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Abstract

A well�known result ��� states that� over basic Kalmar elementary arith�
metic EA� the induction schema for �n formulas is equivalent to the uniform
re�ection principle for �n�� formulas 	n � 
�� We show that fragments of
arithmetic axiomatized by various forms of induction rules admit a precise
axiomatization in terms of re�ection principles as well� Thus� the closure of
EA under the induction rule for �n 	or 
n��� formulas is equivalent to �
times iterated �n re�ection principle� Moreover� for k � �� k times iterated
�n re�ection principle over EA precisely corresponds to the extension of EA
by � k nested applications of �n induction rule�

The above relationship holds in greater generality than just stated� In
fact� we give general formulas characterizing in terms of iterated re�ection
principles the extension of any given theory 	containing EA� by � k nested
applications of �n or 
n induction rules� In particular� the closure of a theory
T under just one application of �� induction rule is equivalent to T together
with �� re�ection principle for each �nite 
� axiomatized subtheory of T �

These results have closely parallel ones in the theory of subrecursive func�
tion classes� The rules under study correspond� in a canonical way� to natural
closure operators on the classes of provably recursive functions� Thus� ��

induction rule precisely corresponds to the primitive recursive closure opera�
tor� and �� collection rule� introduced below� corresponds to the elementary
closure operator�

� Introduction

It is well known that �rst order theories can be de�ned� over �rst order logic� by
sets of axioms as well as by sets of rules� An axiom can be viewed as a particular
kind of rule with an empty� or with some �xed� provable premise� Vice versa� for a
theory T axiomatized by rules� all theorems of T constitute a trivial axiomatization
of T by a set of axioms� So� if one identi�es a theory with its set of theorems � a
point of view especially supported by the model�theoretic tradition in logic � there
is no essential di�erence between rules and axioms�

This paper is devoted to a detailed proof�theoretic analysis of restricted in�
duction rules in arithmetic� Our main results characterize closures of arithmetical
theories containing EA by induction rules in terms of axioms� In contrast with
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the above observation� we are looking for natural and informative axiomatizations�
rather than for easy but useless ones�

One di	culty in the way of this project lies in the fact that� in general� the closure
of a theory T under a given inference rule R not only depends on R� but on also
on T � So� a meaningful characterization of a rule must somehow take into account
arbitrary theories T 
of a given class�� This feature requires a somewhat sharper
analysis of induction rules than those existing in the proof�theoretic literature ��
�
��� ��� ���� for in all these works the authors dealt with the closures under the
induction rules of particular base theories� such as EA or PRA�

Our axiomatizations are formulated in terms of iterated re�ection principles� see
��
� ���� Very roughly� k times iterated re�ection principle of relevant arithmetical
complexity happens to be the strongest formula that can be inferred from a given
�nite theory 
of relevant complexity� using � k nested applications of the induction
rule in question� In this sense our axiomatizations are canonical� In particular� this
also allows for general characterizations of the closures of arbitrary extensions of
EA under the restricted induction rules�

Our characterizations are informative in the sense that they yield several inter�
esting corollaries concerning �nite 
non�axiomatizability of theories given by induc�
tion rules� give wide su	cient conditions for the equivalence of 
closures of theories
by� �n�� and �n induction rules� and allow us to give new proofs of several old
results� such as the conservativity results for induction schemata over induction
rules� characterizations of provably total recursive functions of theories axiomatized
by rules� and others�

The rules studied in this paper correspond to natural closure operators on the
classes of provably recursive functions of theories� e�g�� �� induction rule precisely
corresponds to the primitive recursive closure operator� We also introduce and study
a natural version of �� collection rule� which corresponds to the elementary closure
operator� This rule is especially useful for the analysis of theories� whose classes
of provably recursive functions are not elementarily closed� The role of re�ection
principles in connection with the rules is similar to the role of universal functions
for subrecursive classes w�r�t� the above�mentioned closure operators�

For further discussion we must �x some terminology and formulate a few back�
ground results�

Kalmar elementary arithmetic EA is a theory known in several equivalent for�
mulations� When formulated in the standard language of Peano arithmetic PA

it has the name I�� � EXP and is axiomatized by restricting� in the standard
formulation of PA� the schema of induction

A

� � �x
A
x� � A
x� ���� �xA
x� 
��

to bounded formulas A
x� and by adding a �� axiom stating that the function �x

is total� It is well�known that I�� �EXP is a �nitely axiomatizable theory ����
In an alternative formulation� the language of EA contains function symbols for

all Kalmar elementary functions� and mathematical axioms of EA are 
�� 
open�
de�ning equations for all these functions� 
�� the schema of induction for open
formulas� It is known that EA admits a purely universal 
or quanti�er free� axiom�
atization in this language� The two formulations of EA are equivalent in the sense
that the second theory can be viewed as a conservative �de�nitional extension� of
the �rst one�

Let us also mention the fact that there exists a �nite� purely universal formula�
tion of EA in a language with symbols for �nitely many elementary functions� This
fact is closely related to a well�known theorem� originally due to R�odding� stating
that the class of Kalmar elementary functions has a �nite basis under composition
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see� e�g�� ��� ���� We shall sketch a proof of this useful fact� as well as that of the
�nite basis theorem� in Section ��

Our results are invariant w�r�t� the choice of the language of EA� but not all of
their proofs are� For de�niteness 
unless the opposite is obvious from the context�
we assume that EA is formulated in the language of PA� It is known that EA is
strong enough to reasonably formalize syntax� provability� G�odel�s incompleteness
theorems� partial truthde�nitions 
see ����� All theories considered below are as�
sumed to contain EA� By an arithmetical theory we mean a theory formulated in
the language of EA� Classes of arithmetical �n and �n formulas� for n � �� are
de�ned in the usual way 
cf ���� p� ����

C� Parsons was probably the �rst to systematically study fragments of PA ob�
tained by restricting various forms of induction to classes of the arithmetic hierarchy�
In ��
� ���� among other things� he showed that� over EA� the induction schema 
��
for �n formulas A
x�� denoted �n�IA� is strictly stronger than the corresponding
induction rule for �n formulas� �n�IR 
n � ���

A

�� �x
A
x�� A
x � ��� � �xA
x��

Parsons demonstrated that many other natural forms of restricted induction over
EA are equivalent to one of these two� In particular�

EA��n�IA � EA��n�IA� 
��


this theory is also often denoted I�n� and

EA��n�IR � EA��n���IR� 
��

Here the expression T � U means that the theories T and U are deductively equiv�
alent� i�e�� have the same set of theorems�

Despite the two results looking very similar� they are rather di�erent in na�
ture� as the reader familiar with their proofs undoubtedly feels� Equivalence 
��
actually holds over any theory T containing EA� and this indicates a really tight
relationship between the two axiom schemata� On the other hand� it is well�known
that equivalence 
�� may cease to be true for some theories stronger than EA� For
example�

I�� ����IR � I�� �� I�� ����IR�

because I������IR proves the consistency of I��� e�g�� by our results in Section ��
This shows that� from some sharper point of view� ���IR and ���IR are substantially
di�erent rules� In order to accurately formulate this point of view we adopt a few
rather general de�nitions�

Since the rules we deal with in this paper typically apply to any one from an
in�nite collection of premises� we say that a rule is a set of instances� that is�
expressions of the form

A�� � � � � An

B
�

where A�� � � � � An and B are formulas� Derivations using rules are de�ned in the
standard way� T � R denotes the closure of a theory T under a rule R and �rst
order logic� �T�R� denotes the closure of T under unnested applications of R� that
is� the theory axiomatized over T by all formulas B such that� for some formulas
A�� � � � � An derivable in T � A������An

B
is an instance of R�

De�nition �� Let R� and R� be rules� R� is reducible to R� 
denoted R� � R��
i�� for every theory T containing EA� �T�R�� 	 �T�R��� R� and R� are congruent

R�


� R�� i� R� � R� and R� � R��
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Informally� R� � R� means that an arbitrary application of R� can be modeled
over EA by unnested applications of R�� Notice that � is re�exive and transitive�
so that 
� is an equivalence relation� For the purposes of this paper we may safely
identify congruent rules�

We say that a rule R is congruent to a set of axioms U � i� R is congruent to U
considered as a trivial schematic rule 
with the empty premise�� or equivalently� i�
�T�R� � T�U for any theory T extending EA� Notice that rules congruent to axiom
schemata have a trivial behaviour in the sense that they cannot be applied fruitfully
more than once� nested applictions of such rules do not yield new theorems�

De�nition �� R� is derivable from R� 
denoted R� � R��� i� for every theory T

containing EA� T �R� 	 T �R��

In other words� R� � R� i� for any application A������An
B

of R� there exists a deriva�
tion of B from A�� � � � � An using EA and rule R�� Clearly� R� � R� implies R� � R�

but not necessarily vice versa� Below we shall see that equivalences of rules estab�
lished by purely elementary methods can usually be strengthened to congruences�
On the other hand� equivalence proofs involving more sophisticated methods usu�
ally depend on the choice of a particular base theory and therefore do not yield
reducibilities either in the sense of De�nition � or ��

Example� We have seen that ���IR �� ���IR� although the closure of EA under
each of these rules is the same� On the other hand� obviously ���IR � ���IR�
Corollary ��� in Section � shows that �n�IR � �n�IR� for n � �� but not vice versa�

The plan of the paper is as follows� In Section � we classify various forms
of induction rules modulo congruence relation� We shall show that these rules�
most commonly� fall into one of the three distinct categories� 
a� rules congruent to
induction axiom schemata� 
b� rules congruent to �n induction rule �n�IR� 
c� rules
congruent to �n induction rule �n�IR� 
An interesting candidate for falling out of
this classi�cation is the induction rule for boolean combinations of �n formulas�
which is derivable from� but possibly not reducible to� �n�IR for n � �� see Section
�
��

The question of the axiomatizability of rules of category 
a� is trivially settled�
So� in the remaining part of the paper we analyze the other two cases� In Section
� we introduce re�ection principles and characterize �n�IR for n � �� A similar
characterization of �n�IR is more di	cult and is given in Section � for ���IR� and in
Section � for �n�IR� n � �� The characterization of ���IR requires a rather careful
analysis of provably recursive functions of theories axiomatized by this rule� In Sec�
tion � we recall basic facts about provably recursive functions and formulate an easy
characterization of these functions for closures of �� axiomatized theories by ���IR�
In Section  we analyze the question� when the class of provably recursive functions
of a theory is elementarily closed� A natural su	cient condition is formulated in
terms of �� collection rule� In Section !� on the basis of these results� we construct
a suitable universal function for the class of provably recursive functions of a �nite
�� axiomatized extension of EA using only unnested applications of ���IR over
that theory� This allows us to obtain in Section � the required characterization of
���IR� and subsequently relativize it to �n�IR for n � ��

It should be said that in the proof of our main results we did not try to be
overly laconic� We have included proofs of several results which were formally never
used in the main proofs� like a theorem of R� Peter on nested recursion� or the
results the use of which could be avoided� like the �nite basis theorem for Kalmar
elementary functions� It seems to us that proofs of these easy facts 
modulo the
rest of our techniques� would enhance the reader�s general understanding of peculiar
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phenomena treated in this paper� so we decided to include them� The results of
Section � of this paper have been earlier announced in ����
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� Basic equivalences

C� Parsons showed that many natural forms of induction 
of restricted arithmetical
complexity� over EA are equivalent to either �n�IR or �n�IA� In this section we
obtain a few more results of this kind� We classify various forms of induction rules
modulo the sharper congruence relation� Some of Parsons� equivalences then turn
out to be congruences� whereas some others do not� We also examine a few rules that
have not been considered by Parsons� In addition to IR we consider the following
forms of induction rule�

IR� � �x 
A
x� � A
x� ��� � A

�� �x A
x�

IR� � �x 
�y � x A
y�� A
x�� � �x A
x�

LR � �x A
x� � �x 
A
x� � �y � x 
A
y��

As usual� for " a class of arithmetical formulas� "�IR�� "�IR�� and "�LR will denote
the above rules with the restriction that A � "� We also assume that formulas A
x�
may contain free parameters other than x� Everywhere below� whenever we talk
about �n or �n induction rules or axioms� it will be implicitly assumed that n � ��

Proposition ���� �n�IR�

� �n�IR�


� �n�IR

Proof� �� The congruence �n�IR�

� �n�IR� is proved in analogy with the proof of

the equivalence of �n�IA and �n�IA 
cf ������ For example� to show that �n�IR� �
�n�IR� consider a formula A
x� � �n such that

T � �x 
A
x� � A
x� ����

Then for B
a� x� �� 
A
a #�x� one has

T � �x 
B
a� x�� B
a� x� ����

whence

�T��n�IR�� � B
a� 
�� �x B
a� x�

� B
a� 
�� B
a� a�

� A

�� A
a�� q�e�d�

Notice that a similar trick does not work with the rule IR�

 



�� Obviously� �n�IR � �n�IR�� so we only have to show that �n�IR� � �n�IR�
Let �yA
y� x� � �n with A
y� x� � �n��� and let

T � �x 
�yA
y� x�� �yA
y� x� ����

Then we have

T � �x 
�y 
A
a� 
�� A
y� x��� �y 
A
a� 
�� A
y� x� ����

and obviously
T � �y 
A
a� 
�� A
y� 
���

It follows that

�T��n�IR� � �x�y 
A
a� 
�� A
y� x��

� �uA
u� 
�� �x�y A
y� x�� q�e�d�

Corollary ���� �n�IR � �n�IR� �n�IR �� �n�IR�

Proof� First� �n�IR � �n�IR�� and by Proposition ��� �n�IR� � �n�IR�
Second� it is easily seen 
and was noticed by Parsons� that EA��k���IR contains

