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I. Introduction to the Generality Problem

Reliabilism has been the most widely discussed theory of justified belief of
the last two decades. It has not, however, been the most widely accepted
theory. According to the reliabilist analysis of justified belief,

R1) S’s belief in p is justified iff it is caused (or causally sustained) by a reliable
cognitiveprocess,orahistoryofreliableprocesses.1 (Goldman1994,p.309)

A cognitive process will be reliable just when it yields a sufficiently high
ratio of true to false beliefs. If a belief is produced by a process with a high
degree of reliability, then that belief will have a high degree of justification.
If, however, a belief is produced by a cognitive process with a low degree of
reliability, then that belief will have a low degree of justification.

After two decades of debate, a few objections have emerged as the
standard objections to reliabilism. The Generality Problem is one such
objection, the most visible proponent of which has been Richard Feldman
(1985; Conee & Feldman 1998). It is now cited as a serious problem for
reliabilism in almost every introductory text on epistemology.2 In this article
I offer a solution to the Generality Problem.

The Generality Problem arises because reliabilists claim that it is process
types rather than process tokens that are the bearers of reliability. A process
token is an unrepeatable, causal sequence occurring at a particular time and
place. Consequently, you cannot ask whether a process token is reliable (i.e.,
whether it would produce mostly true beliefs over a wide range of cases).
Accordingly, reliabilists have claimed that only process types can be reliable
or unreliable. We can revise (R1) to take this point into account.
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NOÛUS 38:1 (2004) 177–195



R2) S’s belief in p is justified iff it is caused (or causally sustained) by a token
process that belongs to a reliable cognitive process type (or by a history
of such tokens, each of which belongs to a reliable cognitive process
type).

It is precisely at the point of distinguishing process types from tokens
that the Generality Problem rears its head. As Earl Conee and Richard
Feldman (1998, p. 2) put it, ‘‘each token process that causes a particular
belief is of numerous different types of widely varying reliability.’’ If a
belief’s justification is a direct function of the reliability of the process
type that produced that belief, it is important that there be only one of
these numerous process types that determines the belief’s justification.

Suppose that there could be more than one relevant process type for a
given process token. If those process types differed in their degree of
reliability, the belief token produced by the target process token might be
both justified (in light of the reliability of one process type) and unjustified
(in light of the unreliability of some other process type). Since reliabilists
claim that a belief is either objectively justified or objectively unjustified, this
result would be unacceptable. Reliabilists are committed to there being a
single relevant process type for each process token that issues in a belief
token. What makes a particular process type relevant? Proponents of the
Generality Problem suggest that reliabilists have no principled way to
answer this question.

To illustrate the difficulty, Conee and Feldman offer the following story:
suppose that Smith looks out his window, sees a maple tree, and forms the
belief that there is a maple tree nearby. If perceptual conditions are normal
(i.e., Smith has normal eyesight, is not hallucinating; there is adequate
sunlight, no occluding objects, etc.), Smith’s belief is plausibly taken to be
justified. However, the token process responsible for Smith’s belief is a
member of (at least) the following process types:

1) process of a retinal image of such-and-such specific characteristics
leading to a belief that there is a maple tree nearby

2) process of relying on a leaf shape to form a tree-classifying judgment
3) the visual process
4) vision in bright sunlight
5) perceptual process that occurs in middle-aged men on Wednesdays
6) process which results in justified beliefs3

7) perceptual process of classifyingby species a tree behind a solidobstruction

There seems to be no end to the list of possible types for the token in
question. To see that these types vary in reliability, consider type (7) and
all of the process tokens that fall under it. In general, trying to classify trees
according to species when those trees lie behind solid obstructions is not
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going to result in a high proportion of true beliefs. If this unreliable process
type were to determine the justification of Smith’s belief, his belief would be
unjustified. In Smith’s case, however, the solid obstruction is a glass win-
dow. Since the process type ‘perceptual process of classifying a tree by
species while looking through a glass window’ would presumably be more
reliable, Smith’s belief would be justified if this were the relevant process
type. Since Smith’s belief seems to fall under both of these types—not to
mention (1) through (6)—it is unclear whether his belief would be justified
or unjustified according to reliabilism.

When Alvin Goldman (1992a) initially appealed to process types as the
bearers of reliability, he claimed that process type selection must avoid two
extremes. The first extreme he called the ‘Single Case Problem,’ which occurs
when a process type is described so narrowly that only one instance of it ever
occurs, and hence the type is either completely reliable or completely unreliable
(Goldman 1992a, p. 115). If the result of the single instance is a true belief, then
the ratio of true outputs to total outputs is 1, yielding complete reliability. A
single false output can generate complete unreliability in the same manner.
According to Goldman, process type selection must also avoid the ‘No Dis-
tinction Problem,’ which Feldman (1985, p. 161) characterizes as arising

when beliefs of obviously different epistemic status are produced by tokens that

are of the same (broad) relevant type. For example, if the relevant type for

every case of inferring were the type ‘‘inferring,’’ then [reliabilism] would have

the unacceptable consequence that the conclusions of all inferences are equally

well justified (or unjustified) because they are believed as a result of processes of

the same relevant type.

