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Abstract We reformulate minimalist grammars as partial functions on term algebras
for strings and trees. Using filler/role bindings and tensor product representations, we
construct homomorphisms for these data structures into geometric vector spaces. We
prove that the structure-building functions as well as simple processors for minimalist
languages can be realized by piecewise linear operators in representation space. We
also propose harmony, i.e. the distance of an intermediate processing step from the
final well-formed state in representation space, as a measure of processing complexity.
Finally, we illustrate our findings by means of two particular arithmetic and fractal
representations.

Keywords Geometric cognition · Vector symbolic architectures · Tensor product
representations · Minimalist grammars · Harmony theory

1 Introduction

Geometric approaches to cognition in general and to symbolic computation in particu-
lar became increasingly popular during the last two decades. They comprise conceptual
spaces for sensory representations (Gärdenfors 2004), latent semantic analysis for the
meanings of nouns and verbs (Cederberg and Widdows 2003), and tensor product
representations for compositional semantics (Blutner 2009; Aerts 2009). According
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394 P. beim Graben, S. Gerth

to the dynamical system approach to cognition (van Gelder 1998; beim Graben and
Potthast 2009), mental states and their temporal evolution are represented as states and
trajectories in a dynamical system’s state space. This approach has been used, e.g.,
for modeling logical inferences (Balkenius and Gärdenfors 1991; Mizraji 1992) and
language processes (beim Graben et al. 2008a; Tabor 2009). Interpreting the states of a
dynamical system as activation vectors of neural networks, includes also connectionist
approaches of cognitive modeling into geometric cognition (Gerth and beim Graben
2009; Huyck 2009; Vosse and Kempen 2009).

One particularly significant contribution in this direction is Smolensky’s Integrated
Connectionist/Symbolic Architecture (ICS) (Smolensky 2006; Smolensky and Legen-
dre 2006a). This is a dual-aspect approach where subsymbolic dynamics of neural
activation patterns at a lower-level description become interpreted as symbolic cogni-
tive computations at a higher-level description by means of filler/role bindings through
tensor product representations. Closely related to ICS is dynamic cognitive modeling
(DCM) (beim Graben and Potthast 2009, 2012), which is a top-down approach for the
construction of neurodynamical systems from symbolic representations in continuous
time.

So far, ICS/DCM architectures have been successfully employed for phonologi-
cal (Smolensky 2006; Smolensky and Legendre 2006a) and syntactic computations
(Smolensky 2006; Smolensky and Legendre 2006a; beim Graben et al. 2008a) in the
fields of computational linguistics and computational psycholinguistics using mainly
context-free grammars and appropriate push-down automata (Hopcroft and Ullman
1979). However, as natural languages are known to belong to the complexity class
of mildly context-sensitive languages within the Chomsky hierarchy (Shieber 1985;
Stabler 2004), more sophisticated formal grammars have been developed, including
tree-adjoining grammars (TAG) (Joshi et al. 1975), multiple context-free grammars
(Seki et al. 1991) and minimalist grammars (Stabler 1997; Stabler and Keenan 2003).
In particular, Stabler’s formalism of minimalist grammars (MG) codifies most concepts
of generative linguistics (e.g. from Government and Binding Theory (Chomsky 1981;
Haegeman 1994) and Chomsky’s Minimalist Program (Chomsky 1995; Weinberg
2001)) in a mathematically rigorous manner. In early MG this has been achieved by
defining minimalist trees and the necessary transformations by means of set and graph
theoretic operations. In its later development, minimalist trees have been abandoned
in favor of chain-based calculus (Harkema 2001; Stabler and Keenan 2003) due to
Harkema’s statement that “the geometry of a [minimalist] tree is a derivational artifact
of no relevance […]” (Harkema, 2001, p. 82). Based on these results MG could be
recast into multiple context-free grammars for further investigation (Michaelis 2001;
Harkema 2001).

Recently, Gerth (2006) and Gerth and beim Graben (2009) revived the ideas of early
MG, by presenting two ICS/DCM studies for the processing of minimalist grammars
in geometric representation spaces, because minimalist tree representations could be
of significance for psycholinguistic processing performance. In these studies, differ-
ent filler/role bindings for minimalist feature arrays and minimalist trees have been
used: one purely arithmetic representation for filler features and syntactic roles (Gerth
2006); and another one, combining arithmetic and numerical representations into a
fractal tensor product representation (Gerth and beim Graben 2009). Until now, these
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studies lack proper theoretical justification by means of rigorous mathematical treat-
ment. The present work aims at delivering the required proofs. Moreover, based on
the metric properties of representation space, we present an extension of MG toward
harmonic MG, for providing a complexity measure of minimalist trees that might be
of relevance for psycholinguistics.

The paper is structured as follows. In Sect. 2 we algebraically recapitulate Stabler’s
original proposals for minimalist grammars which is required for subsequent dynamic
cognitive modeling. We also illustrate the abstract theory by means of a particular
linguistic example in Sect. 2.5. Next, we build an ICS/DCM architecture in Sect. 3 by
mapping filler/role decompositions of minimalist data structures onto tensor product
representations in geometric spaces. The main results of the section are summarized
in two theorems about minimalist representation theory. We also introduce harmonic
minimalist grammar (HMG) here, by proposing a harmony metric for minimalist trees
in representation space. In Sect. 4 we resume the linguistic example from Sect. 2.5
and construct arithmetic and fractal tensor product representations for our minimalist
toy-grammar. The paper concludes with a discussion in Sect. 5.

2 Minimalist Grammars Revisited

In this section we rephrase derivational minimalism (Stabler 1997; Stabler and Keenan
2003; Michaelis 2001) in terms of term algebras (Kracht 2003) for feature strings and
trees which is an important prerequisite for the aim of this study, namely vector space
representation theory. Moreover, following Harkema (2001), we disregard the original
distinction between “strong” and “weak” minimalist features that allow for “overt” vs.
“covert” movement and for merge with or without head adjunction, respectively. For
the sake of simplicity we adopt the notations of “strict minimalism” (Stabler 1999;
Michaelis 2004), yet not taking its more restricted move operation, the specifier island
condition (Gärtner and Michaelis 2007), into account.

2.1 Feature Strings

Consider a finite set of features FF and its Kleene closure F∗
F . The elements of F∗

F can
be regarded as terms over the signature FF ∪{ε}, where the empty word ε has arity 0 and
features f ∈ FF are unary function symbols. Then, the term algebra TF is inductively
defined through (1) ε ∈ TF is a term. (2) If s ∈ TF is a term and f ∈ FF , then f (s) ∈
TF . Thus, a string (or likewise, an array) s = f1 f2 . . . f p ∈ F∗

F , p ∈ N0, of features
fi ∈ FF is regarded as a term s = ( f1 ◦ f2 ◦ · · · ◦ f p)(ε) = f1( f2(. . . ( f p(ε)))) ∈ TF ,
where “◦” denotes functional composition (the set N0 contains the non-negative inte-
gers 0, 1, 2, . . .).

First, we define two string functions for preparing the subsequent introduction of
minimalist grammars.

Definition 1 Let s ∈ TF be a feature string with s = f (r), f ∈ FF , r ∈ TF .

1. The first feature of s is obtained by the function first : TF \ {ε} → FF ,first(s) =
first( f (r)) = f .
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2. In analogy to the left-shift in symbolic dynamics (Lind and Marcus 1995) we
define shift : TF \ {ε} → TF , shift(s) = shift( f (r)) = r .

Basically, the functions first and shift correspond to the LISP functions car and cdr,
respectively.

2.2 Labeled Trees

In early MG, a minimalist expression is a finite, binary, and ordered tree endowed with
the relation of (immediate) projection among siblings and with a labeling function map-
ping leaves onto feature strings (Stabler 1997; Michaelis 2001). Such trees become
terms from a suitably constructed term algebra TA, as follows. As signature of TA we
choose the ranked alphabet A = TF ∪ {<,>}, where TF is the previously introduced
algebra of feature strings, and rankA : A → N0. Feature strings are ranked as constants
through rank A(s) = 0 for all s ∈ TF . Furthermore, the minimalist projection indi-
cators, <,>, are regarded as binary function symbols: rankA(<) = rank A(>) = 2.
Then we define by means of induction: (1) Every s ∈ TF is a term, s ∈ TA. (2) For
terms t0, t1 ∈ TA,<(t0, t1) ∈ TA and >(t0, t1) ∈ TA. Then, <(t0, t1) denotes a mini-
malist tree with root <, left subtree t0 and right subtree t1. The root label < indicates
that t0 “projects over” t1. By contrast, in the tree >(t0, t1) t1 “projects over” t0.

Definition 2 A minimalist tree t ∈ TA is called complex if there are terms t0, t1 ∈ TA

and f = > or f = < such that t = f (t0, t1). A tree that is not complex is called
simple.

In correspondence to Smolensky and Legendre (2006a) and Smolensky (2006), we
define the following functions for handling minimalist trees.

Definition 3 Let t ∈ TA be given as t = f (t0, t1) with f = > or f = <, t0, t1 ∈ TA.
Then we define

1. Left subtree extraction: ex0 : TA → TA,

ex0(t) = t0.

2. Right subtree extraction: ex1 : TA → TA,

ex1(t) = t1.

3. Tree constructions: cons f : TA × TA → TA,

cons f (t0, t1) = t.

