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Abstract

A well-known result [6] states that, over basic Kalmar elementary arith-
metic F'A, the induction schema for ¥, formulas is equivalent to the uniform
reflection principle for ¥,41 formulas (n > 1). We show that fragments of
arithmetic axiomatized by various forms of induction rules admit a precise
axiomatization in terms of reflection principles as well. Thus, the closure of
EA under the induction rule for ¥, (or II,41) formulas is equivalent to w
times iterated X, reflection principle. Moreover, for k < w, k times iterated
3, reflection principle over E A precisely corresponds to the extension of EA
by < k nested applications of ¥, induction rule.

The above relationship holds in greater generality than just stated. In
fact, we give general formulas characterizing in terms of iterated reflection
principles the extension of any given theory (containing FA) by < k nested
applications of ¥,, or IT,, induction rules. In particular, the closure of a theory
T under just one application of ¥; induction rule is equivalent to T together
with ¥, reflection principle for each finite IT, axiomatized subtheory of T'.

These results have closely parallel ones in the theory of subrecursive func-
tion classes. The rules under study correspond, in a canonical way, to natural
closure operators on the classes of provably recursive functions. Thus, X
induction rule precisely corresponds to the primitive recursive closure opera-
tor, and 3; collection rule, introduced below, corresponds to the elementary
closure operator.

1 Introduction

It is well known that first order theories can be defined, over first order logic, by
sets of axioms as well as by sets of rules. An axiom can be viewed as a particular
kind of rule with an empty, or with some fixed, provable premise. Vice versa, for a
theory T axiomatized by rules, all theorems of T" constitute a trivial axiomatization
of T by a set of axioms. So, if one identifies a theory with its set of theorems — a
point of view especially supported by the model-theoretic tradition in logic — there
is no essential difference between rules and axioms.

This paper is devoted to a detailed proof-theoretic analysis of restricted in-
duction rules in arithmetic. Our main results characterize closures of arithmetical
theories containing EA by induction rules in terms of axioms. In contrast with
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the above observation, we are looking for natural and informative axiomatizations,
rather than for easy but useless ones.

One difficulty in the way of this project lies in the fact that, in general, the closure
of a theory T under a given inference rule R not only depends on R, but on also
on T. So, a meaningful characterization of a rule must somehow take into account
arbitrary theories T' (of a given class). This feature requires a somewhat sharper
analysis of induction rules than those existing in the proof-theoretic literature [10,
11, 17, 18], for in all these works the authors dealt with the closures under the
induction rules of particular base theories, such as EA or PRA.

Our axiomatizations are formulated in terms of iterated reflection principles, see
[20, 14]. Very roughly, k times iterated reflection principle of relevant arithmetical
complexity happens to be the strongest formula that can be inferred from a given
finite theory (of relevant complexity) using < k nested applications of the induction
rule in question. In this sense our axiomatizations are canonical. In particular, this
also allows for general characterizations of the closures of arbitrary extensions of
E A under the restricted induction rules.

Our characterizations are informative in the sense that they yield several inter-
esting corollaries concerning finite (non)axiomatizability of theories given by induc-
tion rules, give wide sufficient conditions for the equivalence of (closures of theories
by) II,+1 and ¥, induction rules, and allow us to give new proofs of several old
results, such as the conservativity results for induction schemata over induction
rules, characterizations of provably total recursive functions of theories axiomatized
by rules, and others.

The rules studied in this paper correspond to natural closure operators on the
classes of provably recursive functions of theories, e.g., ¥; induction rule precisely
corresponds to the primitive recursive closure operator. We also introduce and study
a natural version of ¥ collection rule, which corresponds to the elementary closure
operator. This rule is especially useful for the analysis of theories, whose classes
of provably recursive functions are not elementarily closed. The role of reflection
principles in connection with the rules is similar to the role of universal functions
for subrecursive classes w.r.t. the above-mentioned closure operators.

For further discussion we must fix some terminology and formulate a few back-
ground results.

Kalmar elementary arithmetic EA is a theory known in several equivalent for-
mulations. When formulated in the standard language of Peano arithmetic PA
it has the name IAg + EXP and is axiomatized by restricting, in the standard
formulation of PA, the schema of induction

A(0) AVz(A(z) —» Az + 1)) = VzA(z) (1)

to bounded formulas A(z) and by adding a Il axiom stating that the function 2*
is total. It is well-known that IAy + EXP is a finitely axiomatizable theory [4].

In an alternative formulation, the language of EA contains function symbols for
all Kalmar elementary functions, and mathematical axioms of EA are (1) (open)
defining equations for all these functions; (2) the schema of induction for open
formulas. It is known that EA admits a purely universal (or quantifier free) axiom-
atization in this language. The two formulations of EA are equivalent in the sense
that the second theory can be viewed as a conservative ‘definitional extension’ of
the first one.

Let us also mention the fact that there exists a finite, purely universal formula-
tion of F'A in a language with symbols for finitely many elementary functions. This
fact is closely related to a well-known theorem, originally due to R6dding, stating
that the class of Kalmar elementary functions has a finite basis under composition



(see, e.g., [7, 9]). We shall sketch a proof of this useful fact, as well as that of the
finite basis theorem, in Section 4.

Our results are invariant w.r.t. the choice of the language of EA, but not all of
their proofs are. For definiteness (unless the opposite is obvious from the context)
we assume that FA is formulated in the language of PA. It is known that EA is
strong enough to reasonably formalize syntax, provability, Godel’s incompleteness
theorems, partial truthdefinitions (see [4]). All theories considered below are as-
sumed to contain KA. By an arithmetical theory we mean a theory formulated in
the language of EA. Classes of arithmetical ¥,, and II,, formulas, for n > 1, are
defined in the usual way (cf [4], p. 13).

C. Parsons was probably the first to systematically study fragments of PA ob-
tained by restricting various forms of induction to classes of the arithmetic hierarchy.
In [10, 11], among other things, he showed that, over EA, the induction schema (1)
for ¥, formulas A(z), denoted ¥,-TA, is strictly stronger than the corresponding
induction rule for ¥, formulas, ¥,-IR (n > 1):

A(0), Vz(A(z) - A(x + 1)) F VzA(z).

Parsons demonstrated that many other natural forms of restricted induction over
E A are equivalent to one of these two. In particular,

EA+ 3, 1A = EA +11,-1A, (2)
(this theory is also often denoted I'Y,,) and
EA+ 3, IR = EA+1I,,,-IR. (3)

Here the expression 7' = U means that the theories 7" and U are deductively equiv-
alent, i.e., have the same set of theorems.

Despite the two results looking very similar, they are rather different in na-
ture, as the reader familiar with their proofs undoubtedly feels. Equivalence (2)
actually holds over any theory T containing E'A, and this indicates a really tight
relationship between the two axiom schemata. On the other hand, it is well-known
that equivalence (3) may cease to be true for some theories stronger than EFA. For
example,

IEl + El-IR = IEl 5_'5 IEl + H2-IR,

because 1Y, + II,-IR proves the consistency of 1Y, e.g., by our results in Section 3.
This shows that, from some sharper point of view, ¥;-IR and II5-IR are substantially
different rules. In order to accurately formulate this point of view we adopt a few
rather general definitions.

Since the rules we deal with in this paper typically apply to any one from an
infinite collection of premises, we say that a rule is a set of instances, that is,
expressions of the form

Ai,..., A,

B )
where A;,..., A, and B are formulas. Derivations using rules are defined in the
standard way; 7"+ R denotes the closure of a theory 7" under a rule R and first
order logic. [T, R] denotes the closure of T' under unnested applications of R, that
is, the theory axiomatized over T' by all formulas B such that, for some formulas

Aq,..., A, derivable in T, Al"]'i;’A" is an instance of R.

Definition 1. Let R; and Ry be rules. R; is reducible to Ry (denoted R; < R»)
iff, for every theory T containing FA, [T, R;] C [T, Rs]. R; and R, are congruent
(R1 = RQ) iff R1 S R2 and RQ S Rl.



Informally, Ry < R» means that an arbitrary application of R; can be modeled
over EA by unnested applications of R,. Notice that < is reflexive and transitive,
so that = is an equivalence relation. For the purposes of this paper we may safely
identify congruent rules.

We say that a rule R is congruent to a set of axioms U, iff R is congruent to U
considered as a trivial schematic rule (with the empty premise), or equivalently, iff
[T, R] = T+U for any theory T extending EA. Notice that rules congruent to axiom
schemata have a trivial behaviour in the sense that they cannot be applied fruitfully
more than once: nested applictions of such rules do not yield new theorems.

Definition 2. R; is derivable from R» (denoted R; <X R), iff for every theory T
containing FA, T+ R; CT + Rs.

In other words, R; < R iff for any application % of R, there exists a deriva-
tion of B from Ay, ..., A, using EA and rule Ry. Clearly, R; < R» implies R; < R»
but not necessarily vice versa. Below we shall see that equivalences of rules estab-
lished by purely elementary methods can usually be strengthened to congruences.
On the other hand, equivalence proofs involving more sophisticated methods usu-
ally depend on the choice of a particular base theory and therefore do not yield
reducibilities either in the sense of Definition 1 or 2.

Example. We have seen that II,-IR £ ¥;-IR, although the closure of FA under
each of these rules is the same. On the other hand, obviously ¥;-IR < II>-IR.
Corollary 2.2 in Section 2 shows that II,,-IR < X,,-IR, for n > 1, but not vice versa.

The plan of the paper is as follows. In Section 2 we classify various forms
of induction rules modulo congruence relation. We shall show that these rules,
most commonly, fall into one of the three distinct categories: (a) rules congruent to
induction axiom schemata; (b) rules congruent to ¥, induction rule ¥,-IR; (c) rules
congruent to II,, induction rule IT,-IR. (An interesting candidate for falling out of
this classification is the induction rule for boolean combinations of ¥, formulas,
which is derivable from, but possibly not reducible to, X,-IR for n > 1; see Section
10.)

The question of the axiomatizability of rules of category (a) is trivially settled.
So, in the remaining part of the paper we analyze the other two cases. In Section
3 we introduce reflection principles and characterize IL,,-IR for n > 1. A similar
characterization of 3,,-IR is more difficult and is given in Section 7 for ¥;-IR, and in
Section 9 for ¥,,-IR, n > 1. The characterization of ¥;-IR requires a rather careful
analysis of provably recursive functions of theories axiomatized by this rule. In Sec-
tion 4 we recall basic facts about provably recursive functions and formulate an easy
characterization of these functions for closures of II» axiomatized theories by ¥;-IR.
In Section 5 we analyze the question, when the class of provably recursive functions
of a theory is elementarily closed. A natural sufficient condition is formulated in
terms of Xy collection rule. In Section 6, on the basis of these results, we construct
a suitable universal function for the class of provably recursive functions of a finite
I, axiomatized extension of EA using only unnested applications of ¥;-IR over
that theory. This allows us to obtain in Section 7 the required characterization of
¥1-IR, and subsequently relativize it to %,,-IR for n > 1.

It should be said that in the proof of our main results we did not try to be
overly laconic. We have included proofs of several results which were formally never
used in the main proofs, like a theorem of R. Peter on nested recursion, or the
results the use of which could be avoided, like the finite basis theorem for Kalmar
elementary functions. It seems to us that proofs of these easy facts (modulo the
rest of our techniques) would enhance the reader’s general understanding of peculiar



phenomena treated in this paper, so we decided to include them. The results of
Section 3 of this paper have been earlier announced in [1].
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2 Basic equivalences

C. Parsons showed that many natural forms of induction (of restricted arithmetical
complexity) over FA are equivalent to either ¥,-IR or ¥,-TA. In this section we
obtain a few more results of this kind. We classify various forms of induction rules
modulo the sharper congruence relation. Some of Parsons’ equivalences then turn
out to be congruences, whereas some others do not. We also examine a few rules that
have not been considered by Parsons. In addition to IR we consider the following
forms of induction rule:

IRo: Vz (A(z) - A(x + 1)) F A(0) = Vz A(z)

IR.: Vo (Vy<zA(y) — A(z)) F Vo A(x)

LR: 3JzA(z) F 3z (A(z) AVy <z —A(y))
As usual, for T a class of arithmetical formulas, I'-IRg, I'-IR ., and I'-LR will denote
the above rules with the restriction that A € I'. We also assume that formulas A(z)

may contain free parameters other than x. Everywhere below, whenever we talk
about X, or II,, induction rules or axioms, it will be implicitly assumed that n > 1.

Proposition 2.1. ¥,-IRg = I1,,-IRy = ¥,-IR

Proof. 1. The congruence 3,-IRg = II,,-IRg is proved in analogy with the proof of
the equivalence of ¥,-TA and II,,-TA (cf [11]). For example, to show that ¥,-IRg <
I1,,-IRg consider a formula A(z) € X,, such that

T FVz (A(z) - Az + 1)).
Then for B(a, ) := ~A(a—z) one has
T+ Vz (B(a,z) = Bla,z + 1)),
whence

[T,11,-IRg] B(a,0) — Vz B(a, )

'_
F B(a,0) — B(a,a)
F A(0) — Ala), q.e.d.

Notice that a similar trick does not work with the rule IR.



2. Obviously, X,-IR < ¥,-IRy, so we only have to show that ¥,-IRg < ¥,-IR.
Let JyA(y,z) € X, with A(y,z) € II,,_1, and let

T Ve (IyA(y,z) = IyA(y,z + 1)).
Then we have
T+ Vx (Fy (A(a,0) = Ay, z)) — Ty (A(a,0) = A(y,z + 1)))

and obviously
T+ Jy (A(a,0) = A(y,0)).

It follows that

[T,%,-IR] F Vady (A(a,0) - A(y,z))
F o JuA(u,0) = VzIy A(y, z), g.e.d.

Corollary 2.2. II,,-IR < ¥,-IR, X,-IR A II1,-IR.

Proof. First, I1,,-IR < II,,-IRg, and by Proposition 2.1 I1,-IRy < X,,-IR.