Feldman relates the Single Case, No Distinction, and Generality Problems
as follows.

The problem for defenders of the reliability theory, then, is to provide an

account of relevant types that is broad enough to avoid The Single Case

Problem but not so broad as to encounter The No-Distinction Problem. Let

us call the problem of finding such an account ‘‘The Problem of Generality.’’

(op cit.)

Reliabilism thus requires:

i) for any process token, that there be a single process type that is the
epistemologically relevant type under which that process token falls;

ii) that the relevant process type avoid both the Single Case and the
No Distinction Problems; and

iii) that the reliability of the relevant process type be the primary
determinant of the justification of all the beliefs produced by the
process tokens that fall under that type.
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The Generality Problem can be understood as the claim that conditions (i)
through (iii) are never satisfied.

If process reliabilism cannot provide a plausible way to isolate relevant
process types for particular cases of belief, it is, according to its critics, at
best ‘‘radically incomplete’’ (Conee & Feldman 1998, p. 3) or at worst
fraught with crippling conceptual difficulties. Conee and Feldman (op cit.,
pp. 5, 24) write,

Our thesis is that the prospects for a solution to the generality problem for

process reliabilism are worse than bleak. . . .Consequently, process reliability

theories of justification and knowledge look hopeless.

In this paper I critically examine the Generality Problem and argue that it
does not succeed as an objection to reliabilism. Although those who urge the
Generality Problem are correct in claiming that any process token can be
given indefinitely many descriptions that pick out indefinitely many process
types, they are mistaken in thinking that reliabilists have no principled way
to distinguish between relevant and irrelevant process types. My solution to
the problem proceeds in two stages. In the first stage I present and discuss a
set of necessary conditions that any process type must satisfy if it is to count
as the relevant process type for some process token. I call this set the
‘tri-level condition.’

The tri-level condition
The reliability of a cognitive process type T determines the justification
of any belief token produced by a cognitive process token t that falls
under T only if all of the members of T:

a) solve the same type of information-processing problem i solved by t;
b) use the same information-processing procedure or algorithm t

used in solving i; and
c) share the same cognitive architecture as t.

According to the tri-level condition, cognitive process types are informa-
tion-processing types that are partially defined by their computational and
algorithmic properties.

The tri-level condition significantly reduces the field of potentially rele-
vant cognitive process types and, thus, goes some way toward solving the
Generality Problem. However, the tri-level condition is not sufficiently
strong to solve the Generality Problem by itself. Let A be the broadest
process type that satisfies the tri-level condition with respect to some process
token t. Using all manner of epistemologically relevant and irrelevant
properties, A can be partitioned in indefinitely many ways such that t will
fall within indefinitely many distinct subclasses of A. Since A satisfies the
tri-level condition, any subclass of A will also satisfy the tri-level condition.
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And since each subclass of A picks out a distinct type, t will fall under
indefinitely many types that satisfy the tri-level condition. In other words,
the Generality Problem will arise all over again. Nevertheless, tri-level
condition does form an important part of an adequate solution to the
problem by showing how process types are partially defined in terms of
their computational and algorithmic properties and by ruling out type
descriptions that do not pick out cognitive information-processing types at all.

The second stage of my solution to the Generality Problem answers the
question of how to partition A into epistemologically relevant subclasses.
Drawing upon Wesley Salmon’s (1971, 1984) work on statistical explan-
ation, I argue that the relevant process type for any process token t is the
subclass of A which is the broadest objectively homogeneous subclass of A
within which t falls. A subclass S is objectively homogeneous if there are no
statistically relevant partitions of S that can be effected. The two stages of
my solution combine to show that reliabilists can escape from the General-
ity Problem.

II. The Tri-Level Hypothesis

The tri-level condition is based upon the ‘tri-level hypothesis,’ which was first
formulated by David Marr (1982) and has been explicated and developed by
Zenon Pylyshyn (1984) and Michael Dawson (1998). The tri-level hypothesis
has become the orthodox way for cognitive scientists to understand explan-
ations of cognitive processing.4 According to the tri-level hypothesis, there are
three basic levels at which any cognitive behavior can and should be
explained: the computational level, the algorithmic level, and the implemen-
tation level. An item of cognitive behavior cannot be adequately explained at
only one (or even two) of these levels.

Some aspects of cognition are best captured at the computational level,
where researchers ask questions like, ‘‘What information-processing prob-
lem is the system in question solving?’’ Explanations couched at the
algorithmic level answer the question, ‘‘What method is the system using
to solve this information-processing problem?’’ Implementation level the-
ories deal with the question, ‘‘What physical properties are used to imple-
ment the (functional) method that the system uses to solve this information-
processing problem?’’ (Dawson 1998, p. 288). These three sorts of explan-
ation are pitched at different levels of abstraction, employ qualitatively
different vocabularies, and capture different regularities. They are ‘‘tied
together in an instantiation hierarchy, with each level instantiating the one
above’’ (Pylyshyn 1984, p. 132). Dawson (1998, p. 33) claims,

I would strongly argue that if you can omit one of the vocabularies without

losing any predictive or explanatory power, then the system that you are

explaining is not an information processor.5
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Explanations at the implementation level have the advantage of being
couched in the vocabulary of one of the ‘‘hard’’ sciences, such as physics or
neurophysiology. Grounding psychological theories in physical explan-
ations can give these theories a kind of legitimacy they might not otherwise
have. Moreover, if one has a physical description of a system, one will be
able to formulate predictions about that system’s performance one would
not likely be able to make with other sorts of description. This is particu-
larly true if the predictions are based upon a knowledge of the limitations
imposed by physical features of the system’s components.

