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Abstract

A well�known result of D� Leivant states that� over basic Kalmar ele�

mentary arithmetic EA� the induction schema for �n formulas is equivalent

to the uniform re�ection principle for �n�� formulas� We show that frag�

ments of arithmetic axiomatized by various forms of induction rules admit

a precise axiomatization in terms of re�ection principles as well� Thus�

the closure of EA under the induction rule for �n �or �n��	 formulas is
equivalent to � times iterated �n re�ection principle� Moreover� for k � ��

k times iterated �n re�ection principle over EA precisely corresponds to

the extension of EA by � k nested applications of �n induction rule�

The above relationship holds in greater generality than just stated� In

fact� we give general formulas characterizing in terms of iterated re�ection

principles the extension of any given theory �containing EA	 by � k nested

applications of �n or �n induction rules� In particular� the closure of a

theory T under just one application of �� induction rule is equivalent

to T together with �� re�ection principle for each 
nite �� axiomatized

subtheory of T �

These results have closely parallel ones in the theory of subrecursive

hierarchies� The analogy can be roughly formulated as follows� counting
applications of �� induction rule in a proof � counting operators of prim�

itive recursion in a primitive recursive program� For example� the above

characterization of �� induction rule implies that� over a class of functions

containing elementary ones� one application of nested recursion on � can

be reduced to one application of primitive recursion and composition� This

statement is a slightly re
ned version of an old result of R� Peter�

�The research described in this publication was made possible in part by Grant No� NFQ���
from the International Science Foundation and by the Russian Foundation for Fundamental
Research �project ��������	��
��
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� Introduction

It is well known that �rst order theories can be de�ned� over �rst order logic�
by sets of axioms as well as by sets of rules� An axiom can be viewed as a
particular kind of rule with an empty� or with some �xed� trivial premise� Vice
versa� for a theory T axiomatized by rules� all theorems of T constitute a trivial
axiomatization of T by a set of axioms� So� if one identi�es a theory with its
set of provable theorems � a point of view supported by the model�theoretic
tradition in logic � there is no essential di�erence between rules and axioms�

Recently� a new interest was aroused in proof�theory towards the questions of
a more �intensional	� syntax�depending character� One can mention the active
research being done in the area of complexity of proofs
 propositional proof sys�
tems �cf� e�g�� �
��
 investigations on so�called Kreisel�s Conjecture �cf� e�g�������
These developments are mainly inspired by potential applications in Theoretical
Computer Science� rather than by purely foundational questions� On the other
hand� they are very essential for proof theory itself� for in all these areas the exist�
ing proof�theoretic techniques cannot be completely replaced by the alternative
model�theoretic ones� because of the intensional character of problems�

This paper is devoted to a detailed proof�theoretic analysis of restricted in�
duction rules in arithmetic� Our main results characterize closures of arithmetical
theories containing EA by induction rules in terms of axioms� These results have
intensional character in the sense that we are looking for natural and informative

axiomatizations� rather than for easy but useless ones�
Although logicians usually have a very good intuition about particular axiom�

atizations� the general question �What is a natural axiomatization of a formal
theory�	 is somewhat vague from strictly mathematical point of view�� In our
case we have both informal and formal evidence to the e�ect that axiomatizations
by rules and their equivalent characterizations by axioms �re�ection principles�
are �naturally related� to each other�

�a� Re�ection principles are well�studied schemata in proof theory� with a
clear �meta�mathematical meaning�

�b� Our characterizations are informative in the sense that they yield several
interesting corollaries concerning �nite �non�axiomatizability of theories given
by induction rules� optimal complexity of their axiomatizations� and give wide
su�cient conditions for the equivalence of �closures of theories by� �n�� and �n

induction rules� Besides� they allow to give new proofs of several old �extensional�
results� such as the conservativity results for induction schemata over induction
rules� characterizations of provably �total� recursive functions of theories axiom�
atized by rules� Peter�s theorem on nested recursion� and others�

�c� The structure of the axiomatizations by iterated re�ection principles pre�

�There are other well�known open questions in proof theory of similar nature� e�g�� 
What
is a natural system of ordinal notation���
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cisely corresponds to the structure of nestings of applications of induction rules�
The latter� more formal� kind of evidence will be carefully explained below�

For further discussion we must �x some terminology and formulate a few back�
ground results�

Kalmar elementary arithmetic EA is a theory known in several equivalent
formulations� When formulated in the standard language of Peano arithmetic
PA it has the name I���EXP and is axiomatized by restricting� in the standard
formulation of PA� the schema of induction

A��� � �x�A�x�� A�x� ���� �xA�x� ���

to bounded formulas A�x� and by adding a �� axiom stating that the function
�x is total� It is well�known that I�� � EXP is a �nitely axiomatizable theory
����

In an alternative formulation� the language of EA contains function symbols
for all Kalmar elementary functions� and mathematical axioms of EA are ���
�open� de�ning equations for all these functions
 ��� the schema of induction for
open formulas� It is known that EA admits a purely universal �or quanti�er free�
axiomatization in this language� The two formulations of EA are equivalent in
the sense that the second theory can be viewed as a conservative �extension by
de�nitions� of the �rst one�

Switching between the two di�erent axiomatizations of EA is technically use�
ful and will be exploited below� Let us also mention the fact that there exists a
�nite� purely universal formulation of EA in a language with symbols for �nitely
many elementary functions� This fact is closely related to a well�known theorem�
originally due to R�odding� stating that the class of Kalmar elementary functions
has a �nite basis under composition �see� e�g�� ��� ����� We shall sketch a proof
of this useful fact� as well as that of �nite basis theorem� in Section ��

It is known that EA is strong enough to reasonably formalize syntax� prov�
ability� G�odel�s incompleteness theorems� partial truthde�nitions �see ����� In
this paper we take EA as a base theory� that is� all theories considered below are
assumed to contain EA�

C� Parsons was probably the �rst to systematically study fragments of PA
obtained by restricting various forms of induction to classes of the arithmetic
hierarchy� In ���� ���� among other things� he showed that� over EA� the induction
schema ��� for �n formulas A�x�� denoted �n�IA� is strictly stronger than the
corresponding induction rule for �n formulas� �n�IR�

A���� �x�A�x�� A�x � ��� � �xA�x��

Parsons demonstrated that many other natural forms of restricted induction over
EA are equivalent to one of these two� In particular� for n � ��

EA� �n�IA � EA��n�IA� ���
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�this theory is also often denoted I�n� and

EA � �n�IR � EA � �n���IR� ���

Here the expression T � U means that the theories T and U are deductively
equivalent� i	e	� have the same set of theorems	

Despite the two results looking very similar� they are rather di
erent in nature�
as the reader familiar with their proofs undoubtedly feels	 There are more formal
reasons for such a feeling	 Equivalence ��� actually holds over any theory T

containing EA� and this indicates a really tight relationship between the two
axiom schemata	 On the other hand� it is well�known that equivalence ��� may
cease to be true for some theories stronger than EA	 For example�

I�� � ���IR � I�� �� I�� � ���IR�

because I�� � ���IR proves the consistency of I��� e	g	� by our results in Sec�
tion �	 This shows that� from some sharper point of view� ���IR and ���IR are
substantially di�erent rules	 In order to accurately formulate this point of view
we adopt a few rather general de�nitions	

Since the rules we deal with in this paper are typically schematic rules� we
say that a rule is a set of instances� that is� expressions of the form

A�� � � � � An

B
�

where A�� � � � � An and B are formulas	 Derivations using rules are de�ned in the
standard way
 T � R denotes the closure of a theory T under a rule R and �rst
order logic	 �T�R� denotes the closure of T under unnested applications of R� that
is� the theory axiomatized over T by all formulas B such that� for some formulas
A�� � � � � An derivable in T � A������An

B
is an instance of R	

De�nition �� Let R� and R� be rules	 R� is reducible to R� �denoted R� � R��
i
� for every theory T containing EA� �T�R�� � �T�R��	 R� and R� are congruent
�R�

�� R�� i
 R� � R� and R� � R�	

Informally� R� � R� means that an arbitrary application of R� can be modeled
over EA by unnested applications of R�	 Notice that � is re�exive and transitive�
so that �� is an equivalence relation	 Also notice that the notion of congruence
does not depend on the choice of a base theory	 For the purposes of this paper
we may safely identify congruent rules	

We say that a rule R is congruent to a set of axioms U � i
 R is congruent to
U considered as a trivial schematic rule �with the empty premise�	 Equivalently�
i
 �T�R� � T � U for any theory T extending EA	 Notice that rules congruent
to axiom schemata have a trivial behaviour in the sense that they cannot be
applied fruitfully more than once� nested applictions of such rules do not yield
new theorems	
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De�nition �� R� is derivable from R� �denoted R� � R�� i
 for any application
A������An

B
of R� there exists a derivation of B from A�� � � � � An using EA and rule

R�	

In other words� R� � R� i
 for every theory T containing EA� �T�R�� � T �R�	
Clearly� R� � R� implies R� � R� but not necessarily vice versa	 Below we
shall see that equivalences of rules established by purely elementary methods
can usually be strengthened to congruences	 On the other hand� equivalence
proofs involving more sophisticated methods usually depend on the choice of a
particular base theory and therefore do not yield reducibilities either in the sense
of De�nition � or �	

Example� We have seen that ���IR �� ���IR� although the closure of EA under
each of these rules is the same	 On the other hand� obviously ���IR � ���IR	
Corollary �	� in Section � shows that �n�IR � �n�IR but not vice versa	

The plan of the paper is as follows	 In Section � we classify various forms
of induction rules modulo congruence relation	 We shall show that these rules�
most commonly� fall into one of the three distinct categories� �a� rules congruent
to induction axiom schemata
 �b� rules congruent to �n induction rule �n�IR