Recursion with left and right tree extraction is applied as follows:
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Geometric Representations for Minimalist Grammars 397

Definition 4 Let I = {0, 1}∗ be the set of binary sequences, γ = γ1γ2 . . . γn ∈ I , for
n ∈ N0. Then the function exγ : TA → TA is given as the concatenation product

exε = id

exiγ = exi ◦ exγ ,

where id : TA → TA denotes the identity function, id(t) = t , for all t ∈ TA. The
bit strings γ ∈ I are called node addresses for minimalist trees and I is the address
space.

Using node addresses we fetch the function symbols of terms through another
function.

Definition 5 Let t ∈ TA be given as t = f (t0, t1) with f = > or f = <, t0, t1 ∈ TA,
and γ ∈ I . Then label : I × TA → A with

label(ε, t) = f

label(iγ, t) = label(γ, exi (t)).

If t is a constant in TA, however (i.e. t ∈ TF ), then

label(γ, t) = t,

for every γ ∈ I .

Corollary 1 As a collorary of definitions 3 and 5 we state

t = conslabel(ε,t)(ex0(t), ex1(t)), (1)

if rank A(label(ε, t)) = 2 for t ∈ TA.

Definition 6 The head of a minimalist tree t ∈ TA is a unique leaf that projects
over all other nodes of the tree. We find t’s head address by recursively following the
projection labels. Therefore, head : TA → I is defined through

head(< (t0, t1)) = 0�head(t0)

head(> (t0, t1)) = 1�head(t1),

where string concatention is indicated by “�”, and

head(t) = ε,

for t ∈ TF

Definition 7 The feature of a tree t is defined as the first feature of t’s head label.
Thus feat : TA → FF ,

feat(t) = first(label(head(t), t)),
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where we appropriately extended domain and codomain of first : A \ {ε} → FF ∪{ε},
by setting first(<) = first(>) = ε.

A node in a minimalist tree t is known to be a maximal projection if it is either
t’s root, or if its sister projects over that node. We exploit this property in order to
recursively determine the address of a maximal subtree for a given node address.

Definition 8 Let t ∈ TA and γ ∈ I . Then, max : I × TA → I ,

max(γ, t) =
⎧
⎨

⎩

ε : γ = head(t)
i� max(δ, exi (t)) : γ = iδ and γ �= head(t)

undefined : otherwise

is a partial function.

We also need a variant thereof with wider scope. Thus we additionally define:

Definition 9 Let P ⊂ I be a set of node addresses, then max # : ℘(I )× TA → ℘(I ),

max #(P, t) =
⋃

γ∈P

{max(γ, t)}.

If P is a singleton set, P = {γ }, we identify the actions of max and max #. Here, ℘(I )
denotes the power set of node addresses I .

Moreover, we define a function that returns the leaf addresses of a tree t possessing
the same feature f ∈ FF .

Definition 10 Let t ∈ TA and f ∈ FF . Then, leaves : FF × TA → ℘(I ), with

leaves( f, t) = {γ ∈ I |first(label(γ, t)) = f }.

where γ varies over the address space of t .

Next, we introduce a term replacement function.

Definition 11 Let t, t ′ ∈ TA and γ ∈ I . Then replace : I × TA × TA → TA with

replace(ε, t, t ′) = t ′

replace(0γ, t, t ′) = conslabel(ε,t)(replace(γ, ex0(t), t ′), ex1(t))

replace(1γ, t, t ′) = conslabel(ε,t)(ex0(t), replace(γ, ex1(t), t ′)).

Using replace we extend the domain of the shift function (1) from the string algebra
TF to the tree algebra TA.

Definition 12 Let t ∈ TA. Then, shift# : TA → TA with

shift#(t) = replace(head(t), t, shift(label(head(t), t))),

deletes the first feature of t’s head.
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Fig. 1 Labeled minimalist tree t with leaf addresses for illustration of head and max functions: 001 =
head(t) and, e.g., max(100, t) = 1

The effect of the tree functions head and max are illustrated in Fig. 1. The head of
the tree t is obtained by following the projection indicators recursively through the tree:
head(t)= 0�head(ex0(t))= 00�head(ex0(ex0((t))))= 001�head(ex1(ex0(ex0((t))
)))= 001; and max(100, t)= 1� max(00, ex1(t))= 1.

2.3 Minimalist Grammars

Now we are prepared to define minimalist grammars in term algebraic terms.

Definition 13 A minimalist grammar (MG) is a four-tuple G = (P,C,Lex,M )

obeying conditions (1)–(4).

1. P is a finite set of non-syntactic phonetic features.
2. C = B ∪ S ∪ L ∪ M is a finite set of syntactic features, called categories, com-

prising basic categories, B, selectors, S, licensors, L , and licensees, M . There is
one distinguished element, c ∈ B, called complementizer. FF = P ∪ C is then
the feature set. To each selector s ∈ S a basic category b ∈ B is assigned by
means of a select function, sel : S → B, b = sel(s). Likewise, a license function,
lic : L → M assigns to each licensor � ∈ L a corresponding licensee through
m = lic(�).

3. Lex ⊂ TF is a finite set of simple terms over the term algebra TF , called the
lexicon, such that each term t ∈ Lex, is a feature string of the form

S∗(L ∪ {ε})S∗ B M∗ P∗.

4. M = {merge,move} is a collection of partial functions, merge : TA × TA → TA

and move : TA → TA, defined as follows: The domain of merge is given by all
pairs of trees Dommerge = {(t1, t2) ∈ TA×TA|sel(feat(t1))= feat(t2)}. The domain
of move contains all trees Dommove = {t ∈ TA|feat(t) ∈ L and max #(leaves
(lic(feat(t)), t), t) contains exactly one element}. Let t1, t2 ∈ Dommerge and t ∈
Dommove, then
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merge(t1, t2) =
{

cons<(shift#(t1), shift#(t2)) if t1 is simple
cons>(shift#(t1), shift#(t2)) if t1 is complex

move(t) = cons>(shift#(exmax(leaves(lic(feat(t)),t),t)(t)),

shift#(replace(max(leaves(lic(feat(t)), t), t), t, ε))))

The constraint on the move operation, that the set of maximal subtrees with the
corresponding licensee may contain exactly one element is called the shortest move
condition, motivated by linguistic considerations. Relaxing this condition yields differ-
ent kinds of minimalist grammars that could account for particular locality conditions
(Gärtner and Michaelis 2007).

2.4 Processing Algorithm

Minimalist grammar recognition and parsing are well understood (Harkema 2001;
Mainguy 2010; Stabler 2011). However, for our current exposition, instead of a full-
fletched minimalist parser that must be proven to be sound and complete, we discuss
a simplified processor for our particular example from Sect. 2.5 below, just in order to
provide a proof-of-concept for our representation theory. To this end we utilize early
ideas of Stabler (1996) as employed by Gerth (2006) and Gerth and beim Graben
(2009). There, the structure building functions merge and move are extended to a state
description, or a stack, regarded as a finite word of terms w ∈ T ∗

A . From a graph
theoretical point of view, a state description is an unconnected collection of trees,
and therefore a forest. In order to construct an algorithm that generates a successful
derivation we introduce the following extensions of merge and move over forests of
minimalist trees.

Definition 14 Let w = (w1, w2, . . . , wm) ∈ T ∗
A be state description. Then

1. merge∗ : T ∗
A → T ∗

A with merge∗(w) = (w1, w2, . . . ,merge(wm−1, wm)), when
(wm−1, wm) ∈ Dommerge.

2. move∗ : T ∗
A → T ∗

A with move∗(w) = (w1, w2, . . . ,move(wm)), when wm ∈
Dommove.

are partial functions acting upon state descriptions from T ∗
A .

In Definition 14, merge∗ operates on the next-to-last and the last element of the
processor’s state description, respectively, thereby implementing a stack with the last
element at the top. Using this convention, canonical subject-verb-object sentences,
[S[VO]], such as the example below and also examples used by Gerth (2006) and
Gerth and beim Graben (2009), can be processed straightforwardly, by first merging
the verb V with the direct object O as its complement, and subsequently merging the
result with the subject noun phrase. Thereby, the procedure avoids unnecessary gar-
den-path interpretations. However, since minimalist languages cannot be processed
with simple pushdown automata, one needs additional mechanisms such as indices
and sorting in the framework of multiple context-free languages for which the cru-
cial soundness and completeness properties of minimalist parsers have been proven
(Mainguy 2010; Stabler 2011). In our simplified approach, however, we make use of
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an oracle for rearranging stack content. This is implemented through suitable permu-
tations π : T ∗

A → T ∗
A , acting upon the stack according to w′ = π(w).

The processor operates in several loops: two for the domain of merge and another
one for the domain of move. In the loops for the domain of merge the iteration starts
with the tree on top of the stack which is checked against every other tree whether they
can be merged, in which case an appropriate permutation brings both trees into the last
and next-to-last position of the stack. Then merge∗ is applied and this loop iteration is
terminated. If the top tree cannot be merged then the algorithm decrements backwards
until it reaches the first tree on the stack. In the loop for the domain of move every
tree is checked for being in the domain of move, in this case the move∗ operation is
used after a permutation bringing that tree into the last position of the stack. The rest
of the lexical entries in the state description are passed on unchanged to the next state
of the algorithm.

Therefore after merge∗ or move∗ has been applied to the state description the
algorithm completes the current state and continues with the next one resulting in a
sequence of state descriptions S0, S1, . . . which describes the derivation process. The
algorithm stops when no further merge∗ or move∗ is applicable and only one tree
remains in the state description. This final state description determines the successful
derivation.