Second, it is easily seen (and was noticed by Parsons) that EA+X1-IR contains
I¥j. On the other hand, by a theorem of Leivant [6] on the optimal complexity
of axiomatization of induction, EA + I} 41-IR, being an extension of EA by a set
of true ;41 sentences, cannot contain IX. This shows our claim for n > 1. For
n = 1 we notice that, e.g., by Theorem 2 proved in Section 7, [FA, ¥;-IR] contains
the uniform ¥ reflection principle for EA (this fact can also be inferred from some
results in Wilkie and Paris [21]). This means that [E'A, ¥;-IR] is not contained in
any consistent set of IT; sentences over EA, in particular, not in EA +1I;-IR, g.e.d.

Proposition 2.3. II,,-IR. =2 II,-IR, ¥,-IR. = X,,-IR

Proof. The only nontrivial reduction is 3,-IR. < X,,-IR. (Notice that, if A(z) €
¥,, the formula Yy < = A(y) need not be equivalent to a ¥,,-formula in absence of
¥ ,-collection principle, and so the obvious argument does not work.)
Suppose
THVYz(Vy <z A(y) = A(x)), (4)

where A(x) := Ju Ao(x,u), Ao(x,u) € II,,_1. Define:
B(z) := 32Vy < x Ao(y, (2)y).

Here (z), denotes the y-th element of a sequence coded by z, the standard coding
function being Kalmar elementary. Clearly, B(z) € ¥,, and from (4) one readily

obtains
T+ B(0) AVz (B(z) —» Bz + 1)).

Applying ¥,-IR once, we get Vo B(z) and VaIy Ao(z,u), q.e.d.

Now we examine some rules congruent to axiom schemata. The effect of such
rules over a theory T is precisely that of adding to T a fixed amount of axioms (that
do not depend on T'). This idea is spelled out in the following definition.

Definition 3. A rule R is congruent to a set of formulas U (denoted R = U) iff,
for every theory T' containing FA, [T,R] =T + U.



It is not difficult to see that, if R = U, then we have
[T,R),R]=[T,R+U =(T+U)+U=T+U =T, R,

and so, such a rule can nontrivially be applied only once. Also notice that in order
to demonstrate R = U it is enough to check that [F A, R] contains U and that T+ U
is closed under R for every theory T'.

Of the rules congruent to axiom schemes the most obvious one is the usual
Gentzen-style rule of induction, which can also be called “the induction rule with
side formulas”. In Hilbert-style formulation it may look, e.g., as follows:

B = Vz (A(z) - A(z + 1))
B — (A(0) = VzA(z))

It is well-known that, whenever the complexity of the formula A is restricted to, say,
¥,, this rule provides an alternative axiomatization of IY,, (over EA). Moreover,
the reader may easily check that to derive an instance of ¥,,-TA only one application
of the rule is necessary. On the other hand, the fact that T+ X,,-TA is closed under
the induction rule with side formulas is obvious, hence the rule is congruent to
Y ,-TA. Of course, such an effect is only possible because no restriction was imposed
on the arithmetical complexity of the ‘side formula’ B. Our further examples are
of a somewhat more delicate nature.

Recall that, for a class of arithmetical formulas I', Ag(T")-formulas are those
obtained from I' by means of boolean connectives and bounded quantifiers. Par-
sons [11] essentially proved the following fact.

Proposition 2.4. Ay(X,)-IR = ¥,-TA
Proof. To derive an instance of X,,-TA apply IR to the following Aq(X,,) formula:
A(0) AVz < a(A(z) = Az + 1)) = Vo < a A(x), (5)

where A(x) € ¥,,.

To show that T+ ¥,-IA is closed under Ag(X,)-IR for each theory T notice
that an even stronger fact is known: I'Y,, contains Ag(X,,)-IA (cf [11] or [4], Lemma
2.14, p. 65), q.e.d.

The above proposition has a somewhat paradoxical consequence that Ag(X;)-IR
turns out to be actually stronger than II5-IR over FA. This looks strange because
we all are used to the fact that in the standard model of arithmetic Ag(X1) sets
are A, and hence strictly lower in the hierarchy than II, sets. No contradiction
in mathematics arises from this because EA is a weak enough theory to think (or
rather, not to exclude) that Ag(X;) sets can be very complex. In fact, Proposi-
tion 2.4 provides a relevant instance of X1-TA of the form (5) as an example to this
effect. Now we are ready to examine the least element rule LR.

Proposition 2.5. II,,-LR = Ay(X,)-LR = ¥,-LR

Proof. 1. The first congruence is proved very similarly to the quoted Lemma 2.14
of [4]. We only sketch the argument.

For a formula A(%) := A(z1,...,z) let “qis a z-piece of A” denote the following
formula:

“q codes a function [0;2]* — {0,1}” AVzy, ...,z < 2z (A(T) & “¢(F) = 17).
We say that A is piecewise coded in a theory T iff

T FV2z3dq “q is a z-piece of A”.



It is readily seen that the class of formulas piecewise coded in a theory 7' containing
E A is closed under boolean connectives and bounded quantifiers.

Now we show that the theory [EA,II,-LR] piecewise encodes all ¥, -formulas.
Indeed, for any such formula A(Z#) we obviously have

EAF3q(q:[0;a)" = {0,1} AVE < a (AF) — (&) = 1)),

because, e.g., one may take for ¢ the function identically equal to 1. Applying IT,,-LR
once we get the minimal such ¢. It faithfully encodes the a-piece of A because the
standard coding of finite functions has the property that functions with smaller
values are assigned smaller codes. It follows that all ¥,, and hence all Ay(X,),
formulas are piecewise coded in [FA,II,-LR].

Now it is easy to derive Ag(X,)-LR. Let EA F Az A(z), where A(z) € Ag(Xr)-
Then we have:

[EA,II,-LR] F 3z, q (A(z) A “q is a xz-piece of A”).

For this ¢, using only elementary induction we can find the minimal = such that
g(z) = 1. Tt coincides with the least x such that A(z) holds since ¢ is the x-piece
of A.

2. To demonstrate the second congruence it is sufficient to show that every
I1,, formula is piecewise coded in [FA,X,-LR]. Let YuAg(u,z) be such a formula,
with Ay € X,,_1. Following the same idea as before, and taking for ¢ the function
identically equal to 1, we obtain

EAF3qg3uVe <a(Ao((v)z, ) — q(z) = 1).

Using X,,-LR take the least such ¢ (and a corresponding u). In order to see that ¢
is as required reason, for any = < a, as follows:

If VzAo(z, ), then Ag((u).,x) and hence ¢(z) = 1.

If 32-A40(z,z) and ¢g(z) = 1, pick any such z and define a sequence u' and a
function ¢' as follows: (u'); = (u);, for i # z, (u'), = z; and ¢'(i) = ¢(i), for i # z,
q'(z) = 0. Then ¢’ has a smaller code than ¢ and satisfies

Vi<a (AU((ul)i)i) - ql(i) = 1))
which contradicts the minimality of ¢, q.e.d.
Proposition 2.6. II,,-LR = ¥,,-LR = X,-IA

Proof. It is well-known that X,-IA is equivalent to the least number principle for
Ao (E,,) formulas (cf [4]), hence T'+%,-IA is closed under Ay (X, )-LR for any theory
T. Now we derive the least number principle for an arbitrary Ag(X,,) formula A(z).
Obviously,

EAF dz (A(a) — A(x)).

Using Proposition 2.5 we conclude that [E'A, IT,,-LR] contains
Jz ((A(a) = A(z)) AVy <z =(Aa) = A(Y))).
This formula implies
dz (A(a) = (A(z) ANVy < 2 -A(y)))

and
J2A(2) = Jx (A(z) AVy < z=A(y)),

q.e.d.



In view of Proposition 2.4 it is natural to ask, what is the strength of the
induction rule for boolean combinations of %, formulas, B(X,)-IR. A priori, we
can only say that

Yo IR < B(X,)-IR < Ap(E,)-IR,

and that at least one of the two inequalities is strict. In the preliminary version of
this paper [2] we gave an elementary, although somewhat lengthy, argument showing
that B(X,)-IR is derivable from ¥,,-IR. This result can be simplified and somewhat
strengthened using more advanced methods. In particular, now we are able to show
that B(X;)-IR and ¥;-IR are congruent, although it remains open whether this
holds for n > 1. We shall treat B(X;)-IR more carefully in a short Section 10 at
the end of the paper.

We summarize the structure of induction rules modulo reducibility (and deriv-
ability) relation in the following diagram.

I,-IR II5-IR,

EA II;-IR

S1-TA 2 Ag(S))-IR Ty-TA = Ag(E,)-IR

In addition to the already established facts, we remark that neither of the rules
IT,,+1-IR and X,,-TA is derivable from the other, so that all the reducibilities shown
on the diagram are proper. Indeed, over FA ¥,,-TA is strictly stronger than I, 1-IR
(see the proof of Corollary 2.2), whereas over IY,, the latter is stronger than the
former, e.g., by Theorem 1 formulated in the next section.

3 II,, induction rule

In this section we give a characterization of IL,,-IR in terms of iterated reflection
principles.

Reflection principles, for an r.e. theory T', are formal schemata expressing the
soundness of T', that is, the statement that “every sentence provable in T is true”.
More precisely, if Provy(z) denotes a canonical ¥; provability predicate for T', then
the (uniform) reflection principle for T' is the schema

Vz (Provy(TA(2)7) — A(z)),

for all formulas A(z). This schema is denoted RFN(T'). Partial reflection principles
are obtained from it by imposing a restriction that the formula A may only range
over a certain subclass I' of the class of T-formulas. Such schemata will be denoted
RFNp(T), and for T one usually takes one of the classes ¥,, or II,, of the arithmetical
hierarchy. The following two basic facts on uniform reflection principles are well-
known (cf [20]) and easy:

1) RFNg, (T) is equivalent to RFNp, ., (T') over EA, for n > 1. RFNp, (T) is
equivalent to Con(T'), the consistency assertion for 7.



2) The schema RFNy, (T') is equivalent to a single IT,, sentence (over EA). This
follows from the existence of partial truthdefinitions.

An old and well-known result of Kreisel and Lévy [5] says that an alternative
axiomatization of Peano Arithmetic over EA can be obtained by replacing the
induction schema by the full uniform reflection principle for EA:

PA=EA+RFN(EA).

D. Leivant sharpened this result by showing that the hierarchies of restricted in-
duction schemata and restricted reflection principles over EA actually coincide:

IS, = EA+RFNy,_,, (EA).

Here we establish a precise relationship between the II,, induction rule and certain
levels of the hierarchy of iterated reflection principles.

IAy + SUPEXP is the extension of EA by a II, axiom asserting the totality of
superexponentiation function 2¥% (cf [4]). A theory T is II,, aziomatized, if all of its
nonlogical axioms are II,, sentences.

Theorem 1. Let T be an arithmetical theory containing EA. Then, for anyn > 2,
[T,11,-IR] is equivalent to T together with RFNm, (To) for all finite 11,41 azioma-
tized subtheories Ty of T. This statement also holds for n = 1, provided T contains
IAo + SUPEXP.

Our proof of Theorem 1 is based upon quite standard techniques that com-
bine Tarski’s method of partial truthdefinitions with the formalization of the Cut-
elimination Theorem, and is, in fact, very close to the proof of Leivant’s theorem (cf
[6]). The proof admits an easy direct argument, without any use of skolemization.
Working in the language of PA, we need a few standard prerequisites.

Sequent calculus. We adopt a variant of the sequent calculus from [16], i.e.,
sequents are sets of formulas understood as big disjunctions, negations are treated
via de Morgan’s laws, etc. Unlike in [16], it will be technically convenient for us
to only have logical axioms of the form A, ¢, ¢, for atomic formulas ¢. It is well-
known that the modified calculus is equivalent to the original one, also w.r.t. cut-free
provability.

Partial truth definitions. There is a II,, formula Truer, (), which ade-
quately expresses the predicate “z is a Godel number of a true II, sentence” in
EA' This means that Truer, (z) is well defined on atomic formulas and prov-
ably in EA commutes with boolean connectives and quantifiers, i.e., satisfies Tarski
conditions for II,, formulas. As a result, for any A(z) € II,,, we have:

EAF Va (A(z) ¢ Truer, (TA(&)7)). (6)

For our proof it will be essential that Tarski conditions not only hold locally, for
each individual II,, formula, but also uniformly. In other words, EA proves that,
for all $,,0,a,7 such that ¢,—¢, ¥, 0,Vry(z), Jza(z) are I, sentences,

Truep, ("T—¢7) <« —Truep, ("¢7),

)
Truer, ("0 A7) < Truem, ("07) A Truer, ("¢7),

Truer, ("TOV 7)) <+ Truep, ("07) V Truey, ("¢7),
Truer, ("Jza(x)?) <«  FaxTruen, (Ta()?),

Truer, ("Vay(z)?) < VaTruem, ("vy(z)7).

1We assume in this section that the class of IT,, formulas contains not only those literally in II,,
form, but also the ones obtained from prenex II,, formulas using V, A, and universal quantification.
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Let us stress that ¢,1,. .. here are variables over Godel numbers of sentences, rather
than individual sentences. (The standard dots-and-corners notation is somewhat
sloppy in this respect. Yet, we hope that this will not create serious problems for
the reader.)

On a par with the definition of truth, we also have a reasonable evaluation
of terms in EA, that is, a definable Kalmar elementary function eval(u,z) which
provably commutes with 0,' , 4, - and therefore, for any term t(xo, ..., z,), satisfies

EAF eval("t", (zg,...,zn)) = t(xo,...,ZTn).

Usually, eval(u,z) is explicitly used in the construction of a truthdefinition for
the evaluation of atomic formulas. This implies that the truthdefinition and the
evaluation of terms agree in the sense that EA proves that for all II,, formulas
d(xo, ..., Tm) and terms to(x), ..., tm(x),

NiZoeval("t:™, (x)) = yi —

7
(Trves, ("@(to(@), ., tm(@)) © Trter, (6Gior- i)y O

and similarly for terms #; in more than one free variable. We refer the reader to [4]
for an elaboration of all the above claims.