One limitation of implementation level explanations, however, concerns
the multiple realizability of cognitive functions. Since a particular type of
information-processing system can be given a variety of physical realiza-
tions, implementation level explanations will not be able to explain features
that may be shared by differently realized systems. Another limitation of
physical explanations of a system is that very few of a system’s physical
properties will be relevant to understanding the kind of information proces-
sing it is carrying out. In other words, only a small subset of a cognitive
system’s physically discriminable states will be computationally discrimin-
able (cf. Pylyshyn 1984, p. 56). Since computational and algorithmic explan-
ations are pitched at higher levels of abstraction, they are able to capture
regularities and generalizations that implementation level theories cannot.

Algorithmic level theories provide us with (nonphysical) procedural
explanations of the information-processing steps that are being carried out
on particular systems and, as we shall see below, functional explanations of
the fundamental cognitive architectures of those systems. This level of
explanation abstracts from details about the kind of stuff out of which a
machine is built. In fact, one can describe a machine at this level that has
never been built at all. This level of explanation is important because
explanations of what information-processing problem a system is solving
(at the computational level) and what it is made out of (at the implementa-
tion level) may not tell us everything we want to know.6

Algorithmic explanations, however, are also subject to a limitation analo-
gous to the one faced by implementation explanations: there are generaliza-
tions found at a more abstract level that they cannot capture. If two systems
are solving the same information-processing problem by following different
procedures, algorithmic explanations will fail to capture this commonality.
Moreover, the purely formal nature of explanations at the procedural level do
not typically tell us how to interpret the system’s actions or the symbols that it
is processing. An assignment or interpretation of the semantics of a system is
going to be found at the computational level. Just as two systems can be solving
the same information-processing problem by following different procedures,
two systems can also be following the same procedure while solving different
information-processing problems. For example, one system could be following
a set of rules in the course of playing a game of chess while another system
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could be following the same set of rules (syntactically described) and yet be
directing the course of an actual war. Because computational level explanations
involve semantic interpretations, they are able to distinguish the two cases.

Computational level explanations, then, are indispensable in explaining
cognition because they tell us what the states of a cognitive system represent
and how to interpret the functional operations it is carrying out. Computa-
tional explanations, however, are also subject to limitations. As Dawson
(1998, p. 94) claims, ‘‘Computational theories are purely semantic, in the
sense that they account for what system states mean, but do not account for
how these states come to be.’’ They fail in this explanatory task in two ways:
a) they cannot tell us how an output state results from the execution of a
particular algorithm, given a certain input value; and b) they cannot tell us
how the physical properties of the input and the internal state of the system
result in the physical properties of the output state.

When constructing a scientific explanation of the behavior of a particular
information-processing system, all three levels of explanation will be import-
ant. However, when one is interested (as we are) in features that are shared
by all the members of a particular information-processing type, it becomes
necessary to abstract away from many of the physical details of the system.
The complete set of fundamental cognitive capacities common to all mem-
bers of some information-processing type is known as that type of system’s
‘cognitive architecture.’ Due to the multiple realizability of these capacities,
descriptions of cognitive architectures are pitched at a functional level that
ignores many of the physical details of their implementation.7 The algorith-
mic level of explanation is usually divided into two parts to make room for
descriptions of cognitive architectures: a) procedural explanations that
account for the algorithm being executed by a cognitive system and b)
cognitive architecture explanations that account for the kind of system
executing the algorithm. Since we are interested only in features shared by
every member of some process type, the tri-level condition does not accord
any role to implementation level considerations. Although physical proper-
ties make important contributions to scientific explanations, they cannot
help in selecting relevant cognitive process types.

III. The Tri-Level Condition

The tri-level condition requires that the process types whose reliability
determines the justification of the belief tokens produced by the process
tokens subsumed by those types be information-processing types. According
to the tri-level condition, those information-processing types are defined by:
a) the kinds of information-processing problems solved by token processes
falling under those types; b) the information-processing procedures used to
solve those problems; and c) the type of system executing those procedures.
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8) Let I1 be the property of solving information-processing problem i1,
I2 the property of solving information-processing problem i2, . . . ,
and Is the property of solving information-processing problem is.

9) LetM1 be the property of using procedurem1 to solve an information-
processing problem, M2 the property of using procedure m2 to solve
an information-processing problem, . . . , and Mt the property of using
procedure mt to solve an information-processing problem.

10) Let S1 be the property of executing a problem-solving procedure
on a system of type s1, S2 the property of executing a problem-
solving procedure on a system of type s2, . . . , and Su the property
of executing a problem-solving procedure on a system of type su.