2.5 Application

We illustrate the procedure from Definition 14 by constructing a minimalist grammar
for the following English sentence and by outlining a successful derivation of

(1) Douglas loved deadlines.1

The minimalist lexicon is shown in Fig. 2. The first item is a complementizer (basic
category c) which selects tense (indicated by the feature = t). The second item is
a determiner phrase “Douglas” (basic category d) requiring case (licensee −case).
The third item, the verb “love” (category v), selecting a determiner (feature = d), is a
verb (feature v) and is moved into the position before “-ed” triggered by −i resulting
in the inflection of the verb (i.e., “loved”). The next item would normally include
an affix (e.g., -ven, -ing) but it is empty (ε) here, it selects a verb (feature = v), a
determiner phrase (feature = d) to which it assigns case (feature +CASE) and has the
feature v. The fifth item represents the past tense inflection “-ed” with the category t
that selects a verb (= v), assigns case (licensor +CASE) to a determiner and contains
the licensor +I to trigger the movement of “love”. The last item in the lexicon is the
object “deadlines” (category d) which requires case (−case).

The algorithm takes initially as input the state descriptionw1 = (Douglas, love, -ed,
deadlines) ∈ T ∗

A .

1 Douglas Adams was quoted as saying: “I love deadlines. I like the whooshing sound they make as they
fly by (Simpson 2003).
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Fig. 2 Minimalist lexicon of sentence 1

Fig. 3 Step 1: merge

Fig. 4 Step 2: merge

2.5.1 An Example Derivation of Sentence 1

Starting with the initial state description w1 the words “love” and “deadlines” are
merged (Fig. 3) after a first permutation π1, exchanging “-ed” and “love”, by applying
merge∗(π1(w1)) =(Douglas, -ed, merge(love, deadlines)) because “love” (= d) and
“deadlines” (d) are in Dommerge.

In the next step ε is merged to the tree.
The resulting tree is in the domain of move triggered by the features −case and

+CASE, therefore “deadlines” is moved upwards in the tree leaving behind λ, a new
leaf node without label. The involved expressions are co-indexed with k (Fig. 5).

In step 4 the whole state description w2 = (Douglas, -ed, t1) is checked for being
in the domain of merge. This is the case for (Douglas, t1). Therefore, “Douglas” is
merged to t1.

Next, the past tense inflection “-ed” is merged to the tree triggered by v.
Now, the tree is in the domain of move triggered by −i and +I. Therefore, the

maximal projection love λk undergoes remnant movement to the specifier position in
(Fig. 8).

The resulting tree is again in Dommove and “Douglas” is moved upwards leaving a
λ behind indexed with j (Fig. 9).
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Fig. 5 Step 3: move

Fig. 6 Step 4: merge

Fig. 7 Step 5: merge

In the final step, the complementizer “c” is merged to the tree leading to the final
minimalist tree with the unchecked feature c as its head (Fig. 10) that completes the
successful derivation.

123



404 P. beim Graben, S. Gerth

Fig. 8 Step 6: move

Fig. 9 Step 7: move

3 Integrated Symbolic/Connectionist Architectures

Connectionist models of symbolic computations are an important branch in cogni-
tive science. In order to construe compositional representations (Fodor and Pylyshyn
1988) one has to solve the famous binding problem known from the neurosciences
(Engel et al. 1997): How are representations from different perceptual modalities
bound together in the representation of a complex concept? The same problem appears
for complex data structures such as lists or trees, e.g., in computational linguistics
(Hagoort 2005): How is a syntactic category bound to its functional role in a phrase
structure tree?

A solution for this binding problem has been provided by Smolensky’s Inte-
grated Connectionist/Symbolic Architectures (ICS) (Smolensky 2006; Smolensky and
Legendre 2006a,b). Here, complex symbolic data structures are decomposed into con-
tent fillers and functional roles that bind together in a geometric representation by
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Fig. 10 Step 8: merge

means of tensor products. A closely related approach is Dynamic Cognitive Modeling
(DCM) (beim Graben and Potthast 2009, 2012), where neural network models are
explicitly constructed from geometric representations by solving inverse problems
(Potthast and beim Graben 2009).

In this section, we apply the concepts of ICS/DCM to our reconstruction of mini-
malist grammars and processor, obtained in Sect. 2.

3.1 Filler/Role Bindings

Consider a set of symbolic structures S and some structure s ∈ S. A filler/role binding
of s is then a set of ordered pairs β(s) of fillers bound to roles.

Definition 15 Let F be a finite set of simple fillers and R be a finite, countable, or
even measurable set of roles. By induction we define a family of complex fillers as
follows:

F0 = F

Fn+1 = ℘(Fn × R),

where n ∈ N0 and ℘(X) denotes the power set of some set X . Furthermore we define
the collection

F∞ = R ∪
( ∞⋃

n=0

Fn

)

.

The filler/role binding for S is a mapping β : S → F∞.
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In the simplest case, simple fillers are bound to roles. Thus, a filler/role binding
β(s) = {( f, r)| f ∈ F, r ∈ R} ∈ ℘(F × R) = F1. Such a decomposition could act
as a complex filler f ′ for another filler/role binding where f ′ = β(s) is bound to a
role r , resulting in β(s′) = {( f ′, r)| f ′ ∈ F1, r ∈ R} ∈ ℘(F1 × R) = F2. By means
of recursion any finite structure of arbitrary complexity yields its filler/role binding as
an element of F∞ (beim Graben et al. 2008b).

Next we construct filler/role bindings for minimalist trees, S = TA, in a hierarchical
manner. To this aim we start with feature strings.

3.1.1 Feature Strings

Let S = TF be the string term algebra over signature FF ∪{ε} from Sect. 2.1. A string
s = ( f1 ◦ f2 ◦ . . . ◦ f p)(ε) ∈ TF assumes a straightforward filler/role binding by
interpreting FF as the filler set. Then each string position i is identified with one role,
si ∈ RF , such that RF = {si |i ∈ N} is an infinite but countable set of roles. However,
since every string s ∈ TF is of finite length p, only roles from Rp = {si |1 ≤ i ≤ p}
are required.

Definition 16 An order-reverting filler/role binding βF : TF → ℘(FF × RF ) for
feature string s = f (r) ∈ TF of length p > 0 is given as a mapping

βF (ε) = ∅
βF ( f (r)) = {( f, sp)} ∪ βF (r).

As an example consider the term ( f1 ◦ f2)(ε) ∈ TF . Its filler/role binding is then

βF ( f1( f2(ε))) = {( f1, s2)} ∪ βF ( f2(ε)) = {( f1, s2)} ∪ {( f2, s1)} ∪ βF (ε)

= {( f1, s2), ( f2, s1)}.

3.1.2 Labeled Trees

The filler/role binding for labeled binary trees has been discussed by beim Graben et
al. (2008a,b), and beim Graben and Potthast (2009). For tree term algebras TA from
Sect. 2.2, we identify the signature A = TF ∪ {<,>} with the set of simple fillers and
introduce roles RA = {r0, r1, r2}, with “mother” (r2), “left daughter” (r0) and “right
daughter” (r1) of an elementary tree as indicated in Fig. 11, where the indices have
been chosen in accordance with the extraction functions ex0 and ex1 from Definition
3, such that ex0(t) is bound to role r0 and ex1(t) is bound to role r1 for a term t ∈ TA.
In accordance to Definition 15, we call the set of complex fillers A∞. Additionally,
we unify the sets of simple fillers and roles through

F = FF ∪ {<,>} (2)

R = RF ∪ RA. (3)
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Fig. 11 Elementary roles of a labeled binary tree

Fig. 12 Minimalist tree term t = >( f, g) ∈ TA with feature g1

Fig. 13 Complex minimalist tree s = >( f,<(g, h)) ∈ TA with feature g1

Definition 17 A filler/role binding βA : TA → A∞ for tree terms is given as a map-
ping

βA(t) =
{ {( f, r2), (βA(t0), r0), (βA(t1), r1)} if t = f (t0, t1) ∈ TA

βF (t) if t ∈ TF .

Consider the minimalist tree t = >( f, g) ∈ TA in Fig. 12 where the root is labeled
with the projection indicator pointing to the head at the right daughter and feature string
terms f = ( f1◦ f2◦. . .◦ f p)(ε) ∈ TF , p ∈ N, g = (g1◦g2◦· · ·◦gq)(ε) ∈ TF , q ∈ N,
are presented as column arrays.

The filler/role binding of t is obtained as

βA(t) = βA(>( f, g)) = {(>, r2), (βA( f ), r0), (βA(g), r1)}
= {(>, r2), (βF ( f ), r0), (βF (g), r1)} = {(>, r2), ({( f1, sp), ( f2, sp−1), . . . ,

( f p, s1)}, r0), ({(g1, sq), (g2, sq−1), . . . , (gq , s1)}, r1)}.

A more complex expression s = >( f,<(g, h)) ∈ TA is shown in Fig. 13.
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The filler/role binding for the term s in Fig. 13 is recursively constructed through

βA(s) = βA(>( f,<(g, h))) = {(>, r2), (βA( f ), r0), (βA(<(g, h)), r1)}
= {(>, r2), (βF ( f ), r0), ({(<, r2), (βA(g), r0), (βA(h), r1)}, r1)}
= {(>, r2), (βF ( f ), r0), ({(<, r2), (βF (g), r0), (βF (h), r1)}, r1)}

= {(>, r2), ({( f1, sp), ( f2, sp−1), . . . , ( f p, s1)}, r0),

({(<, r2), ({(g1, sq), (g2, sq−1), . . . , (gq , s1)}, r0),

({(h1, sr ), (h2, sr−1), . . . , (hr , s1)}, r1)}, r1)}.

