generic collapse model in which the primary objects are the collapse outcomes.
This we do in Sect. 2. We will show that, given a valid set of collapse data, we can
form empirically equivalent pictures of collapsing wave functions evolving both in
the forward-in-time and backward-in-time directions, and in each case, the outcomes
of subsequent collapses satisfy a probability rule of the same form. The only ways in
which observable time asymmetry can appear in such amodel is through the imposition
of asymmetric boundary conditions at the initial and final times.We show that the usual
forward-in-time wave function collapse dynamics exists within this framework given
a constraint on the final time boundary condition of the Universe.

We then examine three different cases where collapse models might be thought to
show distinctive time asymmetries: in Sect. 3 the lattice model of collapse proposed by
Dowker, Henson, and Herbauts [8–10]; in Sect. 4 the QMUPL (quantum mechanics
with universal position localisation) model of Diósi [12]; and in Sect. 5 the generic
tendency of collapse models to increase energy over time.

The lattice model of Sect. 3 is a model for a complete universe described by a
quantum field. We choose an initial condition, an initial wave function, and evolve
forward in time in order to generate a set of collapses. We explicitly construct an
equivalent, backward-in-time picture of an evolving wave function undergoing the
same set of collapses in the reverse order. We then use statistical analysis to show that
the collapses which were generated by the forward-in-time dynamics are distributed
as though they had been generated by the backward-in-time collapse dynamics. In this
particular model the probability distributions for collapse events are simple Bernoulli
distributions. This allows us to find large numbers of random events and to confirm
that the statistics work out in both time directions. The lattice model is an efficient
model for this purpose, and is equivalent to the CSL model in 1 + 1 dimensions.

In Sect. 4 we examine whether an individual isolated particle can reveal time asym-
metries. For this we use the QMUPL model, which occurs as limit cases of both the
GRW and CSL collapse models. The QMUPL model is particularly interesting for us,
as the localised collapse dynamics are explicitly time asymmetric when expressed as a
diffusion process for the central location of a stable localised wave packet. Once again
we generate a set of collapses from forward-in-time evolving wave packets, and show
how these collapse outcomes are still distributed as though they had been generated
by a wave packet evolving in the opposite direction in time.

In the final case we will show how the apparent monotonic increase in energy
is compatible with time symmetric dynamical laws and discuss the significance of
asymmetric boundary conditions. Although the time asymmetries of the QMUPL
model will be used for illustrative purposes, our arguments are expected to apply to
generic collapse models. We end with a summary in Sect. 6.

2 General Proof of Time Reversal Symmetry

Here we demonstrate the time symmetric structure of collapse models. Further details
can be found in Ref. [13]. We assume that a generic collapse model satisfies the
rule that collapse events occur at certain discrete times. These times may be randomly
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distributed or at regular intervals depending on themodel. Continuous collapsemodels
such as the CSL model can be obtained as a limit case of this construction (see Sect.
VI of [3]). The effect on the quantum state of a collapse event at time t is given by

|�t 〉 → |�t+〉 = J (zt )|�t 〉, (4)

where J = J † is a jump operator. At all other times the state evolves unitarily with
Hamiltonian H = H† so that in the Schrödinger picture the state satisfies

|�t 〉 = U (t − s)|�s〉, (5)

for t > s if there are no collapse events between s and t , and where U (t) = e−i Ht .
The jump operators must satisfy the completeness property

∫
dz J 2(z) = 1, (6)

and the probability of a particular jump outcome z at time t , given the state |�t 〉, is
given by

P(z) = 〈�t |J 2(z)|�t 〉
〈�t |�t 〉 . (7)

The jump operators are generalised quantum measurement operators. The effect of
the jumps on the quantum state is therefore equivalent to the effect of performing the
corresponding measurement. The random variable z corresponds to the measurement
outcome.

We see that this definition encompasses the GRW model where the jumps (2)
correspond to quasi projections in particle position space.

Now suppose that there is a fixed initial state for the Universe ρI at time t0 and a
final constraint on the Universe, ρF at time tn . These density matrix states represent
the fact that the pure state of the Universe at the initial and final times is not precisely
specified, and a probability distribution over realised pure states is given. The collapse
events occur at discrete times ti between t0 and tn with 0 < i < n such that t0 < t1 <

t2 < · · · < tn . Using the rules (4) and (5) we find that the (unnormalised) state at time
t with t j < t ≤ t j+1 is given by

ρt = U (t − t j )J (z j ) · · ·U2,1 J (z1)U1,0ρI

U0,1 J (z1)U1,2 · · · J (z j )U (t j − t), (8)

where Ui, j = U (ti − t j ) and zi = zti . From (7) we can determine the probability for
the complete set {zi } = {z1, z2, . . . , zn−1} of collapse data for the entire history of the
Universe. Conditional on the initial and final states this is given by
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P({zi }|ρI , ρF ) = P({zi }, ρF |ρI )

P(ρF |ρI )

= Tr [ρFρn]∫
dz1 · · · dzn−1Tr [ρFρn]

, (9)

with ρn = ρtn (and in general we denote ρi = ρti ). Here the final condition of ρF is
understood as being equivalent to a POVMmeasurement of ρF for final state ρn from
the POVM basis {ρF ,1 − ρF }. We note that a similar construction involving sets of
projection operators in place of the sets of generalised measurement operators J used
here, was used to discuss time symmetry in the context of quantum cosmology in the
histories formulation [14].