Accordingly, each relevant process type Ti will be partially defined by a
conjunction of the following properties.

i) Some Ij from the set of properties I1, . . . , Is (1� j� s)
ii) Some Mk from the set of properties M1, . . . , Mt (1� k� t)
iii) Some Sh from the set of properties S1, . . . , Su (1� h� u)

If a process type T1 is partially defined by the conjunction of properties
I1�M1�S1, then T1 can be the single relevant process type for two process
tokens, t1 and t2, only if t1 and t2 both fall within I1, M1 and S1.

8

A. The tri-level condition can now be applied to the claims made by
proponents of the Generality Problem. Recalling the story used in section
I to illustrate the Generality Problem, Conee and Feldman offer the follow-
ing description of the token process that produced Smith’s maple tree belief.

Light reflects from the tree and its surroundings into Smith’s eyes. Optic neural

events result, and these produce further neural events within Smith’s brain.

Particular concrete occurrences, involving sensory neural s[t]imulation in com-

bination with complex standing conditions in Smith’s brain, result in Smith’s

forming the belief. This sequence of concrete events is the process [token] that

caused the belief. (Conee & Feldman 1998, pp. 1–2)

There are two crucial features of this description. The first is that the token
is described almost exclusively in physical terms. The second is that the only
non-physical part of the description is the information that the token
‘‘result[s] in Smith’s forming the belief.’’ Conee and Feldman claim that
the properties invoked in this description—which they take to be quite
informative and detailed—are incapable of distinguishing any process type
as the relevant one under which the process token falls. There is both an
ounce of truth and a pound of confusion in this claim, and the tri-level
condition can help sort things out.

One strand of the Generality Problem focuses on all of the physical
properties that can be included in a description of a process token and
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claims—correctly—that these properties alone are incapable of picking out
the relevant process type for the case in question. For any process type with
physical realization Z, there will be indefinitely many algorithms that can be
instantiated by Z and indefinitely many information-processing problems
that can be solved by a process token of that physical type. In other words,
the purely physical properties found in implementation level description are
simply incapable of picking out relevant cognitive process types. The
tri-level condition can explain why this insight does not lead to any serious
problem for reliabilism. Process types are defined by computational and
algorithmic properties rather than by physical properties because of the
multiple realizability of any given process type. The inability of purely
physical characterizations to capture cognitively relevant facts is precisely
why cognitive scientists look to higher-order functional descriptions that
abstract from many of the physical details of cognitive systems.

The appropriate conclusion to draw from the fact that the physical
properties in Conee and Feldman’s process token description are incapable
of isolating a single relevant process type for the token that produced
Smith’s maple tree belief is that they have offered an inadequate process
description. The severe limitations of purely physical descriptions of cogni-
tive processes provide no support for the conclusion that reliabilism suffers
from a debilitating defect.

Consider the second crucial feature of Conee and Feldman’s description
above, viz., that it includes the additional information that the token
‘‘result[s] in Smith’s forming the belief.’’ I agree that resulting in Smith’s
belief is a sufficient condition for belonging to a cognitive information-
processing type. However, if this is the only thing one knows about the
information-processing features of that token, one will not have a very clear
idea about what information-processing problem the token process solved,
and one will be completely ignorant about which algorithm—out of all the
possible algorithms that could have been used to solve the problem—was
actually used on the occasion in question. In other words, one will be totally
in the dark about that process token’s computational and algorithmic proper-
ties. It should be no wonder that anyone in this situation will be unable to
pick out just one process type as the relevant one for the target process token.

In order for proponents of the Generality Problem to establish the
conclusion that ‘‘the prospects for a solution to the generality problem for
process reliabilism are worse than bleak’’ (Conee & Feldman 1998, p. 5),
they must show more than that someone who is ignorant of the computa-
tional and algorithmic properties of a cognitive process token will be unable
to determine the defining features of the single relevant process type for that
token. They must show that there are no properties that make only one type
relevant for each belief and process token pair.

As we have just seen, those who urge the Generality Problem often focus
on the inability of a set of physical properties to determine relevant process
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types. These critics also look to the sort of properties found in computa-
tional level descriptions and make an analogous point. Critics display some-
thing like the list of process type descriptions used in section I to introduce
the Generality Problem and claim—correctly—that there is nothing about
the properties in these descriptions that seems to make one process type
stand out as the relevant one for the target process token. This can be
understood as the correct claim that computational level properties alone
cannot determine relevant cognitive process types. A cognitive process type,
however, is defined not only by its computational properties but also by its
algorithmic properties—viz., the property of its members executing a par-
ticular type of information-processing procedure and the property of
executing that procedure on a particular type of cognitive architecture.
Instead of underwriting Conee and Feldman’s (1998, p. 24) claim that the
prospects for reliabilism are ‘‘hopeless,’’ this line of reasoning serves merely
to emphasize the complexity of the set of properties which define any
relevant information-processing type.