Proof of Theorem 1. [T,1I,-IR] is the theory axiomatized over T by all formulas
VzI(z) such that I(z) € II,, and T proves

1(0) AV (I(z) — I(z + 1)). 8)

Therefore, first we must show that, for any such I(z), there is a finite II,,11 axiom-
atized subtheory Ty C T such that

T + RENy, (To) + Val ().

For the axioms of Ty we simply take the IT,,4; formula (8) together with all axioms
of EA. Obviously, for every n we have Ty + I(7). Furthermore, formalizing this
fact in EA we obtain:

EA+Vz Provy, (TI1(z)™).

This implies VaI(z) by To-reflection.
Now we must show that

[T,11,-IR] F RFN1, (To),

for any finite II,,;; axiomatized subtheory Top C T. Without loss of generality
we may assume that T itself is a finite I, axiomatized extension of EA. Fur-
thermore, we may assume that the single nonlogical axiom of T has the form
Vo ... Vem—-a(zo,- .., Tm), where a is a II,, formula. In particular, this formula
accumulates all (finitely many) equality axioms in our language and a finite I,
axiomatization of EFA.

Consider a cut-free derivation of a sequent of the form Jzg ... 3z, o, I, where IT
is a set of IT,, formulas. By the subformula property, any formula occurring in this
derivation either (a) has the form Jzy. ... 3w, alto, .- ., th—1, Tk, - - -, Tm), fOor some
0 < k <m and terms tg, ...,tx—1; or (b) is a II,, formula.

Now let I7(m) be a II,, formula naturally expressing the following:

“For all p, if p is a cut-free derivation of a sequent of the form I',II(a),
where I is a set formulas of type (a) above, II(a) is a set of II,, formulas,
where a stands for all the free variables in II, and if the height of p is
< m, then Vz Truer, (" I(z)™").”

11



Lemma 3.1. T+ I7(0) AVm (I7(m) — Ir(m + 1)).

Proof. We reason informally within 7. Ir(0) trivially holds. We show that I'r(m)
implies IT(m + 1). Thus, we are given a cut-free derivation, of height m + 1, of
a sequent of the form I',II, where I' and IIT are as above, ruleand we must show
that the disjunction of II is True, in the sense of Truer, , under every substitution
of numerals for free variables in II. For the rest of the proof we fix an arbitrary
substitution of this kind and treat II as if it were a set of sentences. We distinguish
several cases, according to the form of the last rule applied in the given derivation.

CAsE 1. The sequent T',1I is a logical axiom, that is, it has the form A, ¢, ¢
for some atomic ¢. Since all the formulas of type (a) contain at least one existential
quantifier and therefore are neither atomic nor negated atomic, both ¢ and —¢ must
belong to II. Tarski commutation conditions then imply that

Truer, (T—¢7) <> —Truen, ("¢7),

so we obtain Truer, ("¢") V Truer, ("—¢™") and hence Truer, ("\/ II7).

CASE 2. The sequent I', IT is obtained by a rule introducing a boolean connective
or a quantifier into a formula from II. All these rules are treated similarly using the
subformula property of cut-free derivations and Tarski commutation conditions for
Truer, . For example, the rule for the universal quantifier has the form

I,1T, ¢(a)
T, 1, Vod(z)’

where a is not free in I',II'.  'We must show that the formula \/II' V Vz¢(z) is
True. By the induction hypothesis, since a does not occur free in II', we know that,
for each z, \/II' V ¢(Z) is True. Commuting Truer, with the small disjunction
we conclude that, for each z, either \/II' or ¢(Z) is True. Since II', and also
Truer, ("II' "), do not depend on z, it follows that either II' is True, or for every z,
(%) is True. Commuting Truer, with the universal quantifier and then backwards
with the disjunction we conclude that II' V Vz¢(x) is True, q.e.d.

In the next case we shall be more explicit about parameters.

CASE 3. The last rule introduces the existential quantifier in front of «, i.e., our
derivation has the form

I a(to(a),. .., tm—1(a),tm(a)),I(a)
Y, Azmal(to(a), ..., tm_1(a), zm),M(a)’

A free variable a here stands for all the parameters on which II and the terms ¢;

may depend.
So, the induction hypothesis is applicable and implies that, for all z, either the
disjunction of II(Z), or a(to(Z),...,tm(Z)) is True. We must, reasoning inside T,

refute the second alternative.

Notice that, although, in general, t; are “nonstandard” terms, « is a fixed “stan-
dard” I,,41 formula. Therefore Tarski’s commutation lemma (6) can be applied to
a, after evaluating the term ¢. Thus, by (7) and (6) we obtain:

Truep, ("a(to(2),. .., tm(E))7) A /\ eval(t;,(z)) =y; — Truem, ("a(Yo,---,Ym)")

= a(Yo,---,Ym)

Since the evaluation function is provably total in EA, it follows that

Truer, (Ta(to(2), - . ., tm (%))

12



implies Jyo . .. ym a(yo,---,ym), that is, yields a contradiction in T'. Thus, we see
that, for any to, . .., ¢, and x, the formula a(to(Z), - . - , £, (Z)) cannot be True, hence
the disjunction of II(Z) is True.

Casg 4. T',1I is obtained by a rule introducing any other existential quantifier
into a formula from I'. Then our claim follows immediately from the induction
hypothesis, because the II part of the premise in this case is the same as that of the
conclusion, q.e.d.

An immediate corollary of the above lemma is that
[T,11,-IR] F VYm IT(m). (9)
Notice that for T' containing EA and n > 2, obviously,
[T,1I,-IR] F SUPEXP.

On the other hand, it is well known (cf [4]) that Ao + SUPEXP is a strong enough
theory to prove the Cut-elimination Theorem for first order logic. In order to derive
RFNp, (T') we reason inside [T,1I,-IR], for every particular II,, formula A(z), as
follows.

Suppose Provy(TA(£)7). Then the sequent xg ... 3z, alzo, ..., Tm), A(T) is
logically provable. By (formalized) Cut-elimination Theorem we obtain a cut-free
proof of this sequent, and by (9) conclude that Truer, ("A(£)") holds. Tarski
commutation lemma (6) then yields A(x), q.e.d.

The rest of this section is devoted to various remarks, corollaries and comments
concerning Theorem 1. Let, for a fixed n > 1, (T')} denote the sequence of theories
based on iteration of the II, reflection principle over T

(T)g =T, (T)iy = (D)} +RFN, (T)R), ()2 = |J D3
k>0
Similarly, [T, IL,,-IR]; is defined by repeated application of IL,-IR:
[T,10,-IR]o = T, [T,I,-IR]ky1 = [[T,I,-IR]s, I1,,-IR].

We obviously have
T +1L,-IR = | [T, TT,-IR];..
k>0

Since for r.e. T' containing E'A the schema RFNyy, (T') is equivalent to a single
IT,, sentence, Theorem 1 can be applied repeatedly and we obtain

Corollary 3.2. Let T be a finite I,,11 axiomatized theory containing EA (or IAg+
SUPEXP forn =1). Then

T+1I,-IR = (T)7.
Moreover, for all k > 1, we actually have
[T,11,-IR];, = (T},

that is, k (nested) applications of induction rule precisely correspond to k iterations
of reflection principle over T'.

Corollary 3.3. ForIl, 1 aziomatized theories T containing EA (or IA¢+SUPEXP
forn = 1), the closure of T under I1,, induction rule is a reflexive theory, and hence
it is not finitely axiomatizable, unless it is inconsistent. The same holds for any
extension of T + I1,,-IR. by X,, sentences.
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Remark 3.4. Theorem 1 shows that some conservation results for fragments of
arithmetic and for iterated reflection principles are mutually interderivable. A well-
known theorem due to Parsons, Mints, Takeuti and others states that I}, is con-
servative over EA + II,,11-IR for II,,;; sentences. This result follows at once from
Leivant’s equivalent characterization of ¥,-IA as RFNy, ,(EA) over EA (cf [6])
and the characterization of II,,1-IR in terms of reflection principles in Corollary 3.2.
Indeed, by the so-called Fine Structure Theorem of U.Schmerl (cf [14]) we know
that RFNpy, ,(FA) is a IT,,41 conservative extension of (EA)"™!, which is equiva-
lent to EA + II,,.;-IR by Corollary 3.2.2 On the other hand, this particular case
of Schmerl’s theorem obviously follows from Parsons’ result, too. The relationship
between the 4 mentioned results can be summarized in the following diagram:

s, =m,,, EA+IL,-IR

Il i
EA+RFNn,,,(EA) =n,,,  (BA)RY!

The ‘horizontal’ conservation results are due to Parsons and Schmerl, and the ‘ver-
tical’ equivalences are Leivant’s and ours (Corollary 3.2).

An interesting particular case of Theorem 1 concerns the induction rule for IIy
formulas. It is well-known that the uniform reflection principle for IT; formulas for
a theory T is equivalent to consistency assertion for T, Con(T"). So, Corollary 3.2
can be reformulated as follows.

Corollary 3.5. For finite Ily azxiomatized theories T containing 1Ay + SUPEXP,
T+ 14-IR=T + Con(T) + Con(Con(T)) + ... (10)

Clearly, for a sound theory T', T+ 1II;-IR is an extension of T" by true II; axioms, and
hence both T" and T + II;-IR have the same class of provably recursive functions.
Despite that, T' + II;-IR is stronger than T' and the equivalence (10) gives us a
precise measure of its relative strength.

Remark 3.6. In paper [18] there is a confusion concerning II;-IR. Theorem 2.1.3
of that paper is false for it implies that £ A+1II;-IR contains more provably recursive
functions than EA.3

Theorem 2.1.7 of that paper states that the closure of EA under k applications
of II,-IR (in our terminology, [EA,II>-IR];) is conservative over the arithmetic
corresponding to the (k + 3)rd class of Grzegorczyk hierarchy. This theorem is
correct and closely parallel to another particular case of our Theorem 2 (cf. Corollary
7.5).

Remark 3.7. A characterization of II;-IR for theories weaker than IAy+SUPEXP
can be obtained in the spirit of Wilkie and Paris [21]. In this situation the family of
consistency assertions w.r.t. proofs of bounded cut-rank Cong(T'), k > 0, plays the
role of the single consistency assertion Con(T") for T'. Since EA is a strong enough
theory to prove Cut-elimination Theorem for derivations of bounded cut-rank, a
quick inspection of the given proof of Theorem 1 yields the following result: for T’
containing FA, [T,1I;-IR] is equivalent to T together with all Cong(U) such that
k > 0 and U is a finite II, axiomatized subtheory of 7.

2Schmerl formulated his result for the hierarchy of (transfinitely iterated) reflection principles
over PRA, but it is not difficult to check that his proof essentially works over EA as well.

3Lemma 2.1.4 is true, but it is not difficult to see that the schema of ‘restricted primitive
recursion’ dealt with there is actually equivalent to the unrestricted primitive recursion. So, the
proof-theoretic analysis in this lemma, as it is formulated, gives us no more information about the
strength of II;-IR than the reduction of II;-IR to ¥;-IR.

14



Our next goal is the characterization of ¥,, induction rule in the spirit of Theorem
1. Parsons showed that X,,-IR is equivalent to II,,;1-IR over EA. However, the two
rules are not congruent and so, a more careful analysis is needed here. Let me
explain why the simple proof of Theorem 1 cannot be easily adapted to the X,
case.

The technical reason is that the formula I7(m) in that proof involves a number
of outer universal quantifiers, and therefore does not have the reqired ¥, form.
Some of these quantifiers, e.g., the quantifier over all derivations p, can actually
be bounded. One can replace the induction on the height m of a proof by IR«
over Godel numbers p of proofs using the fact that, under the standard coding,
subderivations of p have smaller Gédel numbers. However, there does not seem to
be an easy way to get rid of the quantifier over all substitutions of numerals for
free variables in the end-sequent. The only possibility here seems to be to keep
those variables free, as the parameters of the formula Ir. Yet, this possibility is
blocked by the simple fact that some sequents in the proof p may contain many
more parameters than the end-sequent, and we ought to take them all into account.
There is one rare situation where this difficulty does not arise: simply, if there are
no universal quantifiers in the end-sequent. This idea allows us to analyze the 3
induction rule. Then, by skolemization, we will be able to pull the result up in the
arithmetical hierarchy. This project is carefully elaborated in the remaining part of
the paper.

4 Provably recursive functions

In this section we recall some basic facts about provably (total) recursive functions
(p.t.r.f.s) of theories and characterize these functions for closures of theories under
¥ induction rule. Most of these results are folklore or close to be so.

We shall deal with various classes of number-theoretic functions. The basic class
is the class of elementary functions £. For a class K, C(K) denotes the closure of
K U & under composition. [K,PR] denotes the closure of K U under composition
and one application of primitive recursion, i.e., the class C(F’), where F' is the set
of all functions f(n,a) definable by a schema of the form

{ £(0,a) g(a)

fln+1a) = h(f(n,a),n,a),

for g,h € C(K). E(K) is the elementary closure of K, that is, the class of functions
obtained from K U £ by closure under composition and bounded sums and prod-
ucts. It is well-known (cf Rose [13]) that, over a sufficiently large stock of initial
elementary functions and modulo composition, bounded summation and multipli-

cation are equivalent to bounded recursion, which, in turn, is equivalent to bounded
minimization.

Definition 4. A number-theoretic function f(z) is called provably recursive in a
theory T iff the graph of f can be represented by a ¥ formula ¢ (z,y) such that

T+ VzAly ¥(z,y).
The class of p.t.r.f.s of a theory T is denoted D(T').

It is easy to see that graphs of p.t.r.f.s are actually A; in T. The class D(T) is
closed under composition, but not necessarily elementarily closed, even if T contains
EA. This creates for us some additional difficulties, since proof-theoretically it is
much more common and pleasant to deal with elementarily closed classes of func-
tions. Sometimes one considers p.t.r.f.s with elementary graphs, that is, with the
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formula 1)(z,y) elementary*. These classes of functions are closed under bounded
minimization, but not under composition. However, the following obvious proposi-
tion holds.

Proposition 4.1. For a theory T containing EA, every p.t.r.f. can be obtained
by composition from a p.t.r.f. with an elementary graph and a fized elementary
function.