3.2 Tensor Product Representations

Definition 18 Let F be a vector space over the real or complex numbers, and β :
S → F∞ a filler/role binding for a set of symbolic structures S for sets of fillers F
and roles R. A mapping ψ : F∞ → F is called tensor product representation of S if
it obeys (1)–(4).

1. ψ(Fn) is a subspace of F , for all n ∈ N0, in particular for F0 = F is ψ(F) = VF

a subspace of F ,
2. ψ(R) = VR is a subspace of F ,
3. ψ({( f, r)}) = ψ( f )⊗ ψ(r), for filler f ∈ Fn and role r ∈ R (n ∈ N0).
4. ψ(A ∪ B) = ψ(A)⊕ ψ(B), for subsets A, B ⊂ F∞.

Lemma 1 F is the Fock space

F =
( ∞⊕

n=0

VF ⊗ V ⊗n

R

)

⊕ VR, (4)

known from quantum field theory (Haag 1992; Smolensky and Legendre 2006a).

Proof (by induction over n ∈ N0). Let n = 0. Then VF ⊗V ⊗0

R = VF is a subspace of
F . Moreover VR is a subspace of F . Let f ∈ Fn, r ∈ R, such thatψ( f ) ∈ ψ(Fn) and
{( f, r)} ∈ Fn+1 be a filler/role binding. Thenψ({( f, r)}) = ψ( f )⊗ψ(r) ∈ ψ(Fn+1).
The direct sum of those subspaces is the Fock space F .

By concatenating the maps β,ψ , we extend the tensor product representation  :
S → F of the symbolic structures:

(s) = ψ(β(s)), s ∈ S. (5)

Definition 19 Let β,ψ be a filler/role binding and a tensor product representation
for a structure set S in Fock space F over fillers F and roles R. A linear function
υr : F → F is called unbinding for role r if

υr (u) =
{
ψ( f ) : u = ψ({( f, r)})

0 : otherwise.
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Unbinding functions can be established in several ways, e.g. by means of adjoint vec-
tors or through self-addressing (Smolensky and Legendre 2006a; Smolensky 2006).
Self-addressing requires that the Fock space F is equipped with a scalar product, turn-
ing it into a Hilbert space. However, in this paper, we use adjoint vectors, i.e. linear
forms into its number field, from the dual space V ∗

R of the respective role representation
space. This requires that all filler and role vectors are linearly independent, implying
faithful tensor product representations (Smolensky and Legendre 2006a; Smolensky
2006).

Next, we define the realization of a symbolic computation.

Definition 20 Let P, Q : S → S be partial functions on the symbolic structures
s ∈ S, such that CodP ⊆ DomQ . Two piecewise linear functions P,Q : F → F are
called realizations of the symbolic computations P, Q in Fock space F , if there is a
tensor product representation  : S → F such that

(P ◦)(s) = ( ◦ P)(s)

(Q ◦)(t) = ( ◦ Q)(t)

for all s ∈ DomP , t ∈ DomQ .

Then, the realizations constitute a semigroup homomorphism and hence a semi-
group representation in the sense of algebraic representation theory (van der Waerden
2003; beim Graben and Potthast 2009), because

(Q ◦ P ◦)(s) = ( ◦ Q ◦ P)(s),

for all s ∈ DomP .

3.2.1 Feature Strings

In Sect. 3.1.1 we created filler/role bindings for the term algebra TF of minimalist fea-
ture strings asβF (s) = β(( f1◦ f2◦· · ·◦ f p)(ε)) = {( f1, sp), ( f2, sp−1), . . . , ( f p, s1)}
in reversed order by regarding the features as fillers FF and the string positions RF =
{si |i ∈ N} as roles. Mapping all fillers fi ∈ FF onto filler vectors f i = ψ( fi ) ∈ VF

from a vector space VF , and similarly all roles si ∈ Rp for a string of length p onto
role vectors si = ψ(sp−i+1) ∈ VR from a vector space VR yields a tensor product
representation of feature strings in preserved order through

(s) = ψ(βF (s)) =
p∑

i=1

f i ⊗ si . (6)

However, for the sake of convenience, we extend the representation space to an embed-
ding space spanned by the role vectors that are required for representing the longest
feature strings. Let therefore n ∈ N be the maximal length of a feature string occuring
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in the minimalist lexicon, we bind the null vector 0 to all role vectors sk for k > p for
a given string of length p < n. Then, all strings possess a unique representation

(s) = ψ(βF (s)) =
n∑

i=1

f i ⊗ si . (7)

We denote the embedding space for feature strings S .
For this representation we have to find realizations of the string functions from Def-

inition 1. To this end we need some preparatory concepts. Let u = (s) = ψ(βF (s))
be a tensor product representation for feature strings s = ( f1 ◦ f2 ◦ · · · ◦ f p)(ε) ∈
TF , fi ∈ F . For the role vectors si ∈ VR we define their adjoints s+

i ∈ V ∗
R in the dual

space V ∗
R of VR , such that

s+
i (sk) = δik, (8)

with the Kronecker symbol δik = 0(1) for i �= k (i = k), i.e. the adjoint vectors s+
i ,

acting as linear forms, and the duals si form a biorthogonal basis.

Lemma 2 υk(u) = (id ⊗ s+
k )(u) is an unbinding function for role sk .

Proof Let u = fk ⊗ sk . Then

υk(u) = (id⊗s+
k )(u) = (id⊗s+

k ) (fk ⊗ sk) = fks+
k (sk) = fkδkk = fk = ψ( fk).

Here, id : VF → VF denotes the identity map at VF : id(f) = f .
Since υk is also linear, we additionally obtain the following result: Let u =∑n
i=1 f i ⊗ si . Then

υk(u) = (id ⊗ s+
k )(u) = (id ⊗ s+

k )

(
n∑

i=1

f i ⊗ si

)

=
n∑

i=1

(id ⊗ s+
k )(f i ⊗ si ) =

n∑

i=1

f i s
+
k (si ) =

n∑

i=1

f iδki = fk = ψ( fk).

Definition 21 Let be a tensor product representation of terms of feature strings TF

in vector space S , and u = (s) = ∑n
i=1 f i ⊗ si for f ∈ F∗.

1. The first feature of u is obtained by an unbinding function first : S → S with

first(u) = (id ⊗ s+
1 )(u) (9)

2. A function shift : S → S is obtained by

shift(u) =
n−1∑

i=1

((id ⊗ s+
i+1)(u))⊗ si + 0 ⊗ sn (10)
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Lemma 3 first and shift are realizations of the corresponding string functions first
and shift from Definition 1.

Proof Let s = f (r) ∈ TF . Then

first((s)) = f = ψ( f ) = (first(s)).

For shift(u) we compute

shift((s)) =
n−1∑

i=1

(

(id ⊗ s+
i+1)

(
n∑

k=1

fk ⊗ sk

))

⊗ si + 0 ⊗ sn =

=
n−1∑

i=1

(
n∑

k=1

fks+
i+1(sk)

)

⊗ si + 0 ⊗ sn =

n−1∑

i=1

n∑

k=1

δi+1,kfk ⊗ si + 0 ⊗ sn =
n−1∑

i=1

f i+1 ⊗ si + 0 ⊗ sn = (shift(s)).

3.2.2 Labeled Trees

A tensor product representation of a labeled binary tree is obtained from the respective
filler/role binding in Definition 17.

Definition 22 Let t = f (t0, t1) ∈ TA be a tree term with f = > or f = <, t0, t1 ∈
TA. Then

(t) = ψ(βA(t)) = ψ({( f, r2), (βA(t0), r0), (βA(t1), r1)})
= f ⊗ r2 ⊕(t0)⊗ r0 ⊕(t1)⊗ r1,

where the projection indicators, < and > are mapped onto corresponding filler vec-
tors f< = ψ(<), f> = ψ(>), and the three tree roles “mother”, “left daughter”, and
“right daughter” are represented by three role vectors r0 = ψ(r0), r1 = ψ(r1), r2 =
ψ(r2) ∈ VR . Moreover, we also consider their adjoints r+

0 , r+
1 , r+

2 ∈ V ∗
R from the

dual space V ∗
R for the required unbinding operations.

Using Definition 22 together with the unified sets of fillers and roles from Eqs.
(2), (3) we can compute tensor product representations of minimalist trees, as those
from the examples of Sect. 2.2. The tensor product representation of the tree term
t = >( f, g) ∈ TA in Fig. 12 is given as

(t) = ψ(βA(>( f, g))) = ψ({(>, r2), (βA( f ), r0), (βA(g), r1)})
= ψ({(>, r2), (βF ( f ), r0), (βF (g), r1)}) = f> ⊗ r2 ⊕ ψ({( f1, sp), ( f2, sp−1),

. . . , ( f p, s1)})⊗ r0 ⊕ ⊕ψ({(g1, sq), (g2, sq−1), . . . , (gq , s1)})⊗ r1

= f> ⊗ r2 ⊕ (f1 ⊗ s1 ⊕ f2 ⊗ s2 ⊕ · · · ⊕ f p ⊗ sp)⊗ r0 ⊕ (g1 ⊗ s1 ⊕ g2 ⊗ s2

⊕ · · · ⊕ gq ⊗ sq)⊗ r1
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which can be simplified using tensor algebra to

(t) = f> ⊗ r2 ⊕ f1 ⊗ s1 ⊗ r0 ⊕ f2 ⊗ s2 ⊗ r0 ⊕ · · · ⊕ f p ⊗ sp ⊗ r0 ⊕ g1 ⊗ s1

⊗ r1 ⊕ g2 ⊗ s2 ⊗ r1 ⊕ · · · ⊕ gq ⊗ sq ⊗ r1 . (11)

Correspondingly, we obtain for the tree term s = >( f,<(g, h)) ∈ TA depicted in
Fig. 13 the tensor product representation

(s) = f> ⊗ r2 ⊕ f1 ⊗ s1 ⊗ r0 ⊕ f2 ⊗ s2 ⊗ r0 ⊕ · · · ⊕ f p ⊗ sp ⊗ r0⊕
⊕ f< ⊗ r2 ⊗ r1 ⊕ g1 ⊗ s1 ⊗ r0 ⊗ r1 ⊕ g2 ⊗ s2 ⊗ r0 ⊗ r1 ⊕ · · · ⊕ gq ⊗ sq ⊗ r0 ⊗ r1⊕

⊕ h1 ⊗ s1 ⊗ r1 ⊗ r1 ⊕ h2 ⊗ s2 ⊗ r1 ⊗ r1 ⊕ · · · ⊕ hr ⊗ sr ⊗ r1 ⊗ r1.