We can see that the most common strategy used by Conee and Feldman
to lodge the Generality Problem involves: i) focusing on the properties
found at only one level of explanation (e.g., the implementation or the
computational); and ii) arguing that none of the properties that figure in
single-level explanations are capable of distinguishing one process type as
the relevant type for each process token. The tri-level condition reveals why
part (ii) of this strategy is based upon a genuine insight and why part (i)
rests upon a mistake.
B. The tri-level condition can also help us sort through the list of candidate
process types offered above for Smith’s maple tree belief. We said that the
process token that produced Smith’s maple tree belief is a member of (at
least) the following process types:

1) process of a retinal image of such-and-such specific characteristics
leading to a belief that there is a maple tree nearby

2) process of relying on a leaf shape to form a tree-classifying judgment
3) the visual process
4) vision in bright sunlight
5) perceptual process that occurs in middle-aged men on Wednesdays
6) process which results in justified beliefs
7) perceptual process of classifying by species a tree behind a solid

obstruction

How do these process type descriptions fare with respect to the tri-level
condition? Only (1) and (2) give us much of an idea of the information-
processing problem being solved by the token process. They both tell us that
some kind of object-recognition is taking place on the basis of some kind of
perceptual input. But these computational descriptions are much too vague
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to be very informative. Moreover, none of the process type descriptions in
(1) through (7) give us an inkling as to how the target process went about
solving the problem or what kind of system executed the information-
processing procedure—i.e., none include algorithmic properties. In short,
none of the process type descriptions provides us with the computational
and algorithmic properties that partially define any cognitive process
type—much less the single, epistemologically relevant process type we
are seeking.

Description (5) poses a special challenge that the tri-level condition
cannot solve. Its creator, Feldman, intentionally included obviously irrele-
vant properties to see whether reliabilists had the resources to exclude it
from consideration. The tri-level condition claims that epistemologically
relevant process types are partially defined by certain computational and
algorithmic properties that are essential to cognitive information-proces-
sing. However, it does not require that only essential features should figure
in the definition of a process type. The second stage of my solution to the
Generality Problem—to which I now turn—is designed to deal with the
challenge posed by cognitively irrelevant properties. In spite of the fact that
the tri-level condition cannot exclude process type descriptions like (5), the
tri-level condition still plays an important role in solving the Generality
Problem by showing how cognitive process types are partially defined by
their computational and algorithmic properties.

IV. Statistical Relevance

Let A be the broadest process type that satisfies the tri-level condition for
some process token t. In addition to having the properties required by the
tri-level condition (i.e., in addition to possessing the properties required for
membership in A), t and the other members of A will have other properties
as well. Some of these further properties will be relevant to the kind of
information-processing carried out by members of A, while others will not.
Variations in any of these properties will result in distinct types. If, for
example, we let ‘W’ denote the property of occurring on Wednesdays and
‘M’ the property of occurring on Mondays, then some members of A will
also be members of the type A�W, and others will be members of A�M. If A
satisfies the tri-level condition, then A�W will. In fact, for any property F,
A�F will satisfy the tri-level condition if A does. Consequently, for any
process token, there will be indefinitely many process types that satisfy the
tri-level condition and subsume the process token in question.

The question we must now face is, Why should some process type A�F,
rather than any other type A�G, be the single relevant type for some
cognitive process token t? If there is no way to make distinctions of rele-
vance among all of the cognitive process types that satisfy the tri-level
condition with respect to t, we will be left without a solution to the Generality
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Problem. The second stage of my solution to the Generality Problem answers
the challenge at hand. Drawing upon Wesley Salmon’s (1971, 1984) work on
statistical explanation, I argue that the relevant process type for some t is the
subclass of A which is the broadest objectively homogeneous subclass of A
within which t falls. A subclass S is objectively homogeneous if there are no
statistically relevant partitions of S that can be effected.

To set up the second stage of my solution, I need to recast the Generality
Problem in terms of conditional probability. To begin with, the reliability of
some process type Ti is equal to the probability that a cognitive process
token tj will produce a true belief, given that tj belongs to Ti.

9 Where ‘R(x)’
means the reliability of x, we have

11) R(Ti)¼P(tj produces a true belief j tj belongs to Ti).

Where A is the broadest process type that satisfies the tri-level condition
with respect to some process token t, the Generality Problem can be under-
stood as the claim that:

a) A can be partitioned in indefinitely many ways such that t will fall
into indefinitely many distinct subclasses of A;

b) for any subclass of A, A�F, there will be another subclass of A, A�G,
such that
P(t produces a true belief j t belongs to A�F) 6¼P(t produces a true
belief j t belongs to A�G); and

c) reliabilists have no principled way to determine which subclass of A
represents the relevant type for the target process token.

In order to determine which subclass of A picks out the relevant process
type for t, we need to provide a statistically relevant partition of A. That is,
we must invoke a set of statistically relevant factors C1, . . . , Cs that parti-
tions A into a set of mutually exclusive and exhaustive cells A�C1, . . . , A�Cs.
Statistical relevance can be understood as a comparison of probabilities (cf.
Salmon 1971; 1984, p. 33). A condition Cj is a statistically relevant factor to
the occurrence of B under circumstances A if and only if

12) P(BjA) 6¼P(BjA�Cj)

or, equivalently,

13) P(BjA�Cj) 6¼P(BjA�—Cj).