I�k� On the other hand� by a theorem of Leivant �!� on the optimal complexity
of axiomatization of induction� EA ��k���IR� being an extension of EA by a set
of true �k�� sentences� cannot contain I�k� This shows our claim for n � �� For
n � � we notice that� e�g�� by Theorem � proved in Section �� �EA����IR� contains
the uniform �� re�ection principle for EA 
this fact can also be inferred from some
results in Wilkie and Paris ������ This means that �EA����IR� is not contained in
any consistent set of �� sentences over EA� in particular� not in EA����IR� q�e�d�

Proposition ���� �n�IR�

� �n�IR� �n�IR�


� �n�IR

Proof� The only nontrivial reduction is �n�IR� � �n�IR� 
Notice that� if A
x� �
�n� the formula �y � x A
y� need not be equivalent to a �n�formula in absence of
�n�collection principle� and so the obvious argument does not work��

Suppose
T � �x 
�y � x A
y�� A
x��� 
��

where A
x� �� �u A�
x� u�� A�
x� u� � �n��� De�ne�

B
x� �� �z�y � x A�
y� 
z�y��

Here 
z�y denotes the y�th element of a sequence coded by z� the standard coding
function being Kalmar elementary� Clearly� B
x� � �n� and from 
�� one readily
obtains

T � B

� � �x 
B
x� � B
x� ����

Applying �n�IR once� we get �x B
x� and �x�y A�
x� u�� q�e�d�

Now we examine some rules congruent to axiom schemata� The e�ect of such
rules over a theory T is precisely that of adding to T a �xed amount of axioms 
that
do not depend on T �� This idea is spelled out in the following de�nition�

De�nition �� A rule R is congruent to a set of formulas U 
denoted R 
� U� i��
for every theory T containing EA� �T�R� � T � U�
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It is not di	cult to see that� if R 
� U � then we have

��T�R�� R� � �T�R� � U � 
T � U� � U � T � U � �T�R��

and so� such a rule can nontrivially be applied only once� Also notice that in order
to demonstrate R 
� U it is enough to check that �EA�R� contains U and that T �U

is closed under R for every theory T �
Of the rules congruent to axiom schemes the most obvious one is the usual

Gentzen�style rule of induction� which can also be called $the induction rule with
side formulas%� In Hilbert�style formulation it may look� e�g�� as follows�

B � �x 
A
x� � A
x� ���

B � 
A

�� �xA
x��
�

It is well�known that� whenever the complexity of the formula A is restricted to� say�
�n� this rule provides an alternative axiomatization of I�n 
over EA�� Moreover�
the reader may easily check that to derive an instance of �n�IA only one application
of the rule is necessary� On the other hand� the fact that T ��n�IA is closed under
the induction rule with side formulas is obvious� hence the rule is congruent to
�n�IA� Of course� such an e�ect is only possible because no restriction was imposed
on the arithmetical complexity of the �side formula� B� Our further examples are
of a somewhat more delicate nature�

Recall that� for a class of arithmetical formulas "� ��
"��formulas are those
obtained from " by means of boolean connectives and bounded quanti�ers� Par�
sons ���� essentially proved the following fact�

Proposition ���� ��
�n��IR 
� �n�IA

Proof� To derive an instance of �n�IA apply IR to the following ��
�n� formula�

A

� � �x � a 
A
x� � A
x � ���� �x � a A
x�� 
 �

where A
x� � �n�
To show that T � �n�IA is closed under ��
�n��IR for each theory T notice

that an even stronger fact is known� I�n contains ��
�n��IA 
cf ���� or ���� Lemma
����� p� ! �� q�e�d�

The above proposition has a somewhat paradoxical consequence that ��
����IR
turns out to be actually stronger than ���IR over EA� This looks strange because
we all are used to the fact that in the standard model of arithmetic ��
��� sets
are �� and hence strictly lower in the hierarchy than �� sets� No contradiction
in mathematics arises from this because EA is a weak enough theory to think 
or
rather� not to exclude� that ��
��� sets can be very complex� In fact� Proposi�
tion ��� provides a relevant instance of ���IA of the form 
 � as an example to this
e�ect� Now we are ready to examine the least element rule LR�

Proposition ���� �n�LR 
� ��
�n��LR 
� �n�LR

Proof� �� The �rst congruence is proved very similarly to the quoted Lemma ����
of ���� We only sketch the argument�

For a formula A
�x� �� A
x�� � � � � xk� let $q is a z�piece of A% denote the following
formula�

$q codes a function �
� z�k � f
� �g%� �x�� � � � � xk � z 
A
�x�� $q
�x� � �%��

We say that A is piecewise coded in a theory T i�

T � �z�q $q is a z�piece of A%�

�



It is readily seen that the class of formulas piecewise coded in a theory T containing
EA is closed under boolean connectives and bounded quanti�ers�

Now we show that the theory �EA��n�LR� piecewise encodes all �n�formulas�
Indeed� for any such formula A
�x� we obviously have

EA � �q 
q � �
� a�k � f
� �g � ��x � a 
A
�x�� q
�x� � ����

because� e�g�� one may take for q the function identically equal to �� Applying �n�LR
once we get the minimal such q� It faithfully encodes the a�piece of A because the
standard coding of �nite functions has the property that functions with smaller
values are assigned smaller codes� It follows that all �n� and hence all ��
�n��
formulas are piecewise coded in �EA��n�LR��

Now it is easy to derive ��
�n��LR� Let EA � �x A
x�� where A
x� � ��
�n��
Then we have�

�EA��n�LR� � �x� q 
A
x� � $q is a x�piece of A%��

For this q� using only elementary induction we can �nd the minimal x such that
q
x� � �� It coincides with the least x such that A
x� holds since q is the x�piece
of A�

�� To demonstrate the second congruence it is su	cient to show that every
�n formula is piecewise coded in �EA��n�LR�� Let �uA�
u� x� be such a formula�
with A� � �n��� Following the same idea as before� and taking for q the function
identically equal to �� we obtain

EA � �q �u �x � a 
A�

u�x� x�� q
x� � ���

Using �n�LR take the least such q 
and a corresponding u�� In order to see that q
is as required reason� for any x � a� as follows�

If �zA�
z� x�� then A�

u�x� x� and hence q
x� � ��
If �z
A�
z� x� and q
x� � �� pick any such z and de�ne a sequence u� and a

function q� as follows� 
u��i � 
u�i� for i �� x� 
u��x � z� and q�
i� � q
i�� for i �� x�
q�
x� � 
� Then q� has a smaller code than q and satis�es

�i � a 
A�

u
��i� i�� q�
i� � ���

which contradicts the minimality of q� q�e�d�

Proposition ��	� �n�LR 
� �n�LR 
� �n�IA

Proof� It is well�known that �n�IA is equivalent to the least number principle for
��
�n� formulas 
cf ����� hence T��n�IA is closed under ��
�n��LR for any theory
T � Now we derive the least number principle for an arbitrary ��
�n� formula A
x��
Obviously�

EA � �x 
A
a�� A
x���

Using Proposition �� we conclude that �EA��n�LR� contains

�x 

A
a� � A
x�� � �y � x 

A
a�� A
y����

This formula implies

�x 
A
a�� 
A
x� � �y � x 
A
y���

and
�zA
z�� �x 
A
x� � �y � x 
A
y���

q�e�d�
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In view of Proposition ��� it is natural to ask� what is the strength of the
induction rule for boolean combinations of �n formulas� B
�n��IR� A priori� we
can only say that

�n�IR � B
�n��IR � ��
�n��IR�

and that at least one of the two inequalities is strict� In the preliminary version of
this paper ��� we gave an elementary� although somewhat lengthy� argument showing
that B
�n��IR is derivable from �n�IR� This result can be simpli�ed and somewhat
strengthened using more advanced methods� In particular� now we are able to show
that B
����IR and ���IR are congruent� although it remains open whether this
holds for n � �� We shall treat B
����IR more carefully in a short Section �
 at
the end of the paper�

We summarize the structure of induction rules modulo reducibility 
and deriv�
ability� relation in the following diagram�

r r r

r

r

r

r

r

r�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�

�
�
�

EA ���IR
���IR

���IR

���IR

���IR

���IR

���IA 
� ��
����IR ���IA 
� ��
����IR

In addition to the already established facts� we remark that neither of the rules
�n���IR and �n�IA is derivable from the other� so that all the reducibilities shown
on the diagram are proper� Indeed� over EA �n�IA is strictly stronger than �n���IR

see the proof of Corollary ����� whereas over I�n the latter is stronger than the
former� e�g�� by Theorem � formulated in the next section�

� �n induction rule

In this section we give a characterization of �n�IR in terms of iterated re�ection
principles�

Re�ection principles� for an r�e� theory T � are formal schemata expressing the
soundness of T � that is� the statement that $every sentence provable in T is true%�
More precisely� if ProvT 
x� denotes a canonical �� provability predicate for T � then
the 
uniform� re�ection principle for T is the schema

�x 
ProvT 
pA
 #x�q�� A
x���

for all formulas A
x�� This schema is denoted RFN
T �� Partial re�ection principles
are obtained from it by imposing a restriction that the formula A may only range
over a certain subclass " of the class of T �formulas� Such schemata will be denoted
RFN�
T �� and for " one usually takes one of the classes �n or �n of the arithmetical
hierarchy� The following two basic facts on uniform re�ection principles are well�
known 
cf ��
�� and easy�

�� RFN�n
T � is equivalent to RFN�n��
T � over EA� for n � �� RFN��

T � is

equivalent to Con
T �� the consistency assertion for T �

�



�� The schema RFN�n
T � is equivalent to a single �n sentence 
over EA�� This
follows from the existence of partial truthde�nitions�

An old and well�known result of Kreisel and L&evy � � says that an alternative
axiomatization of Peano Arithmetic over EA can be obtained by replacing the
induction schema by the full uniform re�ection principle for EA�

PA � EA�RFN
EA��

D� Leivant sharpened this result by showing that the hierarchies of restricted in�
duction schemata and restricted re�ection principles over EA actually coincide�

I�n � EA�RFN�n��
EA��

Here we establish a precise relationship between the �n induction rule and certain
levels of the hierarchy of iterated re�ection principles�

I�� � SUPEXP is the extension of EA by a �� axiom asserting the totality of
superexponentiation function �yx 
cf ����� A theory T is �n axiomatized� if all of its
nonlogical axioms are �n sentences�

Theorem �� Let T be an arithmetical theory containing EA� Then� for any n � ��
�T��n�IR� is equivalent to T together with RFN�n
T�� for all �nite �n�� axioma�
tized subtheories T� of T � This statement also holds for n � �� provided T contains
I�� � SUPEXP�

Our proof of Theorem � is based upon quite standard techniques that com�
bine Tarski�s method of partial truthde�nitions with the formalization of the Cut�
elimination Theorem� and is� in fact� very close to the proof of Leivant�s theorem 
cf
�!��� The proof admits an easy direct argument� without any use of skolemization�
Working in the language of PA� we need a few standard prerequisites�

Sequent calculus� We adopt a variant of the sequent calculus from ��!�� i�e��
sequents are sets of formulas understood as big disjunctions� negations are treated
via de Morgan�s laws� etc� Unlike in ��!�� it will be technically convenient for us
to only have logical axioms of the form �� ��
�� for atomic formulas �� It is well�
known that the modi�ed calculus is equivalent to the original one� also w�r�t� cut�free
provability�

Partial truth de�nitions� There is a �n formula True�n
x�� which ade�
quately expresses the predicate $x is a G�odel number of a true �n sentence% in
EA�� This means that True�n
x� is well de�ned on atomic formulas and prov�
ably in EA commutes with boolean connectives and quanti�ers� i�e�� satis�es Tarski
conditions for �n formulas� As a result� for any A
x� � �n� we have�

EA � �x 
A
x� � True�n
pA
 #x�q��� 
!�

For our proof it will be essential that Tarski conditions not only hold locally� for
each individual �n formula� but also uniformly� In other words� EA proves that�
for all �� �� 	� 
� � such that ��
�� �� 	��x�
x�� �x

x� are �n sentences�

True�n
p
�q� � 
True�n
p�q��

True�n
p	 � �q� � True�n
p	q� � True�n
p�q��

True�n
p	 � �q� � True�n
p	q� � True�n
p�q��

True�n
p�x

x�q� � �xTrue�n
p

 #x�q��

True�n
p�x�
x�q� � �xTrue�n
p�
 #x�q��

�We assume in this section that the class of �n formulas contains not only those literally in �n
form
 but also the ones obtained from prenex �n formulas using ���� and universal quanti�cation�

�




Let us stress that ����� � � here are variables over G�odel numbers of sentences� rather
than individual sentences� 
The standard dots�and�corners notation is somewhat
sloppy in this respect� Yet� we hope that this will not create serious problems for
the reader��

On a par with the de�nition of truth� we also have a reasonable evaluation
of terms in EA� that is� a de�nable Kalmar elementary function eval
u� x� which
provably commutes with 
�� ��� � and therefore� for any term t
x�� � � � � xn�� satis�es

EA � eval
ptq� hx�� � � � � xni� � t
x�� � � � � xn��

Usually� eval
u� x� is explicitly used in the construction of a truthde�nition for
the evaluation of atomic formulas� This implies that the truthde�nition and the
evaluation of terms agree in the sense that EA proves that for all �n formulas
�
x�� � � � � xm� and terms t�
x�� � � � � tm
x��Vm

i	� eval
ptiq� hxi� � yi �


True�n
p�
t�
 #x�� � � � � tm
 #x��q�� True�n
p�
 #y�� � � � � #ym�q���

��

and similarly for terms ti in more than one free variable� We refer the reader to ���
for an elaboration of all the above claims�

Proof of Theorem �� �T��n�IR� is the theory axiomatized over T by all formulas
�xI
x� such that I
x� � �n and T proves

I

� � �x 
I
x�� I
x� ���� 
��

Therefore� �rst we must show that� for any such I
x�� there is a �nite �n�� axiom�
atized subtheory T� 	 T such that