Interestingly, leaf addresses γ = γ1γ2 . . . γp ∈ I, p ∈ N, correspond to role multi-
indices by means of the following convention

rγ = rγ1 ⊗ rγ2 ⊗ · · · ⊗ rγp . (12)

Using role multi-indices rγ , we can introduce further generalized unbinding functions
below.

Now we are prepared to define the Fock space realizations of the tree functions
from Sect. 2. Before we start with the counterparts from Definition 3, we notice an
interesting observation.

Lemma 4 Let TA be the term algebra of minimalist trees and  its tensor product
representation in Fock space F , as above. For u ∈ F the function first distinguishes
between simple and complex trees.

1. u = (t) with t ∈ TF is a simple tree (i.e. a feature string). Then

first(u) �= 0.

2. u = (t) with t = f (t0, t1) ∈ TA is a complex tree. Then

first(u) = 0.

Proof Consider the first case: u = (t) for simple t , hence u = ∑n
i=1 f i ⊗ si . Then

first(u) = f1 �= 0. For the second case, we have u = (t) = f ⊗ r2 ⊕(t0)⊗ r0 ⊕
(t1)⊗ r1. Therefore

first(u) = (id ⊗ s+
1 )(u) = (id ⊗ s+

1 )(f ⊗ r2 ⊕(t0)⊗ r0 ⊕(t1)⊗ r1) =
f s+

1 (r2)⊕(t0) s+
1 (r0)⊕(t1) s+

1 (r1) = 0,

where id denotes the Fock space identity applied to the respective subspaces.2

2 Note that the Fock space identity id can be expressed as a direct sum of the respective sub-
space identities id = ∑

κ idκ . Applying that to an arbitrary Fock space vector u = ∑
λ uλ yields
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Definition 23 Let TA be the term algebra of minimalist trees and its tensor product
representation in Fock space F , as above. Moreover, let u ∈ F with first(u) = 0,
i.e. the tensor product representation of a complex tree. Finally, let u0,u1 ∈ F .

1. Left subtree extraction: ex0 : F → F ,

ex0(u) = (id ⊗ r+
0 )(u).

2. Right subtree extraction: ex1 : F → F ,

ex1(u) = (id ⊗ r+
1 )(u).

3. Tree constructions: cons f : F × F → F ,

cons f (u0,u1) = u0 ⊗ r0 ⊕ u1 ⊗ r1 ⊕ f f ⊗ r2.

Lemma 5 ex0, ex1 and cons f are realizations of the corresponding string functions
ex0, ex1 and cons f from Definition 3.

Proof Suppose t = f (t0, t1), t0, t1 ∈ TA. Then

ex0((t)) = (id ⊗ r+
0 )(( f (t0, t1))) = (id ⊗ r+

0 )(f ⊗ r2 ⊕ ψ(βA(t0))⊗ r0 ⊕ ψ

(βA(t1))⊗ r1) = f r+
0 (r2)⊕ ψ(βA(t0)) r+

0 (r0)⊕ ψ(βA(t1)) r+
0 (r1)

= ψ(βA(t0)) = (t0) = (ex0(t)).

The proof for ex1 works similarly. Furthermore,

cons f ((t0),(t1)) = (t0)⊗ r0 ⊕(t1)⊗ r1 ⊕ f f ⊗ r2 = (cons f (t0, t1)).

Next, we extend those functions to node addresses as in Definition 4.

Definition 24 Let I = {0, 1}∗ be the set of binary sequences, γ = γ1γ2 . . . γn ∈ I ,
for n ∈ N0. Then the function exγ : F → F is given as the concatenation product

exε = id

exiγ = exi ◦ exγ .

Then, we get the following corollary from Lemma 5.

Corollary 2 Functions exγ are realizations of the corresponding string functions
from Definition 4.

Next, we realize the symbolic label function in Fock space.

Footnote 2 continued
id(u) = ∑

κ

∑
λ idκ (uλ) = u, such that idκ (uλ) = 0 for κ �= λ. Hence, the identities for different subspac-

es behave like orthogonal projectors, annihilating vectors from their orthocomplements. This observation
applies also below.

123



414 P. beim Graben, S. Gerth

Definition 25 Let TA be the term algebra of minimalist trees and its tensor product
representation in Fock space F , as above. Moreover, let u ∈ F and γ ∈ I . Then
label : I × F → F with

label(ε,u) = (id ⊗ r+
2 )(u)

label(iγ,u) = label(γ, exi (u)),

when first(u) = 0. If first(u) �= 0, then

label(γ,u) = u.

Lemma 6 label is a Fock space realization of the term algebra function label from
Definition 5.

Proof First assume first(u) �= 0, then u ∈ F is the tensor product representation of
a string term t ∈ TF labeling a leaf node in a tree. Therefore

label(γ,(t)) = (t) = (label(γ, t)).

Next, suppose first(u) = 0, in which case u ∈ F is the tensor product representation
of a proper tree term t = f (t0, t1) ∈ TA. By means of induction over γ , we have first

label(ε,(t))= (id ⊗ r+
2 )(f ⊗ r2 ⊕(t0)⊗ r0 ⊕(t1)⊗ r1)= f =(label(ε, t))

and second

label(iγ,(t)) = label(γ, exi ((t))) = label(γ,(exi (t)))

= (label(γ, exi (t))) = (label(iγ, t)).

The following function does not provide a Fock space realization but rather a kind
of Fock space isometry.

Definition 26 The head of the tensor product representation of a minimalist tree t ∈
TA is obtained by a function head : F → I ,

head(u) =
⎧
⎨

⎩

ε if first(u) �= 0
0�head(ex0(u)) if u = cons<(ex0(u), ex1(u))
1�head(ex1(u)) if u = cons>(ex0(u), ex1(u)).

Lemma 7 Let t ∈ TA. Then

head((t)) = head(t)

with head given in Definition 6.
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Proof (by induction). First assume that first(u) �= 0, i.e. t ∈ TF with u = (t) is a
head. Then

head((t)) = ε = head(t).

Next suppose t = f (t0, t1) ∈ TA with either f = < or f = >. In the first case we
have u = cons<(ex0(u), ex1(u)) and therefore

head((t)) = 0�head(ex0(u)) = 0�head(ex0(t)),

in the second case we have u = cons>(ex0(u), ex1(u)) and thus

head((t)) = 1�head(ex1(u)) = 1�head(ex1(t)).

Definition 27 The feature of the tensor product representation u = (t) of a mini-
malist tree t is retained as the first feature of t’s head label. Thus feat : F → VF ,

feat(u) = first(label(head(u),u)).

Lemma 8 Let t ∈ TA. Then

feat((t)) = (feat(t))

with feat given in Definition 7.

Proof Follows immediately from previous lemmata and definitions.
Also the maximal projection becomes an analogue to a Fock space isometry.

Definition 28 Let u ∈ F and γ ∈ I . Then, max : I × F → I ,

max(γ,u) =
⎧
⎨

⎩

ε : γ = head(u)
i�max(δ, exi (u)) : γ = iδ and γ �= head(u)

undefined : otherwise.

Lemma 9 Let t ∈ TA and γ ∈ I . Then

max(γ,(t)) = max(γ, t)

with max given in Definition 8.

Proof (by induction over γ ). Let γ = head((t)). Then

max(γ,(t)) = ε = max(γ, t),

if γ �= head((t)), by contrast, we find δ ∈ I such that γ = iδ, hence

max(γ,(t)) = i�max(δ, exi ((t))) = i� max(δ, exi (t)) = max(γ, t).

The function max is naturally extended to sets of node addresses.
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Definition 29 Let u ∈ F and P ⊂ I . Then, max# : ℘(I )× F → ℘(I ),

max#(P,u) =
⋃

γ∈P

{max(γ,u)}.

Next we have to adapt the definition of the symbolic leaves function from Defini-
tion 10. The corresponding realization leaves : VF × F → ℘(I ) is obtained from a
generalized unbinding function

ubfeat(γ, f,u) = (f+ ⊗ s+
1 ⊗ r+

γ )(u), (13)

for given filler vector f ∈ VF and leaf address γ ∈ I , applied to the tensor product
representation of a tree t ∈ TA, because all first features of the tree’s leaves built partial
sums of the form

m∑

i=1

f i ⊗ s1 ⊗ rηi , (14)

as they are bound to the first role s1 in the feature lists. Here, rηi denote the multiple
tensor products of roles according to Definition 12.