Each of the cells A�Cj in such a partition must be objectively homogeneous
with respect to B; that is, none of the cells in the partition can be further
subdivided in any manner relevant to the occurrence of B.
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Let D be the property of occurring up close to a perceived object, O
the property of occurring when the surface of a perceived object with the
greatest area is oriented perpendicularly to the line between subject and
object, L the property of occurring in a high degree of ambient lighting,
E the property of occurring after less than one second of exposure
to a perceived object, W the property of occurring on Wednesdays, M
the property of occurring in middle-aged men, and B the property of
producing a true belief. It is plausible to think that the following claims
are true.

14) P(BjA�D) 6¼P(BjA�D�O) 6¼P(BjA�D�O�L)
15) P(BjA�D) 6¼P(BjA�D�E)
16) P(BjA�D�O) 6¼P(BjA�D�O�E)
17) P(BjA�D�O�L) 6¼P(BjA�D�O�L�E)
18) P(BjA�D�O�L) 6¼P(BjA� —D� —O� —L)
19) P(BjA�D�O�L)¼P(BjA�D�O�L�W�M)

In other words, it is plausible to suppose that factors D, O, L and E are
statistically relevant but not that W and M are.

In order to provide a statistically relevant partition of A, the cells must
not only be homogeneous; they must also be maximally homogeneous. A
subclass S is maximally homogeneous if there is no larger class of which S is
a subset and which is also objectively homogeneous. In other words, for
some partition in terms of F1, . . . , Fu, P(BjA�Cj) cannot, in general, equal
P(BjA�Cj�Fh), where 1� h� u.10 This requirement assures us that our parti-
tion {Fh} does not introduce any irrelevant subdivision into the initial set of
subclasses A�C1, . . . , A�Cs.

Each of the cells in the reference class partition must also be objectively
homogeneous. The notion of objective homogeneity can best be illustrated
by contrasting it with other varieties of homogeneity. According to Salmon
(1966, p. 92), a class is epistemically homogeneous when we ‘‘may suspect
that a given reference class is inhomogeneous, but not know of any way to
make a relevant partition of it.’’ This does ‘‘not demand that no possibility
of a relevant partition can exist unbeknown to us’’ (Salmon 1984, p. 41). In
cases where we know that a reference class is inhomogeneous but carrying
out a relevant subdivision would be impractical, we can say that the refer-
ence class is practically homogeneous. We may decide not to carry out
certain subdivisions because of the size of the class, the amount of statistical
evidence available, the cost involved in getting more data, the difficulty of
effecting the relevant subdivision, and how much is at stake in our decision
(Salmon 1966, p. 92). By contrast, objective homogeneity is independent of
both our knowledge and our practical interests. A reference class is object-
ively homogeneous if there is, in fact, no statistically relevant partition of it
that can be made.
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Reliabilists should reject any epistemically relativized version of homo-
geneity. According to externalist theories like reliabilism, the conditions for
knowledge (or justified belief) are such that no one needs to know whether
they are fulfilled in order for knowledge (or justified belief) to be possible. In
other words, knowledge—like truth—is recognition-transcendent. One can
know (or have the justified belief) that p without knowing that one knows
that p (or having the justified belief that one’s belief that p is justified). In
the case of reliabilism, this means that agents do not have to know that their
processes are reliable in order to have justified beliefs. Their processes must
simply be reliable. Since reliabilists claim that reliability and epistemic
justification are both recognition-transcendent properties, they cannot accept
any account of these properties that does not preserve that recognition-
transcendence. Consequently, only objective homogeneity will do.

If A is partitioned into a set of maximally and objectively homogeneous
subclasses A�C1, . . . , A�Cs, the value of P(tj produces a true beliefjtj belongs
to A�Cj) will be the same for every tj subsumed by each A�Cj. Each cell in
such a partition will be the relevant process type for every process token that
falls under it.

V. Statistical Relevance and the No Distinction Problem

Recall for a moment the No Distinction Problem, which arises when beliefs
of obviously different epistemic status are produced by process tokens
grouped together into the same broad process type. Feldman (1985, p. 161)
illustrates the No Distinction Problem with the following example.

[I]f the relevant type for every case of inferring were the type ‘inferring,’ then

[reliabilism] would have the unacceptable consequence that the conclusions of

all inferences are equally well justified (or unjustified) because they are believed

as a result of processes of the same relevant type.

I submit that the following two claims are identical.

20) No process type that falls prey to the No Distinction Problem can be
the process type whose reliability determines the justification of
beliefs produced by process tokens of that type.

21) No process type that can be partitioned in statistically relevant ways
can be the process type whose reliability determines the justification
of beliefs produced by process tokens of that type.

In other words, the injunction to avoid the No Distinction Problem is
nothing more than the injunction to avoid statistically inhomogeneous
process types. The process type ‘inference’ is obviously not homogeneous
because it includes not only modus ponens and modus tollens but also
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affirming the consequent and denying the antecedent. There are statistically
relevant partitions of that type that can and should be made. The same
thing can be said for another of Feldman’s examples. Feldman (1993, p. 41)
suggests that any token visual perceptual process will belong to each of the
following process types.