�c� rules congruent to �n induction rule �n�IR	 �An interesting candidate for
falling out of this classi�cation is the induction rule for boolean combinations of
�� formulas� which is derivable from� but possibly not reducible to� �n�IR
 see
below	�

The question of the axiomatizability of rules of category �a� is trivially set�
tled	 So� in the remaining part of the paper we analyze the other two cases	 In
Section � we introduce re�ection principles and characterize �n�IR	 A similar
characterization of �n�IR is more di�cult and is given in Section � for ���IR�
and in Section � for �n�IR� n � �	 The characterization of ���IR requires a
rather careful analysis of provably recursive functions of theories axiomatized by
this rule	 In Section � we recall basic facts about provably recursive functions
and formulate an easy characterization of these functions for closures of �� ax�
iomatized theories by ���IR	 In Section � we analyze the question� when the
class of provably recursive functions of a theory is elementarily closed	 A natural
su�cient condition is formulated in terms of �� collection rule	 In Section �� on
the basis of these results� we construct a suitable universal function for the class
of provably recursive functions of a �nite �� axiomatized extension of EA using
only unnested applications of ���IR over that theory	 This allows us to obtain
in Section � the required characterization of ���IR� and subsequently relativize
it to �n�IR for n � �	

It should be said that in the proof of our main results we did not try to be
overly laconic	 We have included proofs of several results which were formally
never used in the main proofs� like the above mentioned theorem of R	 Peter
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on nested recursion	 Or results the use of which could be avoided� like the �nite
basis theorem for Kalmar elementary functions	 It seems to us that proofs of these
easy facts �modulo the rest of our techniques� would enhance the reader�s general
understanding of peculiar phenomena treated in this paper� so we decided to
include them	 The results of Section � of this paper have been earlier announced
in ���	
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� Basic equivalences

C	 Parsons showed that many natural forms of induction �of restricted arithmeti�
cal complexity� over EA are equivalent to either �n�IR or �n�IA	 In this section
we obtain a few more results of this kind	 We classify various forms of induction
rules modulo the sharper congruence relation	 Some of Parsons� equivalences
then turn out to be congruences� whereas some others do not	 We also examine a
few rules that have not been considered by Parsons	 In addition to IR we consider
the following forms of induction rule�

IR� � �x �A�x� � A�x � ��� 	 A��� � �x A�x�

IR� � �x ��y � x A�y� � A�x�� 	 �x A�x�

LR � 
x A�x� 	 
x �A�x� � �y � x �A�y��

As usual� for � a class of arithmetical formulas� ��IR�� ��IR�� and ��LR will
denote the above rules with the restriction that A 
 �	 We also assume that
formulas A�x� may contain free parameters other than x	

Proposition ���� �n�IR�
�� �n�IR�

�� �n�IR

Proof� �	 The congruence �n�IR�
�� �n�IR� is proved in analogy with the proof

of the equivalence of �n�IA and �n�IA �cf �����	 For example� to show that
�n�IR� � �n�IR� consider a formula A�x� 
 �n such that

T 	 �x �A�x� � A�x � ����
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Then for B�a� x� �� �A�a  �x� one has

T 	 �x �B�a� x� � B�a� x � ����

whence

�T��n�IR�� 	 B�a� �� � �x B�a� x�

	 B�a� �� � B�a� a�

	 A��� � A�a�� q	e	d	

Notice that similar trick does not work with the rule IR	

�	 Obviously� �n�IR � �n�IR� and �n�IR � �n�IR�	 So� it only remains to
show that �n�IR� � �n�IR	 Let 
yA�y� x� 
 �n with A�y� x� 
 �n��� and let

T 	 �x �
yA�y� x� � 
yA�y� x � ����

Then we have

T 	 �x �
y �A�a� �� � A�y� x�� � 
y �A�a� �� � A�y� x � ����

and obviously
T 	 
y �A�a� �� � A�y� ����

It follows that

�T��n�IR� 	 �x
y �A�a� �� � A�y� x��

	 
uA�u� �� � �x
y A�y� x�� q	e	d	

Corollary ���� �n�IR � �n�IR�

Proof� via �n�IR�	 Also notice that �n�IR �� �n�IR� because� for example�
EA� ���IR contains I��� whereas EA� ���IR� being deductively equivalent to
PRA� does not	

Proposition ���� �n�IR�
�� �n�IR� �n�IR�

�� �n�IR

Proof� The only nontrivial reduction is �n�IR� � �n�IR	 �Notice that� if
A�x� 
 �n� the formula �y � x A�y� need not be equivalent to a �n�formula in
absense of �n�collection principle� and so the obvious argument does not work	�

Suppose
T 	 �x ��y � x A�y� � A�x��� ���

where A�x� �� 
u A��x� u�� A��x� u� 
 �n��	 De�ne�

B�x� �� 
z�y � x A��y� �z�y��
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Here �z�y denotes the y�th element of a sequence coded by z� the standard coding
function being Kalmar elementary	 Clearly� B�x� 
 �n� and from ��� one readily
obtains

T 	 B��� � �x �B�x� � B�x � ����

Applying �n�IR once� we get �x B�x� and �x
y A��x� u�� q	e	d	

Now we examine some rules congruent to axiom schemata	 The e
ect of such
rules over a theory T is precisely that of adding to T a �xed amount of axioms
�that do not depend on T �	 This idea is spelled out in the following de�nition	

De�nition �� A rule R is congruent to a set of formulas U �denoted R �� U� i
�
for every theory T containing EA� �T�R� � T � U�

It is not di�cult to see that� if R �� U � then we have

��T�R�� R� � �T�R� � U � �T � U� � U � T � U�

and so� such a rule can nontrivially be applied only once	 The reader� however�
should keep in mind that not every rule with this property is congruent to a
set of axioms �for each T the set U may be di
erent�	 We shall encounter one
important rule of this sort� ���collection rule� later on in the paper	 Also notice
that in order to demontstrate R �� U it is enough to check that �EA�R� contains
U and that T � U is closed under R for every theory T 	

Of the rules congruent to axiom schemes the most obvious one is the usual
Gentzen�style rule of induction� which can also be called !the induction rule with
side formulas"	 In Hilbert�style formulation it may look� e	g	� as follows�

B � �x �A�x� � A�x � ���

B � �A��� � �xA�x��
�

It is well�known that� whenever the complexity of the formula A is restricted
to� say� �n� this rule provides an alternative axiomatization of I�n �over EA�	
Moreover� the reader may easily check that to derive an instance of �n�IA only
one application of the rule is necessary	 On the other hand� the fact that T��n�IA
is closed under the induction rule with side formulas is obvious� hence the rule
is congruent to �n�IA	 Of course� such an e
ect is only possible because no
restriction was imposed on the arithmetical complexity of the �side formula� B	
Our further examples are of a somewhat more delicate nature	

Recall that� for a class of arithmetical formulas �� #�����formulas are those
obtained from � by means of boolean connctives and bounded quanti�ers	 Par�
sons ���� essentially proved the following fact	

Proposition ���� #���n��IR �� �n�IA
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Proof� To derive an instance of �n�IA apply IR to the following #���n� formula�

A��� � �x � a �A�x� � A�x � ��� � �x � a A�x�� ���

where A�x� 
 �n	
To show that T � �n�IA is closed under #���n��IR for each theory T notice

that an even stronger fact is known� I�n contains #���n��IA �cf ���� or ����
Lemma �	��� p	 ���� q	e	d	

The above proposition has a somewhat paradoxical consequence that #������
IR turns out to be actually stronger than ���IR over EA	 This looks strange
because we all are used to the fact that in the standard model of arithmetic
#����� sets are #� and hence strictly lower in the hierarchy than �� sets	 No
contradiction in mathematics arises from this because EA is a weak enough theory
to think �or rather� not to exclude� that #����� sets can be very complex	 In
fact� Proposition �	� provides a relevant instance of ���IA of the form ��� as an
example to this e
ect	 Now we are ready to examine the least element rule LR	

Proposition ���� �n�LR �� #���n��LR �� �n�LR

Proof� �	 The �rst congruence is proved very similarly to the quoted Lemma
�	�� of ���	 We only sketch the argument	

For a formula A��x� �� A�x�� � � � � xk� let !q is a z�piece of A" denote the
following formula�

!q codes a function ��
 z�k � f�� �g" � �x�� � � � � xk � z �A��x� � !q��x� � �"��

We say that A is piecewise coded in a theory T i


T 	 �z
q !q is a z�piece of A"�

It is readily seen that the class of formulas piecewise coded in a theory T con�
taining EA is closed under boolean connectives and bounded quanti�ers	

Now we show that the theory �EA��n�LR� piecewise encodes all �n�formulas	
Indeed� for any such formula A��x� we obviously have

EA 	 
q �q � ��
 a�k � f�� �g � ��x � a �A��x� � q��x� � ����

because� e	g	� one may take for q the function identically equal to �	 Applying
�n�LR once we get the minimal such q	 It faithfully encodes the a�piece of A
because the standard coding of �nite functions has the property that functions
with smaller values are assigned smaller codes	 It follows that all �n� and hence
all #���n�� formulas are piecewise coded in �EA��n�LR�	

Now it is easy to derive #���n��LR	 Let EA 	 
xA�x�� where A�x� 
 #���n�	
Then we have�

�EA��n�LR� 	 
x� q �A�x� � !q is a x�piece of A"��
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For this q� using only elementary induction we can �nd the minimal x such that
q�x� � �	 It coincides with the least x such that A�x� holds since q is the x�piece
of A	

�	 To demonstrate the second congruence it is su�cient to show that every
�n formula is piecewise coded in �EA��n�LR�	 Let �uA��u� x� be such a formula�
with A� 
 �n��	 We obviously have