We now show that (9) has time symmetric structure provided that there exists a
complete set of basis states {|φi 〉} such that

〈φi |U (t)|φ j 〉∗ = 〈φi |U (−t)|φ j 〉;
〈φi |J (z)|φ j 〉∗ = 〈φi |J (z)|φ j 〉. (10)

This is equivalent to the statement that there exists a basis in which both U and J are
symmetric matrices. First we define ρ∗ by

〈φi |ρ∗|φ j 〉 = 〈φi |ρ|φ j 〉∗, (11)

from which it follows that

P({zi }|ρI , ρF ) = Tr
[
ρ∗
nρ

∗
F

]
∫
dz1 · · · dzn−1Tr

[
ρ∗
nρ

∗
F

] . (12)

We then show using (10) that

〈φi |ρ∗
n |φ j 〉 = 〈φi |ρn|φ j 〉∗

= 〈φi |Un,n−1 J (zn−1) · · ·U2,1 J (z1)U1,0ρI

U0,1 J (z1)U1,2 · · · J (zn−1)Un−1,n|φ j 〉∗
= 〈φi |Un−1,n J (zn−1) · · ·U1,2 J (z1)U0,1ρ

∗
I

U1,0 J (z1)U2,1 · · · J (zn−1)Un,n−1|φ j 〉. (13)

Next we adopt a convenient notation to describe the collapse events in the reverse
ordering: we define a new time parameter by t̄ = −t ; we relabel t̄i = −tn−i such that
t̄0 < t̄1 < t̄2 · · · < t̄n ; and we write z̄i = zi−n . We also denote Ūi, j = U (t̄i − t̄ j ) so
that

ρ∗
n = Ū0,1 J (z̄1) · · · Ūn−2,n−1 J (z̄n−1)Ūn−1,nρ

∗
I

Ūn,n−1 J (z̄n−1)Ūn−1,n−2 · · · J (z̄1)Ū1,0. (14)

Inserting this result into (12) we find
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P({zi }|ρI , ρF ) = Tr
[
ρ∗
I ρ̄n

]
∫
dz̄1 · · · dz̄n−1Tr

[
ρ∗
I ρ̄n

] , (15)

where we have used the cyclic property of the trace and

ρ̄n = Ūn,n−1 J (z̄n−1)Ūn−1,n−2 · · · J (z̄1)Ū1,0ρ
∗
F

Ū0,1 J (z̄1) · · · Ūn−2,n−1 J (z̄n−1)Ūn−1,n . (16)

By comparison of (9) and (15) it becomes clear that the probability formula could
equally well be interpreted as resulting from the reversed set of collapse outcomes
{z̄1, . . . , z̄n−1}, {t̄1, . . . , t̄n−1}, with an initial state ρ∗

F at t̄0, and a final constraint ρ∗
I

at t̄n , and with a dynamical rule that, if there is a collapse event at time t̄ then,

|�̄t̄ 〉 → |�̄t̄+〉 = J (z̄t̄ )|�̄t̄ 〉, (17)

and if there are no collapse events between s̄ and t̄ > s̄ then,

|�̄t̄ 〉 = U (t̄ − s̄)|�̄s̄〉. (18)

This is a backward-in-time time dynamics, identical in form to the forward-in-time
dynamics. The collapse event at time t̄ j with outcome z̄ j corresponds to the forwards-
in-time collapse event at time tn− j (= −t̄ j ) with outcome zn− j (= z̄ j ). The reverse
time state |�̄t̄ 〉 suffers the same sequence of jumps {zi } as the forward-in-time state but
in the reverse time order. Either the forward-in-time or backward-in-time dynamics
can be used as the underlying state process and since (i) they each predict the same
probability for a complete set of collapse outcomes {zi }, and (ii) they are each empir-
ically equivalent to the set of collapse outcomes which itself provides an empirically
adequate description the world, then the formulation is structurally time symmetric.

We note that the conditions (10) are satisfied by the GRW model with H =∑
i p

2
i /2m + V ({xi }) if we choose the basis to be the particle position state basis.

From (9) we can recover the Born rule probability for a collapse event at time t j
conditional on the state at time t j immediately prior to the collapse. The state at this
time is known if we know the initial state and all collapse outcomes to the past of t j .
We therefore calculate

P(z j |ρI , ρF , {zi |i < j})
=

∫
dz j+1 · · · dzn−1P({zi }, ρF |ρI )

P({zi |i < j}, ρF |ρI )

=
∫
dz j+1 · · · dzn−1Tr [ρFρn]∫
dz j · · · dzn−1Tr [ρFρn]

=
∫
dz j+1 · · · dzn−1Tr

[
ρ̄∗
n− j J (z j )ρ j J (z j )

]

∫
dz j · · · dzn−1Tr

[
ρ̄∗
n− j J (z j )ρ j J (z j )

] . (19)
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The expression in the last line can be recovered by conditioning on the state ρ j , at
time t j , instead of conditioning on ρI and {zi |i < j}, so that

P(z j |ρI , ρF , {zi |i < j}) = P(z j |ρ j , ρF ). (20)

Now if
∫

dz̄1 · · · dz̄n− j−1ρ̄n− j ∝ 1, (21)

then (19) becomes

P(z j |ρI , ρF , {zi |i < j}) = Tr
[
J (z j )ρ j J (z j )

]

Tr
[
ρ j

] . (22)

This is the Born rule probability for a collapse event J (z j ) at time t j given the state ρ j

at time t j . If the initial state is pure we recover (7). One way to satisfy condition (21)
is to choose the final state of the Universe to be the uniformly mixed state. Otherwise,
for a general final condition ρF , (21) requires that for an hypothetical ensemble of
Universes, the mixed state obtained by evolving using using the backward-in-time
dynamics from time t̄0 to time t̄n− j = −t j , is the uniformly mixed state. In this case
the constraining effects of the final state of the Universe are shielded from the present
by all future collapse events.

Since the formulation is time symmetric we can also write down the backward-in-
time probability rule for the collapse event at time t̄ j conditional on all future collapse
outcomes. This is

P(z̄ j |ρI , ρF , {z̄i |i < j})

=
∫
dz̄ j+1 · · · dz̄n−1Tr

[
ρ∗
n− j J (z̄ j )ρ̄ j J (z̄ j )

]

∫
dz̄ j · · · dz̄n−1Tr

[
ρ∗
n− j J (z̄ j )ρ̄ j J (z̄ j )

] . (23)

And if
∫

dz1 · · · dzn− j−1ρn− j ∝ 1, (24)

we recover the backward-in-time Born rule

P(z̄ j |ρI , ρF , {z̄i |i < j}) = Tr
[
J (z̄ j )ρ̄ j J (z̄ j )

]

Tr
[
ρ̄ j

] . (25)

This generic and manifestly time symmetric formulation of collapse models includes
the usual collapsemodel formulation as a special case of initial and final time boundary
conditions. More generally it is seen that the Born rule applied in either time direction
can be violated as a result of the boundary conditions. There is no inbuilt direction
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of time. The only possible way in which time asymmetry can be introduced is via
asymmetric boundary conditions of the Universe.