22) the visual process
23) the perceptual process
24) the cognitive process

Feldman notes that each process type clearly falls victim to the No Distinction
Problem, since each ‘‘process’’ is actually a family of process types. Feldman
does not, however, see that reliabilists can take the further step suggested by
his remarks—viz., divide each class into maximally homogeneous subclasses
until each subclass no longer faces the No Distinction Problem.

Feldman and Goldman have both claimed that an adequate solution to
the Generality Problem must avoid both the Single Case Problem and the
No Distinction Problem. What Feldman and Goldman fail to realize is that
the formulation of the No Distinction Problem contains within it resources
reliabilists need to solve the Generality Problem. If we think of the Single
Case and No Distinction Problems as ‘‘extremes,’’ we may be misled into
thinking that avoiding the two extremes will not be sufficient for isolating
unique types. Within the area that falls between the two extremes, it may
seem as if there will be an abundance of process types for any given process
token and that the Generality Problem will continue to pose a serious threat
to reliabilism. On the contrary, I claim that repeated applications of the
maxim ‘Avoid the No Distinction Problem’ can partition the broadest
process type satisfying the tri-level condition within which some process
token falls into (maximally and objectively) homogeneous subclasses, where
the subclass which subsumes the process token in question will be the
relevant process type for that token. In short, the two stages of my proposal
combine to solve the Generality Problem.11

VI. Conclusion

Proponents of the Generality Problem claim that each process token belongs
to indefinitely many process types and that reliabilists have no principled way
to isolate a single relevant process type for each process token. According to
reliabilism, the justification of a belief is a direct function of the reliability of
the relevant process type under which the token process that produced that
belief falls. The greater the reliability of that process type, the greater the
justification of the target belief. If there is not a single relevant process type
for each process token, then there will be no fact of the matter regarding the
justification of the beliefs produced by those tokens.
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My solution to the Generality Problem has proceeded in two stages. The
first stage presents a set of necessary conditions that partially define relevant
cognitive process types. According to the tri-level condition, each relevant
process type is partially defined by the type of information-processing
problem solved by its members, the type of procedure used to solve that
problem, and the particular kind of system used to execute that procedure.
These computational and algorithmic properties ensure that the only candi-
dates for relevant process types will be information-processing types, and
they tell us what broad information-processing type a given process belongs to.

We have seen that the broadest process type A that satisfies the tri-level
condition with respect to some process token t can be partitioned in indefin-
itely many ways such that t can be made to fall within indefinitely many
distinct subclasses of A. In the second stage of my solution to the Generality
Problem I have argued that, for any process token t falling within A, the
single relevant process type for t is the broadest objectively homogeneous
subclass of A that subsumes t.

My solution to the Generality Problem can be summed up very simply. If
we are dealing with cognitive information-processing types (partially
defined by their computational and algorithmic properties), then we should
let the maxim ‘Avoid the No Distinction Problem’ be our guide. While one
might think that we should first determine which process types are the
relevant ones and then determine the reliability of those types, my solution
suggests that we let differences in degree of reliability (and unreliability) be
our guide to relevance. The two stages of my solution combine to show that
reliabilists have a principled way to distinguish between relevant and irrele-
vant process types.12

Notes

1 In the exposition and defense of reliabilism that follows, I take Alvin Goldman’s (1986,

1992a, 1994) account of justified belief to be the most representative and developed statement of

process reliabilism.
2 The objection can be found in the following surveys of contemporary epistemology:

Crumley (1999, pp. 76–79), Hetherington (1996, pp. 40–41), Lycan (1988, pp. 110–111),

Plantinga (1993, p. 198), Pollock (1986, pp. 118–120), and Pollock and Cruz (1999, pp. 116–8).

For further discussion of the Generality Problem, see Heller (1995), Schmitt (1992, ch. 6), Alston

(1995), Wallis (1994), Baergen (1995, ch. 4), and Brandom (1994, ch. 4). Goldman (1992b)—the

foremost defender of reliabilism—claims in a recent reference work devoted to epistemology that

the Generality Problem is one of the most pressing challenges facing reliabilism.
3 (6) employs an evaluative term, ‘justified.’ According to reliabilism, a belief can be

justified only if the single relevant process type that the token process falls under is reliable.