Applying Eq. (13) to this expression yields

ubfeat(γ, f,u) = (f+ ⊗ s+
1 ⊗ r+

γ )

(
m∑

i=1

f i ⊗ s1 ⊗ rηi

)

=
m∑

i=1

f+(f i ) s+
1 (s1) r+

γ (rηi ) = δγ,ηi

for all f i = f .
Therefore we get

Definition 30 Let f ∈ VF and u ∈ F . Then, leaves : VF × F → ℘(I ),

leaves(f,u) = {γ ∈ I |ubfeat(γ, f,u) = 1}.
Lemma 10 Let t ∈ TA and f ∈ FF . Then

leaves(( f ),(t)) = leaves( f, t).

Proof The lemma follows from the above calculation.
Next, we modify the replacement function.

Definition 31 Let u,u′ ∈ F and γ ∈ I . Then replace : I × F × F → F with

replace(ε,u,u′) = u′

replace(0γ,u,u′) = conslabel(ε,u)(replace(γ, ex0(u),u′), ex1(u))

replace(1γ,u,u′) = conslabel(ε,u)(ex0(u), replace(γ, ex1(u),u′)).
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Lemma 11 Let t, t ′ ∈ TA and γ ∈ I . Then

replace(γ,(t),(t ′)) = (replace(γ, t, t ′))

with replace from Definition 11.

Proof (by means of induction over γ ). First let γ = ε. Then

replace(ε,(t),(t ′)) = (t) = (replace(ε, t, t ′)).

Next assume that Lemma 11 has already been proven for all address strings γ of length
p ∈ N0. Then iγ with i = 0 or i = 1 is of length p + 1 and it holds either

replace(0γ,(t),(t ′)) = conslabel(ε,(t))(replace(γ, ex0((t)),(t
′)),

ex1((t))) = cons(label(ε,t))((replace(γ, ex0(t), t ′)),(ex1(t)))

= (conslabel(ε,t)(replace(γ, t, t ′), ex1(t))) = (replace(γ, t, t ′))

or

replace(1γ,(t),(t ′)) = conslabel(ε,(t))(ex0((t)), replace(γ,

ex1((t)),(t
′))) = cons(label(ε,t))((ex0(t)),(replace(γ, ex1(t), t ′))) =

(conslabel(ε,t)(ex0(t), replace(γ, ex1(t), t ′))) = (replace(γ, t, t ′)).

Using the Fock space realization of replace we also extend the domain of the shift
function (21) from string vectors in S to tree vectors in F .

Definition 32 Let u ∈ F . Then, shift# : F → F with

shift#(u) = replace(head(u),u, shift(label(head(u),u))).

Lemma 12 Let t ∈ TA. Then

shift#((t)) = (shift#(t))

with shift# from Definition 12.

Proof The Lemma follows from previous observations.

3.3 Minimalist Grammars

In this section we introduce geometric minimalist structure-building functions and
prove that they are indeed Fock space realizations of the term algebraic functions
from Sect. 2.3.
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Definition 33 Let G = (P,C,Lex,M )be a minimalist grammar (MG) with phonetic
features P , categories C = B ∪ S ∪ L ∪ M , lexicon Lex ⊂ TA, and structure-building
functions M = {merge,move} as defined in Definition 13. Let sel : S → B be the
select function and lic : L → M be the license function. Moreover, let  = ψ ◦ βA

be a tensor product representation of the term algebra TA of G on Fock space F . We
introduce realizations sel : F → F and lic : F → F by demanding

(sel(s)) = sel((s))

(lic(�)) = lic((�))

for s ∈ S and � ∈ L . The domain of merge is given by all pairs of vectors Dommerge =
{(u1,u2) ∈ F × F |sel(feat(u1)) = feat(u2)}. The domain of move contains all
vectors Dommove = {u ∈ F |feat(u) ∈ (L) and max#(leaves(lic(feat(u)),u),u)
contains exactly one element}. Let u1,u2 ∈ Dommerge and u ∈ Dommove, then

merge(u1,u2) =
{

cons<(shift#(u1), shift#(u2)) if first(u1) �= 0
cons>(shift#(u1), shift#(u2)) if first(u1) = 0

move(u) = cons>(shift#(exmax(leaves(lic(feat(u)),u),u)(u)),

shift#(replace(max(leaves(lic(feat(u)),u),u),u, ε)))

Theorem 1 Let TA be the minimalist tree term algebra and  its tensor product rep-
resentation in Fock space F , as above. Let t1, t2 ∈ Dommerge and t ∈ Dommove,
then

merge((t1),(t2) = (merge(t1, t2))

move((t)) = (move(t))

with merge,move from Definition 13.

Proof The Theorem follows from the Lemmata in Sect. 3.2.
Taken together, we have proven that derivational minimalism (Stabler 1997; Stabler

and Keenan 2003; Michaelis 2001) can be realized by tensor product representations
as a starting point for integrated connectionist/symbolic architectures (Smolensky and
Legendre 2006a; Smolensky 2006).

3.4 Processing Algorithm

In order to realize a minimalist bottom-up processor as discussed in Sect. 2.4 in
Fock space, we have to represent the processor’s state descriptions (Stabler 1996).
This can be achieved through another filler/role binding by introducing new roles
p1, p2, . . . ∈ R for stack positions binding minimalist trees. Then the tensor product
representation of a state description w of length m assumes the form
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w =
m∑

k=1

wk ⊗ pk, (15)

where wk are tensor product representations of minimalist trees.
The minimalist algorithm as defined in Definition 14 becomes then realized by

corresponding Fock space functions merge∗ and move∗.

Definition 34 Let TA be the minimalist tree term algebra and  its tensor product
representation in Fock space F , as above. Furthermore, let F be augmented by the
role vectors of a minimalist state description. We define

1. merge∗ : F → F with

merge∗(w) =
m−2∑

k=1

(id ⊗ p+
k )(w)⊗ pk ⊕ merge((id ⊗ p+

m−1)(w), (id ⊗ p+
m)(w))

⊗pm−1.

2. move∗ : F → F with

move∗(w) =
m−1∑

k=1

(id ⊗ p+
k )(w)⊗ pk ⊕ move((id ⊗ p+

m)(w))⊗ pm .

In Definition 34 the adjoint vectors p+
k applied to the tensor product representation

w yield the corresponding expressions wk from Eq. (15). Clearly, this definition entails
a minimalist processor as stated by the next theorem.

Theorem 2 Let TA be the set of minimalist expressions and the tensor product rep-
resentation of its state descriptions in Fock space F , as above. The functions merge∗
and move∗ given in Definition 34 realize a minimalist bottom-up processor in Fock
space.

The proof of Theorem 2 requires the realizability of permutation operators � :
F → F in Fock space. Such general permutations can be assembled from elemen-
tary transpositions τi j , exchanging items i and j in an m-tuple. The corresponding
realization Ti j is then obtained in the following way. Let

w =
m∑

k=1

wk ⊗ pk

be the state description in Fock space and Pi j be the projector on the orthocomplement
spanned by pi and p j . Then

Ti j (w) = Pi j (w)+ (id ⊗ p+
i )(w)⊗ p j + (id ⊗ p+

j )(w)⊗ pi (16)

realizes the transposition τi j in Fock space F by means of unbinding functions. Then
entries in the state description can be the rearrangement such that merge∗ and move∗
as defined in Definition 34 become applicable.
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3.5 Harmonic Minimalist Grammars

A crucial component of ICS is harmony theory. At the symbolic level of description,
harmony assesses the well-formedness of a structure by means of soft-constraints
rewarding the minimization of markedness. It can be gauged in such a way, that
totally well-formed output assumes harmony H = 0. By contrast, at the subsymbolic
level of description, harmony provides a Lyapunov function guiding the computational
dynamics by means of gradient ascent. In a neural network realization harmony of an
activation vector v is given by a quadratic form

H(v) = v+ · W(v) · v,

where v+ denotes the transposed of v and W(v) is the synaptic weight matrix in
state v corresponding to the computational function applied to v (Smolensky 2006;
Smolensky and Legendre 2006a,b).

We owe a first indication of weighted or harmonic minimalist grammars (HMG)
to Stabler (1997) who speculated about “additional ‘economy principles,’ acting as
a kind of filter on derivations” (see also Harkema 2001). Hale (2006) made the first
attempt to implement this idea by constructing probabilistic context-free grammars
from minimalist derivation trees. Therefore we suggest the following definition.

Definition 35 A harmonic minimalist grammar (HMG) is a minimalist grammar G
(Definition 13) augmented with:

1. A weight function for feature terms W : TF → ⊕∞
p=1 R

p, such that W (s) is
a p-tuple (x1, x2, . . . , x p) ∈ R

p of real weights assigned to a feature term s =
( f1 ◦ f2 ◦ · · · ◦ f p)(ε) of length p ∈ N. In particular, W assigns weights to the
features in the minimalist lexicon Lex.

2. A harmony function for trees H : TA → R, given by

H(t) = x+
1 (W (label(head(t), t))),

with the adjoint vector x+
1 of the direction of the x1-axis: x+

1 (x1, x2, . . . , x p) = x1,
returns the weight of t’s head.

3. A collection of partial functions hmerge : R × TA × TA → R × TA and hmove :
R × TA → R × TA, defined as follows:

hmerge(h, t1, t2) = (h + H(t1)+ H(t2),merge(t1, t2))

hmove(h, t) = (h + H(t)+ H(exmax(leaves(lic(feat(t)),t),t)(t)),move(t)),

for h ∈ R.
4. The harmony filter: A minimalist tree t ∈ TA is harmonically well-formed if it is

MG well-formed and additionally

h(t) ≥ 0,
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where h(t) is the cumulative harmony of t after application of hmerge and hmove
during the derivation of t , starting with initial condition h0 ∈ R.