In the following sections we will investigate time reversal symmetry in some dif-
ferent examples of collapse models.

3 Lattice Model

Here we outline the lattice model of collapse proposed by Dowker & Henson [8] and
further investigated by Dowker & Herbauts [9,10]. We demonstrate some pertinent
features of the lattice model. In particular, given only the stochastic field of collapse
data, it is not possible to observe that the state is in a superposition of different preferred
basis states. This is important for our time symmetric picture since we should not be
able to distinguish superposition states which appear in the wave function picture of
one time direction but not the other. To discern the presence of somematter in a region,
we must coarse grain to remove background noise. It turns out the scales on which we
need to coarse grain are also the scales on which a superposition state collapses.

We will present the results of a statistical test, designed to demonstrate that the col-
lapses are distributed as though generated by the backward-in-time collapse dynamics.
This will provide an explicit demonstration of the results of the previous section.

Themodel is a modification of the massive Thirringmodel on a (1+1)D null lattice
[15]. This is a unitary fermionic quantum field theory in 2D Minkowski space. The
lattice is shown in Fig. 1.

In the time direction (vertical) the lattice extends arbitrarily far into the past or
future. In the spatial dimension there are N vertices denoted by black circles and
we impose periodic boundary conditions so that the space-time is in fact a cylinder.
The centres of the links are indicated by black squares. These are the locations of the
collapse events. A quantum state |�σ 〉 is defined with reference to a space-like surface
σ . This surface must cut through the links of the lattice in the manner shown. The
surface must also satisfy the periodic boundary conditions.

We can divide the lattice into columns representing the spatial location which we
label i = 1, 2, . . . , 2N as shown in Fig. 1. As we pass along a space-like surface

Fig. 1 The (1 + 1)D null lattice showing a space-like surface σ , a vertex v, and a link l
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Fig. 2 Elementary evolution I: crossing a vertex

Fig. 3 Elementary evolution II: crossing the centre of a link

σ we cut through each of the 2N columns once. To each column we assign a qubit
with basis states |0〉, corresponding to empty, and |1〉, corresponding to occupied; the
full quantum state belongs to the tensor product space of all the qubit state spaces
so that the basis states of the system are of the form |u1, u2, . . . , u2N 〉 where the
ui ∈ {0, 1} represent the individual qubit basis states. For example, a state of the
form |1, 0, 1, 1, 0, 0, 0, 1〉 on a lattice of size N = 4 can be understood either as a
particular quantum field configuration or a state of 4 ‘particles’ at 4 specific locations.
The vacuum, or unexcited quantum field state is |0, 0, 0, 0, 0, 0, 0, 0〉. We will refer
to this basis as the preferred basis since it is the basis into which the system tends to
collapse. The Hilbert space for the quantum state has dimension 22N .

The model also makes use of a classical stochastic field z taking values zl = 0 or 1
at random on each link l of the lattice. These values are the binary collapse outcomes.

There are two types of elementary evolution of the state which occur when the
surface σ advances in one of two different elementary ways. One corresponds the
surface σ crossing a vertex. This is shown in Fig. 2 as the surface passes over the
vertex v from σ to σ ′. If the vertex involved in this elementary evolution is one which
connects links at positions i and i + 1 (modulo 2N ), we define a unitary operator by

Uv = 11 ⊗ · · · ⊗ 1i−1 ⊗Ui,i+1 ⊗ 1i+2 ⊗ · · · ⊗ 12N , (26)

where Ui,i+1 is some 4D unitary operator acting on the i th and (i + 1)th qubits. In
crossing the vertex v the state changes according to

|�σ ′ 〉 = Uv|�σ 〉. (27)

The second type of elementary evolution occurs when the surface passes over the
centre of a link. This is shown in Fig. 3 where the surface passes the centre of the
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link l from σ ′ to σ ′′. If the link is located at position i on the lattice we define a jump
operator by

Jl(zl) = 11 ⊗ · · · ⊗ 1i−1 ⊗ Ji (zl) ⊗ 1i+1 ⊗ · · · ⊗ 12N . (28)

In crossing the link l the state changes according to

|�σ ′′ 〉 = Jl(zl)|�σ ′ 〉. (29)

The jump operator describes the collapse of the wave function. These jump operators
occurring at each link l are equivalent to the generic jump operators occurring at points
in time outlined in Sect. 2. If we assume some arbitrary total ordering of evolutions
over links and vertices respecting the causal order of the lattice, then the set of jumps
occur in an ordered sequence. This is the natural generalisation of the time ordered
sequence of jumps presented earlier.

Without the jump operator this model is the light-cone lattice massive Thirring
model of Ref. [15]. Depending on the value of zl , the operator Ji acting on the i th
qubit takes the form

Ji (0) = 1√
1+X2

{|0i 〉〈0i | + X |1i 〉〈1i |}
Ji (1) = 1√

1+X2
{X |0i 〉〈0i | + |1i 〉〈1i |} (30)

with X the fixed collapse parameter, 0 ≤ X ≤ 1. The jump operators satisfy the
completeness relation

J 2i (0) + J 2i (1) = 1i . (31)

If X is close to 0 then whenever they act they effectively perform a projective mea-
surement on the qubit state in the 0, 1 basis. If X is close to 1 their action nudges the
qubit state slightly towards either the 0 or 1 state with collapse requiring many such
jump operations.

The value of the field variable zl controls whether the collapse favours the |0〉 state
or the |1〉 state. This field variable is chosen randomly and the probability that the field
takes value zl on the link l is given by the Born rule probability

P(zl |�σ ′) = 〈�σ ′ |J2l (zl)|�σ ′ 〉
〈�σ ′ |�σ ′ 〉 = 〈�σ ′′ |�σ ′′ 〉

〈�σ ′ |�σ ′ 〉 . (32)

From these elementary rules we can derive the rules for evolution from a general state
on an initial surface σi to a final surface σ f in the future. Suppose that in getting from
σi to σ f we must cross n links and m vertices. The links we label {l1, . . . , ln} and the
vertices we label {v1, . . . , vm}. It follows that the final state is of the form

|�σ f 〉 = T
[
Jl1(zl1) · · ·Jln (zln )Uv1 · · ·Uvm

] |�σi 〉, (33)
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where T is the time ordering operator. The probability for the field values {zl1, . . . , zln }
is given from (32) by

P(zl1, . . . , zln |�σi ) = 〈�σ f |�σ f 〉
〈�σi |�σi 〉

. (34)

This probability is well defined given only the partial ordering of links and vertices
imposed by the space-time causal order [8].