The determination of relevant types, then, is prior to determinations of justification, so (6)

cannot adequately serve to mark out a relevant type.
4 Connectionists, of course, would challenge this claim to orthodoxy. For a fascinating

defense of how connectionists cannot avoid the claims of the tri-level hypothesis, cf. Dawson

(1998, ch. 5).
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5 Connectionists would not deny that complete explanations of their systems should include

both computational and implementation level descriptions. They would, however, object to the

tri-level hypothesis’ claim that algorithmic level explanations are required. Connectionists

systems, they claim, do not rely on algorithms to solve information-processing problems. For

a compelling challenge to this connectionist claim, cf. Dawson (1998, pp. 134–142).
6 Consider, for example, Deep Blue, which in 1995 became the first chess-playing computer

to beat a reigning world chess champion under tournament conditions. Deep Blue consists of

four specialized computers processing in parallel, enabling it to consider one billion moves per

second. At the computational level of explanation, Deep Blue and Gary Casparov can be

described as solving the same information-processing problem, viz., playing world champion-

ship chess. They will obviously have different physical or implementation level explanations,

since one is mostly silicon and plastic and the other is flesh and bones. But the differences

between them are more than merely physical. They also do not follow the same algorithms or

procedures. Although no one currently has a complete understanding of the nature of the

information-processing in a human chess champion like Casparov, we can be quite certain that

he isn’t going through the same information-processing steps as Deep Blue. For further

discussion cf. Dawson (1998).
7 Brain researchers agree that there are simply too many connections between neurons and

too few genes in the human genome for precise information regarding all of the neural path-

ways to be stored in our DNA. Even if our DNA contained information about nothing else

than connections between neurons, there would still not be enough storage space in the human

genome for all of the relevant information. Identical twins, who share the same genetic code, do

not even have the physically same neural pathways.
8Another way to look at the tri-level condition is this: the tri-level condition claims that a

process type T is the relevant type for two process tokens only if: i) those two process tokens are

‘strongly equivalent’; and ii) those tokens are strongly equivalent by virtue of falling within T.

According to Fodor (1968), Pylyshyn (1984) and Dawson (1998, pp. 98, 173), two systems that

are solving the same information-processing problem using possibly different methods are

‘weakly equivalent.’ ‘Strongly equivalent’ systems employ identical procedures to solve the

same information-processing problem. The latter are not merely input-output equivalent but

are identical systems running the same program, as it were. For discussion of how to determine

whether two cognitive systems are strongly equivalent, cf. Pylyshyn (1981; 1984, ch. 5; 1989),

Dawson (1998, p. 110ff.), Cummins (1983, ch. 1), Sternberg (1995), and Newell and Simon (1972).
9Note that we are not concerned with the question, ‘‘What is the prior probability that a

certain belief token is true?’’ If a process type is 90% reliable, that does not mean that each of

the beliefs produced by the token processes of that type will have a .9 prior probability of being

true. Those beliefs may vary widely in their independent probabilities. Some, in fact, may have a

probability value of less than .5. Reliability is concerned only with the likelihood that a belief

will be true, given that it is produced by a process token that belongs to a certain belief-forming

process type.
10An exceptional but permissible case mentioned by Salmon concerns a coin toss experi-

ment with one fair and two biased coins. The probability of heads with one of the biased coins

C1 is .9 and the probability of tails with the other biased coin C2 is .9. The probability of heads

with the fair coin C3 is .5. The probability of heads, given that one randomly selects one of the

coins, will also be .5. In other words, the probability of heads, given the class {C1, C2, C3}, is

equal to the probability of heads, given {C3}. This equality is permissible, since partitioning the

class {C1, C2, C3} into three subsets would be statistically relevant and would result in an

overall increase of homogeneity of the subclasses.
11The second stage of my solution to the Generality Problem follows Salmon’s (1971, 1984)

solution to the ‘reference class problem’ that arises in statistical explanation. The reference class

problem is analogous to the Generality Problem and is even characterized in terms of avoiding two

extremes that strongly resemble the Single Case and No Distinction Problems. The reference class
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problem arises for the frequency interpretation of probability when we try to ascertain the prob-

ability of a single event because there are indefinitely many ways to assign some x, which falls in the

attribute class, to a reference class. Salmon (1971, pp. 41–42) writes,

The reference class must, therefore, be broad enough to provide the required number of

instances for examination to constitute evidence for an inductive inference [from observed

frequency to relative frequency]. At the same time, we want to avoid choosing a reference

class so broad that it includes cases irrelevant to the ones with which we are concerned.

The first pitfall Salmon mentions is analogous to the Single Case Problem and the second pitfall

is analogous to the No Distinction Problem.

Interestingly enough, some of the solutions to Generality Problem that have been proposed

strongly resemble some of the solutions offered to the reference class problem. Hempel (1965)

suggested that the reference classes that figure in the statistical laws of statistical explanations

be maximally specific. Hempel’s ‘requirement of maximal specificity’ (RMS) demands that

when the class to which the individual case is referred for explanatory purposes . . . is
chosen, we must not know how to divide it into subsets in which the probability of the

fact to be explained differs from its probability in the entire class. (Salmon 1984, p. 29)

In similar fashion, William Alston (1995, p. 14) tries to solve the Generality Problem by

suggesting that appropriate process types are those that are ‘maximally specific.’ I would be

surprised if Alston’s own maximal specificity requirement was not inspired in some way by

Hempel’s. The suggestions of Hempel and Alston are both incapable of keeping irrelevant

properties out of reference class or process type descriptions.
12 This paper has benefited greatly from comments given by James Bohman, Eleonore

Stump, Chris Pliatska, Husain Sarkar, and two anonymous reviewers from Noûs.
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