EA 	 
q 
u �x � a �A���u�x� x� � q�x� � ���

Using �n�LR pick the least such q	 It is not di�cult to see that q is as required�
q	e	d	

Proposition ��	� �n�LR �� �n�LR �� �n�IA

Proof� It is well�known that �n�IA is equivalent to the least number principle
for #���n� formulas �cf ����� hence T � �n�IA is closed under #���n��LR for any
theory T 	 Now we derive the least number principle for an arbitrary #���n�
formula A�x�	 Obviously�

EA 	 
x �A�a� � A�x���

Using Proposition �	� we conclude that �EA��n�LR� contains


x ��A�a� � A�x�� � �y � x ��A�a� � A�y����

This formula implies


x �A�a� � �A�x� � �y � x �A�y���

and

zA�z� � 
x �A�x� � �y � x �A�y����

q	e	d	

The last rule we shall consider in this section is the induction rule for boolean
combinations of �n formulas� B��n��IR	 This rule is of interest because it is
derivable from �n�IR� as we shall see below� but� most probably� is not reducible to
it	 The following lemma is well�known and can be proved by purely propositional
manipulations	

Lemma ���� Every B��n� formula is logically equivalent to a formula of the
form

�� � ���� � ���� � � � � � ��k� � � ��� ���

for suitable �n formulas ��� � � � � �k�
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We say that formulas of the form ��� and their negations have rank k	 More
precisely� rank of a B��n� formula is the length of its shortest representation in
the form ��� or in the negated form	 Thus� �n and �n formulas� and only these
formulas� have rank �	 Let Bk��n� denote the class of all formulas of rank � k	

Proposition ��
� B��n��IR� � �n�IR�

Proof� We shall show by induction on k that

Bk��n��IR� � �n�IR�

for all k	 For k � � the statement follows from Proposition �	�	 Since an appli�
cation of IR� for a formula �A�x� is reducible to IR� for A�a  �x�� as in the proof
of Proposition �	�� for the induction step it will be su�cient to treat formulas of
the form ��� only	

Assuming that proposition holds for all boolean combinations of rank � k�
consider a formula A�x� of the form ��� such that a theory T proves

�x �A�x� � A�x � ���� ���

De�ne�

��x� �� �y � x ���y��

A��x� �� ���� � ���� � � � ���k� � � ���

First we shall show that T proves

�x ����x� � A��x�� � ���x � �� � A��x � ����� ���

To this end we derive A��x��� from two assumptions� ��x� � A��x� and ��x���	

�� ��x � �� �assumption�
�� ��x� � A��x� �assumption�
�� ���x� �from ��
�� ��x� �from ��
�� A��x� �from ����
�� ���x� � A��x� �from ����
�� ���x � �� � A��x � �� �by � and ����
�� A��x � �� �by ���

and this proves ���	
Now we notice that the formula ��x� � A��x� is logically equivalent to

���� � ��� � ���� � � � � � ��k� � � ���
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that is� has rank � k� �	 By the induction hypothesis we may conclude that the
formula

����� � A����� � �x ���x� � A��x���

is provable in T � �n�IR�	 It follows that so is the formula

A���� � �x ���x� � A��x��� ���

Since the formula A� has the form ���� � A��� where A� has rank � k � �� from
��� we conclude

������ � �x ���x� � A��x��� ���

�A���� � �x ���x� � A��x��� ����

Now we shall derive

�x �������� � ��x�� � ������� � ��x � ����

in T � �n�IR�	 Derivation�

�� ������ � ��x� �assumption�
�� ������ �assumption�
�� ��x� �����
�� ��x� � A��x� ����� ��
�� A��x�
�� ���x� � A��x� ��� ��
�� ���x � �� � A��x � �� �by ����
�� ��x � �� ��� ��

Since ������ � ��x� is a �n formula� by IR� using Proposition �	� we obtain

������� � ����� � ������� � �x��x���

and hence
������� � ����� � �x��x�� ����

Similarly� using ���� and induction on

�A���� � ��x�� ����

we can derive
��A���� � ����� � �x��x�� ����

�It has to be noticed that the rank of formula ���� is at worst �k��� � � � k���
so the induction hypothesis ��� is applicable	�

Putting ���� and ���� together we may conclude that T � �n�IR� proves

����� � ������� � �A������ � �x��x��
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that is�
����� � A����� � �x��x��

and together with ��� this yields

������ � A����� � ��x���x� � �xA��x��

as required� q	e	d	

Corollary ���� B��n��IR � �n�IR

Proof� Obviously B��n��IR and B��n��IR� are congruent	

Remark ���� From the given proof of Proposition �	� it is apparent that we
used many nested applications of �n�IR� in order to model a single application
of B��n��IR�	 The number of nestings is a function of the rank k of boolean
combinations of �n�formulas	 In fact� this function �let us temporarily call it
f�k�� can be precisely estimated�

�
f��k� � � � �k��

f��k � �� � � � �k��

Initial values of f are �� �� �� �� ��� ��� ��� � � �
 notice that f grows exponentially	 I
do not know if this result is optimal� that is� if the exact values of f can be de�
creased	 Later� when analysing the relationship between �n�� and �n induction
rules� we shall �nd out that for a certain class of base theories T the exponen�
tial number of applications of �n�IR can dramatically be reduced to a single
application� but I do not know if this is true for arbitrary theories	

Open question� is B��n��IR congruent to �n�IR$

� �n induction rule

In this section we give a characterization of �n�IR in terms of iterated re�ection
principles	

Re�ection principles� for an r	e	 arithmetical theory T � are formal schemata
expressing the soundness of T � that is� the statement that !every sentence prov�
able in T is true"	 More precisely� if ProvT �x� denotes the canonical �� provability
predicate for T � then the �uniform� re�ection principle for T is the schema

�x �ProvT �pA�  x�q� � A�x���

for all formulas A�x�	 This schema is denoted RFN�T �	 Partial re�ection princi�
ples are obtained from it by imposing a restriction that the formula A may only
range over a certain subclass � of the class of T �formulas	 Such schemata will
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be denoted RFN��T �� and for � one usually takes one of the classes �n or �n

of the arithmetical hierarchy	 The following two basic facts on uniform re�ection
principles are well�known �cf ����� and easy�

�� RFN�n�T � is equivalent to RFN�n���T � over EA� for n � �	 RFN���T � is
equivalent to Con�T �� the consistency assertion for T 	

�� The schema RFN�n�T � is equivalent to a single �n sentence �over EA�	
This essentially follows from the existence of partial truthde�nitions	

A old and well�known result of Kreisel and L%evy ��� says that an alternative
axiomatization of Peano Arithmetic over EA can be obtained by replacing the
induction schema by the full uniform re�ection principle for EA�

PA � EA � RFN�EA��

D	 Leivant sharpened this result by showing that the hierarchies of restricted
induction schemata and restricted re�ection principles over EA actually coincide�

I�n � EA � RFN�n���EA��

Here we establish a precise relationship between the �n induction rule and the
hierarchy of iterated re�ection principles	

All theories in this section are formulated in the standard language of PA	
I#� � SUPEXP is the extension of EA by a �� axiom asserting the totality of
superexponentiation function �yx �cf ����	 A theory T is �n axiomatized� if all of
its nonlogical axioms are �n sentences	

Theorem �� Let T be an arithmetical theory containing EA� Then� for any
n � �� �T��n�IR� is equivalent to T together with RFN�n�T�� for all �nite �n��

axiomatized subtheories T� of T � This statement also holds for n � �� provided
T contains I#� � SUPEXP�

Our proof of Theorem � is based upon quite standard techniques that com�
bines Tarski�s method of partial truthde�nitions with the formalization of the
Cut�elimination Theorem� and is� in fact� very close to the proof of Leivant�s
theorem �cf ����	 The proof admits an easy direct argument� without any use of
skolemization	 We need a few standard prerequisites	

Sequent calculus� We adopt a variant of the sequent calculus from ����� i	e	�
sequents are sets of formulas understood as big disjunctions� negations are treated
via de Morgan�s laws� etc	

Partial truth de�nitions� There is a �n formula True�n�x�� which adequately
expresses the predicate !x is a G�odel number of a true �n sentence" in EA	� This

�We assume in this section that the class of �n formulas contains not only those literally
in �n form� but also the ones obtained from prenex �n formulas using ���� and universal
quanti�cation�
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means that True�n�x� is well de�ned on atomic formulas and provably in EA com�
mutes with boolean connectives and quanti�ers� i	e	� satis�es Tarski conditions
for �n formulas	 As a result� for any A�x� 
 �n� we have�

EA 	 �x �A�x� � True�n�pA�  x�q��� ����

For our proof it will be essential that Tarski conditions not only hold locally� for
each individual �n formula� but also uniformly so	 In other words� EA proves
that� for all �� 	� 
� �� � such that ����� 	� 
� �x��x�� 
x��x� are �n sentences�

True�n�p��q� � True�n�p�q��

True�n�p
 � 	q� � True�n�p
q� � True�n�p	q��

True�n�p
 � 	q� � True�n�p
q� � True�n�p	q��

True�n�p
x��x�q� � 
xTrue�n�p��  x�q��

True�n�p�x��x�q� � �xTrue�n�p��  x�q��

Let me stress that ��	�� � � here are variables over G�odel numbers of sentences�
rather than individual sentences	 �The standard dots�and�corners notation is
somewhat sloppy in this respect	 Yet� we hope that this will not create serious
problems for the reader	�

On a par with the de�nition of truth� we also have a reasonable evaluation
of terms in EA� that is� a de�nable Kalmar elementary function eval�u� x� which
provably commutes with ��� ��� � and therefore� for any term t�x�� � � � � xn�� satis�es