Proof. Let ¢(z,y) := 3z 1o(2,x,y), where 1o is elementary, define the graph of f,
so that
T+ VzAly ¥(z,y).

Using the standard pairing function we let

o(@,y) = Yo((¥)o,z, (¥)1) AVz < (y)o ~%o(z, 2, (Y)1).

Then it is not difficult to check that ¢ defines a certain p.t.r.f. g in 7', ¢ is elementary,
and for all n, f(n) = (9(n))1, q.e.d.

Since D(T') only depends on the II, fragment of T, we shall concentrate our
attention on Il axiomatized theories.

Definition 5. Let 7 := Vz3y ¢(z,y) € o, with ¢ elementary. A function f(zx) is
called a witness of « iff Va ¢(z, f(z)) holds in the standard model of arithmetic.

Every true II, sentence has a witness. The function fr(z) whose graph is defined
by the formula ¢(z,y) AVz < y —¢(z, 2) is called the standard witness of .

Proposition 4.2. Let T be a finite Iy axiomatized sound extension of EA, and
let f be the standard witness of the single aziom of T. Then D(T) = C(f).

Proof. Obviously, f is a p.t.r.f. in T, and so C(f) C D(T). The opposite inclusion
is, more or less, a direct consequence of Herbrand’s Theorem. Consider a purely
universal formulation of EA (in a language with symbols for all Kalmar elementary
functions), and add to this language a new function symbol f together with the
axiom

Vz ¢(z, f (),

where Vz3y ¢(z,y) is the single axiom of T' over EA. Using appropriate Kalmar
elementary terms we can get rid of all bounded quantifiers in ¢. Hence the resulting
theory is a conservative extension of 7" and has a purely universal axiomatization.

Now suppose T + VaIlyIzipo(x,y, z), where 1pg is elementary (and in our for-
mulation also quantifier-free). Since 7' has a purely universal axiomatization, by
Herbrand’s Theorem we obtain terms t1, ..., tg, uy, ..., u of the extended language
such that

T+ vo(a,ti(a),ur(a)) V...V ih(a,tr(a), up(a)).

Clearly, the terms ¢; and wu; represent functions in C(f). Now we let

ti(x), if Yoz, t1(x),ui(x)),
. to(x), if Yo(z,ta(z),uz(x)) and b (x,t1(z),u;(x)),
t(z) == ce
(z), if Yo(z,tp(z),ur(z)) and o (z,t;(x),u;(z)) for all i < k,
0, otherwise.

4Elementary formulas are bounded formulas in the language of £ A with symbols for all Kalmar
elementary functions.
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The function u(z) is defined in a similar manner, with u;’s in place of #;’s. Since

the function
z, ifz=0

y, ifz#0
is elementary, the class C(f) is closed under definitions by cases and so, ¢(z) and

u(z) can be adequately defined by C(f) terms. For these terms we obviously have
T+ ¢o(a,t(a),u(a)). It follows that

Cond(z,y, z) := {

T - Va3z yo(x, t(x), 2),
and by the functionality of ¢

T FVa,y (t(z) =y < ¥(z,y)).

Since all theorems of T' are true, 1) represents the graph of ¢(z) in the standard
model, g.e.d.

Remark 4.3. We have actually shown that D(T") C C(f) for any witness f of the
axiom of T, not just for the standard one.

Corollary 4.4. Let T be a finite Iy axiomatized sound extension of EA. Then the
class D(T) has a finite basis under composition.

Proof: Follows from the previous proposition and the fact that £ has a finite basis
(cf, e.g.,[7, 9]). It might be interesting for the reader to notice that, if we had been
slightly more careful in the proof of Proposition 4.2, we could actually have inferred
the existence of a finite basis in £ from finite axiomatizability of EA.

Consider a finite II, axiomatization of EA in the usual language of arithmetic
(see [4]). Introduce finitely many (Kalmar elementary) functions to quantifier-free
represent A parts of those Iy axioms. Then we have to introduce finitely many
Skolem functions for these axioms in order to obtain a purely universal conservative
extension of KA. Essentially the same proof as for Proposition 4.2 then shows that
every provably recursive function can be defined by a term in the extended language.
In the process we would have to introduce a few more elementary functions like
Cond(z,y, z) or pairing functions. We omit the details, q.e.d.

Remark 4.5. The converse of the previous corollary does not hold, essentially
because of the difference between provably recursive functions and programs. For
example, the theory (EA)L extends EA purely universally and therefore has the
same, finitely based, class of p.t.r.f.s. Yet, this theory is not finitely axiomatizable.

Proposition 4.6. Let T be a finite Iy aziomatized sound extension of EA, and
let f be the standard witness of the single axiom of T. Then

D([T,%1-IR]) = [C(f), PR].
Proof. Let g(n,z) be defined by a schema of primitive recursion

{ 9(0,z) = e(x)
gln+1,z) = h(g(n,z),n,x),

such that e, h € C(f). Since all functions in C(f) are p.t.r.f. in T, graphs of e and
h are defined by ¥ formulas E(z,y) and H(z,n,z,y) := v Ho(v,z,n,z,y), with
Hj elementary.

The graph of g is most naturally defined (in the standard model) by the following
formula (that uses elementary coding of sequences):

g(n,z) =y :¢> Is € Seq ((s)o = e(x) AVi <n(8)ir1 = h((s)i,i,2) A ($)n = y).
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However, in absense of ¥; collection principle this formula may not be equivalent
to a ¥y formula within 7. We modify it as follows (a somewhat similar trick was
employed earlier in the proof of Proposition 2.3): g(n,z) =y ¢

Js,v € Seq (E(x, (s)o) AVi < n Ho((v)i, (8)ii, %, (8)ix1) A (8)n = y). (11)

This formula is obviously ¥, and now we shall show the totality of g in [T, ¥;-IR].
Clearly, T + 3y g(0,z) = y, because e(x) is provably total. In order to see that

THVYn(3ygn,z)=y—ygn+1z)=y)

we argue informally as follows. Suppose g(n,z) = y and thus we are given two
sequences s and v of length n + 1 satisfying (11). We have to construct appropriate
sequences of length n + 2. Since the function h is provably total, we can find a z
such that h(y,n,z) = z. Hence there is a w such that Ho(w,y,n,z,z) holds. Pick
any such w and add the element z to the end of the sequence s, and w to the end
of v. The resulting sequences are as required. Applying ¥;-IR we obtain:

[T,%1-IR] F Vn3y g(n,z) = y.

To prove the functionality of g we reason as follows. Let R(n,s,v,z,y) denote
the elementary part of the formula (11), and suppose we have R(n,s,v1,,y1)
and R(n,ss,vs,z,y2). We prove Vi < n (s1); = (s2); by induction on i (with
n,s;j,v;,,y; as free parameters). Notice that the induction is elementary, although
it is applied as a schema rather than as a rule here. Basis and induction step follow
at once from the functionality of e and h. So we obtain (s1), = (S2)n, and therefore
y1 = y2. Notice that the argument for the functionality was actually carried out in
T.

Now we shall show that p.t.r.f.s of [T,%;-IR] belong to [C(f),PR]. Since
[T,%:-IR] is a sound II; axiomatized theory, it suffices to demonstrate that ev-
ery formula obtained by an application of ¥;-IR has a witnessing function in the
class [C(f), PR]. (Here we actually apply Remark 4.3 rather than Proposition 4.2.)

Consider an arbitrary elementary formula A(z,y,a) such that

T + 3FyA0,y,a), and
T b Ve(IyA(z,y,a) = YAz +1,y,a)).

By Proposition 4.2 we obtain functions e(a) and h(y,z,a) in C(f) such that e
witnesses Vady A(0,y,a), and h witnesses

Va,z,y3z (A(z,y,a) = Az + 1, z,a)).
Consider a primitive recursion

{ 9(0,a) = e(a)
gz +1,a) h(g(

Straightforward induction on z then shows that A(x, g(z,a), a) holds in the standard
model for all  and a. This means that g(z,a) witnesses Vz, a3y A(z,y,a), q.e.d.

x,a),T,a).

Corollary 4.7. For a sound Iy aziomatized theory T containing EA,
D([T,%:-IR]) = [D(T), PR].

Proof. We only have to notice that for such theories T', D([T, £;-IR]) is the union

of D([Tp, X:1-IR]) for all finite subtheories Tp of T', q.e.d.
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Remark 4.8. Notice that the requirement of I, axiomatizability of 7" in the pre-
vious corollary cannot, in general, be dropped. Let T' = EA + S, where S is
the sentence S; — Sy and S; = RFNyy,,, (FA) for i = 1,2. Clearly, S is a true
II; sentence. By Theorem 2 to be proved in Section 7, [EA,¥;-IR] F Si; hence
[T,%:-IR] F Sz and D([T, £;-IR]) contains all primitive recursive functions. (It is
easy to see, cf e.g. Ono [8], that Sy implies I¥; over EA.)

On the other hand, S is II> conservative over EA because for 7 € Ils, EA+S F 7
implies FA F =S, — 7, whence

EAF Provpa("n ") Ao — m,

and EA + 7w by Lob’s Theorem. It follows that D(T') coincides with &, and
PR] is properly contained in the class of all primitive recursive functions,

5 Elementary closure

As we have noted before, the class D(T') need not be elementarily closed even if the
theory T contains EA. In this section we shall investigate this question in more
detail and formulate sufficient conditions for D(T) to be elementarily closed. A
version of the following proposition can be found in [9] with a more complicated
proof.

For a function f(z), let f(n) := (£(0),..., f(n)).

Proposition 5.1. E(f) = C(f).
E(f). For the opposite inclusion we
C(f). (Bounded products are treated

prove that >, g(i,y) € C(f) if g(z,y)
similarly.) -

Let (z [ n) denote the initial segment of a sequence z of length n + 1. This
function is clearly Kalmar elementary. Since g € C(f), g can be considered as a
term in a language with symbols for all elementary functions and a symbol for f. We
systematically replace all occurrences of subterms of the form f(¢) in g by (z | t),
where z is a new variable. (It does not matter, in what order these occurrences are

replaced.) As a result we obtain an elementary function §(z,y,z). Define:

Gle,y.2) = 3 3li,y,2).

Proof. Obviously f € E(f), so C(f) C
€

We claim that B
> gli,y) = Gy, f(b(=,y))),
i<z

for a certain term b(z,y) € C(f). We only need to ensure that the value of b(z,y)
is greater than all values #(i,y) for i < z, where terms ¢ occur in the context f(%)
within g. Notice that f is an increasing function. Therefore we can majorize each

t(x,y) by an increasing function in C(f) and take the sum of all these functions as
b(z,y), q.e.d.

Notice that the previous proposition can be generalized to E(fi,..., fn) =
C(f1,..., fn) either by encoding fi,..., f, into a single function using the pair-
ing and projection mechanism, or just by generalizing the proof of Proposition 5.1.

Proposition 5.2. If f(z) is increasing and the graph of f is elementary, then
f € C(f) and therefore C(f) = E(f).
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Proof. If f is increasing, for a certain elementary function b we have

fn) =pz <b(n, f(n)). Vi<n(z);=f(),

because the code of a sequence can be estimated elementarily in its length and the
largest element (= f(n)), q.e.d.

Proposition 5.1 also has the following useful corollary.

Proposition 5.3. For any class of functions K, the class [K,PR] is elementarily
closed.

Proof. The class [K,PR] is generated by all functions from K, £, and functions
f(n,a) obtained by primitive recursion

{ f(O,a) = g(a)
fln+1,a) = h(f(n,a),n,a),

for g, h € C(K). By Proposition 5.1 it is sufficient to show that, together with any
such f, the class [K, PR] also contains the function f;, where f;(n) := f((n)o, (n)1).
If (n+1)g > 0, then

filn+1) = F((n+ 1o, (n +1)1)
h(f((’fl + 1)0 - 17 (TL + 1)1)7 (TL + 1)0 - 17 (TL + 1)1)
hi(fi(p(n +1)),n)

for some h; € C(K), where p(n) := ((n)o — 1,(n)1). Notice that p(n+1) < n+1, if
(n+1)p > 0. (The standard pairing function (z,y) is monotonic in both arguments.)
On the other hand, if (n+1)o = 0 then, obviously, fi(n+1) = g((n+1)1). It follows
that fi can be defined by the following primitive recursion:

f. (TL T 1) o fl(n) * hl((fl(n))p(nJrl):n)v if (TL + 1)0 7& 0
1 - 7 .
fr(n) x g((n+1)1), if (n +1)o = 0.
Here x denotes the operation of adjoining an element at the end of a string, q.e.d.
Now we turn to proof-theoretic analogs of the above lemmas.

Definition 6. Let 7 be a Il; sentence. 7 is monotonic, if there is an elementary
formula ¢(z,y) such that EA proves that

1. < VaIy ¢(x, ),
2. d(z,y) Nd(z,2) =y =2,
3. plx1,y) Nd(x2,2) ANy <o =y < 2.

Informally, 7 is monotonic iff it is equivalent to a sentence whose only witness is
provably increasing.

Proposition 5.4. Let T be a II5 axiomatized theory containing EA. The following
statements are equivalent:

1. T is aziomatizable over EA by monotonic Il; sentences;
2. T is closed under ¥, collection rule:
¥1-CR: VzIy ¢(x,y) F VzIyVu < z3v < y ¢(u,v),

where ¢(z,y) € Xy.
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Proof. Clearly, the formula Vz3yVu < z3v < y ¢(u, v) implies VoIy ¢(z,y) in EA
and is monotonic, whenever ¢ is elementary. So, we may apply ¥; collection rule
to all axioms of T and obtain a monotonic axiomatization.

In order to show that Statement 1 implies 2 we take an axiomatization of T over
EA by II, formulas whose standard witnesses are monotonic. Then we introduce
Skolem functions for all these formulas and replace axioms 7 := Vz3yd(z,y) of T
by their skolemizations Vi ¢(z, fr(z)). The resulting theory T* proves monotonicity
of all these functions f:

Ty < wy = fr(21) < frl2).

Besides, it is conservative over T', and has a purely universal axiomatization (if EA
is taken in a universal formulation).