Next, we suggest a metric for geometric representations that can the regarded as a
measure of harmony. For that aim we assume that the Fock space F is equipped with
a norm || · || : F → R

+
0 assigning a length ||u|| to vector u ∈ F . Such a norm could

be supplied by a scalar product, when F is a Hilbert space.

Definition 36 Let (w1,w2, . . . ,wT ),wk ∈ F , 1 ≤ k ≤ T, T ∈ N be a (finite) tra-
jectory in Fock space of duration T , representing a minimalist derivation with initial
state w1 and final state wT . We define harmony through the distance of an intermediate
step wk from the well-formed parse goal wT , i.e.

H(wk) = −||wk − wT ||.

Lemma 13 The harmony function from Definition 36 is non-positive for all processing
steps and increases towards H = 0 when approaching the final state, H(wT ) = 0.

Proof The Lemma follows immediately from Definition 36.
Eventually we combine Definition 35 and Definition 36 by looking at harmony

differences�Hk = H(wk+1)− H(wk) between successive parse steps. These differ-
ences can be distributed among the features triggering the transition from wk to wk+1,
as will be demonstrated in Sect. 4.3. HMG could then possibly account for gradience
effects in language processing.

4 Applications

In this section we present two example applications which use the tensor product rep-
resentations of Sect. 3.2 in different ways. Both representations are given here, since it
is the aim of this paper to give theoretical justifications for both at the same time. The
representations are using two different encodings. At first we show arithmetic rep-
resentations implemented by Gerth (2006), then, we describe fractal representations
outlined by Gerth and beim Graben (2009). For computing harmony we use Euclidian
norm in both cases.

4.1 Arithmetic Representation

In a first step, we map the fillers F for the features of the lexical items onto 12 filler
vectors as shown in Table 1.

In order to ensure a faithful representation, filler vectors need to be linearly inde-
pendent, i.e., they form a basis of 12-dimensional vector space. Trying to implement
this requirement, leads to an explosion of dimensions (more than 5 millions) which
was beyond the limits of memory on the used workstation. Therefore, we refrained
from linear independence and used a linearly dependent, distributed, representation
of filler vectors in a 4-dimensional vector space f i ∈ R

4, (1 ≤ i ≤ 12) instead.
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Table 1 Fillers for the
minimalist lexicon outlined in
Fig. 2

d f1

= d f2

v f3

= v f4

t f5

= t f6

+CASE f7

−case f8

+I f9

−i f10

> f11

< f12

The actual filler vectors are:

f1 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , f2 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , f3 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , f4 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ ,

f5 = 1√
3

⎛

⎜
⎜
⎝

1
1
1
1

⎞

⎟
⎟
⎠ , f6 = 1√

3

⎛

⎜
⎜
⎝

−1
1
1
1

⎞

⎟
⎟
⎠ , f7 = 1√

3

⎛

⎜
⎜
⎝

1
−1
1
1

⎞

⎟
⎟
⎠ , f8 = 1√

3

⎛

⎜
⎜
⎝

1
1

−1
1

⎞

⎟
⎟
⎠ ,

f9 = 1√
3

⎛

⎜
⎜
⎝

1
1
1

−1

⎞

⎟
⎟
⎠ , f10 = 1√

3

⎛

⎜
⎜
⎝

−1
−1
1
1

⎞

⎟
⎟
⎠ , f11 = 1√

3

⎛

⎜
⎜
⎝

1
−1
−1
1

⎞

⎟
⎟
⎠ , f12 = 1√

3

⎛

⎜
⎜
⎝

1
1

−1
−1

⎞

⎟
⎟
⎠ .

Similarly, the tree roles from Fig. 11 are represented by three-dimensional basis
vectors as achieved in previous work (beim Graben et al. 2008a; Gerth and beim
Graben 2009). Further, we need to map the list positions si (1 ≤ i ≤ 4) of the features
onto role vectors. Therefore, a total of 3 + 4 = 7 role vectors is required. Again we
have to use a linearly dependent representation for role vectors because of an explosion
of dimensions and a restriction on available workstation memory.

In particular, we make the following assignment for tree roles “left-daughter” r0 =
e1; “right-daughter” r1 = e2; “mother” r2 = e3, where ek (k = 1, 2, 3) are the
canonical basis vectors of three-dimensional space R

3. The roles of list positions in
the feature arrays of the minimalist lexicon ri+2 = si (1 ≤ i ≤ 4) are indicated in
Fig. 14.
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Fig. 14 Roles for the Minimalist lexicon outlined in Fig. 2

The vectors for the list positions are distributed on the unit sphere in R
3:

r3 = 1√
3

⎛

⎝
1
1
1

⎞

⎠ , r4 = 1√
3

⎛

⎝
−1
1
1

⎞

⎠ , r5 = 1√
3

⎛

⎝
1

−1
1

⎞

⎠ , r6 = 1√
3

⎛

⎝
1
1

−1

⎞

⎠ .

The following example shows a tensor product representation of the lexical item
for “love”:

In our arithmetic tensor product representation, tensor products are then given as
Kronecker products (Mizraji 1992) of filler and role vectors, f i ⊗ rk , by:

⎛

⎜
⎜
⎜
⎝

f1
f2
...

f12

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

r0
r1
...

r6

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1

⎛

⎜
⎜
⎜
⎝

r0
r1
...

r6

⎞

⎟
⎟
⎟
⎠

f2

⎛

⎜
⎜
⎜
⎝

r0
r1
...

r6

⎞

⎟
⎟
⎟
⎠

...

f12

⎛

⎜
⎜
⎜
⎝

r0
r1
...

r6

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1r0
f1r1
f1r2
f1r3
f1r4
f1r5
f1r6
f2r0
f2r1
f2r2
f2r3
f2r4
f2r5
f2r6
...

f12r0
f12r1
f12r2
f12r3
f12r4
f12r5
f12r6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In order to construct an appropriate embedding space, we chose the largest tree
appearing in the minimalist state description. The tensor product representation of
every tree t ∈ TA is then embedded into that space by left-multiplication of the tree-
roles with sufficient tensor powers
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Table 2 Fractal encoding for
minimalist lexicon in Fig. 2

Filler fi Code

d 0

= d 1

v 2

= v 3

t 4

= t 5

+CASE 6

−case 7

+I 8

−i 9

> 10

< 11

r⊗p
2 = r2 ⊗ r2 ⊗ · · · ⊗ r2

(p times) of the mother role, where the exponent p ∈ N0 is different for every tree.
Finally, we have to construct the tensor product representation for the state descrip-

tions of a minimalist bottom-up processor as described in Sect. 3.4. Here, we bind
all minimalist expressions to only one role p0 for the state description. For the tensor
product representation, we simply choose p0 = 1, i.e. the scalar unit. As a result,
all tree representing vectors become linearly superimposed in the state description
(Smolensky and Legendre 2006a).

4.2 Fractal Tensor Product Representation

Gerth and beim Graben (2009) introduced a different encoding called fractal tensor
product representation which is a combination of the arithmetic description in the
previous section and scalar Gödel encodings (beim Graben and Potthast 2009; Gerth
and beim Graben 2009). For a fractal representation we encode the three tree roles
r0, r1, r2 localistically by the canonical basis vectors of three-dimensional vector space
as above. However, fillers for minimalist features are represented by integer numbers
g( fi ) from a Gödel encoding. The Gödel codes used in our example are shown in
Table 2.

The role vectors of the tree positions are mapped onto three-dimensional vectors
in the same way as described in Sect. 4.1. The only difference is the encoding of the
positions of the lexical items in the feature array. Here, the roles sk are encoded by
fractional powers N−k of the total number of fillers, which is N = 12 and k denotes
the k-th list position. The following example shows the lexical entry for “love” and its
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fillers represented as Gödel numbers:

Llove =

⎡

⎢
⎢
⎣

= d 1
v 2

−i 9
love

⎤

⎥
⎥
⎦ ,

It becomes described by the sum of (tensor) products of Gödel numbers for the
fillers and fractions for the list positions:

g(Llove) = 1 × 12−1 + 2 × 12−2 + 9 × 12−3 = 0.1024.

The next example illustrates the encoding of a subtree, consider the tree:

Its encoding is given through

g(<)⊗ r2 ⊕ g(Ll)r0 ⊕ g(Lr )⊗ r1

= 11 × 12−1

⎛

⎝
0
0
1

⎞

⎠ + (2 × 12−1 + 9 × 12−2)

⎛

⎝
1
0
0

⎞

⎠ + 7 × 12−1

⎛

⎝
0
1
0

⎞

⎠

=
⎛

⎝
0.229
0.583
0.917

⎞

⎠ , (17)

where Ll and Lr denote the feature arrays of the left and right leaf.
Complex trees are again represented by Kronecker products (see Sect. 4.1 for

details).
The state description of the algorithm is mapped step by step onto the fractal tensor

product representation. At first, each leaf in the tree is encoded in an enumeration of
fractals. In the second step the encoding of the whole state description is achieved by
recursively binding minimalist trees as complex fillers to 3-dimensional role vectors.
Finally the representation of all trees in the state description is linearly superimposed
in a suitable embedding space.