We shall work with a unitary operator of the form [15]

Ui,i+1 =

· · · ↖ ↗ · ↗↖
· ·
· ↗
↖ ·
↖↗

⎛
⎜⎜⎝

1 0 0 0
0 i sin θ cos θ 0
0 cos θ i sin θ 0
0 0 0 1

⎞
⎟⎟⎠ ,

(35)

where ↗↖ denotes an incoming state where both the i th and the (i + 1)th qubits are
in the |1〉 state;↗ · denotes an incoming state where the i th qubit is in the |1〉 state and
the (i + 1)th qubit is in the |0〉 state; etc. Here, θ controls the speed of the ‘particles’
on the lattice with, e.g., θ = 0 corresponding to light speed particles and θ = π/2
corresponding to stationary particles. All excitations of the quantum field travel with
the same speed although they may move either to the left or the right. This unitary
operator conserves the number of particles (the number of occupied qubits).

We note that with these definitions, U and J are both symmetric matrices in the
preferred basis and the conditions (10) are therefore satisfied. This means that the
lattice theory has time reversal symmetry as described in Sect. 2.

According to Eq. (23) the Born rule should be observed statistically in the reverse
time direction if the initial pure state is chosen from a uniformly mixed state. For
a one particle state this means that we should draw the initial pure state with equal
probability from the 2N dimensional basis of 1 particle vectors. In the preferred basis
these vectors each take the form |0, 0, . . . , 1, . . . , 0, 0〉 with a single value 1 and all
other entries zeros. We note that each of these basis vectors is related to any other
by a symmetry transformation on the lattice (involving a translation and/or a parity
transformation). Therefore choosing any individual single particle state as the initial
state, we should statistically observe the Born rule for the reverse time dynamics.

We will therefore suppose that for a single particle system there exists some reverse
time state |�̄σ 〉 which evolves as

|�̄σi 〉 = T
[
Jl1(zl1) · · ·Jln (zln )Uv1 · · ·Uvm

] |�̄σ f 〉. (36)

where T̄ is the anti time ordering operator. This takes the same form as the forward-in-
time rule (33). In general |�̄σ 〉will not be the same as |�σ 〉. Our aim is to demonstrate
numerically that the field values {zl1, . . . , zln } also satisfy the Born probability rule

P(zl1, . . . , zln |�̄σ f ) = 〈�̄σi |�̄σi 〉
〈�̄σ f |�̄σ f 〉

, (37)
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the counterpart to Eq. (34). If this is the case then the backward-in-time evolution
uses precisely the same dynamical rule as the forward-in-time evolution. The wave
functions for the two cases will differ in general on any given surface σ but the
stochastic field z, the basis for an empirically adequate description of the world, will
be consistent.

3.1 Coarse Graining and Collapse Time Scale

Given a set of collapse outcomes z, the forward-in-time wave function undergoing
these collapses is likely to look (at least at themicro level) different from the backward-
in-time wave function. If the time symmetric picture of physical collapse is to work,
it must be the case that we are not able to observe the state of the wave function from
the collapse data in a way which would allow us to distinguish these two cases.

In this section we adapt a calculation given in Ref. [9] and show that the time scale
necessary to observe the presence of an excited quantum field on the lattice is the same
time scale onwhich a superposition of such excited stateswill collapse. Thismeans that
it is not possible to directly observe a superposition in the preferred basis given only z.

Suppose that the system is in the vacuum state |0, 0, . . . , 0〉. The evolution of the
system defined by Eqs. (27) and (29) will not change the state. The stochastic field z
will take value 0 with probability 1/(1 + X2) and 1 with probability X2/(1 + X2).
We assume that X has a value close to 1. This is natural since we do not want single
particle states to rapidly collapse. Consider a region of space-time R containing M
links. Within this region the mean and variance of the field value are given by the
binomial distribution

μ = X2

1 + X2 , σ 2 = X2

M(1 + X2)2
. (38)

Now suppose that there is some non-vacuum state with mean field value zR in R. If
we are to be able to observe zR against the background noise we require

σ � |zR − μ|. (39)

If we write ε = 1 − X , taking ε to be small, we find that |zR − μ| is at most O(ε)

(occurring when the state is maximally excited in the region R). Since σ ∼ M−1/2

we therefore must have

M � ε−2. (40)

This determines the size of the region necessary to be able to identify an excited state.
Now consider a block of n qubits in the 1 state with all other qubits in the 0 state,

superposed with a disjoint block of n qubits in the 1 state with all other qubits in the
0 state. For simplicity we assume that θ = π/2 so that the unitary evolution has no
effect. Write the state as |A〉 + |B〉.

After we have evolved for a number m of time units the state will be of the unnor-
malised form XMB |A〉 + XMA |B〉, where MA + MB = 2nm = M , and MA/B is the
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number of links for which the field zl corresponds to the A/B state qubit eigenvalue
on that link wherever the A and B state qubit eigenvalues are different.

Since the value of ε is small, the field takes values 0 or 1 with probability∼1/2. The
division of M into MA and MB has a distribution with standard deviation in MA/B ∝√
M . This means that one of the states will be suppressed with respect to the other by

a factor of X
√
M � exp(−ε

√
M). Therefore there is exponential suppression when

M ∼ ε−2. (41)

We now put this together with result (40). If the stochastic field z is taken to represent
our empirical access to the quantum world described by this model, then any feature
observable against background noise requires coarse graining over a region containing
� ε−2 links. Since a superposition state is only able to survive for ∼ε−2 links then
we cannot directly observe the fluctuating densities during the collapse process.

Consider the example above and suppose that the state collapses to the |B〉 state
after a certain period of time. If we then evolve the state backward in time it will simply
stay in the |B〉 state. This can be consistent since the period during which the state was
in a superposition of |A〉 and |B〉 when viewed forward in time is brief enough that it
cannot be distinguished from |B〉 if we only have access to the stochastic field z.