Now assume T + Vz3dy ¢(x,y) for a formula ¢ € X;. By Herbrand’s Theorem
we can obtain a monotonic term ¢(z) in the extended language such that

T* FVzdy < t(x) Y(z,y).

(This actually is a version of Parikh’s Theorem for T* (cf [4],p. 272). Here we use
the fact that every elementary function can be majorized by an increasing one, and
hence any term in the extended language can.) Provable monotonicity of ¢(z) then
implies:

T* FVody—y(o) Yu < 230 < y Y(u,v).

The result follows by conservativity of T over T', q.e.d.
Corollary 5.5. A II, sentence Va3y ¢(x,y) is monotonic iff
EAFV23y ¢(x,y) — VeIyVu < z3v < y ¢(u, v).

Corollary 5.6. For a sound IIy aziomatized theory T containing EA,
1. [T, El-CR] =T+ El-CR,
2. D(T + £,-CR) = E(D(T)).

Proof. Part 1 follows from the fact that, for a IT, axiomatized theory T', [T, £;-CR]
can be axiomatized by monotonic IIy sentences. The inclusion D(T + ¥;-CR) 2
E(D(T)) follows from the fact that T'+%,-CR is axiomatizable by a set of monotonic
I1, sentences, whose witnessing functions are increasing and have elementary graphs,
so that the class D(T + X;-CR) is elementarily closed by Proposition 5.2.

By the definition of 3;-CR, each of the witnessing functions for the axioms of
[T, £,-CR] either coincides with one of T', or has the form max;<, f= (), where 7 is
an axiom of T'. Hence, it belongs to E(D(T7)), and the inclusion D([T, £;-CR]) C
E(D(T)) follows by Proposition 4.2, q.e.d.

Corollary 5.7. If a sound theory T containing EA is closed under X1 collection
rule, then D(T) is elementarily closed.

The following proposition reveals a useful ‘monotonizing’ property of ¥; induc-
tion rule.

Proposition 5.8. For any theory T extending EA, [T,%,-IR] is aziomatizable by
monotonic Iy sentences over T. If T itself is Iy aziomatized, [T, %,-IR] is aziom-
atizable by monotonic Iy sentences over EA.
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Proof. The proof is, essentially, a formalization of Proposition 5.3. Suppose
o(z,y,a) is elementary and

T + 3y¢(0,y,a), and
T +F Vo(3yod(z,y,a) = Jyd(x+1,y,a)).

Then we define
QSI(:U::U) =Vi S x QS((Z)O) (y)zy (Z)l))

and somewhat similarly to the proof of Proposition 5.3 show that

T F 3y¢(0,y), and
T + Ve(Qy¢'(z,y) = Iy (x+1,y)).

Applying ¥1-IR we obtain Vz3y ¢'(x,y) and
VoIyVi < x3v <y é((i)o, v, (i)1)-

The latter formula is monotonic and implies Va,z3y¢(z,y,a). It follows that
[T, ¥,-IR] is axiomatized by monotonic sentences over T'.

A similar argument shows that for each theorem of T' of the form Vz3y ¢(z,y),
with ¢ elementary, the formula Vz3yVu < 23v < y ¢(u,v) is provable in [T, ¥;-IR].
So, if T' is II, axiomatized, in an axiomatization of [T, X;-IR] the axioms of T' can
also be replaced by monotonic sentences, g.e.d.

Corollary 5.9. For a sound Ils aziomatized theory T containing EA the class
D([T, 21-IR]) is elementarily closed.

Remark 5.10. This fact can also be directly inferred from Proposition 5.3 and
Corollary 4.7.

Finally, we formulate a technically very useful proposition that also relies on
monotonicity properties of functions and states, roughly, that for a provably in-
creasing function f the induction schema for formulas elementary in f is reducible
to the induction schema for formulas elementary in the graph of f. This fact is
essentially due to Gaifman and Dimitracopoulos [3]. A somewhat weaker version
can be found in [4], Proposition 1.3, page 271, and we follow the idea of these proofs
very closely.

Let Ag(f) denote the class of bounded formulas in the language of FA (with
symbols for all elementary functions) enriched by a function symbol f(z), where, in
particular, f may occur in bounding terms. Let F'(z,y) denote the formula f(x) =
y defining the graph of f. Ag(F) formulas are those built up from F'(z,y) and
elementary ones using boolean connectives and quantifiers bounded by elementary
functions. Finally, let T" be the theory in the above language obtained by adding to
all axioms of E A the axiom

Va,y (z <y — f(z) < fy))
asserting the monotonicity of f.

Proposition 5.11. Quer the theory T the induction schemata for Ao(f) formulas
and Ao(F) formulas are deductively equivalent.

Proof. First of all, notice that any term ¢ in the language of T' can be provably
majorized by a term provably increasing in each variable (because every elementary
function is majorizable by a monotonic one). We fix one such term for every term
t and call it #.
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Lemma 5.12. For every term s(@) there is a monotonic term t(d@) and a Ag(F)
formula (a,b,y) such that

Tk Vy > t(a) (s(a@) = b (@, b,y)).

Proof. The argument goes by induction on the build-up of s. For the induction
step one reasons as follows. If s(@) has the form g(s;(@)), where s; is a term, and g
is either f or an elementary function symbol, then by the induction hypothesis one
has a term ¢; (@) and a Ag(F) formula 9, (@, b,y) such that provably in T

51(6) =b¢ 1/}1 ((_]:7 b)y)
for y > t1(@). Then we let

t(@) == t.1(a) + 51(a),
and it is easy to see that for y > ¢(&@) there holds

g(51(@)) = b < Fv <y (Y1(@,v,y) Ag(v) =b).

A similar reduction applies in the case when the function ¢ has more than one
argument, q.e.d.

Lemma 5.13. For every Ao(f) formula (@) there is a Ao(F) formula o (d,y:,
-, Yn) and provably monotonic terms t1(a@), t2(d,y1), - -, tn(@ Y1, .-+, Yn—1) such
that

T+ /\ Yi Z ti(aayly"'ayifl) — (1/1(6) <~ ¢0(5;y1,---,yn))-

i=1

Proof. We argue by induction on the build-up of the Ag(f) formula . Basis of
induction follows from Lemma 5.12, so we concentrate our attention upon the most
difficult case, when v has the form

Yu < s(@) ¢(a@,u). (12)

Applying the induction hypothesis to ¢(@, u) we obtain a Ag(F') formula ¢o(a, u,y1,
-+, Yn) and monotonic terms s1 (@, u),. - ., $n(@,u, Y1, -.,yn—1) such that, provably
in T,
¢0(5;U,y1,--->yn) < ¢)(Ei,u), (13)
whenever y; > s;(d,u,y1,...,y;—1) for all 1 < i < n. Besides, by Lemma 5.12 we
obtain a monotonic term r(@,u) and a Ag(F') formula 7(@, u, z) such that

7(d,u,z) ¢ u < s(@),

for z > r(@,u).
We introduce two fresh variables, y,1+1 and yn12, and let ¥o(a@, y1, .- ., Yni2) be
defined as follows:

Vu < Yn+1 (T(a"vu:yn-i-Q) - ¢0(6auay17 .- ayn)) (14)

We also let
ti((_i, Y1,y--- ,yi—l) = Sl(a, §(6),y1, . ,yi—l)
fori < mn,and let t,+1(ad,y1,.-.,yn) := 8(@), and tp12(@,y1,- -, Ynt1) = (@, Ynt1)-
In order to see that the claim of our lemma holds, that is, that formula (14) is
provably equivalent to Yu < s(@) ¢(@,u) for y; sufficiently large w.r.t. each other,
we first notice that v < yp41 implies 7(@,u) < 7(@,Ynt1) < Yni2 by provable
monotonicity of the term r and by the choice of y,, 2. It follows that, under these
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assumptions, 7(@, u, Ynt2) is equivalent to u < s(a@), which implies v < §(d@), and by
monotonicity of terms s; for any such u we have

y1 > t1(a@) = s1(a@, 3(a)) > s1(d, u),

Ya 2 t2((_]:7 yl) = 32(6;5(6))?/1) 2 52(6;u7y1)7

Yn = tn(aayla- .- :yn—l) = Sn(ﬁ,g(a),yl,. .- :yn—l) > sn(c_i,u,yl,. . -ayn—l)-

It follows that the induction hypothesis is applicable and yields (13). From this it is
easy to conclude that formula (12) implies (14). The opposite implication is proved
in a similar way, q.e.d.

To complete the proof of Proposition 5.11 we prove Ag(f) induction in the form
of the least number principle

Y(zr,d@) — 32’ <z @W(z',d) AVz <z’ ~(z,qd)),
for an arbitrary Ag(f) formula ¢ (z, ).
inside T plus Ag(F') induction as follows.

Assume ¢ (z,d) and that yi,...,y, satisfy the premise of the implication in
Lemma 5.13, so that we may infer ¢(z,d, %) from ¢ (z,d@) (notice that some such
Y1,---,Yn provably exist). Applying the least element principle for ¢y (variables ¢
as well as @ act as free parameters) we obtain an z' < z such that

Yo(a!, @, 4) ANVz < 2’ —po(z,a, ).

Now we notice that, by monotonicity of terms ¢;, for all i < n we have

We apply Lemma 5.13 to ¢ and reason

ti(.’I}I,L_];, Yi, - - 7yi—1) S ti(x7a7 Yi,--- 7yi—1)7

and so the premise of the implication in Lemma 5.13 is satisfied for z’, as well as
for any z < z' (for the same reason). It follows that z’ is, indeed, the least number
satisfying ¢(z, @), q.e.d.

Remark 5.14. Notice that we have actually reduced Ag(f) induction to the one
for Ag(F') formulas whose bounding terms are plain variables.

6 FEvaluation

The aim of this section is to show that the universal function for the class of p.t.r.f.s
of a finite I, axiomatized theory T belongs to [D(T"), PR], and therefore can be
represented in [T, X;-IR]. As a byproduct we obtain a new and very transparent
proof of a theorem of R.Peter (cf [12] and also [13]) stating that so-called nested
recursion on w is reducible to primitive recursion.

Let f(x) be a function. Every function of the class C(f) can be represented by
a term in a language containing a function symbol for f and finitely many function
symbols for a certain basis in £ (cf Proposition 4.4). We call these functions initial
functions, and the terms of this language will be called f-terms. We fix a natural
elementary Gddel numbering of f-terms.

The evaluation function evaly(e,x) for f-terms is defined as follows:

[ tl(®)oy...,(®)n), ife="t"foran f-term t(zo,...,Tn),
evaly (e, z) := { 0, otherwise.

It will also be technically convenient to unify the two arguments of evaly(e, z) and
introduce the functions eval’(z) := evalf(()o, (x)1) and

evaly(z) := (eval}(0),. .., eval}(z)).
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Proposition 6.1. [C(f), PR] = C(eval;) = C(evaly)

Proof. First we show that both eval; and evaly belong to [C(f), PR]. The defini-
tion of evaly can obviously be rewritten as a primitive ‘course of values’ recursion:

1. evals(e, z) := (z);, if e = "z;7, where z; is the i-th variable,

2. evaly(e,z) := h(evaly(Tto ™, x), ..., evalys(Ttn 1, x)), if e = "h(to,...,tm)", and
h is an initial function,

3. evalg(e,z) := 0, if none of the above cases holds.

Since there are only finitely many initial functions, this definition has the form
of a definition by cases. The cases are Kalmar elementarily recognizable by the
naturality assumption on the coding of f-terms. It is well known and easy to see
that the ‘course of values’ recursion defining eval; can be reduced to the usual
primitive recursion for the function evaly, from which eval; can be recovered as

evaly (e, ) = (eval;((e,2))) o) (15)

(Compare with our proof of Proposition 5.3.)
Now we shall show that C(evaly) contains [C(f), PR]. Consider a primitive
recursive definition

{ 9(0,a) = go(a)
g(n+1,a) = h(g(n,a),n,a),

for some f-terms go(a) and h(z,y,a). We shall express g(n,a) in the form

evaly(s(n), (a)),

for a function s(n) to be found. Let num(n) denote the index of a constant f-term
with value n, and let Sub,,(e, 4, j) compute the index of an f-term that results in
simultaneous substitution of f-terms ¢ and j for variables x and y respectively in
an f-term e. It is easy to see that functions Sub and num are elementary. Then we
can define s(n) as follows:

s(0) == Tgo"
{s(n+1) = Subgy("h7, s(n),num(n)). (16)

By induction on n one easily shows that s(n) is a Gédel number of an f-term ¢,,(a)
such that t,(a) = g(n,a) for all a. Hence evalf(s(n),(a)) = g(n,a) for all @ and
n. So, it only remains to prove that primitive recursion (16) is bounded. Let |¢|
denote the length (= number of symbols) of a term with index ¢. For Sub we have
the following estimate:

|Subgy (e, 4, 7)] < C - [e] - max(|il, | 4]),

because the total number of occurrences of variables  and y in a term e is less than
le|. On the other hand, the length of num(n) is at worst linear in n. So, for large
enough n we have:

[s(n+1)] < Cy - |s(n)].

It follows that |s(n)| grows at most exponentially, and thereby s(n) has a doubly
exponential bound, g.e.d.

Two immediate consequences of the above proposition are:

Corollary 6.2. The class [C(f), PR] is finitely based.
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Corollary 6.3. The class C(evaly) is elementarily closed.

Another interesting corollary is the reduction of nested recursion to primitive
recursion. A nested recursive definition may have, e.g., the following form:

{ g(O,(l) = gO(a’)
g(n + ]-7 a) = hU(g(nv hl(g(n)a)v a)))na a)'

In general one allows arbitrarily deep nestings of g-terms on the right hand side
of the definition, but g must only occur in the context g(n,-), that is, the first
argument must always be n. An old result of R.Peter says that nested recursion is
reducible to primitive recursion, and it is relevant for our work as follows.

Suppose we want to evaluate a term ¢(u(x)), where ¢t and u are complex terms.
Doing this in the most straightforward manner we must first evaluate u and then
t, that is,

evaly (Tt(u)™, z) = evaly (Tt eval (Tu™, (z))).