4.3 Results

In this section we present the results of the applications obtained in the previous
sections (Sects. 4.1, 4.2).
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Fig. 15 Tensor product representation of the lexical item “love”
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Fig. 16 Results for the arithmetic representation (Sect. 4.1). a Phase portrait of the first principal compo-
nent, PC#1, versus the second principal component, PC#2. b Harmony time series from Definition 36

The final derivation of the minimalist algorithm (Sect. 2.5) results in a matrix which
is the state space trajectory. Each column stands for one derivational step in form of
a vector in a high-dimensional embedding space. The dimensions of the final embed-
ding space are d = 78, 732 for the arithmetic representation and d = 6, 561 for the
fractal tensor product representation.

For visualization purposes the data have to be compressed. A common technique in
multivariate statistics is the principal component analysis (PCA), which has been used
as an observable model previously (beim Graben et al. 2008a; Gerth and beim Graben
2009). Before applying the PCA the trajectories are standardized using z-transforma-
tion to obtain a transformed distribution with zero mean and unit variance. Then the
greatest variance in the data is in the direction of the first principal component, the
second greatest variance is in the direction of the second principal component and so
on. Plotting the first, PC#1, and the second, PC#2, principal component as observ-
ables against each other, entails a two-dimensional phase portrait as an appropriate
visualization of the processing geometry.

First, we present the phase portrait and the harmony time series from Definition 36
of the arithmetic representation for sentence 1 in Sect. 2.5 in Fig. 16.

Figure 16a shows the phase portrait in principal component space. Each parse step
is subsequently numbered. Figure 16b presents the temporal development of the har-
mony function.

The derivation unfolds as described in Sect. 2.5. The initial state description (step
1) represents the lexicon and starts in coordinate (−1.72,−1.43) in Fig. 16a with
a harmony value of H = −6.49 (Fig. 16b). As processing continues the harmony
climbs steadily upwards. In parse step 3 ε is merged to the tree (Fig. 16a): coordinate
(−3.83,−7.3)). Interestingly the graph of the harmony reaches a local minimum in
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Fig. 17 Results for the fractal representation (Sect. 4.2). a Phase portrait of the first principal component,
PC#1, versus the second principal component, PC#2. b Harmony time series from Definition 36

Table 3 Harmony time series for both tensor product representations

Representation Step: 1 2 3 4 5 6 7 8 9

arithmetic (Sect. 4.1) −6.49 −5.96 −6.08 −5.3 −5.36 −5.08 −4.94 −4.76 0

fractal (Sect. 4.2) −2.63 −2.97 −3.4 −3.33 −3.6 −3.8 −3.74 −3.71 0

H = −6.08 here and continues again upwards until parse step 8 (Fig. 16a): coordinate
(−5.05, 15.70); Fig. 16b: H = −4.76. In this step the subject “Douglas” is moved
upwards leading to the final phonetic, but not yet fully syntactically parsed, repre-
sentation of the sentence. In the end the graphs reach their final states in coordinate
(−2.51,−0.71) (Fig. 16a) and in H = 0 (Fig. 16b).

Figure 17 shows the observables for the processing mapped onto the fractal repre-
sentation. Figure 17a displays the phase portrait in principal component space. Besides
the apparent nonlinearity, one realizes another interesting property of the fractal rep-
resentation: While the minimalist processing unfolds, the feature arrays contract. This
is reflected by the increasing phase space volume available to the geometric dynam-
ics. As above, Fig. 17b illustrates the temporal development of the harmony function.
Again, the initial state description represents all entries in the lexicon which starts in
coordinate (−0.03, 0.07) in Fig. 17a with a harmony value of H = −2.63 in Fig. 17b.
In comparison to Fig. 16a the representations of the first seven parse steps stay close to
each other before deviating to coordinate (−0.25, 6.09) in step 8. The harmony curve
in Fig. 17b exhibits a downwards trend. Like in Fig. 16b the graph of the harmony
reaches a local minimum in parse step 3 (H = −3.4) when ε is merged to the tree
(Fig. 17a): coordinate (−7.3,−5, 8). Finally the end states are reached in coordinate
(6.8,−0.94) (Fig. 17a) and in a harmony value of H = 0 (Fig. 17b).

Table 3 summarizes the evolution of harmonies for both representations.
Finally, we construct HMGs from these data by assigning harmony differences to

the features of the minimalist lexicon as follows: First, we compute harmony differ-
ences�Hk = H(wk+1)− H(wk) between successive processing steps from Table 3.
Then, the difference�Hk is assigned to either a selector or a licensor that triggers the
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Fig. 18 Harmonic minimalist lexicon of sentence 1 obtained from arithmetic representation (Sect. 4.1)

Fig. 19 Harmonic minimalist lexicon of sentence 1 obtained from fractal representation (Sect. 4.2)

transition from wk to wk+1 while the corresponding basic categories or licensees are
weighted with zero.

Figure 18 depicts the resulting HMG lexicon for the arithmetic representation (Sect.
4.1).

Moreover, Fig. 19 shows the HMG lexicon for the fractal representation (Sect. 4.2).

5 Discussion

In this paper we developed a geometric representation theory for minimalist
grammars (MG). We resumed minimalist grammars in terms of partial func-
tions acting on term algebras of trees and feature arrays. Those complex data
structures were mapped onto vectors in a geometric space (known as the Fock
space Haag 1992; Smolensky and Legendre 2006a) using filler/role bindings
and tensor product representations (Smolensky and Legendre 2006a; Smolensky
2006; beim Graben and Potthast 2009). We were able to prove that the min-
imalist structure-building functions merge and move can be realized as piece-
wise linear maps upon geometric vector spaces. In order to present a proof-of-
concept, we generalized the merge and move functions towards state descrip-
tions of a simple derivation procedure for minimalist trees which also found
a suitable realization in representation space. In addition, we suggested a har-
mony function measuring the distance of an intermediate processing state from a
well-formed final state in representation space that gave rise to an extension of
MG towards harmonic MG (HMG). This harmony observable could be regarded
as a metric for processing complexity. While our proofs essentially relied on
faithful representations, we used two different kinds of non-faithful, distributed
representations in our numerical applications. Firstly, we employed arithmetic vec-
tor space encodings of minimalist features, roles and trees. Secondly, we used
fractal tensor product representations that combine arithmetic vector spaces with
numeric Gödel encodings. For both cases, we presented phase portraits in prin-
cipal component space and harmony time series of the resulting minimalist der-
ivations. Finally, we derived the corresponding HMGs from simulated harmony
differences.
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Our theory proves that sophisticated grammar formalisms such as MG can be real-
ized in a geometric representation. This would be a first step for dynamic cognitive
modeling of an integrated connectionist/symbolic (ICS/DCM) architecture for pro-
cessing minimalist grammars. Since natural languages tentatively belong to the same
complexity class of mildly context-sensitive languages (Shieber 1985; Stabler 2004),
ICS/DCM architectures are principally able to process natural language. However, the
simple processing algorithm used in the present study just for illustrating the represen-
tation theory, is not a sound and complete minimalist parser (Harkema 2001; Mainguy
2010; Stabler 2011). Therefore, future work towards psycholinguistically more plausi-
ble processing models, would comprise the development of a geometric representation
theory for chain-based minimalism and for multiple context-free parsing (Harkema
2001; Stabler and Keenan 2003).

Moreover, processing minimalist grammars by ICS/DCM architectures straight-
forwardly provides a notion of harmony. However, a proper treatment of HMG
would require further investigations to be carried out: Our definition of harmony in
Definition 36 combines a particular metric (e.g. Euclidian) with one well-formed
reference state wT for minimalist processing, while harmony in ICS is defined as a
general quadratic form only depending on the synaptic weight matrix. Therefore, one
has to examine how these expressions would transform into each other. Moreover,
HMG lexicons in the sense of Definition 35 could also be trained from large text
corpora, e.g., in order to explain gradience effects. Then one has to check how sub-
symbolic harmony would be related to soft-constraint harmony obtained from corpus
studies.

The requirements of our theory for tensor product constructions to be faithful
representations of minimalist processing lead to extremely high-dimensional embed-
ding spaces. These spaces contain extremely few symbolically meaningful states.
Therefore, numerical application on common workstations is only feasible by using
compressed and thus non-faithful representations. Yet, non-faithful representations
are also interesting for more principal reasons, as they allow for memory capacity
constraints, e.g. by means of graceful saturation in neural network models (Smolen-
sky and Legendre 2006a; Smolensky 2006). Several possible compression techniques
have been suggested in the literature, e.g. contraction (i.e. outtraceing), circular convo-
lution, holographic reduced representations, or geometric algebra (Coecke et al. 2011;
Aerts et al. 2009; Plate 2003; Smolensky and Legendre 2006a; Smolensky 2006; beim
Graben and Potthast 2009). It would therefore be necessary to generalize our cur-
rent theory to compressed representations, including an assessment of the entailed
representation errors. We leave this issue for future work.

Another important aspect of our work concerns the relationship between minimalist
grammar and compositional semantics. On the one hand, it is straightforward to include
semantic features into minimalist lexicons, e.g. as type-logical expressions (Niyogi
and Berwick 2005). On the other hand, this is somewhat redundant because the very
same information is already encoded in the minimalist features (Kobele 2006). Vector
space semantics appears as a very powerful tool for combining corpus-driven latent
semantic analysis (Cederberg and Widdows 2003) with compositional semantics based
on compressed tensor product representations (Blutner 2009; Aerts 2009; Coecke et al.
2011). In our geometric representation theory, syntactic roles and thereby also seman-
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tic functions are encoded by node addresses in high-dimensional tensor products of
role vectors for tree positions. Therefore, one should seek for appropriate unbinding
maps that could be combined with their semantic counterparts (Coecke et al. 2011).
Also this promising enterprise is left for future work.
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