3.2 Time Reversed Collapse on the Lattice

To test for consistency between forward-in-time and backward-in-time collapse
dynamics on the lattice we apply the following test:

1. We generate some field data by starting with an initial one particle state |�σi 〉 on
an initial time slice t = 0 and evolving forward in time to reach a final state |�σ f 〉.
This results in a random field z.

2. We then reverse the evolution in time using Eq. (36) and using |�∗
σ f

〉 (where
complex conjugation is taken with respect to the collapse basis) as a proxy for the
unknown state |�̄σ f 〉. We apply the collapses again in the reverse order using the
same field data z. For each link l we make note of the probability that the field zl
takes the value 1 conditional on all z to the future of l. These probabilities can take
values anywhere in the range [0, 1]. Once we have returned to time t = 0 we have,
for each link on the lattice, a reverse time probability for the collapse outcome
to take value 1 (alongside the realised value generated by the forward-in-time
dynamics).

3. We divide the set of reverse time probabilities into a set of bins with boundaries
0 < p1 < p2 < · · · < 1. For each bin j we take the average probability as
p̄ j = (p j−1 − p j )/2 and we count the number of collapse events in that bin,
m j . Using the binomial distribution we determine the mean number of times that
we expect to see the stochastic field take value 1, μ j , and the variance in this
number, σ 2

j . We use a simple test to check that the data should be approximately
normally distributed (essentially that m j should be sufficiently large given the
average probability p̄ j for the bin) and discard those bins where this is not the
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(a) (b) (c)

Fig. 4 a Quantum field expectation value for the forward-in-time state. b Stochastic field z. c Quantum
field expectation value for the backward-in-time state

case. We then count the actual number of times n j that the field z for each of those
events realised the value 1. From these we calculate a chi-squared statistic

χ2 =
∑
j

(n j − μ j )
2

σ 2
j

. (42)

4. Using the theoretical distribution for the chi-squared statistic we calculate a p value
giving the probability that the field data or something more extreme could have
been generated by the reverse time probabilities. In statistics a p value of less than
0.5% is a typical standard for ruling out a hypothetical model.

Figure 4 shows a typical example of a simulation with 2N = 16 in which we set
X = 0.5 and θ = π/4. The initial condition is of the form

|�σi 〉 = |0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0〉. (43)

We evolve for 100 time steps. We choose an arbitrary total ordering of links and
vertices such that elementary evolutions sweep from left to right (To be precise we
start on a given time slice, we then evolve past the leftmost vertex, followed by the
link above it to the left and then the link above it to the right. We then do the same
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for the vertex to the right and so on until we have evolved the time slice by one time
step. The procedure is then repeated). Each pixel in the figure represents a link on the
lattice so that each graph is 16 pixels wide and 100 pixels high.

The left hand panel shows the expectation value 〈�σ |Al |�σ 〉 where

Al = 11 ⊗ · · · ⊗ 1i−1 ⊗ Ai ⊗ 1i+1 ⊗ · · · ⊗ 12N . (44)

and

Ai = |1i 〉〈1i |. (45)

This is the expectation of the eigenvalue of the i th qubit. The surface σ is the surface
immediately following evolution across the link l given the total ordering which we
use. We use a grey scale to plot the values of 〈�σ |Al |�σ 〉with black corresponding to
the value 1 and white corresponding to 0. A clear particle trajectory winding around
the lattice is apparent.

The central panel shows the realised field values z on the lattice generated randomly
using the probabilities calculated from the forward evolving state |�σ 〉. Here black
corresponds to zl = 1 and white corresponds to zl = 0. The particle trajectory is
less apparent. As discussed in Sect. 3.1 a coarse graining procedure is necessary to
eliminate background noise and establish the particle’s whereabouts to within space
time regions of greater than 1 pixel.

The right hand panel shows 〈�̄σ |Al |�̄σ 〉, with the state evolved backward in time
using the reversed total ordering and with collapses generated by the same field z. The
particle trajectory is very similar to that in panel (a).

A careful observation of Fig. 4a reveals that dispersion occurs in the upward
direction: localised particle states tend to become diffuse with increase in t before
recollapsing with dead ends fading away. The same happens in the opposite time
direction in Fig. 4c. Despite these differences the overall picture of a particle moving
about on the lattice is broadly consistent.

As outlined above we calculate the chi-squared statistic (42) and a p value for
the field data in panel (b) under the null hypothesis that data was generated by the
backward-in-time collapse dynamics. In Fig. 5 we plot a histogram of the p values
generated by running the simulation 500 times. The distribution of p values is approx-
imately uniform over the range [0, 1]. This is as we would expect if the null hypothesis
is correct.

We conclude that field data generated by forward-in-time collapse dynamics is
distributed as if it had been generated by an equivalent backward-in-time collapse
dynamics. The collapse dynamics satisfies time reversal symmetry.

4 Time Reversal Symmetry for a Localised Wave Packet

We now turn our attention to the QMUPL model [12] for a single particle. When the
particle is localised the collapse dynamics reduce to a classical diffusion process for
the average position and momentum of the packet. We demonstrate that this process
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Fig. 5 Distribution of p values for 500 simulations of the lattice model

is asymmetric with respect to time reversal, but show it is still possible to construct an
equivalent, backward-in-time process resulting from the same collapses occurring in
the reverse order.

The QMUPL model can be thought of as a continuous version of GRW describing
wave function collapse for distinguishable particles. It is also a limit of the CSLmodel
when the particle density is low and the collapse length scale is large compared to the
length scale of a wave packet [16]. In the QMUPL model the state vector for a single
particle satisfies a quantum state diffusion of the form

d|ψt 〉 =
{
−i Ĥdt − g2

8
(x̂ − 〈x̂〉t )2dt + g

2
(x̂ − 〈x̂〉t )dBt

}
|ψt 〉. (46)

Here Bt is a standardBrownianmotion and the collapse parameter g controls the rate at
which collapse of the wave function occurs. In terms of the GRW collapse parameters
g = (2λ/a2)1/2 where λ is the GRW collapse rate and a is the GRW length scale. The
Hamiltonian Ĥ = p̂/2m.