We see that evaly occurs doubly nested on the right hand side of the equation. The
evaluation procedure prescribed by Proposition 6.1 is different: we look at the terms
t and w as being decomposed into initial functions, and evaluate only one function
at a step. This is a longer process, although it yields the same result.

A natural rule to verify the totality of functions defined by nested recursion
is II, induction rule, rather than 3;-IR, which only works for primitive recursive
definitions on the face of it.> Therefore it is not surprising that Peter’s theorem is
an essential element in Parsons’ proof of the equivalence of Il and ¥; induction
rules. Here we obtain a slightly sharpened version of Peter’s result for free.

Corollary 6.4. The closure of a class K of functions containing £ under one ap-
plication of nested recursion and composition coincides with [K, PR].

Proof. Without loss of generality we may assume that K has the form C(f). Now
we almost literally follow the lines of the proof of the second part of Proposition
6.1. A function g(n,a) defined by nested recursion from C(f) can be expressed in
the form evaly(s(n), a) for a suitable elementary function s. The bound on the rate
of growth of s, however, will be slightly worse than before. For sufficiently large n
we have

|s(n+ 1) < C - Is(n)]",

where k is the maximum depth of nestings in the definition of g. However, this
means that s grows no faster than triply exponentially, g.e.d.

Let T be finite I, axiomatized extension of EA and let f be the standard witness
for the single axiom of T'. Recall that the graph of f is defined by an elementary
formula. We shall show that the evaluation function for f-terms can be naturally
represented in [T, ¥;-IR], and that its basic properties are provable in this theory.

Without loss of generality we may assume that 7" is formulated in a language
containing function symbols for f and for finitely many initial elementary functions.
By Propositions 4.6 and 6.1 we know that evaly is provably recursive in [T, ¥;-IR],
and hence its graph can be represented by a certain ¥; formula. This formula can
be read off from the primitive recursive definition of evaly, or rather evaly, using
the formalization of primitive recursion (11) in the proof of Proposition 4.6. The
following somewhat sharper observation will be essential for us below.

5 A recently introduced ‘Logic of Primitive Recursion’ by Sieg and Wainer [19] seems to provide
a relevant framework for the analysis of the intensional phenomenon of correpondence between
rules and computational schemes.
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Lemma 6.5. The graph of the function eval; is elementary and can be naturally
defined by a bounded formula.

Proof. The formula eval;(z) = y informally tells that y is a sequence of length
z + 1 such that for all u < =z,

1. If (u)o is the Godel number of i-th variable, then (y), = ((4)1);;

2. If (u)o is the G6del number of a term of the form h(t1,...,t,) for an initial
function h and for some terms ¢1, .. ., t,, (whose Gédel numbers j, ..., jm, are
bound to be smaller than (U)O), then (y)u = h((y)<j1,(u)1>’ ey (y)gm’(u)l));

3. (y)u =0, otherwise.

Let us stress that Clause 2 can only be stated separately for each individual initial
function h. Since the graph of f is elementary, so is the above formula, g.e.d.

Lemma 6.6. [T,%;-IR] F Vz3ly eval;(z) =y

Proof. This is a particular instance of Proposition 4.6. For the definition given in
Lemma 6.5, the totality of eval; can be directly verified using one application of the
rule ¥1-IR., which is congruent to ;-IR. The functionality of eval; is established
within 7" as in the proof of Proposition 4.6, q.e.d.

A corollary of this lemma is that a function symbol for eval;, and therefore the
one for evaly, can be introduced within [T, ¥;-IR]. Since the definitions of evaly
and evaly are natural, recursive Clauses 1-3 from the proof of Proposition 6.1 are
provable in [T, ¥;-IR], and we obtain the following statement.

Lemma 6.7. [T,3;-IR] proves

1. “e codes i-th variable” — evals(e, z) = (x);;

2. A\IX, “e; codes a term” —

evaly (Subgg...a,, ("h 7, €0, . ., €m), x) = h(evaly(eg, x), ..., evals(em, z)),
for any initial function h(zg,...,Zm).
The following corollary is standard.
Proposition 6.8. For any f-term t(zo,...,Tn),
[T,31-IR] F evalp("t7, (o, ..., Zn)) = t(X0, ..., Tn).

Proof: external induction on the build-up of ¢, q.e.d.

To be able to more fruitfully use the inductive clauses for evaly we need a
reasonable amount of induction for formulas involving evaly.

Proposition 6.9. The theory [T, ¥1-IR] contains the induction schema for bounded
formulas in the language with a function symbol for evaly.

Proof. Recall that eval; was defined via the function eval;. We observe two
things: (a) the graph of of eval; is elementary, by Lemma 6.5; (b) the function
eval; is provably increasing in [T, £;-IR], for obvious reasons. By Proposition 5.11
Ag(mf) induction is reducible to elementary induction, that is, is provable in
[T,%:-IR]. It remains to notice that Ag(evaly) formulas can be translated into
Ag(evaly) formulas using (15), q.e.d.

Corollary 6.10. [T,3,-IR] proves that for all terms t(z) in one variable and all
terms u,
evaly (Sub. ("t7,"u7), z) = evals("¢7, (evals (T, 2))).

Proof: by Ag(evaly) induction on the build-up of ¢, with v and z as free parameters,
q.e.d.
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7 3Y; induction rule

Theorem 2. Let T be an arithmetical theory containing EA. Then [T,%,-IR] is
equivalent to T together with RFNy, (To) for all finite Iy aziomatized subtheories
T() Of T.

Proof. Exactly as in the proof of Theorem 1 we can show that, if for I(z) € ¥;
the theory T proves
I(0) AVz (I(z) — I(xz + 1)), (17)
then for a suitable finite II, axiomatized subtheory Ty of T one has
T + RFNg, (Tp) & Yz I(2).

(For the axioms of Ty one may take formula (17) together with all axioms of EA.)
For the opposite inclusion it is sufficient to demonstrate that

[T,%,-IR] - RFNy;, (T)

for finite II5 axiomatized theories T'. Modulo the work we have done in the previous
sections the argument will be similar to the one in Sieg [17], Theorems 3.2 and 3.3.

We introduce a function symbol f for the standard witness for the single axiom
of T' and finitely many symbols for a suitable basis in &£, so that T" attains a purely
universal axiomatization. It is also essential that the language of T is finite, and
that 7" has only finitely many nonlogical axioms in the extended language.

We know that [T, ¥;-IR] has a reasonable evaluation function evaly for terms
in the language of T'. Using evaly first we manufacture a satisfation predicate for
quantifier free formuals of T'. The following lemma is well-known and easy.

Lemma 7.1. To every quantifier free formula ¢(a) we can associate a term x4(a)
such that
T+ 6la)  xs(a) = 0. (18)

Proof. Notice that, provably in T,
ti(a) =t2(a) ©  [|ti(a)—t2(a)| =0,
pla) A(a) < xg(a) +xy(a) =0,
—¢(a) © 1-xs(a) =0,

whenever the terms x4 and x, satisfy equivalence (18) for formulas ¢ and . The
statement of the lemma follows by induction on the build-up of ¢, q.e.d.

Obviously, the function
trm: "7 = Txg”

is Kalmar elementary, and Lemma 7.1 is formalizable in EA. We define:

Sats(e,a) := (evaly(trm(e), a) = 0).
This definition guarantees that Sat; is faithfully defined on atomic formulas (by
Proposition 6.8) and provably commutes with all boolean connectives. For example,
provably in [T, ¥;-IR] we have: for all ¢, 1,

Satr ("o AT, a) < evaly(trm("p AT),a) =0

& evaly("xe +x0 Ha) =0

< evalg(trm(T¢7),a) + eval(trm ("¢ T),a) =0

< (evaly(trm(T¢™),a) = 0 A evaly(trm("¢7), a) = 0)

< (Sats ("¢, a) ASaty(TY7,a)).
So, Tarski commutation conditions are satisfied, and in the usual manner we obtain
the following lemma.
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Lemma 7.2. For every quantifier free formula ¢(xo, - .., zn) in the language of T,
[T,31-IR] F Sat ¢ ("o™, (xo, .. -, Tn)) ¢ &(To,...,Tn).

We also notice the following useful property of the function trm that can be seen

from our proof of Lemma 7.1: for every open formula ¢(zo,..., 2,) and any terms
to,...,tn we have:
trm ("o (to, ..., tn) ") = Sub.,.. ., (trm("¢7), "t T, ..., Tt ). (19)

This property is formalizable in EA and yields the following fact: [T, ¥;-IR] proves
that for all formulas ¢(zo,...,2,) and any terms ty, ..., tn,

Saty(Té(to,---,tn) T, @) ¢ Satp (T, (evaly (Tto ", ), ... eval (Tt T, 2))).  (20)

This essentially follows from (19) and Corollary 6.10.

Now let Vo ... Vo, —a(zo, .. ., om) be the single nonlogical axiom of T' (accu-
mulating, in particular, all the equality axioms), with a quantifier free. Consider a
cut-free derivation of a sequent of the form Jxq ... Iz, azo, ..., Tm), A, where A is
a set, of quantifier-free formulas. By the subformula property, any formula occurring
in this derivation either (a) has the form 3z ... 3z, alte, ..., tk—1, Tk, .- ., Tm), for
some 0 < k < m and terms tp,...,tx—1; or (b) is an open formula. Furthermore,
since the rule introducing a universal quantifier is never applied, without loss of
generality we may assume that the derivation contains no free variables apart from
those of A (otherwise, substitute 0 for any such variable everywhere in the proof).
Let us call a cut-free derivation satisfying these conditions normal.

Lemma 7.3. The theory [T, X1-IR] proves the uniform reflection principle for quan-
tifier free formulas of T w.r.t. normal provability, that is, the following statement:

If a sequent of the form I', A, where A consists of open formulas in the
language of T' and T is a set of formulas of type (a) above, has a normal
proof, then for all n, Sat;("\/ A7, n).

Proof. The argument is similar to the one in the proof of Theorem 1 and, in
fact, easier, although there are some subtle formal differences. Reasoning inside
[T, %,-IR] we fix an arbitrary substitution of numerals 7 for free variables of A
everywhere in the given normal derivation and obtain a derivation p of a sequent of
the form I'(72), A(f). By the normality, any subderivation ¢ of p has a similar form,
and its Godel number is smaller than p. By induction on the height h of ¢ we prove
the following statement;:

For all h,q, if ¢ is a subderivation of p of height i and the end sequent of ¢
(¥) has the form I, A’, where I'" is of type (a) and A’ is quantifier free, then

Satr("V A" ().

Since there are only finitely many subderivations of p, the quantifier over all ¢ in this
statement is bounded, and p appears as a free variable. So, the whole induction
is an instance of Ag(evaly) induction schema, which is available in [T, ¥;-IR] by
Proposition 6.9.

As usual, we consider several cases according to the last rule applied in the
subderivation q. The cases of logical axioms and rules of propositional logic are
easily treated using commutation properties for Saty. The only nontrivial case is
that of the existential quantifier in front of «, that is, when the inference has the
form

F”, Oé(t(), PN ,tm_l, tm), AI
I Azpmalte, .-y tm_1,Tm), AT
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Then by the induction hypothesis and commutation properties for Sat; we know
that either Sats("a(to, ..., tm—1,tm) ", ()) or Sats("\/ A’7,()) holds. Suppose

Satf(’_a(to, s ;tm)—la <>)7

then by (20) we obtain Sats("a™, (evalf(to, ()),. .., evals(tm, ()))), whence

a(evaly(to, (), ..., evalg(tm, ()

by Lemma 7.2. This implies Jyo . . . Iyma(yo, - - - , Ym ) and a contradiction in [T, ¥;-IR].

So, we have demonstrated (x) and, considering the end sequent of the given
derivation p, may conclude that Sats("\/ A(72)7, ()) holds. By (20) this implies
Sats("V A7, n), g.e.d.

Now we are able to complete the proof of Theorem 2. Since [F'A, ¥;-IR] contains
SUPEXP and, therefore, proves the Cut-elimination Theorem for first order logic,
it is sufficient to prove the X reflection principle for T" w.r.t. cut-free provability.
We reason inside [T, £1-IR] as follows.

Suppose dzo(x, a) is cut-free provable in T', where o(x, a) is quantifier free. Since
T is a purely universal theory, by (formalized) Herbrand’s Theorem, as in the proof
of Proposition 4.2, we can find a f-term ¢(a) and a normal derivation of the sequent
dzg...3zm azo,. .., Tm),0(t(a),a). By Lemma 7.3 we may conclude that, for all
n, Saty("o(t(a),a)”, (n)). Hence, there exists a m such that Sats("o(z,a)”, (m,n)),
because for m one can take the value of ¢, evaly("¢7, (n)). Lemma 7.2 then yields
Jyo(y,n), q.ed.

Since uniform I, and ¥, reflection principles over T' are equivalent, we obtain
the following important corollary.

Corollary 7.4. For I, aziomatized theories T containing EA,
[T, X,-IR] = [T, II»-1R].

This corollary allows to extend to ¥1-IR all the facts concerning axiomatizability
that we have obtained earlier for II5 induction rule. It should be stressed, however,
that these results only apply for Il axiomatized theories, rather than for general
I13 axiomatized, as in the case of II5-IR.

On the other hand, the transparent analysis of p.t.r.f.s of theories axiomatized
by ¥;-IR allows us to obtain nontrivial results for II5-IR. For example, we have the
following result of Sieg for free (cf [18] and our discussion at the end of Section 3).

Corollary 7.5. The p.t.r.f.s of the theory [EA,II>-IR]; are precisely those of the
class Esy, of the Grzegorczyk hierarchy.

Proof. This follows from the well-known fact (cf e.g. [15]) that classes of the
Grzegorczyk hierarchy are obtained from £ by iterated application of the operator
of primitive recursion, which corresponds to X;-IR by Corollary 4.7, q.e.d.

8 Relativization

Our goal here is to restate Theorem 2 for a language with additional function
symbols. Let »(z) be a function. Relativized analogues of classes of functions
considered in the proof of Theorem 2 are defined as follows.

E* = E(x),
C*(K) = C(KU¢&™).
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Notice that C*(f) = C(3, f), by Proposition 5.1.