T �RFN�n
T�� � �xI
x��

For the axioms of T� we simply take the �n�� formula 
�� together with all axioms
of EA� Obviously� for every n we have T� � I
'n�� Furthermore� formalizing this
fact in EA we obtain�

EA � �x ProvT�
pI
 #x�q��

This implies �xI
x� by T��re�ection�
Now we must show that

�T��n�IR� � RFN�n
T���

for any �nite �n�� axiomatized subtheory T� 	 T � Without loss of generality
we may assume that T itself is a �nite �n�� axiomatized extension of EA� Fur�
thermore� we may assume that the single nonlogical axiom of T has the form
�x� � � ��xm


x�� � � � � xm�� where 
 is a �n formula� In particular� this formula
accumulates all 
�nitely many� equality axioms in our language and a �nite ��

axiomatization of EA�
Consider a cut�free derivation of a sequent of the form �x� � � � �xn 
��� where �

is a set of �n formulas� By the subformula property� any formula occurring in this
derivation either 
a� has the form �xk � � � �xm 

t�� � � � � tk��� xk � � � � � xm�� for some

 � k � m and terms t�� � � � � tk��� or 
b� is a �n formula�

Now let IT 
m� be a �n formula naturally expressing the following�

$For all p� if p is a cut�free derivation of a sequent of the form "��
a��
where " is a set formulas of type 
a� above� �
a� is a set of �n formulas�
where a stands for all the free variables in �� and if the height of p is
� m� then �xTrue�n
p

W
�
 #x�q��%

��



Lemma ���� T � IT 

� � �m 
IT 
m�� IT 
m� ����

Proof� We reason informally within T � IT 

� trivially holds� We show that IT 
m�
implies IT 
m � ��� Thus� we are given a cut�free derivation� of height m � �� of
a sequent of the form "��� where " and � are as above� ruleand we must show
that the disjunction of � is True� in the sense of True�n � under every substitution
of numerals for free variables in �� For the rest of the proof we �x an arbitrary
substitution of this kind and treat � as if it were a set of sentences� We distinguish
several cases� according to the form of the last rule applied in the given derivation�

Case �� The sequent "�� is a logical axiom� that is� it has the form �� ��
�
for some atomic �� Since all the formulas of type 
a� contain at least one existential
quanti�er and therefore are neither atomic nor negated atomic� both � and 
� must
belong to �� Tarski commutation conditions then imply that

True�n
p
�q�� 
True�n
p�q��

so we obtain True�n
p�q� � True�n
p
�q� and hence True�n
p
W
�q��

Case �� The sequent "�� is obtained by a rule introducing a boolean connective
or a quanti�er into a formula from �� All these rules are treated similarly using the
subformula property of cut�free derivations and Tarski commutation conditions for
True�n � For example� the rule for the universal quanti�er has the form

"���� �
a�

"�����x�
x�
�

where a is not free in "���� We must show that the formula
W
�� � �x�
x� is

True� By the induction hypothesis� since a does not occur free in ��� we know that�
for each x�

W
�� � �
'x� is True� Commuting True�n with the small disjunction

we conclude that� for each x� either
W
�� or �
'x� is True� Since ��� and also

True�n
p�
�q�� do not depend on x� it follows that either �� is True� or for every x�

�
'x� is True� Commuting True�n with the universal quanti�er and then backwards
with the disjunction we conclude that �� � �x�
x� is True� q�e�d�

In the next case we shall be more explicit about parameters�
Case �� The last rule introduces the existential quanti�er in front of 
� i�e�� our

derivation has the form

"�� 

t�
a�� � � � � tm��
a�� tm
a����
a�

"�� �xm

t�
a�� � � � � tm��
a�� xm���
a�
�

A free variable a here stands for all the parameters on which � and the terms ti
may depend�

So� the induction hypothesis is applicable and implies that� for all x� either the
disjunction of �
'x�� or 

t�
'x�� � � � � tm
'x�� is True� We must� reasoning inside T �
refute the second alternative�

Notice that� although� in general� ti are $nonstandard% terms� 
 is a �xed $stan�
dard% �n�� formula� Therefore Tarski�s commutation lemma 
!� can be applied to

� after evaluating the term t� Thus� by 
�� and 
!� we obtain�

True�n
p

t�
 #x�� � � � � tm
 #x��q� �

m�
i	�

eval
ti� hxi� � yi � True�n
p

 #y�� � � � � #ym�q�

� 

y�� � � � � ym�

Since the evaluation function is provably total in EA� it follows that

True�n
p

t�
 #x�� � � � � tm
 #x��q�

��



implies �y� � � � ym 

y�� � � � � ym�� that is� yields a contradiction in T � Thus� we see
that� for any t�� � � � � tm and x� the formula 

t�
'x�� � � � � tm
'x�� cannot be True� hence
the disjunction of �
'x� is True�

Case �� "�� is obtained by a rule introducing any other existential quanti�er
into a formula from "� Then our claim follows immediately from the induction
hypothesis� because the � part of the premise in this case is the same as that of the
conclusion� q�e�d�

An immediate corollary of the above lemma is that

�T��n�IR� � �m IT 
m�� 
��

Notice that for T containing EA and n � �� obviously�

�T��n�IR� � SUPEXP�

On the other hand� it is well known 
cf ���� that I���SUPEXP is a strong enough
theory to prove the Cut�elimination Theorem for �rst order logic� In order to derive
RFN�n
T � we reason inside �T��n�IR�� for every particular �n formula A
x�� as
follows�

Suppose ProvT 
pA
 #x�q�� Then the sequent �x� � � � �xm 

x�� � � � � xm�� A
'x� is
logically provable� By 
formalized� Cut�elimination Theorem we obtain a cut�free
proof of this sequent� and by 
�� conclude that True�n
pA
 #x�q� holds� Tarski
commutation lemma 
!� then yields A
x�� q�e�d�

The rest of this section is devoted to various remarks� corollaries and comments
concerning Theorem �� Let� for a �xed n � �� 
T �nk denote the sequence of theories
based on iteration of the �n re�ection principle over T �


T �n� � T� 
T �nk�� � 
T �nk �RFN�n

T �
n
k �� 
T �n� �

�
k��


T �nk �

Similarly� �T��n�IR�k is de�ned by repeated application of �n�IR�

�T��n�IR�� � T� �T��n�IR�k�� � ��T��n�IR�k��n�IR��

We obviously have

T ��n�IR �
�
k��

�T��n�IR�k�

Since for r�e� T containing EA the schema RFN�n
T � is equivalent to a single
�n sentence� Theorem � can be applied repeatedly and we obtain

Corollary ���� Let T be a �nite �n�� axiomatized theory containing EA �or I���
SUPEXP for n � �	� Then

T ��n�IR � 
T �n��

Moreover� for all k � �� we actually have

�T��n�IR�k � 
T �nk �

that is� k �nested	 applications of induction rule precisely correspond to k iterations
of re�ection principle over T �

Corollary ���� For �n�� axiomatized theories T containing EA �or I���SUPEXP
for n � �	� the closure of T under �n induction rule is a re�exive theory� and hence
it is not �nitely axiomatizable� unless it is inconsistent� The same holds for any
extension of T ��n�IR by �n sentences�

��



Remark ���� Theorem � shows that some conservation results for fragments of
arithmetic and for iterated re�ection principles are mutually interderivable� A well�
known theorem due to Parsons� Mints� Takeuti and others states that I�n is con�
servative over EA ��n���IR for �n�� sentences� This result follows at once from
Leivant�s equivalent characterization of �n�IA as RFN�n��
EA� over EA 
cf �!��
and the characterization of �n���IR in terms of re�ection principles in Corollary ����
Indeed� by the so�called Fine Structure Theorem of U�Schmerl 
cf ����� we know
that RFN�n��
EA� is a �n�� conservative extension of 
EA�n��� � which is equiva�
lent to EA � �n���IR by Corollary ����� On the other hand� this particular case
of Schmerl�s theorem obviously follows from Parsons� result� too� The relationship
between the � mentioned results can be summarized in the following diagram�

I�n ��n�� EA��n���IR

jjj jjj

EA� RFN�n��
EA� ��n�� 
EA�n���

The �horizontal� conservation results are due to Parsons and Schmerl� and the �ver�
tical� equivalences are Leivant�s and ours 
Corollary �����

An interesting particular case of Theorem � concerns the induction rule for ��

formulas� It is well�known that the uniform re�ection principle for �� formulas for
a theory T is equivalent to consistency assertion for T � Con
T �� So� Corollary ���
can be reformulated as follows�

Corollary ���� For �nite �� axiomatized theories T containing I�� � SUPEXP�

T ����IR � T �Con
T � � Con
Con
T �� � � � � 
�
�

Clearly� for a sound theory T � T����IR is an extension of T by true �� axioms� and
hence both T and T � ���IR have the same class of provably recursive functions�
Despite that� T � ���IR is stronger than T and the equivalence 
�
� gives us a
precise measure of its relative strength�

Remark ��	� In paper ���� there is a confusion concerning ���IR� Theorem �����
of that paper is false for it implies that EA����IR contains more provably recursive
functions than EA��

Theorem ����� of that paper states that the closure of EA under k applications
of ���IR 
in our terminology� �EA����IR�k� is conservative over the arithmetic
corresponding to the 
k � ��rd class of Grzegorczyk hierarchy� This theorem is
correct and closely parallel to another particular case of our Theorem � 
cf� Corollary
�� ��

Remark ��
� A characterization of ���IR for theories weaker than I���SUPEXP
can be obtained in the spirit of Wilkie and Paris ����� In this situation the family of
consistency assertions w�r�t� proofs of bounded cut�rank Conk
T �� k � 
� plays the
role of the single consistency assertion Con
T � for T � Since EA is a strong enough
theory to prove Cut�elimination Theorem for derivations of bounded cut�rank� a
quick inspection of the given proof of Theorem � yields the following result� for T
containing EA� �T����IR� is equivalent to T together with all Conk
U� such that
k � 
 and U is a �nite �� axiomatized subtheory of T �

�Schmerl formulated his result for the hierarchy of �trans�nitely iterated� re�ection principles
over PRA
 but it is not di�cult to check that his proof essentially works over EA as well�

�Lemma ��	�� is true
 but it is not di�cult to see that the schema of �restricted primitive
recursion� dealt with there is actually equivalent to the unrestricted primitive recursion� So
 the
proof�theoretic analysis in this lemma
 as it is formulated
 gives us no more information about the
strength of ���IR than the reduction of ���IR to ���IR�

��



Our next goal is the characterization of �n induction rule in the spirit of Theorem
�� Parsons showed that �n�IR is equivalent to �n���IR over EA� However� the two
rules are not congruent and so� a more careful analysis is needed here� Let me
explain why the simple proof of Theorem � cannot be easily adapted to the �n

case�
The technical reason is that the formula IT 
m� in that proof involves a number

of outer universal quanti�ers� and therefore does not have the reqired �n form�
Some of these quanti�ers� e�g�� the quanti�er over all derivations p� can actually
be bounded� One can replace the induction on the height m of a proof by IR�

over G�odel numbers p of proofs using the fact that� under the standard coding�
subderivations of p have smaller G�odel numbers� However� there does not seem to
be an easy way to get rid of the quanti�er over all substitutions of numerals for
free variables in the end�sequent� The only possibility here seems to be to keep
those variables free� as the parameters of the formula IT � Yet� this possibility is
blocked by the simple fact that some sequents in the proof p may contain many
more parameters than the end�sequent� and we ought to take them all into account�
There is one rare situation where this di	culty does not arise� simply� if there are
no universal quanti�ers in the end�sequent� This idea allows us to analyze the ��

induction rule� Then� by skolemization� we will be able to pull the result up in the
arithmetical hierarchy� This project is carefully elaborated in the remaining part of
the paper�

� Provably recursive functions

In this section we recall some basic facts about provably 
total� recursive functions

p�t�r�f�s� of theories and characterize these functions for closures of theories under
�� induction rule� Most of these results are folklore or close to be so�

We shall deal with various classes of number�theoretic functions� The basic class
is the class of elementary functions E � For a class K� C
K� denotes the closure of
K � E under composition� �K�PR� denotes the closure of K � E under composition
and one application of primitive recursion� i�e�� the class C
F �� where F is the set
of all functions f
n� a� de�nable by a schema of the form�

f

� a� � g
a�
f
n� �� a� � h
f
n� a�� n� a��

for g� h � C
K�� E
K� is the elementary closure of K� that is� the class of functions
obtained from K � E by closure under composition and bounded sums and prod�
ucts� It is well�known 
cf Rose ����� that� over a su	ciently large stock of initial
elementary functions and modulo composition� bounded summation and multipli�
cation are equivalent to bounded recursion� which� in turn� is equivalent to bounded
minimization�

De�nition �� A number�theoretic function f
x� is called provably recursive in a
theory T i� the graph of f can be represented by a �� formula �
x� y� such that

T � �x�(y �
x� y��

The class of p�t�r�f�s of a theory T is denoted D
T ��

It is easy to see that graphs of p�t�r�f�s are actually �� in T � The class D
T � is
closed under composition� but not necessarily elementarily closed� even if T contains
EA� This creates for us some additional di	culties� since proof�theoretically it is
much more common and pleasant to deal with elementarily closed classes of func�
tions� Sometimes one considers p�t�r�f�s with elementary graphs� that is� with the

� 



formula �
x� y� elementary
� These classes of functions are closed under bounded
minimization� but not under composition� However� the following obvious proposi�
tion holds�

Proposition ���� For a theory T containing EA� every p�t�r�f� can be obtained
by composition from a p�t�r�f� with an elementary graph and a �xed elementary
function�

Proof� Let �
x� y� �� �z ��
z� x� y�� where �� is elementary� de�ne the graph of f �
so that