Since the GRWmodel satisfies conditions (10) with the position state basis and the
QMPUL model is a continuous limit of the GRWmodel, the QMPUL model has time
reversal symmetry according to these criteria.

A typical feature of continuous collapse models is that after a sufficient period of
time, the wave packet of an individual isolated particle achieves a stable localised
shape. This happens when the dispersive effects of quantum theory balance with the
localising effects of the collapses. The timescale on which the stable localised state
of a wave packet is achieved is given by tloc ∼ (λh̄/ma2)−1/2 [12] where m is the
particlemass (andwe have included h̄ for the purpose of this calculation). It is standard
[17] to have λ scale as the mass of the particle squared, λ = λ0(m/m0)

2 where m0
is the proton mass, and to use the GRW estimates [1] for the collapse parameters:
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λ0 = 10−16s−1; a = 10−7m. This results in a localisation timescale tloc ∼ 10−7s for
a composite particle of mass 1g.

For timescales longer than this, the dynamics are considerably simplified. The state
can be characterised by only the central values of position 〈x̂〉t = 〈ψt |x̂ |ψt 〉 = xt
and momentum 〈 p̂〉t = 〈ψt | p̂|ψt 〉 = pt for the wave packet. The collapse dynamics
causes these phase space parameters to undergo a classical diffusion process. For the
QMUPL model this process is given by [18–20]

dxt = pt
m
dt + 1√

m
dBt , (47)

dpt = g

2
dBt . (48)

For the remainder of Sect. 4we restrict our attention to the regimewhere this simplified
model of a diffusing wave packet holds, to avoid the complication of an arbitrary wave
function undergoing collapse.

We first show that Eqs. (47) and (48) do not have time reversal symmetry. The state
of the system at any point in time is described by x , p, and B. Consider a sequence of
two states S1 and S2 at times t1 = t and t2 = t + �t respectively. We write

S1 = {x, p, B} (49)

S2 = {x + �x, p + �p, B + �B} (50)

Consider the change as we go from state S1 to S2. The change in x is �x , the change
in p is �p and the change in B is �B. From Eqs. (47) and (48) we expect that

�x = p

m
�t + 1√

m
�B, (51)

�p = g

2
�B. (52)

We next define a time reversal transformation T . For a classical phase space trajectory
this involves a change in the sign of p simply because playing themovie of these events
backward in time, the particle appears to move in the opposite direction to when the
movie is played forward in time. The time reversed states are therefore given by

ST1 = {xT , pT , BT } = {x,−p, B} (53)

ST2 = {x + �x,−p − �p, B + �B} (54)

Consider now the change in going from ST2 to ST1 . The change in x , �xT = −�x ,
the change in p, �pT = �p, and the change in B, �BT = −�B. Inserting into Eqs.
(51) and (52) results in
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�xT = pT

m
�t + 1√

m
�BT (55)

�pT = −g

2
�BT . (56)

This is a different pair of equations from those which describe evolution forward in
time. This would appear to mean that it would be possible to determine the forward
direction of time from a given sequence of states. For example, we could simply
observe �x and �p and see if there is a positive or negative correlation in the sponta-
neous jumps. If the correlation is positive then the evolution is forward in time; if the
correlation is negative then the evolution is backward in time.

As with the lattice model we will show it is possible to understand what is going
on in a time symmetric way. Equations (47) and (48) describe a diffusion process
for the expectation values xt and pt : these are features of the wave function. The
wave function is seen as a convenient way to encode the collapse history and it is
this procedure which introduces the time asymmetry. For the remainder or Sect. 4
we return to the idea that it is not the diffusion of the wave function, but instead the
locations of the collapses that are fundamental.

The reason for the stochastic motion of xt and pt is that collapses are occurring
randomly on either side of the centre of the wave packet causing it to spontaneously
jump about. By taking the continuous limit of the GRW model we can show that the
locations of the collapse centres are given by

zt = xt + 1

g

�Bt

�t
. (57)

The collapse centres have a white noise distribution about the expected position xt .
Now suppose that we only have access to the set {zt }. We would like to confirm

whether it is possible to give different but consistent pictures of the evolutions of xt
and pt in either time direction, each satisfying the same dynamical law.

Referring to Eq. (23), in order to observe the Born rule backward in time, the initial
condition should be a uniformly mixed state. In the context of the localised particle
this is equivalent to a uniform distribution of initial values for x0 and p0. However,
we note that for two different sets of initial values the particle diffusions are related
by a Galilean transformation. The Born rule should therefore be statistically observed
in the reverse time direction for a fixed initial localised state.

We perform the following test analogous to the test carried out in Sect. 3.2:

1. We generate some collapse centre data zi , i = 0, . . . , n by starting with an initial
localised state characterised by the central position x0 and momentum p0 of the
wave packet and evolving forward in time for n discrete time steps using the rule

xi+1 = xi + pi
m

�t + 1√
m

�Bi , (58)

pi+1 = pi + g

2
�Bi , (59)

zi = xi + 1

g

�Bi
�t

. (60)
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Fig. 6 Phase space trajectories forward in time (black line), forward in time with p → −p (dotted line),
and backward in time (grey line). The distance unit is equivalent to (400 h̄/mg2)1/4; the momentum unit is
equivalent to (mg2h̄3/400)1/4

Brownian increments �Bi are generated randomly. This results in a forward-in-
time phase space trajectory xi , pi .

2. Next consider the collapses from stage 1, zi , in reverse order. Denote the backward-
in-time phase space trajectory by x̄i , p̄i . Starting at x̄0 = xn and p̄0 = −pn we
use the dynamical law (where we use the notational conventions of Sect. 2 for the
backward-in-time process)

�B̄i+1 = g�t (zn−i−1 − x̄i ), (61)

x̄i+1 = x̄i + p̄i
m

�t + 1√
m

�B̄i+1, (62)

p̄i+1 = p̄i + g

2
�B̄i+1. (63)

In the first equationweback-out theBrownian increments from the collapse centres
using (57). The result is a backward-in-time phase space trajectory x̄i , p̄i .