Recall that Ag(s) denotes the class of bounded formulas in the language of
EA (with symbols for all Kalmar elementary functions) enriched by a function
symbol for 5. ¥F formulas are those of the form 3z, ...,z, A(z1,...,2Zn, a), where
A € Ag(). Classes X and II are defined in a similar manner.

Relativized version of Kalmar elementary arithmetic, EA*, is a theory formu-
lated in the language with a function symbol for sc. In addition to the usual axioms
of EA it has a schema of induction for Ag(s¢) formulas. This formulation of EA* is
not purely universal because of the presence of bounded quantifiers. We show how
to reformulate it in a purely universal way.

First of all, we show that one can naturally Ag(s¢) define the graph of 3 and
prove in EA* that this relation defines a total function. For example, one can first
define an auxiliary function #(x) by

t(z) == pz <z Vi <z x(i) < (2).

The graph of ¢ is clearly Ag(s), and since ¢(z) < z holds provably in EA*, the
totality of ¢ is easily proved by Ag(3) induction. So, we introduce a function symbol
for ¢ and then define m(z) := »(t(x)). It is easy to see, provably in EA*  that

m(z) = rzngaxx #(z).

Now we define the graph of 7 as follows:
#x(z) =y >y €SeqAlh(y) =2+ 1AVi <z (y); = »#(3),
where lh(y) denotes the length of a sequence y. To show that
Vedly x(x) =y (21)
we notice that
#x(x) =py.y € Seq Alh(y) =z + 1AV <z 2(i) < (y);.

So, given an x we can find a sequence y = (m(z),...,m(x)) that majorizes s on
the interval [0, z]. Then we apply Ag(s¢) least element principle to find the minimal
such y. This proves (21).

The following two useful properties of the function > are obviously provable in
EA*.

1. Vx (32(z) € Seq Alh(3x(z)) =z + 1),
2. Vo,y (z <y = x(z) = x(y) | 2).

In particular, the second property shows that > is a provably increasing function. By
Proposition 5.11 we know that for such functions Ag(3) induction is reducible (over
EA) to induction for predicates elementary in the graph of , i.e., for formulas built
up from ¥(z) = y and elementary ones using boolean connectives and quantifiers
bounded by elementary functions. Since the graph of 3 is Ag (), we see that Ag ()
induction schema is available in EA*.

On the other hand, let EA* be a theory formulated in the language of EA
enriched by a function symbol for 7. Axioms of EA* are those of EA plus induction
schema for open formulas plus formulas 1 and 2 above. We have just seen that it is
contained, or rather interpreted, in EA*. The opposite containment is also true.

Proposition 8.1. EA*™ is equivalent to EA*.
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Proof. First of all, formalizing the proof of Proposition 5.1 we can show that C(3¢)
is provably closed under bounded summation.

Lemma 8.2. For every term g(z,a) in the language of EA* we can (effectively)
find a term G(z,a) such that EA* proves:

G(O)a) = g(0>a)7
Gz +1l,a) = G(z,a)+g(x+1,a).
Notice that any two terms satisfying the above equations are provably equal in

EA*. We shall denote G(z,a) by >, g(i,a). A similar lemma holds for bounded
multiplication. B

Lemma 8.3. For every Ao (3x) formula ¢(a) there is a term x(a) such that
EA” FVz (¢(z) < xs(z) = 0).

Proof. Induction on the build up of ¢. Boolean connectives are treated as in
Lemma 7.1. Bounded quantifiers are translated using Lemma 8.2 as follows:

Ve <y d(x,a) < Z X (z,a) =0, (22)

z<y

whenever x4 satisfies the induction hypothesis. We only need to demonstrate equiv-
alence (22) in EA* using open induction.
For the implication (+) we prove

ZX¢(x,a):0Au§y—>x¢(u,a):0 (23)

z<y

by an obvious quantifier free induction on y. For the opposite implication (—) we
reason as follows. Assume Vx < y ¢(x,a). Then prove by quantifier free induction
on u, and with y a parameter, that

Vu <y ZXM%“) =0.

z<u

Conclude Zw<y Xos(x,a) = 0. Notice that the induction here, being applied as a
schema, does not involve the side formula Vz < y ¢(z,a) (which is not quantifier
free), q.e.d.

iFrom Lemma 8.3 it follows that, using open induction only, we can prove all
instances of Ag(3) induction in EA*. Now we notice that the function s can be
defined by a term in EA*:
n(x) = (32(x))e-

This means that Ag(3¢) induction is reducible to Ag(3) induction, and we may con-
clude that EA* is equivalent to EA*, since the two interpretations we constructed
are mutually inverse, q.e.d.

Proposition 8.4. EA* has a purely universal aziomatization (in the language with
symbols for x and for all elementary functions).

Proof. In the standard axiomatization of EA* the instances of quantifier free
induction
A(0)AVy <z (A(x) = A(z + 1)) = Yy < zA(y)

are bounded, but not literally quantifier free. We show that in an axiomatization
of EA* these formulas can be replaced by quantifier free ones. To this end we have
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to improve a little upon Lemma 8.3. We show that in the proof of Lemma 8.3 only
a number of purely universal theorems of EA* could be used.

Indeed, the treatment of boolean connectives in Lemma 7.1 only requires a finite
number of equivalences, like

lz —yl=0z=y,

or
r+y=0< (x=0Ay =0).

To handle the bounded quantifiers we can simply take open formulas (23) as axioms.
However, the proof of the implication

Ve <y xe(z,a) :0—>ZX¢(m,a) =0, (24)

z<y

poses a problem.
Let m(y,a) be a function defined by

m(y,a) := pz < y. X4(z,a) # 0.

It is well-known that m(y, a) belongs to £* (cf Rose [13]), and hence, is definable via
bounded summation and multipliction. Moreover, in EA* one can prove natural
properties of p operator by quantifier free induction, in particular,

S Xo(@,a) # 0 = xs(m(y, a),a) £ 0

z<y

is provable in EA*. This formula clearly implies (24), and so, we can take it as
another open axiom. Thus, we see that Lemma 8.3 follows from a number of purely
universal theorems of EA*. Taking these theorems together with open translations
of all instances of quantifier free induction yields an open axiomatization of EA*,
q.e.d.

Now we can formulate a relativized version of (a particular case of) Theorem 2.
Theorem 3. Let T be a finite IIF aziomatized theory. Then
[EA” + T,27-IR] - RFNg= (T).

Proof. We check that everything in the proof of Theorem 2 relativizes. (Notice
that the relativized theorem is formulated in such a way that finite axiomatizability
of EA* is not presumed.) We take a purely universal formulation of EA* and
introduce a new function symbol f for the standard witness of the (single) II¥
axiom of T'. At the cost of introducing into the language of T' finitely many function
symbols for elementary (in i) functions and adding finitely many purely universal
axioms of FA*, we may assume that the graph of f is open and T has a finite purely
universal axiomatization in the language with f. (This follows by compactness from
Lemma 8.3 and Proposition 8.4.)

Main steps in the proof of Theorem 2 were as follows. (a) Defining the evaluation
function for f-terms using only one primitive recursion over C(f); (b) Proving the
totality and natural commutation properties for evaly inside [T, ¥1-IR]; (c) Showing
that Ag(evaly) induction schema is available in [T, X;-IR]; (d) Proving uniform
reflection principle for open formulas of T' (in the language with f) by Ag(evaly)
induction.

Since C*(f) = C(5, f) and the graph of f is elementary in 5, as in Lemma 6.5

we obtain a natural Ag(3) definition of the graph of the evaluation function eval?(a:)
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for terms in the language of 7. (This only amounts to adding the function > to
the list of initial functions.) For this definition one can directly show the totality of
m;(x) using one application of X7-IR., which can be reduced to an application
of ¥7-IR by the same proof as in Proposition 2.3. This shows a relativized version
of Lemma 6.6:

Lemma 8.5. [EA* + T, S7-IR] F Va3ly eval; (z) = y

A corollary is that the function symbols for m;{ and eval}_‘ can be introduced in
[EA* 4+ T,X7-IR]. Lemmas 6.7 and 6.8 then remain essentially unchanged, with
the understanding that 3 is included in the list of initial functions. Next we obtain
a relativized version of Proposition 6.9.

Lemma 8.6. The theory [EA*+T, X-IR] contains the induction schema for bounded
formulas in the language of EA* enriched by a function symbol for evalf.

This follows, exactly as in the proof of Proposition 6.9, from the facts that the

graph of f is elementary in > and that eval;( is provably increasing. Of course, we
rely on a relativized version of Proposition 5.11:

Lemma 8.7. Over EA* +Vx,y (z <y — f(z) < f(y)) the induction schemata
for Ao (3, f) formulas and Ao(32, F) formulas are deductively equivalent, where F
is the formula f(x) =y representing the graph of f.

The proof of this proposition goes as before, using the fact that 3 is provably
increasing in EA*, and that the induction schema for Ag(3) formulas is available
in EA*. (It can also be inferred just as a corollary of Proposition 5.11 for a language
with the two monotonic function symbols.)

The rest of the proof needs little checking. The evaluation function gives rise to
a natural satisfaction predicate in [EA* + T, X¥-IR] for quantifier free formulas of
T, Sat?(e, x). Tarski commutation conditions directly follow from the commutation
properties of eval? (e, x), as before, and we arrive at a relativized version of Lemma
7.3.

Lemma 8.8. The theory [EA* + T, X7-IR] proves the uniform reflection principle
for quantifier free formulas of T w.r.t. (normal) cut-free provability.

Here we essentially only rely on the fact that T is a finite and purely universal theory,
Tarski commutation properties for Sat7(e,z), and the availability of Ag(evaly)
induction schema. Theorem 3 follows from this lemma in the usual way, q.e.d.

Remark 8.9. Obviously, the analog of Theorem 3 also holds for extensions of the
language of arithmetic by more than one additional function symbol 3.

9 3, induction rule

In this section we generalize the results of Section 7 to X,,-IR for an arbitrary n > 1.
Our main result is formulated as follows.

Theorem 4. Let T be an arithmetical theory containing IX,. Then [T, %, 1-IR]
is equivalent to T together with RFNyx, ., (To) for all finite I1,, > aziomatized sub-
theories Ty of T'.

Corollary 9.1. For Il > aziomatized theories T containing 1%,
[T, Xn4+1-IR] = [T,11,,42-IR].

The same result holds for 3,12 UIl, 1o aziomatized extensions of I%,,.
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Proof. If Tj is a finite extension of 1Y, axiomatized by a II, o sentence 7w and a
Y .+2 sentence o, then

Ty + RFNy, ., (To) = To + RFNp, (IS, + 7),

by formalized Deduction Theorem. And RFNyy, ., (I¥, + 7) is provable in [I3, +
7, Sp41-IR]. So, [T, ¥, 11-IR] proves RFNyy, ,,(Tp) for any finite subtheory Tp of
T, exactly as by Theorem 1 [T, II,,42-IR] does, q.e.d.

We see that the theorem and its corollary only apply to theories T' containing
IY.,,, rather than to arbitrary extensions of EA. This seems to be a fairly restrictive
requirement. Recall, however, that [FA, ¥, ;1-IR] contains and is, in fact, equiva-
lent to IX,. It follows that just a single application of ¥,;-IR brings everything
into the class of theories containing I3, where Theorem 4 applies. So, we obtain
the following corollary.

Corollary 9.2. For any Il aziomatized extension T of EA, k applications of
II,,42 induction rule over T are reducible to k + 1 applications of ¥, +1-1R:

[T, Mn2-IR]y, € [T, Zny1-IR] 41

I do not know if this result is optimal, that is, if k¥ 4+ 1 applications of ¥,,+1-IR on
the right hand side can, in general, be decreased to k applications. However, we
have the following result.

Corollary 9.3. Let T be a ¥, 12 aziomatized extension of EA. Then [T, %X, +1-IR]
is equivalent to T together with RFNyx,  (Ty) for all finite subtheories Ty of T'.
Hence, over such theories, for any k,

[T, 10, 2Tk, = [T, Spy1-TR].

Proof. Let T be a finite (X,,42 axiomatized) subtheory of T'. First of all, we notice
that
TO + f{FNgn_'_1 (TO) = TO + RFNEW‘_1 (EA),

by formalized Deduction Theorem. We have already noticed before that [T, ¥,,+1-IR]
proves ¥,-IA, and by Leivant’s Theorem IY, contains RFNy,  , (EA). (Alterna-
tively, this fact can be seen from our proof of Theorem 4 below.) So, [T, ¥, +1-IR]
proves RFNy, ., (Tp). The opposite inclusion is proved in the usual way.

After the first application of ¥,,41-IR we obtain a theory which is a ¥, 12 UIl,, 42
axiomatized extension of I¥,. So, the second claim of the corollary follows by
Corollary 9.1, q.e.d.

Now we turn to the proof of Theorem 4. For the sake of clarity of presentation
we first give a proof of this theorem for n = 1.
Let T be a finite extension of I'Y; having, apart from the axioms of FA, the
only II3 axiom
7 := YuIvVw 19 (u, v, w),

where 79 is bounded. Let
¢('T) = JuVv ¢0(U’7 v, .’L')
be an arbitrary ¥, formula, with ¢y bounded. We are going to show that

[T, X2-IR] F Vz (Provy("¢(2)7) — ¢(x)).
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To this end, first we introduce Skolem functions in order to eat up the innermost
universal quantifiers in 7 and ¢, i.e., new function symbols s(z) and v(x) together
with the following axioms:

Vu < z [Fw =79 ((u)o, (u)1, w) = Fw < v(z) ~19((u)o, (v)1,w)], (25)
Vu <z [Fv =0 ((u)o,v, (u)1) = Fv < 52(z) ~¢o((w)o, v, (u)1)]- (26)

Let U be a theory obtained by adding to EA** axioms (25) and (26). Obviously,
U has a II7"" axiomatization.

Lemma 9.4. There is a non-relativizing interpretation (1)~ of U in IXy such that:
(a) ()~ is identical on formulas in the language of EA;
(b) If A€ X7 then (A)~ is equivalent to a Xy formula in I .