T � �x�(y �
x� y��

Using the standard pairing function we let

�
x� y� �� ��

y��� x� 
y��� � �z � 
y�� 
��
z� x� 
y����

Then it is not di	cult to check that � de�nes a certain p�t�r�f� g in T � � is elementary�
and for all n� f
n� � 
g
n���� q�e�d�

Since D
T � only depends on the �� fragment of T � we shall concentrate our
attention on �� axiomatized theories�

De�nition �� Let � �� �x�y �
x� y� � ��� with � elementary� A function f
x� is
called a witness of � i� �x �
x� f
x�� holds in the standard model of arithmetic�

Every true �� sentence has a witness� The function f�
x� whose graph is de�ned
by the formula �
x� y� � �z � y 
�
x� z� is called the standard witness of ��

Proposition ���� Let T be a �nite �� axiomatized sound extension of EA� and
let f be the standard witness of the single axiom of T � Then D
T � � C
f��

Proof� Obviously� f is a p�t�r�f� in T � and so C
f� 	 D
T �� The opposite inclusion
is� more or less� a direct consequence of Herbrand�s Theorem� Consider a purely
universal formulation of EA 
in a language with symbols for all Kalmar elementary
functions�� and add to this language a new function symbol f together with the
axiom

�x �
x� f
x���

where �x�y �
x� y� is the single axiom of T over EA� Using appropriate Kalmar
elementary terms we can get rid of all bounded quanti�ers in �� Hence the resulting
theory is a conservative extension of T and has a purely universal axiomatization�

Now suppose T � �x�(y�z��
x� y� z�� where �� is elementary 
and in our for�
mulation also quanti�er�free�� Since T has a purely universal axiomatization� by
Herbrand�s Theorem we obtain terms t�� � � � � tk� u�� � � � � uk of the extended language
such that

T � ��
a� t�
a�� u�
a�� � � � � � ��
a� tk
a�� uk
a���

Clearly� the terms ti and ui represent functions in C
f�� Now we let

t
x� ��

�����������
t�
x�� if ��
x� t�
x�� u�
x���
t�
x�� if ��
x� t�
x�� u�
x�� and 
��
x� t�
x�� u�
x���
� � � � � �

tk
x�� if ��
x� tk
x�� uk
x�� and 
��
x� ti
x�� ui
x�� for all i � k�


� otherwise�

�Elementary formulas are bounded formulas in the language of EA with symbols for all Kalmar
elementary functions�

�!



The function u
x� is de�ned in a similar manner� with ui�s in place of ti�s� Since
the function

Cond
x� y� z� ��

�
x� if z � 

y� if z �� 


is elementary� the class C
f� is closed under de�nitions by cases and so� t
x� and
u
x� can be adequately de�ned by C
f� terms� For these terms we obviously have
T � ��
a� t
a�� u
a��� It follows that

T � �x�z ��
x� t
x�� z��

and by the functionality of �

T � �x� y 
t
x� � y � �
x� y���

Since all theorems of T are true� � represents the graph of t
x� in the standard
model� q�e�d�

Remark ���� We have actually shown that D
T � 	 C
f� for any witness f of the
axiom of T � not just for the standard one�

Corollary ���� Let T be a �nite �� axiomatized sound extension of EA� Then the
class D
T � has a �nite basis under composition�

Proof� Follows from the previous proposition and the fact that E has a �nite basis

cf� e�g����� ���� It might be interesting for the reader to notice that� if we had been
slightly more careful in the proof of Proposition ���� we could actually have inferred
the existence of a �nite basis in E from �nite axiomatizability of EA�

Consider a �nite �� axiomatization of EA in the usual language of arithmetic

see ����� Introduce �nitely many 
Kalmar elementary� functions to quanti�er�free
represent �� parts of those �� axioms� Then we have to introduce �nitely many
Skolem functions for these axioms in order to obtain a purely universal conservative
extension of EA� Essentially the same proof as for Proposition ��� then shows that
every provably recursive function can be de�ned by a term in the extended language�
In the process we would have to introduce a few more elementary functions like
Cond
x� y� z� or pairing functions� We omit the details� q�e�d�

Remark ���� The converse of the previous corollary does not hold� essentially
because of the di�erence between provably recursive functions and programs� For
example� the theory 
EA��� extends EA purely universally and therefore has the
same� �nitely based� class of p�t�r�f�s� Yet� this theory is not �nitely axiomatizable�

Proposition ��	� Let T be a �nite �� axiomatized sound extension of EA� and
let f be the standard witness of the single axiom of T � Then

D
�T����IR�� � �C
f��PR��

Proof� Let g
n� x� be de�ned by a schema of primitive recursion�
g

� x� � e
x�

g
n� �� x� � h
g
n� x�� n� x��

such that e� h � C
f�� Since all functions in C
f� are p�t�r�f� in T � graphs of e and
h are de�ned by �� formulas E
x� y� and H
z� n� x� y� �� �v H�
v� z� n� x� y�� with
H� elementary�

The graph of g is most naturally de�ned 
in the standard model� by the following
formula 
that uses elementary coding of sequences��

g
n� x� � y �� �s � Seq 

s�� � e
x� � �i � n 
s�i�� � h

s�i� i� x� � 
s�n � y��

��



However� in absense of �� collection principle this formula may not be equivalent
to a �� formula within T � We modify it as follows 
a somewhat similar trick was
employed earlier in the proof of Proposition ����� g
n� x� � y ��

�s� v � Seq 
E
x� 
s��� � �i � n H�

v�i� 
s�i� i� x� 
s�i��� � 
s�n � y�� 
���

This formula is obviously ��� and now we shall show the totality of g in �T����IR��
Clearly� T � �y g

� x� � y� because e
x� is provably total� In order to see that

T � �n 
�y g
n� x� � y � �y g
n� �� x� � y�

we argue informally as follows� Suppose g
n� x� � y and thus we are given two
sequences s and v of length n�� satisfying 
���� We have to construct appropriate
sequences of length n � �� Since the function h is provably total� we can �nd a z

such that h
y� n� x� � z� Hence there is a w such that H�
w� y� n� x� z� holds� Pick
any such w and add the element z to the end of the sequence s� and w to the end
of v� The resulting sequences are as required� Applying ���IR we obtain�

�T����IR� � �n�y g
n� x� � y�

To prove the functionality of g we reason as follows� Let R
n� s� v� x� y� denote
the elementary part of the formula 
���� and suppose we have R
n� s�� v�� x� y��
and R
n� s�� v�� x� y��� We prove �i � n 
s��i � 
s��i by induction on i 
with
n� sj � vj � x� yj as free parameters�� Notice that the induction is elementary� although
it is applied as a schema rather than as a rule here� Basis and induction step follow
at once from the functionality of e and h� So we obtain 
s��n � 
s��n� and therefore
y� � y�� Notice that the argument for the functionality was actually carried out in
T �

Now we shall show that p�t�r�f�s of �T����IR� belong to �C
f��PR�� Since
�T����IR� is a sound �� axiomatized theory� it su	ces to demonstrate that ev�
ery formula obtained by an application of ���IR has a witnessing function in the
class �C
f��PR�� 
Here we actually apply Remark ��� rather than Proposition �����

Consider an arbitrary elementary formula A
x� y� a� such that

T � �y A

� y� a�� and

T � �x 
�yA
x� y� a�� �yA
x� �� y� a���

By Proposition ��� we obtain functions e
a� and h
y� x� a� in C
f� such that e

witnesses �a�y A

� y� a�� and h witnesses

�a� x� y�z 
A
x� y� a�� A
x � �� z� a���

Consider a primitive recursion�
g

� a� � e
a�

g
x� �� a� � h
g
x� a�� x� a��

Straightforward induction on x then shows that A
x� g
x� a�� a� holds in the standard
model for all x and a� This means that g
x� a� witnesses �x� a�y A
x� y� a�� q�e�d�

Corollary ��
� For a sound �� axiomatized theory T containing EA�

D
�T����IR�� � �D
T ��PR��

Proof� We only have to notice that for such theories T � D
�T����IR�� is the union
of D
�T�����IR�� for all �nite subtheories T� of T � q�e�d�

��



Remark ���� Notice that the requirement of �� axiomatizability of T in the pre�
vious corollary cannot� in general� be dropped� Let T � EA � S� where S is
the sentence S� � S� and Si � RFN�i��
EA� for i � �� �� Clearly� S is a true
�� sentence� By Theorem � to be proved in Section �� �EA����IR� � S�� hence
�T����IR� � S� and D
�T����IR�� contains all primitive recursive functions� 
It is
easy to see� cf e�g� Ono ���� that S� implies I�� over EA��

On the other hand� S is �� conservative over EA because for � � ��� EA�S � �

implies EA � 
S� � �� whence

EA � ProvEA
p�q� � 
� � ��

and EA � � by L�ob�s Theorem� It follows that D
T � coincides with E � and
�D
T ��PR� is properly contained in the class of all primitive recursive functions�
q�e�d�

� Elementary closure

As we have noted before� the class D
T � need not be elementarily closed even if the
theory T contains EA� In this section we shall investigate this question in more
detail and formulate su	cient conditions for D
T � to be elementarily closed� A
version of the following proposition can be found in ��� with a more complicated
proof�

For a function f
x�� let 'f
n� �� hf

�� � � � � f
n�i�

Proposition ���� E
f� � C
 'f��

Proof� Obviously 'f � E
f�� so C
 'f� 	 E
f�� For the opposite inclusion we
prove that

P
i�x g
i� y� � C
 'f� if g
x� y� � C
 'f�� 
Bounded products are treated

similarly��
Let 
z � n� denote the initial segment of a sequence z of length n � �� This

function is clearly Kalmar elementary� Since g � C
 'f�� g can be considered as a
term in a language with symbols for all elementary functions and a symbol for 'f � We
systematically replace all occurrences of subterms of the form 'f
t� in g by 
z � t��
where z is a new variable� 
It does not matter� in what order these occurrences are
replaced�� As a result we obtain an elementary function )g
x� y� z�� De�ne�

G
x� y� z� ��
X
i�x

)g
i� y� z��

We claim that X
i�x

g
i� y� � G
x� y� 'f
b
x� y����

for a certain term b
x� y� � C
 'f�� We only need to ensure that the value of b
x� y�
is greater than all values t
i� y� for i � x� where terms t occur in the context 'f
t�
within g� Notice that 'f is an increasing function� Therefore we can majorize each
t
x� y� by an increasing function in C
 'f� and take the sum of all these functions as
b
x� y�� q�e�d�

Notice that the previous proposition can be generalized to E
f�� � � � � fn� �
C
 'f�� � � � � 'fn� either by encoding f�� � � � � fn into a single function using the pair�
ing and projection mechanism� or just by generalizing the proof of Proposition  ���

Proposition ���� If f
x� is increasing and the graph of f is elementary� then
'f � C
f� and therefore C
f� � E
f��

��



Proof� If f is increasing� for a certain elementary function b we have

'f
n� � 
z � b
n� f
n��� �i � n 
z�i � f
i��

because the code of a sequence can be estimated elementarily in its length and the
largest element 
� f
n��� q�e�d�

Proposition  �� also has the following useful corollary�

Proposition ���� For any class of functions K� the class �K�PR� is elementarily
closed�

Proof� The class �K�PR� is generated by all functions from K� E � and functions
f
n� a� obtained by primitive recursion�

f

� a� � g
a�
f
n� �� a� � h
f
n� a�� n� a��

for g� h � C
K�� By Proposition  �� it is su	cient to show that� together with any
such f � the class �K�PR� also contains the function 'f�� where f�
n� �� f

n��� 
n����

If 
n� ��� � 
� then

f�
n� �� � f

n� ���� 
n� ����

� h
f

n� ��� � �� 
n� ����� 
n� ��� � �� 
n� ����

� h�
f�
p
n� ���� n�

for some h� � C
K�� where p
n� �� h
n��
�
� �� 
n��i� Notice that p
n��� � n��� if


n���� � 
� 
The standard pairing function hx� yi is monotonic in both arguments��
On the other hand� if 
n���� � 
 then� obviously� f�
n��� � g

n������ It follows
that 'f� can be de�ned by the following primitive recursion�

'f�
n� �� �

	
'f�
n� � h�

 'f�
n��p�n���� n�� if 
n� ��� �� 


'f�
n� � g

n� ����� if 
n� ��� � 
�

Here � denotes the operation of adjoining an element at the end of a string� q�e�d�

Now we turn to proof�theoretic analogs of the above lemmas�

De�nition 	� Let � be a �� sentence� � is monotonic� if there is an elementary
formula �
x� y� such that EA proves that

�� � � �x�y �
x� y��

�� �
x� y� � �
x� z�� y � z�

�� �
x�� y� � �
x�� z� � x� � x� � y � z�

Informally� � is monotonic i� it is equivalent to a sentence whose only witness is
provably increasing�

Proposition ���� Let T be a �� axiomatized theory containing EA� The following
statements are equivalent


�� T is axiomatizable over EA by monotonic �� sentences�


� T is closed under �� collection rule�

���CR� �x�y �
x� y� � �x�y�u � x�v � y �
u� v��

where �
x� y� � ���

�




Proof� Clearly� the formula �x�y�u � x�v � y �
u� v� implies �x�y �
x� y� in EA

and is monotonic� whenever � is elementary� So� we may apply �� collection rule
to all axioms of T and obtain a monotonic axiomatization�

In order to show that Statement � implies � we take an axiomatization of T over
EA by �� formulas whose standard witnesses are monotonic� Then we introduce
Skolem functions for all these formulas and replace axioms � �� �x�y�
x� y� of T
by their skolemizations �x�
x� f�
x��� The resulting theory T � proves monotonicity
of all these functions f��

x� � x� � f�
x�� � f�
x���

Besides� it is conservative over T � and has a purely universal axiomatization 
if EA
is taken in a universal formulation��

Now assume T � �x�y �
x� y� for a formula � � ��� By Herbrand�s Theorem
we can obtain a monotonic term t
x� in the extended language such that

T � � �x�y � t
x� �
x� y��


This actually is a version of Parikh�s Theorem for T � 
cf ����p� ����� Here we use
the fact that every elementary function can be majorized by an increasing one� and
hence any term in the extended language can�� Provable monotonicity of t
x� then
implies�

T � � �x�y	t�x� �u � x�v � y �
u� v��

The result follows by conservativity of T � over T � q�e�d�

Corollary ���� A �� sentence �x�y �
x� y� is monotonic i�

EA � �x�y �
x� y�� �x�y�u � x�v � y �
u� v��

Corollary ��	� For a sound �� axiomatized theory T containing EA�

�� �T����CR� � T ����CR�

�� D
T ����CR� � E
D
T ���

Proof� Part � follows from the fact that� for a �� axiomatized theory T � �T����CR�
can be axiomatized by monotonic �� sentences� The inclusion D
T � ���CR� �
E
D
T �� follows from the fact that T����CR is axiomatizable by a set of monotonic
�� sentences� whose witnessing functions are increasing and have elementary graphs�
so that the class D
T ����CR� is elementarily closed by Proposition  ���

By the de�nition of ���CR� each of the witnessing functions for the axioms of
�T����CR� either coincides with one of T � or has the form maxi�x f�
i�� where � is
an axiom of T � Hence� it belongs to E
D
T ��� and the inclusion D
�T����CR�� 	
E
D
T �� follows by Proposition ���� q�e�d�

Corollary ��
� If a sound theory T containing EA is closed under �� collection
rule� then D
T � is elementarily closed�

The following proposition reveals a useful �monotonizing� property of �� induc�
tion rule�

Proposition ���� For any theory T extending EA� �T����IR� is axiomatizable by
monotonic �� sentences over T � If T itself is �� axiomatized� �T����IR� is axiom�
atizable by monotonic �� sentences over EA�

��



Proof� The proof is� essentially� a formalization of Proposition  ��� Suppose
�
x� y� a� is elementary and

T � �y �

� y� a�� and

T � �x 
�y �
x� y� a�� �y �
x � �� y� a���

Then we de�ne
��
x� y� �� �i � x �

i��� 
y�i� 
i����

and somewhat similarly to the proof of Proposition  �� show that

T � �y ��

� y�� and

T � �x 
�y ��
x� y�� �y ��
x� �� y���

Applying ���IR we obtain �x�y ��
x� y� and

�x�y�i � x�v � y �

i��� v� 
i����

The latter formula is monotonic and implies �a� x�y�
x� y� a�� It follows that
�T����IR� is axiomatized by monotonic sentences over T �

A similar argument shows that for each theorem of T of the form �x�y �
x� y��
with � elementary� the formula �x�y�u � x�v � y �
u� v� is provable in �T����IR��
So� if T is �� axiomatized� in an axiomatization of �T����IR� the axioms of T can
also be replaced by monotonic sentences� q�e�d�

Corollary ��
� For a sound �� axiomatized theory T containing EA the class
D
�T����IR�� is elementarily closed�

Remark ����� This fact can also be directly inferred from Proposition  �� and
Corollary ����

Finally� we formulate a technically very useful proposition that also relies on
monotonicity properties of functions and states� roughly� that for a provably in�
creasing function f the induction schema for formulas elementary in f is reducible
to the induction schema for formulas elementary in the graph of f � This fact is
essentially due to Gaifman and Dimitracopoulos ���� A somewhat weaker version
can be found in ���� Proposition ���� page ���� and we follow the idea of these proofs
very closely�

Let ��
f� denote the class of bounded formulas in the language of EA 
with
symbols for all elementary functions� enriched by a function symbol f
x�� where� in
particular� f may occur in bounding terms� Let F 
x� y� denote the formula f
x� �
y de�ning the graph of f � ��
F � formulas are those built up from F 
x� y� and
elementary ones using boolean connectives and quanti�ers bounded by elementary
functions� Finally� let T be the theory in the above language obtained by adding to
all axioms of EA the axiom

�x� y 
x � y � f
x� � f
y��

asserting the monotonicity of f �

Proposition ����� Over the theory T the induction schemata for ��
f� formulas
and ��
F � formulas are deductively equivalent�

Proof� First of all� notice that any term t in the language of T can be provably
majorized by a term provably increasing in each variable 
because every elementary
function is majorizable by a monotonic one�� We �x one such term for every term
t and call it )t�

��



Lemma ����� For every term s
�a� there is a monotonic term t
�a� and a ��
F �
formula �
�a� b� y� such that

T � �y � t
�a� 
s
�a� � b� �
�a� b� y���

Proof� The argument goes by induction on the build�up of s� For the induction
step one reasons as follows� If s
�a� has the form g
s�
�a��� where s� is a term� and g

is either f or an elementary function symbol� then by the induction hypothesis one
has a term t�
�a� and a ��
F � formula ��
�a� b� y� such that provably in T

s�
�a� � b� ��
�a� b� y�

for y � t�
�a�� Then we let
t
�a� �� t�
�a� � es�
�a��

and it is easy to see that for y � t
�a� there holds

g
s�
�a�� � b� �v � y 
��
�a� v� y� � g
v� � b��

A similar reduction applies in the case when the function g has more than one
argument� q�e�d�

Lemma ����� For every ��
f� formula �
�a� there is a ��
F � formula ��
�a� y��
� � � � yn� and provably monotonic terms t�
�a�� t�
�a� y��� � � � � tn
�a� y�� � � � � yn��� such
that

T �
n�
i	�

yi � ti
�a� y�� � � � � yi���� 
�
�a�� ��
�a� y�� � � � � yn���

Proof� We argue by induction on the build�up of the ��
f� formula �� Basis of
induction follows from Lemma  ���� so we concentrate our attention upon the most
di	cult case� when � has the form

�u � s
�a� �
�a� u�� 
���

Applying the induction hypothesis to �
�a� u� we obtain a ��
F � formula ��
�a� u� y��
� � � � yn� and monotonic terms s�
�a� u��� � � � sn
�a� u� y�� � � � � yn��� such that� provably
in T �

��
�a� u� y�� � � � � yn�� �
�a� u�� 
���

whenever yi � si
�a� u� y�� � � � � yi��� for all � � i � n� Besides� by Lemma  ��� we
obtain a monotonic term r
�a� u� and a ��
F � formula �
�a� u� z� such that

�
�a� u� z�� u � s
�a��

for z � r
�a� u��
We introduce two fresh variables� yn�� and yn��� and let ��
�a� y�� � � � � yn��� be

de�ned as follows�

�u � yn�� 
�
�a� u� yn���� ��
�a� u� y�� � � � � yn��� 
���

We also let
ti
�a� y�� � � � � yi��� �� si
�a� )s
�a�� y�� � � � � yi���

for i � n� and let tn��
�a� y�� � � � � yn� �� )s
�a�� and tn��
�a� y�� � � � � yn��� �� r
�a� yn����
In order to see that the claim of our lemma holds� that is� that formula 
��� is

provably equivalent to �u � s
�a� �
�a� u� for yi su	ciently large w�r�t� each other�
we �rst notice that u � yn�� implies r
�a� u� � r
�a� yn��� � yn�� by provable
monotonicity of the term r and by the choice of yn��� It follows that� under these

��



assumptions� �
�a� u� yn��� is equivalent to u � s
�a�� which implies u � )s
�a�� and by
monotonicity of terms si for any such u we have

y� � t�
�a� � s�
�a� )s
�a�� � s�
�a� u��

y� � t�
�a� y�� � s�
�a� )s
�a�� y�� � s�
�a� u� y���
� � � � � �

yn � tn
�a� y�� � � � � yn��� � sn
�a� )s
�a�� y�� � � � � yn��� � sn
�a� u� y�� � � � � yn����

It follows that the induction hypothesis is applicable and yields 
���� From this it is
easy to conclude that formula 
��� implies 
���� The opposite implication is proved
in a similar way� q�e�d�

To complete the proof of Proposition  ��� we prove ��
f� induction in the form
of the least number principle

�
x��a�� �x� � x 
�
x���a� � �z � x� 
�
z��a���

for an arbitrary ��
f� formula �
x��a�� We apply Lemma  ��� to � and reason
inside T plus ��
F � induction as follows�

Assume �
x��a� and that y�� � � � � yn satisfy the premise of the implication in
Lemma  ���� so that we may infer ��
x��a� �y� from �
x��a� 
notice that some such
y�� � � � � yn provably exist�� Applying the least element principle for �� 
variables �y
as well as �a act as free parameters� we obtain an x� � x such that

��
x
���a� �y� � �z � x� 
��
z��a� �y��

Now we notice that� by monotonicity of terms ti� for all i � n we have

ti
x
���a� y�� � � � � yi��� � ti
x��a� y�� � � � � yi����

and so the premise of the implication in Lemma  ��� is satis�ed for x�� as well as
for any z � x� 
for the same reason�� It follows that x� is� indeed� the least number
satisfying �
x��a�� q�e�d�

Remark ����� Notice that we have actually reduced ��
f� induction to the one
for ��
F � formulas whose bounding terms are plain variables�

� Evaluation

The aim of this section is to show that the universal function for the class of p�t�r�f�s
of a �nite �� axiomatized theory T belongs to �D
T ��PR�� and therefore can be
represented in �T����IR�� As a byproduct we obtain a new and very transparent
proof of a theorem of R�Peter 
cf ���� and also ����� stating that so�called nested
recursion on � is reducible to primitive recursion�

Let f
x� be a function� Every function of the class C
f� can be represented by
a term in a language containing a function symbol for f and �nitely many function
symbols for a certain basis in E 
cf Proposition ����� We call these functions initial
functions� and the terms of this language will be called f�terms� We �x a natural
elementary G�odel numbering of f �terms�

The evaluation function evalf 
e� x� for f �terms is de�ned as follows�

evalf 
e� x� ��

�
t

x��� � � � � 
x�n�� if e � ptq for an f �term t
x�� � � � � xn��

� otherwise�

It will also be technically convenient to unify the two arguments of evalf 
e� x� and
introduce the functions eval�f 
x� �� evalf 

x��� 
x��� and

evalf 
x� �� heval�f 

�� � � � � eval
�
f 
x�i�

��



Proposition 	��� �C
f��PR� � C
evalf � � C
evalf �

Proof� First we show that both evalf and evalf belong to �C
f��PR�� The de�ni�
tion of evalf can obviously be rewritten as a primitive �course of values� recursion�

�� evalf 
e� x� �� 
x�i� if e � pxiq� where xi is the i�th variable�

�� evalf 
e� x� �� h
evalf 
pt�q� x�� � � � � evalf 
ptmq� x��� if e � ph
t�� � � � � tm�q� and
h is an initial function�

�� evalf 
e� x� �� 
� if none of the above cases holds�

Since there are only �nitely many initial functions� this de�nition has the form
of a de�nition by cases� The cases are Kalmar elementarily recognizable by the
naturality assumption on the coding of f �terms� It is well known and easy to see
that the �course of values� recursion de�ning evalf can be reduced to the usual
primitive recursion for the function evalf � from which evalf can be recovered as

evalf 
e� x� � 
evalf 
he� xi��he�xi� 
� �


Compare with our proof of Proposition  ����
Now we shall show that C
evalf � contains �C
f��PR�� Consider a primitive

recursive de�nition �
g

� a� � g�
a�

g
n� �� a� � h
g
n� a�� n� a��

for some f �terms g�
a� and h
x� y� a�� We shall express g
n� a� in the form

evalf 
s
n�� hai��

for a function s
n� to be found� Let num
n� denote the index of a constant f �term
with value n� and let Subxy
e� i� j� compute the index of an f �term that results in
simultaneous substitution of f �terms i and j for variables x and y respectively in
an f �term e� It is easy to see that functions Sub and num are elementary� Then we
can de�ne s
n� as follows��

s

� �� pg�q

s
n� �� �� Subxy
phq� s
n�� num
n���

�!�

By induction on n one easily shows that s
n� is a G�odel number of an f �term tn
a�
such that tn
a� � g
n� a� for all a� Hence evalf 
s
n�� hai� � g
n� a� for all a and
n� So� it only remains to prove that primitive recursion 
�!� is bounded� Let jtj
denote the length 
� number of symbols� of a term with index t� For Sub we have
the following estimate�

jSubxy
e� i� j�j � C � jej �max
jij� jjj��

because the total number of occurrences of variables x and y in a term e is less than
jej� On the other hand� the length of num
n� is at worst linear in n� So� for large
enough n we have�

js
n� ��j � C� � js
n�j�

It follows that js
n�j grows at most exponentially� and thereby s
n� has a doubly
exponential bound� q�e�d�

Two immediate consequences of the above proposition are�

Corollary 	��� The class �C
f��PR� is �nitely based�

� 



Corollary 	��� The class C
evalf � is elementarily closed�

Another interesting corollary is the reduction of nested recursion to primitive
recursion� A nested recursive de�nition may have� e�g�� the following form��

g

� a� � g�
a�
g
n� �� a� � h�
g
n� h�
g
n� a�� a��� n� a��

In general one allows arbitrarily deep nestings of g�terms on the right hand side
of the de�nition� but g must only occur in the context g
n� ��� that is� the �rst
argument must always be n� An old result of R�Peter says that nested recursion is
reducible to primitive recursion� and it is relevant for our work as follows�

Suppose we want to evaluate a term t
u
x��� where t and u are complex terms�
Doing this in the most straightforward manner we must �rst evaluate u and then
t� that is�

evalf 
pt
u�q� x� � evalf 
ptq� evalf 
puq� hxi���

We see that evalf occurs doubly nested on the right hand side of the equation� The
evaluation procedure prescribed by Proposition !�� is di�erent� we look at the terms
t and u as being decomposed into initial functions� and evaluate only one function
at a step� This is a longer process� although it yields the same result�

A natural rule to verify the totality of functions de�ned by nested recursion
is �� induction rule� rather than ���IR� which only works for primitive recursive
de�nitions on the face of it�
 Therefore it is not surprising that Peter�s theorem is
an essential element in Parsons� proof of the equivalence of �� and �� induction
rules� Here we obtain a slightly sharpened version of Peter�s result for free�

Corollary 	��� The closure of a class K of functions containing E under one ap�
plication of nested recursion and composition coincides with �K�PR��

Proof� Without loss of generality we may assume that K has the form C
f�� Now
we almost literally follow the lines of the proof of the second part of Proposition
!��� A function g
n� a� de�ned by nested recursion from C
f� can be expressed in
the form evalf 
s
n�� a� for a suitable elementary function s� The bound on the rate
of growth of s� however� will be slightly worse than before� For su	ciently large n
we have

js
n� ��j � C � js
n�jk�

where k is the maximum depth of nestings in the de�nition of g� However� this
means that s grows no faster than triply exponentially� q�e�d�

Let T be �nite �� axiomatized extension of EA and let f be the standard witness
for the single axiom of T � Recall that the graph of f is de�ned by an elementary
formula� We shall show that the evaluation function for f �terms can be naturally
represented in �T����IR�� and that its basic properties are provable in this theory�

Without loss of generality we may assume that T is formulated in a language
containing function symbols for f and for �nitely many initial elementary functions�
By Propositions ��! and !�� we know that evalf is provably recursive in �T����IR��
and hence its graph can be represented by a certain �� formula� This formula can
be read o� from the primitive recursive de�nition of evalf � or rather evalf � using
the formalization of primitive recursion 
��� in the proof of Proposition ��!� The
following somewhat sharper observation will be essential for us below�

�A recently introduced �Logic of Primitive Recursion� by Sieg and Wainer �	�� seems to provide
a relevant framework for the analysis of the intensional phenomenon of correpondence between
rules and computational schemes�

�!



Lemma 	��� The graph of the function evalf is elementary and can be naturally
de�ned by a bounded formula�

Proof� The formula evalf 
x� � y informally tells that y is a sequence of length
x� � such that for all u � x�

�� If 
u�� is the G�odel number of i�th variable� then 
y�u � 

u���i�

�� If 
u�� is the G�odel number of a term of the form h
t�� � � � � tm� for an initial
function h and for some terms t�� � � � � tm 
whose G�odel numbers j�� � � � � jm are
bound to be smaller than 
u���� then 
y�u � h

y�hj���u��i� � � � � 
y�hjm��u��i��

�� 
y�u � 
� otherwise�

Let us stress that Clause � can only be stated separately for each individual initial
function h� Since the graph of f is elementary� so is the above formula� q�e�d�

Lemma 	�	� �T����IR� � �x�(y evalf 
x� � y

Proof� This is a particular instance of Proposition ��!� For the de�nition given in
Lemma !� � the totality of evalf can be directly veri�ed using one application of the
rule ���IR�� which is congruent to ���IR� The functionality of evalf is established
within T as in the proof of Proposition ��!� q�e�d�

A corollary of this lemma is that a function symbol for evalf � and therefore the
one for evalf � can be introduced within �T����IR�� Since the de�nitions of evalf
and evalf are natural� recursive Clauses �*� from the proof of Proposition !�� are
provable in �T����IR�� and we obtain the following statement�

Lemma 	�
� �T����IR� proves

�� $e codes i�th variable%� evalf 
e� x� � 
x�i�

��
Vm

i	� $ei codes a term%�

evalf 
Subx����xm
phq� e�� � � � � em�� x� � h
evalf 
e�� x�� � � � � evalf 
em� x���

for any initial function h
x�� � � � � xm��

The following corollary is standard�

Proposition 	��� For any f�term t
x�� � � � � xn��

�T����IR� � evalf 
ptq� hx�� � � � � xni� � t
x�� � � � � xn��

Proof� external induction on the build�up of t� q�e�d�

To be able to more fruitfully use the inductive clauses for evalf we need a
reasonable amount of induction for formulas involving evalf �

Proposition 	�
� The theory �T����IR� contains the induction schema for bounded
formulas in the language with a function symbol for evalf �

Proof� Recall that evalf was de�ned via the function evalf � We observe two
things� 
a� the graph of of evalf is elementary� by Lemma !� � 
b� the function
evalf is provably increasing in �T����IR�� for obvious reasons� By Proposition  ���
��
evalf � induction is reducible to elementary induction� that is� is provable in
�T����IR�� It remains to notice that ��
evalf � formulas can be translated into
��
evalf � formulas using 
� �� q�e�d�

Corollary 	���� �T����IR� proves that for all terms t
z� in one variable and all
terms u�

evalf 
Subz
ptq� puq�� x� � evalf 
ptq� hevalf 
puq� x�i��

Proof� by ��
evalf � induction on the build�up of t� with u and x as free parameters�
q�e�d�

��



� �� induction rule

Theorem �� Let T be an arithmetical theory containing EA� Then �T����IR� is
equivalent to T together with RFN��
T�� for all �nite �� axiomatized subtheories
T� of T �

Proof� Exactly as in the proof of Theorem � we can show that� if for I
x� � ��

the theory T proves
I

� � �x 
I
x�� I
x� ���� 
���

then for a suitable �nite �� axiomatized subtheory T� of T one has

T �RFN��
T�� � �x I
x��


For the axioms of T� one may take formula 
��� together with all axioms of EA��
For the opposite inclusion it is su	cient to demonstrate that

�T����IR� � RFN��
T �

for �nite �� axiomatized theories T � Modulo the work we have done in the previous
sections the argument will be similar to the one in Sieg ����� Theorems ��� and ����

We introduce a function symbol f for the standard witness for the single axiom
of T and �nitely many symbols for a suitable basis in E � so that T attains a purely
universal axiomatization� It is also essential that the language of T is �nite� and
that T has only �nitely many nonlogical axioms in the extended language�

We know that �T����IR� has a reasonable evaluation function evalf for terms
in the language of T � Using evalf �rst we manufacture a satisfation predicate for
quanti�er free formuals of T � The following lemma is well�known and easy�

Lemma 
��� To every quanti�er free formula �
a� we can associate a term ��
a�
such that

T � �
a�� ��
a� � 
� 
���

Proof� Notice that� provably in T �

t�
a� � t�
a� � jt�
a� #�t�
a�j � 
�

�
a� � �
a� � ��
a� � ��
a� � 
�


�
a� � � #���
a� � 
�

whenever the terms �� and �� satisfy equivalence 
��� for formulas � and �� The
statement of the lemma follows by induction on the build�up of �� q�e�d�

Obviously� the function
trm � p�q �� p��q

is Kalmar elementary� and Lemma ��� is formalizable in EA� We de�ne�

Satf 
e� a� �� 
evalf 
trm
e�� a� � 
��

This de�nition guarantees that Satf is faithfully de�ned on atomic formulas 
by
Proposition !��� and provably commutes with all boolean connectives� For example�
provably in �T����IR� we have� for all �� ��

Satf 
p� � �q� a� � evalf 
trm
p� � �q�� a� � 


� evalf 
p�� � ��q� a� � 


� evalf 
trm
p�q�� a� � eval
trm
p�q�� a� � 


� 
evalf 
trm
p�q�� a� � 
 � evalf 
trm
p�q�� a� � 
�

� 
Satf 
p�q� a� � Satf 
p�q� a���

So� Tarski commutation conditions are satis�ed� and in the usual manner we obtain
the following lemma�

��



Lemma 
��� For every quanti�er free formula �
x�� � � � � xn� in the language of T �

�T����IR� � Satf 
p�q� hx�� � � � � xni�� �
x�� � � � � xn��

We also notice the following useful property of the function trm that can be seen
from our proof of Lemma ���� for every open formula �
z�� � � � � zn� and any terms
t�� � � � � tn we have�

trm
p�
t�� � � � � tn�q� � Subz����zn
trm
p�q�� pt�q� � � � � ptnq�� 
���

This property is formalizable in EA and yields the following fact� �T����IR� proves
that for all formulas �
z�� � � � � zn� and any terms t�� � � � � tn�

Satf 
p�
t�� � � � � tn�q� x�� Satf 
p�q� hevalf 
pt�q� x�� � � � � evalf 
ptnq� x�i�� 
�
�

This essentially follows from 
��� and Corollary !��
�
Now let �x� � � ��xm


x�� � � � � xm� be the single nonlogical axiom of T 
accu�

mulating� in particular� all the equality axioms�� with 
 quanti�er free� Consider a
cut�free derivation of a sequent of the form �x� � � � �xm

x�� � � � � xm���� where � is
a set of quanti�er�free formulas� By the subformula property� any formula occurring
in this derivation either 
a� has the form �xk � � � �xm 

t�� � � � � tk��� xk� � � � � xm�� for
some 
 � k � m and terms t�� � � � � tk��� or 
b� is an open formula� Furthermore�
since the rule introducing a universal quanti�er is never applied� without loss of
generality we may assume that the derivation contains no free variables apart from
those of � 
otherwise� substitute 
 for any such variable everywhere in the proof��
Let us call a cut�free derivation satisfying these conditions normal�

Lemma 
��� The theory �T����IR� proves the uniform re�ection principle for quan�
ti�er free formulas of T w�r�t� normal provability� that is� the following statement


If a sequent of the form "��� where � consists of open formulas in the
language of T and " is a set of formulas of type 
a� above� has a normal
proof� then for all n� Satf 
p

W
�q� n��

Proof� The argument is similar to the one in the proof of Theorem � and� in
fact� easier� although there are some subtle formal di�erences� Reasoning inside
�T����IR� we �x an arbitrary substitution of numerals 'n for free variables of �
everywhere in the given normal derivation and obtain a derivation p of a sequent of
the form "
'n���
'n�� By the normality� any subderivation q of p has a similar form�
and its G�odel number is smaller than p� By induction on the height h of q we prove
the following statement�


��

For all h�q� if q is a subderivation of p of height h and the end sequent of q
has the form "����� where "� is of type 
a� and �� is quanti�er free� then
Satf 
p

W
��q� hi��

Since there are only �nitely many subderivations of p� the quanti�er over all q in this
statement is bounded� and p appears as a free variable� So� the whole induction
is an instance of ��
evalf � induction schema� which is available in �T����IR� by
Proposition !���

As usual� we consider several cases according to the last rule applied in the
subderivation q� The cases of logical axioms and rules of propositional logic are
easily treated using commutation properties for Satf � The only nontrivial case is
that of the existential quanti�er in front of 
� that is� when the inference has the
form

"��� 

t�� � � � � tm��� tm����

"��� �xm

t�� � � � � tm��� xm����
�

��



Then by the induction hypothesis and commutation properties for Satf we know
that either Satf 
p

t�� � � � � tm��� tm�q� hi� or Satf 
p

W
��q� hi� holds� Suppose

Satf 
p

t�� � � � � tm�q� hi��

then by 
�
� we obtain Satf 
p
q� hevalf 
t�� hi�� � � � � evalf 
tm� hi�i�� whence



evalf 
t�� hi�� � � � � evalf 
tm� hi��

by Lemma ���� This implies �y� � � � �ym

y�� � � � � ym� and a contradiction in �T����IR��
So� we have demonstrated 
�� and� considering the end sequent of the given

derivation p� may conclude that Satf 
p
W
�
'n�q� hi� holds� By 
�
� this implies

Satf 
p
W
�q� n�� q�e�d�

Now we are able to complete the proof of Theorem �� Since �EA����IR� contains
SUPEXP and� therefore� proves the Cut�elimination Theorem for �rst order logic�
it is su	cient to prove the �� re�ection principle for T w�r�t� cut�free provability�
We reason inside �T����IR� as follows�

Suppose �x�
x� a� is cut�free provable in T � where �
x� a� is quanti�er free� Since
T is a purely universal theory� by 
formalized� Herbrand�s Theorem� as in the proof
of Proposition ���� we can �nd a f �term t
a� and a normal derivation of the sequent
�x� � � ��xm 

x�� � � � � xm�� �
t
a�� a�� By Lemma ��� we may conclude that� for all
n� Satf 
p�
t
a�� a�q� hni�� Hence� there exists a m such that Satf 
p�
x� a�q� hm�ni��
because for m one can take the value of t� evalf 
ptq� hni�� Lemma ��� then yields
�y �
y� n�� q�e�d�

Since uniform �� and �� re�ection principles over T are equivalent� we obtain
the following important corollary�

Corollary 
��� For �� axiomatized theories T containing EA�

�T����IR� � �T����IR��

This corollary allows to extend to ���IR all the facts concerning axiomatizability
that we have obtained earlier for �� induction rule� It should be stressed� however�
that these results only apply for �� axiomatized theories� rather than for general
�� axiomatized� as in the case of ���IR�

On the other hand� the transparent analysis of p�t�r�f�s of theories axiomatized
by ���IR allows us to obtain nontrivial results for ���IR� For example� we have the
following result of Sieg for free 
cf ���� and our discussion at the end of Section ���

Corollary 
��� The p�t�r�f�s of the theory �EA����IR�k are precisely those of the
class E��k of the Grzegorczyk hierarchy�

Proof� This follows from the well�known fact 
cf e�g� �� �� that classes of the
Grzegorczyk hierarchy are obtained from E by iterated application of the operator
of primitive recursion� which corresponds to ���IR by Corollary ���� q�e�d�

� Relativization

Our goal here is to restate Theorem � for a language with additional function
symbols� Let �
x� be a function� Relativized analogues of classes of functions
considered in the proof of Theorem � are de�ned as follows�

E� �� E
���

C�
K� �� C
K � E���

�




Notice that C�
f� � C
'�� f�� by Proposition  ���
Recall that ��
�� denotes the class of bounded formulas in the language of

EA 
with symbols for all Kalmar elementary functions� enriched by a function
symbol for �� ��� formulas are those of the form �x�� � � � � xnA
x�� � � � � xn� a�� where
A � ��
��� Classes �

�

n and ��n are de�ned in a similar manner�
Relativized version of Kalmar elementary arithmetic� EA� � is a theory formu�

lated in the language with a function symbol for �� In addition to the usual axioms
of EA it has a schema of induction for ��
�� formulas� This formulation of EA� is
not purely universal because of the presence of bounded quanti�ers� We show how
to reformulate it in a purely universal way�

First of all� we show that one can naturally ��
�� de�ne the graph of '� and
prove in EA� that this relation de�nes a total function� For example� one can �rst
de�ne an auxiliary function t
x� by

t
x� �� 
z � x� �i � x �
i� � �
z��

The graph of t is clearly ��
��� and since t
x� � x holds provably in EA� � the
totality of t is easily proved by ��
�� induction� So� we introduce a function symbol
for t and then de�ne m
x� �� �
t
x��� It is easy to see� provably in EA� � that

m
x� � max
i�x

�
x��

Now we de�ne the graph of '� as follows�

'�
x� � y �� y � Seq � lh
y� � x� � � �i � x 
y�i � �
i��

where lh
y� denotes the length of a sequence y� To show that

�x�(y '�
x� � y 
���

we notice that

'�
x� � 
y� y � Seq � lh
y� � x� � � �i � x �
i� � 
y�i�

So� given an x we can �nd a sequence y � hm
x�� � � � �m
x�i that majorizes � on
the interval �
� x�� Then we apply ��
�� least element principle to �nd the minimal
such y� This proves 
����

The following two useful properties of the function '� are obviously provable in
EA� �

�� �x 
'�
x� � Seq � lh
'�
x�� � x� ���

�� �x� y 
x � y � '�
x� � '�
y� � x��

In particular� the second property shows that '� is a provably increasing function� By
Proposition  ��� we know that for such functions ��
'�� induction is reducible 
over
EA� to induction for predicates elementary in the graph of '�� i�e�� for formulas built
up from '�
x� � y and elementary ones using boolean connectives and quanti�ers
bounded by elementary functions� Since the graph of '� is ��
��� we see that ��
'��
induction schema is available in EA� �

On the other hand� let EA�� be a theory formulated in the language of EA
enriched by a function symbol for '�� Axioms of EA�� are those of EA plus induction
schema for open formulas plus formulas � and � above� We have just seen that it is
contained� or rather interpreted� in EA� � The opposite containment is also true�

Proposition ���� EA� is equivalent to EA���

��



Proof� First of all� formalizing the proof of Proposition  �� we can show that C
'��
is provably closed under bounded summation�

Lemma ���� For every term g
x� a� in the language of EA�� we can �e�ectively	
�nd a term G
x� a� such that EA�� proves


G

� a� � g

� a��

G
x� �� a� � G
x� a� � g
x� �� a��

Notice that any two terms satisfying the above equations are provably equal in
EA�� � We shall denote G
x� a� by

P
i�x g
i� a�� A similar lemma holds for bounded

multiplication�

Lemma ���� For every ��
'�� formula �
a� there is a term ��
a� such that

EA�� � �x 
�
x� � ��
x� � 
��

Proof� Induction on the build up of �� Boolean connectives are treated as in
Lemma ���� Bounded quanti�ers are translated using Lemma ��� as follows�

�x � y �
x� a��
X
x�y

��
x� a� � 
� 
���

whenever �� satis�es the induction hypothesis� We only need to demonstrate equiv�
alence 
��� in EA�� using open induction�

For the implication 
�� we proveX
x�y

��
x� a� � 
 � u � y � ��
u� a� � 
 
���

by an obvious quanti�er free induction on y� For the opposite implication 
�� we
reason as follows� Assume �x � y �
x� a�� Then prove by quanti�er free induction
on u� and with y a parameter� that

�u � y
X
x�u

��
x� a� � 
�

Conclude
P

x�y ��
x� a� � 
� Notice that the induction here� being applied as a
schema� does not involve the side formula �x � y �
x� a� 
which is not quanti�er
free�� q�e�d�

+From Lemma ��� it follows that� using open induction only� we can prove all
instances of ��
'�� induction in EA�� � Now we notice that the function � can be
de�ned by a term in EA�� �

�
x� �� 
'�
x��x�

This means that ��
�� induction is reducible to ��
'�� induction� and we may con�
clude that EA� is equivalent to EA�� � since the two interpretations we constructed
are mutually inverse� q�e�d�

Proposition ���� EA�� has a purely universal axiomatization �in the language with
symbols for '� and for all elementary functions	�

Proof� In the standard axiomatization of EA�� the instances of quanti�er free
induction

A

� � �y � x 
A
x� � A
x� ���� �y � xA
y�

are bounded� but not literally quanti�er free� We show that in an axiomatization
of EA�� these formulas can be replaced by quanti�er free ones� To this end we have

��



to improve a little upon Lemma ���� We show that in the proof of Lemma ��� only
a number of purely universal theorems of EA�� could be used�

Indeed� the treatment of boolean connectives in Lemma ��� only requires a �nite
number of equivalences� like

jx
�
� yj � 
� x � y�

or
x� y � 
� 
x � 
 � y � 
��

To handle the bounded quanti�ers we can simply take open formulas 
��� as axioms�
However� the proof of the implication

�x � y ��
x� a� � 
�
X
x�y

��
x� a� � 
� 
���

poses a problem�
Let m
y� a� be a function de�ned by

m
y� a� �� 
x � y� ��
x� a� �� 
�

It is well�known thatm
y� a� belongs to E �� 
cf Rose ������ and hence� is de�nable via
bounded summation and multipliction� Moreover� in EA�� one can prove natural
properties of 
 operator by quanti�er free induction� in particular�X

x�y

��
x� a� �� 
� ��
m
y� a�� a� �� 


is provable in EA�� � This formula clearly implies 
���� and so� we can take it as
another open axiom� Thus� we see that Lemma ��� follows from a number of purely
universal theorems of EA�� � Taking these theorems together with open translations
of all instances of quanti�er free induction yields an open axiomatization of EA�� �
q�e�d�

Now we can formulate a relativized version of 
a particular case of� Theorem ��

Theorem �� Let T be a �nite ���
� axiomatized theory� Then

�EA�� � T����
� �IR� � RFN���

�

T ��

Proof� We check that everything in the proof of Theorem � relativizes� 
Notice
that the relativized theorem is formulated in such a way that �nite axiomatizability
of EA�� is not presumed�� We take a purely universal formulation of EA�� and
introduce a new function symbol f for the standard witness of the 
single� ���

�

axiom of T � At the cost of introducing into the language of T �nitely many function
symbols for elementary 
in '�� functions and adding �nitely many purely universal
axioms of EA�� � we may assume that the graph of f is open and T has a �nite purely
universal axiomatization in the language with f � 
This follows by compactness from
Lemma ��� and Proposition �����

Main steps in the proof of Theorem � were as follows� 
a� De�ning the evaluation
function for f �terms using only one primitive recursion over C
f�� 
b� Proving the
totality and natural commutation properties for evalf inside �T����IR�� 
c� Showing
that ��
evalf � induction schema is available in �T����IR�� 
d� Proving uniform
re�ection principle for open formulas of T 
in the language with f� by ��
evalf �
induction�

Since C��
f� � C
'�� f� and the graph of f is elementary in '�� as in Lemma !� 

we obtain a natural ��
'�� de�nition of the graph of the evaluation function eval
��

f 
x�

��



for terms in the language of T � 
This only amounts to adding the function '� to
the list of initial functions�� For this de�nition one can directly show the totality of

eval
��

f 
x� using one application of ���
� �IR�� which can be reduced to an application

of ���
� �IR by the same proof as in Proposition ���� This shows a relativized version

of Lemma !�!�

Lemma ���� �EA�� � T����
� �IR� � �x�(y eval

��

f 
x� � y

A corollary is that the function symbols for eval
��

f and eval��f can be introduced in
�EA�� � T����

� �IR�� Lemmas !�� and !�� then remain essentially unchanged� with
the understanding that '� is included in the list of initial functions� Next we obtain
a relativized version of Proposition !���

Lemma ��	� The theory �EA���T����
� �IR� contains the induction schema for bounded

formulas in the language of EA�� enriched by a function symbol for eval��f �

This follows� exactly as in the proof of Proposition !��� from the facts that the

graph of f is elementary in '� and that eval
��

f is provably increasing� Of course� we
rely on a relativized version of Proposition  ����

Lemma ��
� Over EA�� � �x� y 
x � y � f
x� � f
y�� the induction schemata
for ��
'�� f� formulas and ��
'�� F � formulas are deductively equivalent� where F

is the formula f
x� � y representing the graph of f �

The proof of this proposition goes as before� using the fact that '� is provably
increasing in EA�� � and that the induction schema for ��
'�� formulas is available
in EA�� � 
It can also be inferred just as a corollary of Proposition  ��� for a language
with the two monotonic function symbols��

The rest of the proof needs little checking� The evaluation function gives rise to
a natural satisfaction predicate in �EA�� � T����

� �IR� for quanti�er free formulas of
T � Sat��f 
e� x�� Tarski commutation conditions directly follow from the commutation

properties of eval��f 
e� x�� as before� and we arrive at a relativized version of Lemma
����

Lemma ���� The theory �EA�� � T����
� �IR� proves the uniform re�ection principle

for quanti�er free formulas of T w�r�t� �normal	 cut�free provability�

Here we essentially only rely on the fact that T is a �nite and purely universal theory�
Tarski commutation properties for Sat��f 
e� x�� and the availability of ��
eval

��
f �

induction schema� Theorem � follows from this lemma in the usual way� q�e�d�

Remark ��
� Obviously� the analog of Theorem � also holds for extensions of the
language of arithmetic by more than one additional function symbol '��

	 �n induction rule

In this section we generalize the results of Section � to �n�IR for an arbitrary n � ��
Our main result is formulated as follows�

Theorem �� Let T be an arithmetical theory containing I�n� Then �T��n���IR�
is equivalent to T together with RFN�n��
T�� for all �nite �n�� axiomatized sub�
theories T� of T �

Corollary 
��� For �n�� axiomatized theories T containing I�n�

�T��n���IR� � �T��n���IR��

The same result holds for �n�� � �n�� axiomatized extensions of I�n�

��



Proof� If T� is a �nite extension of I�n axiomatized by a �n�� sentence � and a
�n�� sentence �� then

T� �RFN�n��
T�� � T� �RFN�n��
I�n � ���

by formalized Deduction Theorem� And RFN�n��
I�n � �� is provable in �I�n �
���n���IR�� So� �T��n���IR� proves RFN�n��
T�� for any �nite subtheory T� of
T � exactly as by Theorem � �T��n���IR� does� q�e�d�

We see that the theorem and its corollary only apply to theories T containing
I�n� rather than to arbitrary extensions of EA� This seems to be a fairly restrictive
requirement� Recall� however� that �EA��n���IR� contains and is� in fact� equiva�
lent to I�n� It follows that just a single application of �n���IR brings everything
into the class of theories containing I�n� where Theorem � applies� So� we obtain
the following corollary�

Corollary 
��� For any �n�� axiomatized extension T of EA� k applications of
�n�� induction rule over T are reducible to k � � applications of �n���IR�

�T��n���IR�k 	 �T��n���IR�k���

I do not know if this result is optimal� that is� if k � � applications of �n���IR on
the right hand side can� in general� be decreased to k applications� However� we
have the following result�

Corollary 
��� Let T be a �n�� axiomatized extension of EA� Then �T��n���IR�
is equivalent to T together with RFN�n��
T�� for all �nite subtheories T� of T �
Hence� over such theories� for any k�

�T��n���IR�k � �T��n���IR�k�

Proof� Let T� be a �nite 
�n�� axiomatized� subtheory of T � First of all� we notice
that

T� �RFN�n��
T�� � T� �RFN�n��
EA��

by formalized Deduction Theorem� We have already noticed before that �T��n���IR�
proves �n�IA� and by Leivant�s Theorem I�n contains RFN�n��
EA�� 
Alterna�
tively� this fact can be seen from our proof of Theorem � below�� So� �T��n���IR�
proves RFN�n��
T��� The opposite inclusion is proved in the usual way�

After the �rst application of �n���IR we obtain a theory which is a �n����n��

axiomatized extension of I�n� So� the second claim of the corollary follows by
Corollary ���� q�e�d�

Now we turn to the proof of Theorem �� For the sake of clarity of presentation
we �rst give a proof of this theorem for n � ��

Let T be a �nite extension of I�� having� apart from the axioms of EA� the
only �� axiom

� �� �u�v�w ��
u� v� w��

where �� is bounded� Let

�
x� �� �u�v ��
u� v� x�

be an arbitrary �� formula� with �� bounded� We are going to show that

�T����IR� � �x 
ProvT 
p�
 #x�q�� �
x���

� 



To this end� �rst we introduce Skolem functions in order to eat up the innermost
universal quanti�ers in � and �� i�e�� new function symbols �
x� and �
x� together
with the following axioms�

�u � x ��w 
��

u��� 
u��� w�� �w � �
x� 
��

u��� 
u��� w��� 
� �

�u � x ��v 
��

u��� v� 
u���� �v � �
x� 
��

u��� v� 
u����� 
�!�

Let U be a theory obtained by adding to EA��	 axioms 
� � and 
�!�� Obviously�
U has a ���	� axiomatization�

Lemma 
��� There is a non�relativizing interpretation 
��� of U in I�� such that


�a� 
��� is identical on formulas in the language of EA�

�b� If A � �����	
� then 
A�� is equivalent to a �� formula in I���

Proof� Graph of the function � will be de�ned by a formula �
x� � y naturally
expressing that y is the least z such that