3. We perform a Kolmogorov-Smirnov test on the set of implied increments
�B̄i/

√
�t to see if they fit a normal distribution. This results in p value for the

reverse time �B̄ data. This tests whether the collapses occur with white noise
distribution about x̄ . If they do then the backward-in-time trajectory satisfies the
same dynamical law based on the collapsing wave function as the forward-in-time
trajectory.

Figure 6 shows an example of a trajectory though phase space using g = 20,m = 1
and�t = 0.001. The solid black line is the forward-in-time trajectory generated using
Eqs. (51) and (52). The trajectory starts at time t = 0 at the black circle at x = 0,
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Fig. 7 Expected position with time. Black line is evolved forward in time; grey line is evolved backward
in time. The distance unit is equivalent to (400 h̄/mg2)1/4; the time unit is equivalent to (400m/h̄g2)1/2

p = 0 and ends at time t = 1 at the black square. There is a clear positive correlation
in the stochastic jumps in x and p. The dotted line is the straightforward time reverse
of this trajectory obtained by transforming p → −p. It is characteristically different
from the forward-in-time trajectory. The correlation between stochastic jumps in x
and p is negative. The grey line shows the reverse time trajectory determined by the
procedure outlined above. This trajectory starts at the grey square at time t = 1 and
ends at the grey circle at time t = 0. This trajectory approximates the dotted line but
with positively correlated jumps in x and p. Visually, there is no way to distinguish
the micro dynamics of the backward trajectory from the forward trajectory.

Figure 7 is from the same simulated trajectory. It shows how x changes with time.
The dots are the collapse centres generated by the forward-in-time dynamics. The
black line is the forward-in-time expectation xt . It is seen that the collapse locations
are distributed about this line and both the collapse locations and xt follow the same
trend. The grey line is the backward-in-time x̄t which is slightly different from the
forward-in-time xt but which also sits well within the distribution of collapses.

Figure 8 shows a histogram of p values generated by running the simulation 5000
times.We find that the distribution of p values is reasonably uniform in the range [0, 1]
indicating that indeed the increments �B̄/

√
�t belong to a normal distribution.

We conclude that the collapse data (the dots in Fig. 7) is distributed as though it
had been generated by the backward-in-time collapse dynamics.

5 Equilibrium and Boundary Conditions

The examples in Sects. 3 and 4 consider two specific models of objective collapse,
exhibiting properties that look like an inherent time asymmetry (collapse events affect-
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Fig. 8 Distribution of p values for 5000 simulations of the QMPUL localised particle model

ing the wave function after, but not before, the event; and positive correlation between
the diffusion in mean position and momentum). Our third example looks at a more
generic feature of collapse models: non-conservation of mean energy. This appears to
give a directly observable time asymmetry. In doing so, we will shed light upon the
role of initial and final boundary conditions in causing time asymmetric behaviour.

It is well known (see, e.g. [1]) that one of the physical effects predicted by collapse
models is a gradual increase in energy. This effect can be easily seen in the QMUPL
model. Amonotonicmean energy increase follows simply fromEq. (48). The diffusion
in momentum of an individual particle is such that momentum is just as likely to go
up by some amount as it is to go down by the same amount. However, since energy
is a convex function of momentum, E ∼ p2, the energy increases on average. It is
important to understand how this can be the case with a time symmetric picture since
this increase in mean energy only appears in one time direction.

Consider a set of free localised particles, initially each with p = 0 at time t = 0.
The total energy is zero. After a period of diffusion, the particles will have a Gaussian
distribution of momenta centred on zero, but with a non-zero total energy. Viewed as
a process backward in time, the energetic particles would appear to simultaneously
tend towards zero momentum and energy. If the backward evolving wave function
were supposed to satisfy the Born rule, then the backward-in-time evolution appears
unlikely. For example, we would find that the collapses undergone by particles with
positive momentum would tend to cause them to reduce momentum, and the col-
lapses undergone by particles with negative momentum would tend to cause them to
increase momentum. By conditioning on the sign of the momentum, a reverse time
observer would appear to see a conspiracy, that leads to the mean energy decreasing.
By observing the change in mean energy over time, the direction of time could be
deduced.
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The conspiratorial behaviour for the reverse time picture comes about as a result,
not of an inherent asymmetry in the dynamics, but of the time asymmetric use of
boundary conditions. From the forward-in-time picture, we have imposed the initial
condition at time t = 0 that p = 0, and then tracked the behaviour for times t > 0.
The evolution of the system then proceeds according to the Born rule, with no future
boundary condition imposed. Eventually this will result in a diffuse nearly uniform
distribution.

Viewed in the reverse direction, we start with a diffuse distribution, evolving appar-
ently according to the Born rule. We might expect this distribution to stay diffuse (or
possibly spread out more if it is not in equilibrium). However, the behaviour we are
tracking has a special feature that makes this impossible: these are pre-selected trajec-
tories that must have come from localised p = 0 states at time t = 0. This condition
on the trajectories introduces a pre-selective bias in the statistics of the reverse time
collapse events, and leads to the apparent conspiratorial behaviour.

To understand this more clearly, we will now address a well known problem for any
stochastic theory [21]: such a theory cannot exhibit time independent behaviour (such
as that required by the Born rule) in both temporal directions, unless the probability
distribution is in equilibrium.

The argument goes as follows: suppose a system follows a stochastic rule
Rt1|t0(S j |Si ) for how it changes state from one time to another. At time t0, the proba-
bility for state Si is Pt0(Si ). At some later time t1 > t0, the stochastic evolution leads
to the probability for state S j of

Pt1(S j ) =
∑
i

Rt1|t0(S j |Si )Pt0(Si ). (64)

From Bayes’ theorem, the system being in state S j at time t1 can be used to make
retrodictions about the possible state at time t0:

Pt0|t1(Si |S j ) = Rt1|t0(S j |Si ) Pt0(Si )
Pt1(S j )

. (65)

If the future directed stochastic evolution Rt1|t0(S j |Si ) is time independent (as we
would expect from the Born rule), then adding any constant shift in time of τ will not
affect the transition probabilities:

Rt1+τ |t0+τ (S j |Si ) = Rt1|t0(S j |Si ). (66)

However, imposing the same condition on the retrodictive probabilities

Pt0+τ |t1+τ (Si |S j ) = Pt0|t1(Si |S j ) (67)

gives

Pt0|t1(Si |S j ) = Rt1|t0(S j |Si ) Pt0+τ (Si )

Pt1+τ (S j )
. (68)
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which can only hold if

Pt0(Si )

Pt0+τ (Si )
= Pt1(S j )

Pt1+τ (S j )
= f (τ ) (69)

Normalisation of probabilities yields f (τ ) = 1. So the time independence condition
cannot also hold in the backward direction, unless the system is in equilibrium with
Pt0(Si ) = Pt0+τ (Si ) = PE (Si ). This would give a backward-in-time retrodictive rule:

Pt0|t1(Si |S j ) = Rt1|t0(S j |Si ) PE (Si )

PE (S j )
. (70)

which is time independent.
We argue that this does not imply any sort of time asymmetry in the dynamics.