Proof. Graph of the function v will be defined by a formula v(z) = y naturally
expressing that y is the least z such that

Vu < z [3w =19 ((u)o, (u)1, w) = Jw < z ~7((w)o, (u)1,w)].

Notice that this formula is Ag(X1). To show that IX; proves Vadly v(z) = y we
make use of the fact (cf [4], p. 69) that I3, contains the so-called strong collection
schema for ¥; formulas A:

VeIyVu < z (32zA(u, z,a) = Iz < yA(u, z,a)).

Then, taking =79 ((u)o, (u)1, z) for A and subsequently applying the IT; least number
principle to select the (unique) minimal y shows that v is total and functional. The
graph of s is defined similarly.

Now we notice that the functions s and v thus introduced in I¥; are monotonic
in the sense that IY¥; proves

Vo,y (z <y = v(r) <v(y)) (27)

By Proposition 5.11 it follows that the induction schema for Ag(s,v) formulas
is reducible over EA plus (27) to the induction schema for bounded formulas in
the graphs of v and . Since the graphs of v and s are interpreted as Ag(X;)
formulas, this means that I'Y; interprets Ag(s,v) induction. It is easy to check
that interpretations of the axioms (26) and (25) are provable in I¥;.

Property (a) is part of the definition of the constructed interpretation, and for
(b) it is sufficient to demonstrate that Ag(3z,7) formulas are Ay in I3 under the
interpretation in question. By Lemma 8.3 every Aq (3, 7) formula is equivalent to
an open formula in EA*". Such formulas are obviously equivalent in EA™" to
A; formulas in the graphs of > and 7. Since the graphs of 3 and 7 are Ag(X;),
and by Theorem 2.25 (p. 68) of [4] Ag(X;) formulas are Ay in I¥;, so are the
interpretations of arbitrary Ag (3, v) formulas, q.e.d.

Remark 9.5. The results referred to in the proof of the above lemma are all ob-
tained by purely elementary methods.

An obvious corollary of Lemma 9.4 is the fact that U is conservative over I3,
and this fact can be seen to be provable in EA. (A careful reader may notice that
below we only need to interpret a finite fragment of U, and for finite theories such
a formalization is immediate.)

Now we observe that the function

V' (u,v) = pz < v({u,v)). ~1o(u,v, 2)
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is elementary in v, and therefore can be defined by a term in EA*”. By axiom (25)
we may then infer that U proves

Vzro(u,v, z) & 1o(u,v,v' (u,v)). (28)

Let TT be a theory in the language of U obtained by adding to U the axiom T,
that is, T+ := U + 7. By (28), Tt has a II;”” axiomatization. Besides, since
T = EA + 1 contains I¥;, T+ is a (provably) conservative extension of T'. Indeed,
for any formula A in the language of T, T+ F A implies U - 7 — A, whence
I 17— Aand T+ A, by Lemma 9.4.

Reasonong in a similar way, we obtain a term s (u, z) of EA™? such that

Ut ¢(x) < Fugo(u, > (u, z), ).
Since T is a provably conservative extension of T, this yields

EAF Prove+ ("3udo(u, ' (u, &),2)7) <+ Proves+ (Té(z)7) (29)
< Provr(T¢(z)7). (30)

Now we are in a position to invoke Theorem 3. Since 7't is a finite and II;""
axiomatized extension of EA*”, we have

[TT, S77-IR] F Vo (Provys (T3ugo (u, 5 (u, &), %)) — Judo(u, 5’ (u, x), x)),
and then (30) yields

[TF, 257 IR] F Va (Provy(Té(2)7) — ¢(z)).

So, we can find 7" formulas I, (), ..., I;(x) such that, for each i,
Tt L(0) AV (I;(x) = Li(z + 1)), (31)
and
T + {VoLi(z)i = 1,...,k} - Vz (Provy(T¢(z) ) — é(z)). (32)
Since (-)~, being a non-relativizing interpretation, distributes over boolean con-
nectives and quantifiers, from (31) we obtain ¥, formulas I; (z),...,I, (z) such
that

TFIZ(0)AYz (I] () = I (z + 1)),
for all i. And (32) implies that

T+ {VaI; (z)|i =1,...,k} - V& (Prove("¢(2)7) — ¢(z)),

so we obtain
[T, 35-IR] F Va (Provy("¢(2)7) — ¢(x)).

This completes the proof of the main part of Theorem 4 for n = 1. The other part
is no different from that of Theorem 2.

Now we sketch a proof of Theorem 4 for an arbitrary n > 1. We consider the case
of even n (the case of odd n is only notationally different). Our proof generalizes the
one given for n = 1 fairly straightforwardly, the only problem is not to get confused
by various indices of formulas, functions, and variables.

Let T be an extension of IXs, with the only non-EA Iy, > axiom

7 := YupIveVui vy . . . VYup v, 70(uo, Vo, - - - Un,y Un),
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where 79 is bounded, and let
d(z) := FvoVuyFvy .. . Yup vy, do(z,v0, ..« Un, V)
be an arbitrary ¥s,1 formula, with ¢9 bounded. As before, we have to show that
[T, ont+1-IR] F Vz (Prove (" ¢(2)7) — ¢(z)).
Let us denote, for 0 < k < n,

7'2k+1(’U,0,’U0,...,’U,n,k = Elvn,kVun,kH E|Un T0

Tok+2 (U0, Vo, - - -, Un—k—1 V- xJvp_t ... Jvn 1o
G2kt 1 (T, V0, - -, Un—k

¢2k+2(37, Vo, -y Un—k—1

an_kvun_k_H . an ¢0
= YUup_x0p_g...30, ¢o

Obviously, Tok41, ¢2k+1 € Yokt1 and Tok4-2, ¢2k+2 € Ilsg42. Next we introduce

new unary function symbols vy, ..., v, and 3, ..., 36, and the following formulas:
Yory1 = VoVz <z [Fua_k mr((2)os -+, (2)2(n—k)s Unk) =
Fon k. < Vary1(®) T2k ((2)0, -+ -5 (2)2(n—k)s Vn—t)]
Yoryr = VoVz <2 [Fun x7Tort1((2)0, - -5 (2)2(n—k)=1, Un—k) =
Fun—t < vort2(@) “Tok41((2)0, - -+ (2)2(n—k)—15 Un—r)]
Oorr1 = VaVz <z [Fvar d2e((2)o,s -5 (2)2(n—k)> Vnt) =
Fon i < sort1(T) P2r((2)0s -+ -5 (2)2(n—k)» Un—k)]
Ookre = VeVz <z [FTup k2d2k1((2)0s - -5 (2)2(nk)—1) Un—k) =
Fun—r < s2p12(®) 2P2k41((2)0, - - -5 (2)2(n—h)—15 Un—k)]

Finally, let the theories U,,, for m = 1,...,2n, be obtained from EA¥1:*1»:Vm:>m
by adding the axioms 1,61, ...,¥m, 0, together with the monotonicity axioms for
all Skolem functions in the language of U,,:
<y — vz)<vy), 1<i<m
<y —= xx)<xy), 1<i<m.

Lemma 9.6. There is a non-relativizing interpretation (1)~ of Usy, in [Xo, such
that, for each 1 < m < 2n,

(a) (-)~ interprets Uy, in IS,,;
(b) (-)~ is identical on formulas in the language of EA;
(c) If A e SyvXPmo*m then (A)~ is equivalent to a Sy formula in IS,,.

Proof. Essentially the same proof as for Lemma 9.4. For example, vogy1(x) is
interpreted as the least y such that

Vz <2 [Fvnk 2k ((2)05 - 5 (2)2(n—k)> Vn—k) =
= v, < ) T2k((z)07 vy (2)2(n—k)7 ’Unfk)]a

and similarly for the other functions. Totality of v; and s, for ¢ < m, together
with the axioms v; and 6; then follows from the strong X; collection schema, which
is available in I%,, for i < m. Verifying the monotonicity axioms is unproblematic.

The graphs of v; and »; are interpreted as Ag(X;) formulas. By Proposition
5.11 Ag(v1, 51, - - -, Vm, %) induction schema is reducible to the induction schema
for formulas elementary in the graphs of all functions v; and s; for 1 < i < m, that
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is, to Ag(X,) induction. The latter is contained in I%,,, hence IY,, also interprets
EAV17J{17...7Vm7J{m X

Graphs of 7y, 51, ..., U, 5m are Ag(X,,), and hence A,,,41 in I'Y,,. This means
that any Ao(&1, .. ., 5m) formula, being U,,-equivalent to a A; formula in the graphs
of 1,51, ..., Um, #m, 1S Apmyq in IX,,. This implies property (c) of our interpreta-
tion, and property (b) is obvious, g.e.d.

Lemma 9.7. For all 1 < m < 2n, the formulas 1, and ¢, are U,,-equivalent to
open formulas, provided Uy, is formulated in the language with function symbols for
Uiy X1y e vy Um,y X

Proof: by induction on m. Let 75, denote an open formula equivalent to 7» in

Usk. We define a function vy, (uo,vo,...,un ) as
!
Mg < V2k+1(<“0;v0: ce ,Un—k>)- 7_2k(u0;U0;---;unfkavnfk)-
Vék+1 is elementary in vy, 2e,. .., var41; hence it can be represented by a term in

Usg+1. Besides, since Usg41 contains Usy, we have
!
Usk1 F Tokp1 < F0n_iTop
! !
& Top(Uo,s s Un—ps Vop g (W0, - vy Un—k))

The latter formula is quantifier-free and will be denoted 75, 41- Similarly, we define
Vipyo (0,00, -, Un_r—1) as

!
Plp e < V2k+2(<UO>UOa---;Unfk71>)- _'Tszrl(UO;'UO;---:'Unfkflaunfk)-
Then
!
Uski2 b Top2 ¢ Vun ko
! !
<~ Tok+1 (’LL(), cey Un—k—1, V2k+2 (UO) AR ’Unfkfl))a

as required. The argument for ¢y, is similar, q.e.d.

Corollary 9.8. For each 1 <m < 2n, U, has a Hfl”_“"""j’"”_"" aziomatization.

Moy Vm 3 m

Proof: by induction on m. A H'fl’ axiomatization of U, is obtained
from that of U,, by replacing, in the axioms 9,41 and 6,41, the subformulas 7,
and ¢,,, respectively, by their open counterparts 7/, and ¢/, q.e.d.

Now we define T+ := U, + 7 (the language of T is that of Us,). Since T
contains IY,,, by Lemma 9.6 T'F is a provably conservative extension of T'. 7' has

a H12717J_417---7172n,ﬂ?2n D1,5%1,..,V2n %20

axiomatization, and ¢ is provably equivalent to a X
formula within 7T by Lemma 9.7. This allows us to apply Theorem 3 to TF, and
to carry through the rest of the proof exactly in the way it was done for the case
n =1, q.e.d.

10 On B(%,) induction rule

We first analyze the induction rule for boolean combinations of ¥; formulas.
Proposition 10.1. B(%;)-IR = ¥;-IR.

Proof. We must show that, for every theory T' containing E A,

[T, B(£1)-IR] C [T, £1-IR].
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Suppose A(z) is a B(X1) formula such that T proves
A(0) AV (A(z) = Az + 1)). (33)

We must show that Yz A(x) is contained in [T, ¥£1-IR]. It is easy to see by induction
on the complexity of boolean combinations that every B(X,,) formula is logically
equivalent to both a ¥, 1 and a I, 1 formula, that is, is A, 11 in EA. In particular,
A(x) is Ay and (33) is (equivalent to) a I, formula. Let T be the finite subtheory
of T axiomatized by (33). By Corollary 7.4 we have [Ty, £1-IR] = [T, I>-IR], and
the latter theory contains Vz A(z). It follows that VzA(z) is provable in [T, ¥;-IR],
q.e.d.

Essentially the same argument works for B(X,,)-IR, for arbitrary n, only at the
last step we have to apply Corollary 9.1 or 9.2. In this way we obtain the following
proposition.

Proposition 10.2. For n > 1 we have:

1. B(%,)-IR X X,-IR, i.e., the two rules are interderivable. Moreover, k nested
applications of B(X,)-IR are reducible to k + 1 nested applications of ¥,,-IR.

2. The two rules are, in fact, congruent modulo [¥,,_1, that is, over theories as
strong as I¥,_1, k nested applications of B(X,)-IR are reducible to k nested
applications of ¥,-IR.

Open question: is B(X,)-IR congruent to ¥,-IR for n > 1?

11 Conclusion

In this paper we introduced natural notions of reducibility and congruence of rules
in formal arithmetic. We classified various forms of induction rules of restricted
arithmetical complexity (over EA) modulo congruence relation. It turned out that
these forms, most commonly, fall into one of the three main (distinct) categories: (a)
rules congruent to induction axiom schemata; (b) rules congruent to ¥, induction
rule ¥,-IR; (c) rules congruent to II,, induction rule IL,-IR.

We gave characterizations of ¥,-IR and II,-IR in terms of iterated reflection
principles. These characterizations provide natural axiomatizations for closures of
arbitrary theories containing F A under these rules. It turns out that the number
of iterations of reflection principles precisely corresponds to the depth of nestings
of applications of induction rules. This shows, in particular, that the two ways of
axiomatizing theories are tightly related.

Besides, these characterizations yield several important corollaries concerning
finite (non)axiomatizability of theories axiomatized by induction rules, and give
wide sufficient conditions for the equivalence of (closures of theories by) II,,+; and
¥, induction rules.

Proof-theoretic analysis of provably recursive functions of theories axiomatized
by rules allows us to sharpen, and give easy new proofs of, several old results. For
example, we prove Peter’s theorem on reduction of nested recursion to primitive
recursion and Finite Basis Theorem for Kalmar elementary functions. We also
reproduce some results of Parsons [11] and Sieg [17, 18], e.g., we show that Parsons’
result on IT, conservativity of I, over ¥1-IR is interderivable with (a particular case
of) so-called Fine Structure Theorem on uniform reflection principles of U.Schmerl
[14].

I hope the results of this paper will convince the reader of the fact that rules
in arithmetic are an interesting independent object of study; and that a detailed
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analysis how particular rules work not only often reveals peculiar effects, but may
have useful applications in other topics of proof theory.
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