�u � x ��w 
��

u��� 
u��� w�� �w � z 
��

u��� 
u��� w���

Notice that this formula is ��
���� To show that I�� proves �x�(y �
x� � y we
make use of the fact 
cf ���� p� !�� that I�� contains the so�called strong collection
schema for �� formulas A�

�x�y�u � x 
�zA
u� z� a�� �z � yA
u� z� a���

Then� taking 
��

u��� 
u��� z� for A and subsequently applying the �� least number
principle to select the 
unique� minimal y shows that � is total and functional� The
graph of � is de�ned similarly�

Now we notice that the functions � and � thus introduced in I�� are monotonic
in the sense that I�� proves

�x� y 
x � y � �
x� � �
y��� 
���

By Proposition  ��� it follows that the induction schema for ��
�� �� formulas
is reducible over EA plus 
��� to the induction schema for bounded formulas in
the graphs of � and �� Since the graphs of � and � are interpreted as ��
���
formulas� this means that I�� interprets ��
�� �� induction� It is easy to check
that interpretations of the axioms 
�!� and 
� � are provable in I���

Property 
a� is part of the de�nition of the constructed interpretation� and for

b� it is su	cient to demonstrate that ��
'�� '�� formulas are �� in I�� under the
interpretation in question� By Lemma ��� every ��
'�� '�� formula is equivalent to
an open formula in EA����	 � Such formulas are obviously equivalent in EA����	 to
�� formulas in the graphs of '� and '�� Since the graphs of '� and '� are ��
����
and by Theorem ��� 
p� !�� of ��� ��
��� formulas are �� in I��� so are the
interpretations of arbitrary ��
'�� '�� formulas� q�e�d�

Remark 
��� The results referred to in the proof of the above lemma are all ob�
tained by purely elementary methods�

An obvious corollary of Lemma ��� is the fact that U is conservative over I���
and this fact can be seen to be provable in EA� 
A careful reader may notice that
below we only need to interpret a �nite fragment of U � and for �nite theories such
a formalization is immediate��

Now we observe that the function

��
u� v� �� 
z � �
hu� vi�� 
��
u� v� z�

�!



is elementary in �� and therefore can be de�ned by a term in EA����	 � By axiom 
� �
we may then infer that U proves

�z��
u� v� z�� ��
u� v� �
�
u� v��� 
���

Let T� be a theory in the language of U obtained by adding to U the axiom � �
that is� T� �� U � � � By 
���� T� has a �����	

� axiomatization� Besides� since
T � EA� � contains I��� T

� is a 
provably� conservative extension of T � Indeed�
for any formula A in the language of T � T� � A implies U � � � A� whence
I�� � � � A and T � A� by Lemma ����

Reasonong in a similar way� we obtain a term �
�
u� x� of EA����	 such that

U � �
x� � �u��
u��
�
u� x�� x��

Since T� is a provably conservative extension of T � this yields

EA � ProvT�
p�u��
u��
�
u� #x�� #x�q� � ProvT�
p�
 #x�q� 
���

� ProvT 
p�
 #x�q�� 
�
�

Now we are in a position to invoke Theorem �� Since T� is a �nite and �����	
�

axiomatized extension of EA����	 � we have

�T�������	
� �IR� � �x 
ProvT�
p�u��
u��

�
u� #x�� #x�q�� �u��
u��
�
u� x�� x���

and then 
�
� yields

�T�������	
� �IR� � �x 
ProvT 
p�
 #x�q�� �
x���

So� we can �nd �����	
� formulas I�
x�� � � � � Ik
x� such that� for each i�

T� � Ii

� � �x 
Ii
x�� Ii
x� ���� 
���

and
T� � f�xIi
x�ji � �� � � � � kg � �x 
ProvT 
p�
 #x�q�� �
x��� 
���

Since 
���� being a non�relativizing interpretation� distributes over boolean con�
nectives and quanti�ers� from 
��� we obtain �� formulas I�� 
x�� � � � � I�k 
x� such
that

T � I�i 

� � �x 
I�i 
x�� I�i 
x� ����

for all i� And 
��� implies that

T � f�xI�i 
x�ji � �� � � � � kg � �x 
ProvT 
p�
 #x�q�� �
x���

so we obtain
�T����IR� � �x 
ProvT 
p�
 #x�q�� �
x���

This completes the proof of the main part of Theorem � for n � �� The other part
is no di�erent from that of Theorem ��

Now we sketch a proof of Theorem � for an arbitrary n � �� We consider the case
of even n 
the case of odd n is only notationally di�erent�� Our proof generalizes the
one given for n � � fairly straightforwardly� the only problem is not to get confused
by various indices of formulas� functions� and variables�

Let T be an extension of I��n with the only non�EA ��n�� axiom

� �� �u��v��u��v� � � ��un�vn ��
u�� v�� � � � � un� vn��

��



where �� is bounded� and let

�
x� �� �v��u��v� � � ��un�vn ��
x� v�� � � � � un� vn�

be an arbitrary ��n�� formula� with �� bounded� As before� we have to show that

�T���n���IR� � �x 
ProvT 
p�
 #x�q�� �
x���

Let us denote� for 
 � k � n�

��k��
u�� v�� � � � � un�k� �� �vn�k�un�k�� � � ��vn ��

��k��
u�� v�� � � � � vn�k��� �� �un�k�vn�k � � ��vn ��

��k��
x� v�� � � � � un�k� �� �vn�k�un�k�� � � ��vn ��

��k��
x� v�� � � � � vn�k��� �� �un�k�vn�k � � ��vn ��

Obviously� ��k��� ��k�� � ��k�� and ��k��� ��k�� � ��k��� Next we introduce
new unary function symbols ��� � � � � ��n and ��� � � � ���n and the following formulas�

��k�� �� �x �z � x ��vn�k ��k

z��� � � � � 
z���n�k�� vn�k��

�vn�k � ��k��
x� ��k

z��� � � � � 
z���n�k�� vn�k��

��k�� �� �x �z � x ��un�k
��k��

z��� � � � � 
z���n�k���� un�k��

�un�k � ��k��
x� 
��k��

z��� � � � � 
z���n�k���� un�k��

	�k�� �� �x �z � x ��vn�k ��k

z��� � � � � 
z���n�k�� vn�k��

�vn�k � ��k��
x� ��k

z��� � � � � 
z���n�k�� vn�k��

	�k�� �� �x �z � x ��un�k
��k��

z��� � � � � 
z���n�k���� un�k��

�un�k � ��k��
x� 
��k��

z��� � � � � 
z���n�k���� un�k��

Finally� let the theories Um� for m � �� � � � � �n� be obtained from EA	���������	m��m

by adding the axioms ��� 	�� � � � � �m� 	m together with the monotonicity axioms for
all Skolem functions in the language of Um�

x � y � �i
x� � �i
y�� � � i � m�

x � y � �i
x� � �i
y�� � � i � m�

Lemma 
�	� There is a non�relativizing interpretation 
��� of U�n in I��n such
that� for each � � m � �n�

�a� 
��� interprets Um in I�m�

�b� 
��� is identical on formulas in the language of EA�

�c� If A � ��	�����������	m���m
� then 
A�� is equivalent to a �m�� formula in I�m�

Proof� Essentially the same proof as for Lemma ���� For example� ��k��
x� is
interpreted as the least y such that

�z � x ��vn�k ��k

z��� � � � � 
z���n�k�� vn�k��

� �vn�k � y ��k

z��� � � � � 
z���n�k�� vn�k���

and similarly for the other functions� Totality of �i and �i� for i � m� together
with the axioms �i and 	i then follows from the strong �i collection schema� which
is available in I�m for i � m� Verifying the monotonicity axioms is unproblematic�

The graphs of �i and �i are interpreted as ��
�i� formulas� By Proposition
 ��� ��
������ � � � � �m��m� induction schema is reducible to the induction schema
for formulas elementary in the graphs of all functions �i and �i for � � i � m� that

��



is� to ��
�m� induction� The latter is contained in I�m� hence I�m also interprets
EA	���������	m��m �

Graphs of '��� '��� � � � � '�m� '�m are ��
�m�� and hence �m�� in I�m� This means
that any ��
'��� � � � � '�m� formula� being Um�equivalent to a �� formula in the graphs
of '��� '��� � � � � '�m� '�m� is �m�� in I�m� This implies property 
c� of our interpreta�
tion� and property 
b� is obvious� q�e�d�

Lemma 
�
� For all � � m � �n� the formulas �m and �m are Um�equivalent to
open formulas� provided Um is formulated in the language with function symbols for
'��� '��� � � � � '�m� '�m�

Proof� by induction on m� Let � ��k denote an open formula equivalent to ��k in
U�k� We de�ne a function ���k��
u�� v�� � � � � un�k� as


vn�k � ��k��
hu�� v�� � � � � un�ki�� �
�
�k
u�� v�� � � � � un�k� vn�k��

���k�� is elementary in ������ � � � � ��k��� hence it can be represented by a term in
U�k��� Besides� since U�k�� contains U�k� we have

U�k�� � ��k�� � �vn�k�
�
�k

� � ��k
u�� � � � � un�k� �
�
�k��
u�� � � � � un�k��

The latter formula is quanti�er�free and will be denoted � ��k��� Similarly� we de�ne
���k��
u�� v�� � � � � vn�k��� as


un�k � ��k��
hu�� v�� � � � � vn�k��i�� 
�
�
�k��
u�� v�� � � � � vn�k��� un�k��

Then

U�k�� � ��k�� � �un�k�
�
�k��

� � ��k��
u�� � � � � vn�k��� �
�
�k��
u�� � � � � vn�k�����

as required� The argument for �k is similar� q�e�d�

Corollary 
��� For each � � m � �n� Um has a ��	�����������	m���m
� axiomatization�

Proof� by induction on m� A ��	�����������	m���m
� axiomatization of Um�� is obtained

from that of Um by replacing� in the axioms �m�� and 	m��� the subformulas �m
and �m� respectively� by their open counterparts � �m and ��m� q�e�d�

Now we de�ne T� �� U�n � � 
the language of T� is that of U�n�� Since T

contains I�n� by Lemma ��! T� is a provably conservative extension of T � T� has
a ��	�����������	�n����n

� axiomatization� and � is provably equivalent to a ��	�����������	�n����n
�

formula within T� by Lemma ���� This allows us to apply Theorem � to T�� and
to carry through the rest of the proof exactly in the way it was done for the case
n � �� q�e�d�

�
 On B��n� induction rule

We �rst analyze the induction rule for boolean combinations of �� formulas�

Proposition ����� B
����IR 
� ���IR�

Proof� We must show that� for every theory T containing EA�

�T�B
����IR� 	 �T����IR��

��



Suppose A
x� is a B
��� formula such that T proves

A

� � �x 
A
x� � A
x� ���� 
���

We must show that �xA
x� is contained in �T����IR�� It is easy to see by induction
on the complexity of boolean combinations that every B
�n� formula is logically
equivalent to both a �n�� and a �n�� formula� that is� is �n�� in EA� In particular�
A
x� is �� and 
��� is 
equivalent to� a �� formula� Let T� be the �nite subtheory
of T axiomatized by 
���� By Corollary ��� we have �T�����IR� � �T�����IR�� and
the latter theory contains �xA
x�� It follows that �xA
x� is provable in �T����IR��
q�e�d�

Essentially the same argument works for B
�n��IR� for arbitrary n� only at the
last step we have to apply Corollary ��� or ���� In this way we obtain the following
proposition�

Proposition ����� For n � � we have


�� B
�n��IR � �n�IR� i�e�� the two rules are interderivable� Moreover� k nested
applications of B
�n��IR are reducible to k � � nested applications of �n�IR�


� The two rules are� in fact� congruent modulo I�n��� that is� over theories as
strong as I�n��� k nested applications of B
�n��IR are reducible to k nested
applications of �n�IR�

Open question� is B
�n��IR congruent to �n�IR for n � �,

�� Conclusion

In this paper we introduced natural notions of reducibility and congruence of rules
in formal arithmetic� We classi�ed various forms of induction rules of restricted
arithmetical complexity 
over EA� modulo congruence relation� It turned out that
these forms� most commonly� fall into one of the three main 
distinct� categories� 
a�
rules congruent to induction axiom schemata� 
b� rules congruent to �n induction
rule �n�IR� 
c� rules congruent to �n induction rule �n�IR�

We gave characterizations of �n�IR and �n�IR in terms of iterated re�ection
principles� These characterizations provide natural axiomatizations for closures of
arbitrary theories containing EA under these rules� It turns out that the number
of iterations of re�ection principles precisely corresponds to the depth of nestings
of applications of induction rules� This shows� in particular� that the two ways of
axiomatizing theories are tightly related�

Besides� these characterizations yield several important corollaries concerning
�nite 
non�axiomatizability of theories axiomatized by induction rules� and give
wide su	cient conditions for the equivalence of 
closures of theories by� �n�� and
�n induction rules�

Proof�theoretic analysis of provably recursive functions of theories axiomatized
by rules allows us to sharpen� and give easy new proofs of� several old results� For
example� we prove Peter�s theorem on reduction of nested recursion to primitive
recursion and Finite Basis Theorem for Kalmar elementary functions� We also
reproduce some results of Parsons ���� and Sieg ���� ���� e�g�� we show that Parsons�
result on �� conservativity of I�� over ���IR is interderivable with 
a particular case
of� so�called Fine Structure Theorem on uniform re�ection principles of U�Schmerl
�����

I hope the results of this paper will convince the reader of the fact that rules
in arithmetic are an interesting independent object of study� and that a detailed

�




analysis how particular rules work not only often reveals peculiar e�ects� but may
have useful applications in other topics of proof theory�
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