Instead it is a result of the time asymmetric use of pre-selection statistics. Let us
instead start with the equilibrium distribution PE (Si ), and then impose a pre-selection
at time t = 0, that the system is in S0. For times t f > 0,we have, as before, the forward-
in-time predictions Rt f |0(S j |S0). If we now try to retrodict from the occurrence of S j

at time t f , to some intermediate time 0 < t1 < t f , we get:

Pt1|t f ,0(Si |S j , S0) = Rt f |t1(S j |Si )Rt1|0(Si |S0)∑
i ′ Rt f |t1(S j |Si ′)Rt1|0(Si ′ |S0)

(71)

In general, this will not lead to the reverse time retrodictive rule Eq. (70), nor will it
be time independent. Pre-selecting the state S0 at time t = 0, biases the statistics of
the retrodictive inferences in the time period 0 < t1 < t f , as they must lead toward
the state S0 as t1 → 0.

However, exactly the same is true if we look at the forward-in-time statistics in the
period tp < t−1 < 0. First, if we impose the condition at time t = 0, that the system
is in S0, then at times tp < 0 we have the retrodictive inference:

Ptp |0(S j |S0) = R0|tp (S0|S j )
PE (S j )

PE (S0)
. (72)

This leads to a time independent rule for tp < 0. By contrast, if we try to make
predictive inferences in the period tp < t−1 < 0, based on the occurrence of state S j

at time tp, we get

Pt−1|tp,0(Si |S j , S0) = R0|t−1(0|Si )Rt−1|tp (Si |S j )∑
i ′ R0|t−1(0|Si ′)Rt−1|tp (Si ′ |S j )

(73)

Again, in general, this will not lead to the rule Rt−1|tp (Si |S j ) nor will it be time
independent. Post-selecting the state at time t = 0, biases the forward-in-time statistics
in the period tp < t−1 < 0, as they must lead toward the state S0 as t−1 → 0.

There should be nothing terribly mysterious about the fact that an apparently time
independent, future directed stochastic evolution law Rt1|t0(S j |Si ) still does not yield
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time independent statistics when a post-selection is imposed at some time t > t1.
The post-selection biases the statistics. Equally so, therefore, there is nothing terribly
mysterious that, when we start with a pre-selected ensemble, and look at the reverse
time direction, the pre-selection introduces a bias in the retrodictive inferences. The
apparent time asymmetry associated with the bias in the statistics is a result of the
pre-selection, rather than anything fundamental to the dynamics.

We may now return to the problem of non-conservation of energy in collapse mod-
els. By pre-selecting a set of free localised particles, with p = 0 at time t = 0, as an
initial condition, we are biasing the sample for the reverse time statistics when t > 0.
An analogous situation can easily be constructed by starting with a wide and uniform
distribution of initial momenta and post-selecting, at some time t f > t , only those tra-
jectories which end up with momentum equal to zero at t = t f . The biases will now be
present in the forward-in-time direction. Post-selected particles with positive momen-
tum would tend to experience collapses which cause them to reduce momentum, and
those with negative momentum would tend to increase.

Ideally, if the system has an equilibrium distribution, then to remove any biases we
should start with samples whose distributions are approximately in equilibrium (see
Ref. [22]). As in the case of the QMUPL model, if the momentum is not bounded,
an equilibrium distribution of momentum can have an unbounded mean energy, even
if the mean momentum is finite. Any selection at t = 0, with a finite mean energy,
will be followed in the forward time direction by a diffusion towards equilibrium that
increases the mean energy for t > 0. However, when looking at times t < 0, the
selection at t = 0 is a post-selection. The mean energy will be seen to be decreasing
in time, converging on the value fixed by the post-selection. Once again, we see that
the apparent asymmetry results, not from any inherent asymmetry in the dynamics,
but from the use of initial or final boundary conditions, with the ultimate pre and post
selections provided by the initial and final time boundary constraints of the Universe.
A time symmetric interpretation of the stochastic dynamical law is therefore not at
odds with an observation of energy increase due to collapse. While we have used the
QMUPL model as an illustrative example when needed, this argument will hold for
any model in which the mean energy is unbounded for equilibrium distributions.

6 Summary

Wehave shown that collapsemodels canbeviewed in away inwhich they exhibit a time
reversal symmetry. This is perhaps surprising given the apparent time-directedness of
a collapse of thewave function. The key is to treat the collapses data as the fundamental
stuff of the theory and thewave function as part of the dynamical law used to determine
what the next collapse outcome will be. Indeed we have argued that for a given set of
collapses there are two equivalent pictures of a collapsing wave function: one going
forward in time and one going backward in time, each satisfying the same dynamical
rules.

This idea brings a new perspective to the problems of quantum theory. For exam-
ple, in the usual picture of measurement the preceding quantum state is replaced
by an eigenvector of the observable which is measured. Consider a particle passing
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through twomisaligned polarisers. After passing through the first polariser the particle
collapses to the first polarisation state. It stays in this state for the duration of its tra-
jectory before it passes through the second polariser. In the backward-in-time picture
the particle has the polarisation state of the second polariser at those points in time
when it is situated between the two measurements. The resolution is to understand the
wave function as an object which is part of the dynamical laws rather than part of the
ontology. If we insist on understanding events in terms of the wave function then we
must recognise that the wave function could be just as well determined by its future
interactions as by its past [23].
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