EA 	 �x�� � � � � xn eval�ptq� hx�� � � � � xni� � t�x�� � � � � xn��

Usually� eval�u� x� is explicitly used in the construction of a truthde�nition for
the evaluation of atomic formulas	 This implies that the truthde�nition and the
evaluation of terms agree in the sense that� provably in EA� for all �n formulas
��a� and terms t�a��

�x� y �eval�t� hxi� � y � �True�n�p��t�  x��q� � True�n�p��  y�q���� ����

and similarly for terms t and formulas � in more than one free variable	

Now let T be a �nitely axiomatized theory� and let �T denote the negation
of the conjuction of all axioms of T 	 Furthermore� let IT �m� denote the formula
expressing the following�

!For all p� if p is a cut�free derivation of a sequent of the form �T���a��
where ��a� contains �n formulas only and a stands for all the free vari�
ables in �� and if the height of p is � m� then �xTrue�n�p

W
��  x�q�	"

Clearly� IT �m� is a �n formula	
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Lemma ���� Suppose T is a �nite �n�� axiomatized extension of EA� Then

T 	 IT ��� � �m �IT �m� � IT �m � ����

Proof� We reason informally within T 	 We may assume that the single non�
logical axiom of T has the form �z���z�� where ��z� is a �n formula with n

alternating leading quanti�ers followed by a bounded formula	 IT ��� trivially
holds	 We show that IT �m� implies IT �m � ��	 Thus� we are given a cut�free
derivation� of height m � �� of a sequent of the form 
z��z��� for a �nite set of
�n formulas �	 We must show that the disjunction of � is True� in the sense of
True�n� under every substitution of numerals for free variables in �	 For the rest
of the proof we �x an arbitrary substitution of this kind and treat � as if it were
a set of sentences	 We distinguish several cases� according to the form of the last
rule applied in the given derivation	

Case �� The sequent 
z��z��� is a logical axiom� that is� has the form
�� ���� for some �	 Since 
z��z� is the only formula of the sequent that has
complexity higher than �n� both � and �� must belong to �	 Tarski commutation
conditions then imply that

True�n�p��q� � �True�n�p�q��

So we obtain True�n�p�q� � True�n�p��q� and hence True�n�p
W

�q�	
Case �� The sequent 
z��z��� is obtained by a rule introducing a logical

connective into a formula from �	 All these rules are treated similarly using the
subformula property of cut�free derivations and Tarski commutation conditions
for True�n	 For example� the rule for the universal quanti�er has the form


z��z����� ��a�


z��z����� �x��x�
�

where a is not free in ��	 We must show that the formula
W

����x��x� is True	 By
the induction hypothesis� since a does not occur free in ��� we know that� for each
x�
W

�����&x� is True	 Commuting True�n with the small disjunction we conclude
that� for each x� either

W
�� or ��&x� is True	 Since ��� and also True�n�p��

q�� do
not depend on x� it follows that either �� is True� or for every x� ��&x� is True	
Commuting True�n with the universal quanti�er and then backwards with the
disjunction we conclude that �� � �x��x� is True� q	e	d	

In the remaining case we shall be more explicit about parameters	
Case �� The last rule introduces the existential quanti�er in front of ��z��

i	e	� our derivation has the form

�
z��z��� ��t�a�����a�


z��z����a�
�

A free variable a here stands for all the parameters on which � and the term t

may depend	 Extra parentheses indicate that the formula 
z��z� in the premise
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may occur as well as not	 Without loss of generality we may assume that it does
occur	 �Otherwise apply Weakening Lemma �	�	� from ���� in order to obtain a
derivation of the same height where the formula in question occurs	�

So� the induction hypothesis is applicable and implies that� for all x� either
the disjunction of ��&x�� or ��t�&x�� is True	 We must� reasoning inside T � refute
the second alternative	

Notice that� although� in general� t is a !nonstandard" term� ��z� is a �xed
!standard" �n�� formula	 Therefore Tarski�s commutation lemma ���� can be
applied to ��z�� after evaluating the term t	 Thus� by ���� and ���� we obtain�

True�n�p��t�  x��q� � eval�t� hxi� � y � True�n�p��  y�q�

� ��y�

Since the evaluation function is provably total in EA� it follows that True�n�p��t�  x��q�
implies 
y��y�� that is� yields a contradiction in T 	 Thus� we see that� for any t

and x� the formula ��t�&x�� cannot be True� hence True is the disjunction of ��&x��
q	e	d	

Proof of Theorem ��

�	 �T��n�IR� is the theory axiomatized over T by all formulas �xI�x� such
that I�x� 
 �n and T proves

I��� � �x �I�x� � I�x � ���� ����

Therefore� �rst we must show that� for any such I�x�� there is a �nite �n��

axiomatized subtheory T� � T such that

T � RFN�n�T�� 	 �xI�x��

For the axioms of T� we simply take �n�� formula ���� together with all axioms
of EA	 Obviously� for every n we have T� 	 I�&n�	 Furthermore� formalizing this
fact in EA we obtain�

EA 	 �x ProvT��pI�  x�q��

This implies �xI�x� by T��re�ection	
�	 Now we must show that

�T��n�IR� 	 RFN�n�T���

for any �nite �n�� axiomatized subtheory T� � T 	 Let IT��m� be the formula
de�ned in Lemma �	�	 Since T� � T and IT��m� 
 �n� we conclude that

�T��n�IR� 	 �mIT��m�� ����

Notice that for T containing EA and n � �� obviously�

�T��n�IR� 	 SUPEXP�

��



On the other hand� it is well known �cf ���� that I#� � SUPEXP is a strong
enough theory to prove the Cut�elimination Theorem for �rst order logic	 In
order to derive RFN�n�T�� we reason inside �T��n�IR�� for every particular �n

formula A�x�� as follows	
Suppose ProvT �pA�  x�q�	 Then the sequent �T�A�&x� is logically provable	 By

�formalized� Cut�elimination Theorem we obtain a cut�free proof of this sequent�
and by ���� conclude that True�n�pA�  x�q� holds	 Tarski commutation lemma
���� then yields A�x�� q	e	d	

The rest of this section is devoted to various remarks� corollaries and com�
ments concerning Theorem �	 Let� for a �xed n � �� �T �nk denote the sequence
of theories based on iteration of the �n re�ection principle over T �

�T �n� � T� �T �nk�� � �T �nk � RFN�n��T �nk�� �T �n� �
�
k��

�T �nk �

Similarly� �T��n�IR�k is de�ned by repeated application of �n�IR�

�T��n�IR�� � T� �T��n�IR�k�� � ��T��n�IR�k��n�IR��

We obviously have
T � �n�IR �

�
k��

�T��n�IR�k�

Since for r	e	 T containing EA the schema RFN�n�T � is equivalent to a single
�n sentence� Theorem � can be applied repeatedly and we obtain

Corollary ���� Let T be a �nite �n�� axiomatized theory containing EA �or
I#� � SUPEXP for n � ��� Then

T � �n�IR � �T �n��

Moreover� for all k � �� we actually have

�T��n�IR�k � �T �nk �

that is� k �nested� applications of induction rule precisely correspond to k itera	
tions of re�ection principle over T �

Corollary ���� For theories T as in the above corollary the closure of T under
�n induction rule is a re�exive theory� and hence it is not �nitely axiomatizable�
unless it is inconsistent� The same holds for any extension of T � �n�IR by �n

sentences�
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Remark ���� Theorem � shows that some conservation results for fragments
of arithmetic and for iterated re�ection principles are mutually interderivable	
A well�known theorem due to Parsons� Mints� Takeuti and others states that
I�n is conservative over EA � �n�IR and EA � �n���IR for �n�� sentences	
This result follows at once from Leivant�s equivalent characterization of �n�IA
as RFN�n���EA� over EA �cf ���� and the characterization of �n���IR in terms
of re�ection principles in Corollary �	�	 Indeed� by the so�called Fine Structure
Theorem of U	Schmerl �cf ����� we know that RFN�n���EA� is �n�� conserva�
tive over �EA�n��� � which is equivalent to EA � �n���IR by Corollary �	�	� On
the other hand� this particular case of Schmerl�s theorem obviously follows from
Parsons� result� too	 The relationship between the � mentioned results can be
summarized in the following diagram�

I�n ��n�� EA � �n���IR

jjj jjj

EA � RFN�n���EA� ��n�� �EA�n���

The �horizontal� conservation results are due to Parsons and Schmerl� and the
�vertical� equivalences are Leivant�s and ours �Corollary �	��	

Remark ���� An interesting particular case of Theorem � concerns the induction
rule for �� formulas	 It is well�known that the uniform re�ection principle for ��

formulas for a theory T is equivalent to consistency assertion for T � Con�T �	 So�
Corollary �	� can be reformulated as follows� for �nite �� axiomatized theories
T containing I#� � SUPEXP�

T � ���IR � T � Con�T � � Con�Con�T �� � � � � ����

Clearly� for a sound theory T � T � ���IR is an extension of T by true �� axioms�
and hence both T and T � ���IR have the same class of provably recursive
functions	 Despite that� T � ���IR is stronger than T and the equivalence ����
gives us a precise measure of its relative strength	

Remark ���� In paper ���� there is a confusion concerning ���IR	 Theorem
�	�	� of that paper is false for it implies that EA� ���IR contains more provably
recursive functions than EA	 �Lemma �	�	� is true� but it is not di�cult to
see that the schema of �restricted primitive recursion� dealt with there is actually
equivalent to the unrestricted primitive recursion	 So� the proof�theoretic analysis
in this lemma gives us no more information about the strength of ���IR than the
reduction of ���IR to ���IR	�

�Schmerl formulated his result for the hierarchy of �trans�nitely iterated� re�ection principles
over PRA� but it is not di	cult to check that his proof essentially works over EA as well�
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Theorem �	�	� of that paper states that the closure of EA under k applications
of ���IR �in our terminology� �EA����IR�k� is conservative over the arithmetic
corresponding to the �k � ���d class of Grzegorczyk hierarchy	 This theorem is
correct and closely parallel to another particular case of Theorem �	�	 In fact�
Theorem �	�	� also follows from our results in Section �	

Remark ���� A characterization of ���IR for theories weaker than I#��SUPEXP
can be obtained in the spirit of Wilkie and Paris ����	 In this situation the family
of consistency assertions w	r	t	 proofs of bounded cut�rank Conk�T �� k � �� plays
the role of the single consistency assertion Con�T � for T 	 Since EA is a strong
enough theory to prove Cut�elimination Theorem for derivations of bounded cut�
rank� a quick inspection of the given proof of Theorem � yields the following result�
for T containing EA� �T����IR� is equivalent to T together with all Conk�U� such
that k � � and U is a �nite �� axiomatized subtheory of T 	

Our next goal is the characterization of �n induction rule in the spirit of The�
orem �	 Parsons showed that �n�IR is equivalent to �n���IR over EA	 However�
the two rules are not congruent and so� a more careful analysis is needed here	
Let me explain why the simple proof of Theorem � cannot be easily adapted to
the �n case	

The technical reason is that the formula IT �m� in that proof involves a number
of outer universal quanti�ers� and therefore does not have the reqired �n form	
Some of these quanti�ers� e	g	� the quanti�er over all derivations p� can actually
be bounded	 One can replace the induction on the height m of a proof by IR�

over G�odel numbers p of proofs using the fact that� under the standard coding�
subderivations of p have smaller G�odel numbers	 However� there does not seem
to be an easy way to get rid of the quanti�er over all substitutions of numerals for
free variables in the end�sequent	 The only possibility here seems to be to keep
those variables free� as the parameters of the formula IT 	 Yet� this possibility is
blocked by the simple fact that� for large n� some sequents in the proof p may
contain many more parameters than the end�sequent� and we ought to take them
all into account	 There is one rare situation where this di�culty does not arise�
simply� if there are no universal quanti�ers in the end�sequent	 This idea allows us
to analyse the �� induction rule	 Then� by skolemization� we will be able to pull
the result up in the arithmetical hierarchy	 This project is carefully elaborated
in the remaining part of the paper	

� Provably recursive functions

In this section we recall some basic facts about provably �total� recursive functions
�p	t	r	f	s� of theories and characterize these functions for closures of theories under
�� induction rule	 Most of this material is fairly standard� so we are sketchy about
proofs	
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We shall deal with various classes of number�theoretic functions� The basic
class is the class of elementary functions E � For a class K� C�K� denotes the
closure of K � E under composition� �K�PR� denotes the closure of K under
composition and one application of primitive recursion� i�e�� the class C�F �� where
F is the set of all functions f�n� a� de	nable by a schema of the form

�
f�
� a� � g�a�

f�n � 
� a� � h�f�n� a�� n� a��

for g� h � C�K�� E�K� is the elementary closure of K� that is� the class of
functions obtained from K � E by composition and bounded sums and products�

De�nition �� A number�theoretic function f�x� is called provably recursive in a
theory T i� the graph of f can be represented by a �� formula ��x� y� such that

T � �x��y ��x� y��

The class of p�t�r�f�s of a theory T is denoted D�T ��

It is easy to see that graphs of p�t�r�f�s are actually �� in T � The class D�T � is
closed under composition� but not necessarily elementarily closed� even if T con�
tains EA� This creates for us some additional di�culties� since proof�theoretically
it is much more common and pleasant to deal with elementarily closed classes of
functions� Sometimes one considers p�t�r�f�s with elementary graphs in place of ��

graphs� These classes of functions are closed under bounded recursion �sums and
products�� but not under composition� However� the following obvious proposi�
tion holds�

Proposition ���� For a theory T containing EA� every p�t�r�f� can be obtained
by composition from a p�t�r�f� with an elementary graph and a �xed elementary
function�

Proof� Let ��x� y� �� �z ���z� x� y�� where �� is elementary� de	ne the graph of
f � so that

T � �x��y ��x� y��

Using the standard pairing function we let

��x� y� �� ����y��� x� �y��� � �z � �y�� ����z� x� �y����

Then it is not di�cult to check that � de	nes a certain p�t�r�f� in T � � is elemen�
tary� and for all n� f�n� � �g�n���� q�e�d�

Since D�T � only depends on the �� fragment of T � we shall concentrate our
attention on �� axiomatized theories�
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De�nition �� Let � �� �x�y ��x� y� � ��� with � elementary� A function f�x�
is called a witness of � i� �x��x� f�x�� holds in the standard model of arithmetic�

Every true �� sentence has a witness� The function f��x� whose graph is de	ned
by the formula ��x� y� � �z � y ���x� z� is called the standard witness of ��

Proposition ���� Let T be a �nite �� axiomatized sound extension of EA� and
let f be the standard witness of the single axiom of T � Then D�T � � C�f��

Proof� Obviously� f is a p�t�r�f� in T � and so C�f� 	 D�T �� The opposite
inclusion is� more or less� a direct consequence of Herbrand�s Theorem� Consider
a purely universal formulation of EA �in a language with symbols for all Kalmar
elementary functions�� and add to this language a new function symbol f together
with the axiom

�x ��x� f�x���

where �x�y��x� y� is the single axiom of T � Using appropriate Kalmar elementary
terms we can get rid of all bounded quanti	ers in �� Hence the resulting theory
is a conservative extension of T and has a purely universal axiomatization�

Now suppose T � �x��y�z���x� y� z�� where �� is elementary �and in our
formulation also quanti	er�free�� Since T has a purely universal axiomatization�
by Herbrand�s Theorem we obtain terms t�� � � � � tk� u�� � � � � uk of the extended
language such that

T � ���a� t��a�� u��a�� 
 � � � 
 ���a� tk�a�� uk�a���

Clearly� the terms ti and ui represent functions in C�f�� Now we let

t�x� ��

��������
�������

t��x�� if ���x� t��x�� u��x���
t��x�� if ���x� t��x�� u��x�� and ����x� t��x�� u��x���
� � � � � �

tk�x�� if ���x� tk�x�� uk�x�� and ����x� ti�x�� ui�x�� for all i � k�


� otherwise�

The function u�x� is de	ned in a similar manner� with ui�s in place of ti�s� Since
the function

Cond�x� y� z� ��

�
x� if z � 

y� if z �� 


is elementary� the class C�f� is closed under de	nitions by cases and so� t�x� and
u�x� can be adequately de	ned by C�f� terms� For these terms we obviously
have T � ���a� t�a�� u�a��� It follows that

T � �x�z ���x� t�x�� z��

and by the functionality of �

T � �x� y �t�x� � y � ��x� y���

��



Since all theorems of T are true� � represents the graph of t�x� in the standard
model� q�e�d�

Remark ���� We have actually shown that D�T � 	 C�f� for any witness f of
the axiom of T � not just for the standard one�

Corollary ���� Let T be a �nite �� axiomatized sound extension of EA� Then
the class D�T � has a �nite basis under composition�

Proof� Follows from the previous proposition and the fact that E has a 	nite
basis �cf� e�g����� 

��� It might be interesting for the reader to notice that� if we
had been slightly more careful in the proof of Proposition ���� we could actually
have inferred the existence of a 	nite basis in E from 	nite axiomatizability of
EA�

Consider a 	nite �� axiomatization of EA in the usual language of arithmetic
�see ����� Introduce 	nitely many �Kalmar elementary� functions to quanti	er�
free represent �� parts of those �� axioms� Then we have to introduce 	nitely
many Skolem functions for these axioms in order to obtain a purely universal
conservative extension of EA� Essentially the same proof as for Proposition ���
then shows that every provably recursive function can be de	ned by a term in
the extended language� In the process we would have to introduce a few more
functions like Cond�x� y� z� or pairing functions� We omit the details� q�e�d�

Remark ���� The converse of the previous corollary does not hold� essentially
because of the di�erence between provably recursive functions and programs� For
example the theory �EA��� extends EA purely universally and therefore has the
same� 	nitely based� class of p�t�r�f�s� Yet� this theory is not 	nitely axiomatizable�

Proposition ��	� Let T be a �nite �� axiomatized sound extension of EA� and
let f be the standard witness of the single axiom of T � Then

D��T����IR�� � �C�f��PR��

Proof� 
� Let g�n� x� be de	ned by a schema of primitive recursion

�
g�
� x� � e�x�

g�n � 
� x� � h�g�n� x�� n� x��

such that e� h � C�f�� Since all functions in C�f� are p�t�r�f� in T � graphs of e
and h are de	ned by �� formulas E�x� y� and H�z� n� x� y� �� �v H��v� z� n� x� y��
with H� elementary�

The graph of g is most naturally de	ned �in the standard model� by the
following formula �that uses elementary coding of sequences��

g�n� x� � y �� �s � Seq ��s�� � e�x� � �i � n �s�i�� � h��s�i� i� x� � �s�n � y��

��



However� in absense of �� collection principle this formula may not be equivalent
to a �� formula within T � We modify it as follows �a somewhat similar trick was
employed earlier in the proof of Proposition ����� g�n� x� � y ��

�s� v � Seq �E�x� �s��� � �i � n H���v�i� �s�i� i� x� �s�i��� � �s�n � y�� �
��

This formula is obviously ��� and now we shall show the totality of g in �T����IR��
Clearly� T � �y g�
� x� � y� because e�x� is provably total� In order to see

that
T � �n ��y g�n� x� � y 
 �y g�n � 
� x� � y�

we argue informally as follows� Suppose g�n� x� � y and thus we are given two
sequences s and v of length n�
 satisfying �
��� We have to construct appropriate
sequences of length n � �� Since the function h is provably total� we can 	nd a
z such that h�y� n� x� � z� Hence there is a w such that H��w� y� n� x� z� holds�
Pick any such w and add the element z to the end of the sequence s� and w to
the end of v� The resulting sequences are as required� Applying ���IR we obtain�

�T����IR� � �n� x�y g�n� x� � y�

To prove the functionality of g we reason as follows� Let R�n� s� v� x� y� denote
the elementary part of the formula �
��� and suppose we have R�n� s�� v�� x� y��
and R�n� s�� v�� x� y��� We prove �i � n �s��i � �s��i by induction on i �with
n� sj� vj� x� yj as free paramemters�� Notice that the induction is elementary� al�
though it is applied as a schema rather than as a rule here� Basis and induction
step follow at once from the functionality of e and h� So we obtain �s��n � �s��n�
and therefore y� � y�� Notice that the argument for the functionality was actually
carried out in T �

�� Now we shall show that p�t�r�f�s of �T����IR� belong to �C�f��PR�� Since
�T����IR� is a sound �� axiomatized theory� it su�ces to demonstrate that every
formula obtained by an application of ���IR has a witnessing function in the class
�C�f��PR�� �Here we actually apply Remark ��
 rather than Proposition �����

Consider an arbitrary elementary formula A�x� y� a� such that

T � �y A�
� y� a�� and

T � �x ��yA�x� y� a� 
 �yA�x � 
� y� a���

By Proposition ��� we obtain functions e�a� and h�y� x� a� in C�f� such that e

witnesses �a�y A�
� y� a�� and h witnesses

�a� x� y�z �A�x� y� a� 
 A�x � 
� z� a���

Consider a primitive recursion�
g�
� a� � e�a�

g�x � 
� a� � h�g�x� a�� x� a��

��



Straightforward induction on x then shows that A�x� g�x� a�� a� holds in the stan�
dard model for all x and a� This means that g�x� a� witnesses �x� a�y A�x� y� a��
q�e�d�

� Elementary closure

As we have noted before� the class D�T � need not be elementarily closed even
if the theory T contains EA� In this section we shall investigate this question
in more detail and formulate su�cient conditions for D�T � to be elementarily
closed� Versions of the following two propositions can be found in �

� with more
complicated proofs�

For a function f�x�� let �f�n� �� hf�
�� � � � � f�n�i�

Proposition ���� E�f� � C� �f��

Proof� Obviously �f � E�f�� so C� �f� 	 E�f�� For the opposite inclusion we
prove that

P
i�x g�i� y� � C� �f� if g�x� y� � C� �f�� �Bounded products are treated

similarly��
Let �z � n� denote the initial segment of a sequence z of length n � 
� This

function is clearly Kalmar elementary� Since g � C� �f�� g can be considered as
a term in a language with symbols for all elementary functions and a symbol
for �f � We systematically replace all occurrences of subterms of the form �f�t�
in g by �z � t�� where z is a new variable� �It does not matter� in what order
these occurrences are replaced�� As a result we obtain an elementary function
�g�x� y� z�� De	ne�

G�x� y� z� ��
X
i�x

�g�i� y� z��

We claim that X
i�x

g�i� y� � G�x� y� �f�b�x� y����

for a certain term b�x� y� � C� �f�� We only need to ensure that the value of b�x� y�
is greater than all values t�i� y� for i � x� where terms t occur in the context �f�t�
within g� Notice that �f is an increasing function� Therefore we can majorize each
t�x� y� by an increasing function in C� �f� and take the sum of all these functions
as b�x� y�� q�e�d�

Proposition ���� If f�x� is increasing and the graph of f is elementary� then
�f � C�f� and therefore C�f� � E�f��

Proof� If f is increasing� for a certain elementary function b we have

�f�n� � �z � b�n� f�n��� �i � n �z�i � f�i��

because the code of a sequence can be estimated elementarily in its length and
the largest element �� f�n��� q�e�d�
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De�nition 
� Let � be a �� sentence� � is monotonic� if there is an elementary
formula ��x� y� such that EA proves that


� � � �x�y ��x� y��

�� ��x� y� � ��x� z� 
 y � z�

�� ��x�� y� � ��x�� z� � x� � x� 
 y � z�

In other words� � is monotonic i� it is equivalent to a sentence whose standard
witness is provably increasing�

Proposition ��	� Let T be a �� axiomatized theory containing EA� The follow�
ing statements are equivalent�

�� T is axiomatizable over EA by monotonic �� sentences�

	� T is closed under �� collection rule�

���CR� �x�y ��x� y� � �x�y�u � x�v � y ��u� v��

where ��x� y� � ���

Proof� Clearly� the formula �x�y�u � x�v � y ��u� v� implies �x�y ��x� y� in
EA and is monotonic� whenever � is elementary� So� we may apply �� collection
rule to all axioms of T and obtain a monotonic axiomatization�

In order to show that Statement 
 implies � we take an axiomatization of T
over EA by �� formulas whose standard witnesses are monotonic� Then we intro�
duce Skolem functions for all these formulas and replace axioms � �� �x�y��x� y�
of T by their skolemizations �x��x� f��x��� The resulting theory T � proves mono�
tonicity of all these functions f��

x� � x� 
 f��x�� � f��x���

Besides� it is conservative over T � and has a purely universal axiomatization �if
EA is taken in a universal formulation��

Now assume T � �x�y ��x� y� for a formula � � ��� By Herbrand�s Theorem
we can obtain a monotonic term t�x� in the extended language such that

T � � �x�y � t�x� ��x� y��

�This actually is a version of Parikh�s Theorem for T � �cf ����p� ����� Here we
use the fact that every elementary function can be majorized by an increasing
one� and hence any term in the extended language can�� Provable monotonicity
of t�x� then implies�

T � � �x�y�t�x� �u � x�v � y ��u� v��

The result follows by conservativity of T � over T � q�e�d�
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Corollary ���� A �� sentence �x�y ��x� y� is monotonic i


EA � �x�y ��x� y� 
 �x�y�u � x�v � y ��u� v��

Corollary ���� If a sound theory T containing EA is closed under �� collection
rule� then D�T � is elementarily closed�

Proof� By Proposition ��� the �� fragment of T is axiomatizable by a set of
monotonic �� sentences �� By Proposition ��� we know that

D�T � � C�ff� � � � �g��

All functions f� are increasing and have elementary graphs� so the result follows
by Proposition ���� q�e�d�

The following proposition reveals a useful  smoothening� property of �� in�
duction rule�

Proposition ���� For any theory T extending EA� �T����IR� is axiomatizable
by monotonic �� sentences over T � If T itself is �� axiomatized� �T����IR� is
axiomatizable by monotonic �� sentences over EA�

Proof� Suppose ��x� y� is elementary and

T � �y ��
� y� a�� and

T � �x ��y ��x� y� a� 
 �y ��x � 
� y� a���

Then it is easy to see that

T � �x� y�z ��u � x�v � y ��u� v� a� 
 �u � x � 
 �v � z ��u� v� a���

Applying ���IR we obtain

�x�y�u � x�v � y ��u� v� a��

This shows that �T����IR� is axiomatized by monotonic sentences over T � More�
over� a similar argument shows that for each theorem of T of the form �x�y��x� y��
with � elementary� the formula

�x�y�u � x�v � y ��u� v�

is provable in �T����IR�� �This essentially means that ���CR � ���IR�� So� if T
is �� axiomatized� in an axiomatization of �T����IR� the axioms of T can also be
replaced by monotonic sentences� q�e�d�

��



� Evaluation

The aim of this section is to show that the universal function for the class of
p�t�r�f�s of a 	nite �� axiomatized theory T belongs to �D�T ��PR�� and therefore
can be represented in �T����IR�� As a byproduct we obtain a new and very
transparent proof of a theorem of R�Peter �cf �
�� and also �
��� stating that
so�called nested recursion on 	 is reducible to primitive recursion�

Let f�x� be a function� Every function of the class C�f� can be represented
by a term in a language containing a function symbol for f and 	nitely many
function symbols for a certain basis in E �cf Proposition ��
�� We call these
functions initial functions� and the terms of this language will be called f �terms�
We 	x a natural elementary G!odel numbering of f �terms�

The evaluation function evalf�e� x� for f �terms is de	ned as follows�

evalf �e� x� ��

�
t��x��� � � � � �x�n�� if e � ptq for an f �term t of arity n � 
�

� otherwise�

Proposition 
��� �C�f��PR� � C�evalf�

Proof� First we show that evalf belongs to �C�f��PR�� The de	nition of evalf
can obviously be rewritten as a primitive  course of values� recursion�


� evalf �e� x� �� g��x��� � � � � �x�n�� if e � pgq� and g is an initial function�

�� evalf �e� x� �� h�evalf�pt�q� x�� � � � � evalf �ptmq� x��� if e � ph�t�� � � � � tm�q�
and h is an initial function�

�� evalf �e� x� �� 
� if none of the above cases holds�

Since there are only 	nitely many initial functions� this de	nition has the form
of a de	nition by cases� The cases are Kalmar elementarily recognizable by the
naturality assumption on the coding of f �terms� Further� it is well known and
easy to see that the  course of values� recursion de	ning evalf can be reduced to
the usual primitive recursion for the function

evalf �e� x� �� hevalf �
� x�� � � � � evalf �e� x�i�

from which evalf can be recovered as

evalf�e� x� � �evalf�e� x��e�

Now we shall show that C�evalf� contains �C�f��PR�� Consider a primitive
recursive de	nition �

g�
� a� � g��a�
g�n � 
� a� � h�g�n� a�� n� a��

��



for some f �terms g��a� and h�x� y� a�� We shall express g�n� a� in the form

evalf �s�n�� hai��

for a function s�n� to be found� Let num�n� denote the index of a constant f �term
with value n� and let Subxy�e� i� j� compute the index of an f �term that results in
substitution of f �terms i and j for variables x and y respectively in an f �term e�
It is easy to see that functions Sub and num are elementary� Then we can de	ne
s�n� as follows�

�
s�
� �� pg�q

s�n � 
� �� Subxy�phq� s�n�� num�n���
��
�

It follows that�
evalf�s�
�� hai� � g��a�
evalf�s�n � 
�� hai� � h�evalf�s�n�� hai�� n� a��

��
�

So� it only remains to prove that primitive recursion ��
� is bounded� Let jtj
denote the length �� number of symbols� of a term with index t� For Sub we
have the following estimate�

jSubxy�e� i� j�j � C � jej �max�jij� jjj��

because the total number of occurrences of variables x and y in a term e is less
than jej� On the other hand� the length of num�n� is at worst linear in n� So� for
large enough n we have�

js�n � 
�j � C� � js�n�j�

It follows that js�n�j grows at most exponentially� and thereby s�n� has a doubly
exponential bound� q�e�d�

Two immediate consequences of the above proposition are�

Corollary 
��� The class �C�f��PR� is �nitely based�

Corollary 
��� The class C�evalf� is elementarily closed�

Another interesting corollary is the reduction of nested recursion to primitive
recursion� A nested recursive de	nition may have� e�g�� the following form��

g�
� a� � g��a�
g�n � 
� a� � h��g�n� h��g�n� a�� a��� n� a��

In general one allows arbitrarily deep nestings of g�terms on the right hand side
of the de	nition� but g must only occur in the context g�n� ��� that is� the 	rst

��



argument must always be n� An old result of R�Peter says that nested recursion
is reducible to primitive recursion� and it is relevant for our work as follows�

Suppose we want to evaluate a term t�u�x��� where t and u are complex terms�
Doing this in the most straightforward manner we must 	rst evaluate u and then
t� that is�

evalf �pt � uq� x� � evalf�ptq� evalf�puq� hxi���

We see that evalf occurs doubly nested on the right hand side of the equation�
The evaluation procedure prescribed by Proposition ��
 is di�erent� we look at
the terms t and u as being decomposed into initial functions� and evaluate only
one function at a step� This is a longer process� although it yields the same result�

A natural rule to verify the totality of functions de	ned by nested recursion
is �� induction rule� rather than ���IR� which only works for primitive recursive
de	nitions on the face of it�� Therefore it is not surprising that Peter�s theorem is
an essential element in Parsons� proof of the equivalence of �� and �� induction
rules� Here we obtain a slightly sharpened version of Peter�s result for free�

Corollary 
�	� The closure of a class K of functions containing E under one
application of nested recursion and composition coincides with �K�PR��

Proof� Without loss of generality we may assume that K has the form C�f��
Now we almost literally follow the lines of the proof of the second part of Propo�
sition ��
� A function g�n� a� de	ned by nested recursion from C�f� can be
expressed in the form evalf�s�n�� a� for a suitable elementary function s� The
bound on the rate of growth of s� however� will be slightly worse than before� For
su�ciently large n we have

js�n � 
�j � C � js�n�jk�

where k is the maximum depth of nestings in the de	nition of g� However� this
means that s grows no faster than triply exponentially� q�e�d�

Let T be 	nite �� axiomatized extension of EA and let f be the standard
witness for the single axiom of T � We shall show that the evaluation function for
f �terms can be naturally represented in �T����IR�� and that its basic properties
are provable in this theory� Essentially� the argument is a careful inspection of
the proofs of Propositions ��� and ��
� but there are a few di�culties that we
must explain how to avoid�

Without loss of generality we may assume that T is formulated in a language
containing function symbols for f and for 	nitely many initial elementary func�
tions� �However� when speaking about the complexity of formulas we shall always

�A recently introduced �Logic of Primitive Recursion� by Sieg and Wainer ���� seems to
provide a relevant framework for the analysis of the intensional phenomenon of correpondence
between rules and computational schemes�

�




refer to their translations into the standard language of arithmetic� Recall that
the graph of f is de	ned by an elementary formula��

By Propositions ��� and ��
 we know that evalf is provably recursive in
�T����IR�� and hence its graph can be represented by a certain �� formula� This
formula can be read o� from the primitive recursive de	nition of evalf � or rather
evalf � given in the proof of Proposition ��
 and using the formalization of primi�
tive recursion �
�� in the proof of Proposition ���� All our considerations below
will concern this particular formula�

Let EVALf denote the �� formula expressing the totality of evalf �

EVALf �� �e� x�y evalf �e� x� � y�

First of all� we know that �T����IR� proves EVALf � Besides� since the for�
mula EVALf is read o� from the primitive recursive de	nition of evalf � recursive
Clauses 
"� out of the proof of Proposition ��
 are provable in T � That is� for all
initial functions g�x�� � � � � xn� and h�x�� � � � � xm� we have�

T � �x� y� e �evalf�e� x� � y � e � pgq 
 y � g��x��� � � � � �x�n���

T � �e� x� e�� � � � � em� y� y�� � � � � ym � e � Subx����xm�phq� e�� � � � � em� 


�
V
i�m evalf�ei� x� � yi � evalf �e� x� � y 
 h�y�� � � � � ym� � y���

���

Since we are working in the theory T � which does not prove the totality of evalf �
the expression  evalf�e� x� � y� is understood here as a �� predicate� rather than
as an equality of two terms� The following two properties of this predicate can
also be established within T �


� T � �e� i� x ��y evalf �e� x� � y � i � e
 �y evalf �i� x� � y��

�� T � �e� x� y�� y� �evalf �e� x� � y� � evalf�e� x� � y� 
 y� � y���

The 	rst property holds because the de	nition of evalf is constructed via the
function evalf � which presupposes a similar property� The second property follows
from our proof of Proposition ���� because the argument for the uniqueness there
requires only elementary induction�

In particular� the latter property implies that we can introduce a function
symbol for evalf within �T����IR�� Thereby� inductive clauses ��� can be refor�
mulated in a more usual manner# for example� �T����IR� proves

evalf �Subx����xm�phq� e�� � � � � em�� x� � h�evalf�e�� x�� � � � � evalf�em� x���

for any initial function h� We straightforwardly obtain the following standard
corollary�

Proposition 
��� For any f �term t�x�� � � � � xn��

�T����IR� � �x�� � � � � xn evalf�ptq� hx�� � � � � xni� � t�x�� � � � � xn��

�




Proof� induction on the buid�up of t� q�e�d�

To be able to more fruitfully use the inductive clauses for evalf we need a
reasonable amount of induction for formulas involving evalf � This goal is some�
what problematic� because the graph of evalf is ��� whereas the rule ���IR in
our theory can only be applied once� Nevertheless� we have the following useful
property�

Proposition 
�	� The theory �T����IR� contains the induction schema for bounded
formulas in the language with a function symbol for evalf �

Proof� The idea is to use the fact that �T����IR� is axiomatizable by monotonic
�� sentences� so that evalf can be replaced by an increasing function with an
elementary graph�

First� formalizing the obvious proof of Proposition ��
 we can 	nd a function
eval�f such that eval�f has an elementary graph� the totality of eval�f is equivalent
to EVALf over EA� and provably in EA�

evalf�e� x� � �eval�f�e� x���� ����

Now we de	ne a function

eval
�

f�x� �� max
hi�ji�x

eval�f �i� j�� ����

whose graph is also elementary and given by the formula

eval
�

f �x� � y ��

�hi� ji � x eval�f�i� j� � y � �hi� ji � x�z � y eval�f�i� j� � z�

We notice that the totality of eval
�

f � that is the formula

�x�y eval
�

f �x� � y� ����

follows from
�x�y eval�f��x��� �x��� � y

by an application of �� collection rule� The latter formula is equivalent to EVALf �
and so� by Propositions ��� and ���� ���� is provable in �T����IR�� It is unprob�

lematic to demonstrate that eval
�

f is provably functional and increasing�

We introduce a function symbol for eval
�

f into the language of �T����IR��

together with an open axiom de	ning the graph of eval
�

f � It is well�known �see

���� Proposition 
��� page ��
� that� since eval
�

f is provably increasing and has
an elementary graph� the resulting theory proves the induction schema for all

���eval
�

f� formulas� that is� for bounded formulas in the language with eval
�

f �

��



�Notice that such formulas precisely represent the predicates in E�eval
�

f �� and
this class coincides with C�evalf� because the latter is elementarily closed��

Finally we show that evalf can be explicitly de	ned as a term in the language

with a symbol for eval
�

f � Since eval
�

f majorizes eval�f � and eval�f has an elemen�

tary graph� eval�f can be expressed as a composition of eval
�

f and an elementary
function�

eval�f �e� x� � �y � eval
�

f �he� xi�� y � eval�f�e� x��

On the other hand� ���� expresses evalf as a composition of an elementary func�
tion and eval�f � It follows that a bounded formula in the language with a function
symbol for evalf can be naturally translated into a bounded formula in the lan�

guage with a symbol for eval
�

f � and the two formulas are provably equivalent in
�T����IR�� This completes the proof of Proposition ���� q�e�d�

Remark 
��� Notice that we have actually proved that bounded induction for
evalf is available in the theory T � EVALf � where the additional axiom asserts

the totality of the function eval
�

f � We do not know if� in general� EVALf implies

EVALf over T �

Corollary 
��� �T����IR� proves that for all terms t�z� in one variable and all
terms u�

�x evalf�Subz�ptq� puq�� x� � evalf �ptq� hevalf�puq� x�i��

Proof� by ���evalf � induction on the build�up of t� with u and x as free param�
eters� q�e�d�

� �
 induction rule

Theorem �� Let T be an arithmetical theory containing EA� Then �T����IR� is
equivalent to T together with RFN	��T�� for all �nite �� axiomatized subtheories
T� of T �

Proof� Exactly as in the proof of Theorem 
 we can show that� if for I�x� � ��

the theory T proves
I�
� � �x �I�x� 
 I�x � 
��� ����

then for a suitable 	nite �� axiomatized subtheory T� of T one has

T � RFN	��T�� � �x I�x��

�For the axioms of T� one may take formula ���� together with all axioms of EA��
For the opposite inclusion it is su�cient to demonstrate that

�T����IR� � RFN	��T �

��



for 	nite �� axiomatized theories T � Modulo the work we have done in the
previous sections the argument will be similar to the one in Sieg �
��� Theorems ���
and ����

We introduce a function symbol f for the standard witness for the single
axiom of T and 	nitely many symbols for a suitable basis in E � so that T attains
a purely universal axiomatization� It is also essential that the language of T
is 	nite� and that T has only 	nitely many nonlogical axioms in the extended
language�

We know that �T����IR� has a reasonable evaluation function evalf for terms
in the language of T � Using evalf 	rst we manufacture a satisfation predicate for
quanti	er free formuals of T � The following lemma is well�known and easy�

Lemma ���� To every quanti�er free formula ��a� we can associate a term 
��a�
such that

T � ��a� � 
��a� � 
� ����

Proof� Notice that� provably in T �

t��a� � t��a� � jt��a� $�t��a�j � 
�

��a� � ��a� � 
��a� � 
��a� � 
�

���a� � 
 $�
��a� � 
�

whenever the terms 
� and 
� satisfy equivalence ���� for formulas � and �� The
statement of the lemma follows by induction on the build�up of �� q�e�d�

Obviously� the function
trm � p�q �
 p
�q

is Kalmar elementary� and Lemma ��
 is formalizable in EA� We de	ne�

Satf �e� a� �� �evalf �trm�e�� a� � 
��

This de	nition guarantees that Satf is faithfully de	ned on atomic formulas �by
Proposition ���� and provably commutes with all boolean connectives� For ex�
ample� provably in �T����IR� we have� for all �� ��

Satf �p� � �q� a� � evalf�trm�p� � �q�� a� � 


� evalf�trm�p�q� � trm�p�q�� a� � 


� evalf�trm�p�q�� a� � eval�trm�p�q�� a� � 


� �evalf�trm�p�q�� a� � 
 � evalf�trm�p�q�� a� � 
�

� �Satf �p�q� a� � Satf�p�q� a���

So� Tarski commutation conditions are satis	ed� and in the usual manner we
obtain the following lemma�

��



Lemma ���� For every quanti�er free formula ��x�� � � � � xn� in the language of
T �

�T����IR� � �x�� � � � � xn �Satf �p�q� hx�� � � � � xni� � ��x�� � � � � xn���

We also notice the following useful property of the function trm that can be
seen from our proof of Lemma ��
� for every open formula ��z� and every term
t we have�

trm�p��t�q� � Subz�trm�p�q�� t�� ����

This property is formalizable in EA and yields the following fact� �T����IR�
proves that for all formulas ��z� in one variable and all terms t�

�x �Satf�p��t�q� x� � Satf�p�q� hevalf�ptq� x�i��� ����

This essentially follows from ���� and Corollary ����

Proposition ���� The theory �T����IR� proves the uniform re�ection principle
for quanti�er free formulas of T w�r�t� cut�free provability� that is� the following
statement�

If a sequent of the form �T���a�� where ��a� consists of open formu�
las in the language of T � is cut�free provable� then for all n� Satf�p

W
�q� hni��

Proof� The argument is similar to the one in the proof of Theorem 
 and� in
fact� easier� although there are some subtle formal di�erences� Let p be a cut�free
derivation of a sequent of the form ��T �����n�� where � is quanti	er free� �n is
any numeral� and negated axioms of T possibly do not occur� Since �T consists
of purely existential formulas� w�l�o�g� we may assume that p contains no free
parameters� �Otherwise substitute 
 for any occurrence of a free variable in p��
Obviously� any subderivation q of p has a similar form� and its G!odel number is
smaller than p� By induction on the height h of q we shall prove the following
statement�

���
For all h�q� if q is a subderivation of p of height h and the end
sequent of q has the form ��T ����� then Satf�p

W
��q� hi��

Since there are only 	nitely many subderivations of p� the quanti	er over all q
in this statement is bounded� and p appears as a free variable� So� the whole
induction is an instance of ���evalf � induction schema� which is available in
�T����IR� by Proposition ����

As usual� we consider several cases according to the last rule applied in the
subderivation q� The cases of logical axioms and rules of propositional logic are
easily treated using commutation properties for Satf � The only nontrivial case is
that of the existential quanti	er� Suppose �z��z� is one of the negated axioms
of T � with ��z� quanti	er free� and the inference has the form

�T �� ��z��z��� ��t����

�T �� �z��z����
�

��



Then by the induction hypothesis and commutation properties for Satf we know
that either Satf�p��t�q� hi� or Satf�p

W
��q� hi� holds� Suppose Satf�p��t�q� hi��

then by ���� we obtain Satf�p��z�q� hevalf �t�i�� whence ��evalf�t�� by Lemma
���� This implies �y��y� and a contradiction in T �

So� we have demonstrated ��� and� considering the end sequent of the given
derivation p� may conclude that Satf�

W
���n�� hi� holds� By ���� this implies

Satf�
W

�� hni�� q�e�d�

Now we are able to complete the proof of Theorem �� Since �EA����IR�
contains SUPEXP and� therefore� proves the Cut�elimination Theorem for 	rst
order logic� it is su�cient to prove the �� re%ection principle for T w�r�t� cut�free
provability� We reason inside �T����IR� as follows�

Suppose �x��x� a� is cut�free provable in T � where ��x� a� is quanti	er free�
Since T is a purely universal theory� by �formalized� Herbrand�s Theorem� as in
the proof of Proposition ���� we can 	nd a f �term t�a� and a cut�free T �derivation
of the formula ��t�a�� a�� By Proposition ��
 we may conclude that� for all n�
Satf�p��t�a�� a�q� hni�� Hence� there exists a m such that Satf�p��x� a�q� hm�ni��
because for m one can take the value of t� evalf �ptq� hni�� Lemma ��� then yields
�y ��y� n�� q�e�d�

Since uniform �� and �� re%ection principles over T are obviously equivalent�
we obtain the following important corollary�

Corollary ���� For �� axiomatized theories T containing EA�

�T����IR� � �T����IR��

This corollary allows to extend to ���IR all the facts concerning axiomatiz�
ability that we have obtained earlier for �� induction rule� It should be stressed�
however� that these results only apply for �� axiomatized theories� rather than
for general �
 axiomatized� as in the case of ���IR�

On the other hand� the transparent analysis of p�t�r�f�s of theories axiomatized
by ���IR allows us to obtain nontrivial results for ���IR� For example� we have
the following result of Sieg for free �cf �
�� and our discussion at the end of Section
���

Corollary ���� The p�t�r�f�s of the theory �EA����IR�k are precisely those of the
class E
�k of the Grzegorczyk hierarchy�

Proof� This follows from the well�known fact �cf e�g� �
��� that classes of the
Grzegorczyk hierarchy are obtained from E by iterated application of the operator
of primitive recursion� which corresponds to ���IR by Proposition ���� q�e�d�

��



� Relativization

In this section we generalize the results of the previous sections to �n�IR for an
arbitrary n� Our main result is formulated as follows�

Theorem 	� Let T be an arithmetical theory containing I�n� Then �T��n���IR�
is equivalent to T together with RFN	n���T�� for all �nite �n�� axiomatized sub�
theories T� of T �

Corollary ���� For �n�� axiomatized theories T containing I�n�

�T��n���IR� � �T��n���IR��

The same result holds for �n�� axiomatized extensions of theories T as above�

Proof� If T� is a 	nite extension of I�n axiomatized by a �n�� sentence � and
a �n�� sentence �� then

T� � RFN�n���T�� � T� � RFN�n���I�n � ���

by formalized Deduction Theorem� And RFN�n���I�n ��� is provable in �I�n �
���n���IR�� So� �T��n���IR� proves RFN�n���T�� for any 	nite subtheory T� of
T � exactly as �T��n���IR� does� q�e�d�

We see that the theorem and its corollary only apply to theories T contain�
ing I�n� rather than to arbitrary extensions of EA� This seems to be a fairly
restrictive requirement� Notice� however� that �EA��n���IR� contains and is� in
fact� equivalent to I�n� It follows that just a single application of �n���IR brings
everything into the class of theories containing I�n� where Theorem � applies�
So� we obtain the following corollary�

Corollary ���� For any �n�� axiomatized extension T of EA� k applications of
�n�� induction rule over T are reducible to k � 
 applications of �n���IR�

�T��n���IR�k 	 �T��n���IR�k���

I do not know if this result is optimal� that is� if k � 
 applications of �n���IR
on the right hand side can� in general� be decreased to k applications� However�
we have the following result�

Corollary ��	� Let T be a �n�� axiomatized extension of EA� Then �T��n���IR�
is equivalent to T together with RFN	n���T�� for all �nite subtheories T� of T �
Hence� over such theories� for any k�

�T��n���IR�k � �T��n���IR�k�

��



Proof� Let T� be a 	nite ��n�� axiomatized� subtheory of T � First of all� we
notice that

T� � RFN	n���T�� � T� � RFN	n���EA��

by formalized Deduction Theorem� We have already noticed before that �T��n���IR�
proves �n�IA� and by Leivant�s Theorem I�n contains RFN	n���EA�� �Alterna�
tively� this fact can be seen from our proof of Theorem � below�� So� �T��n���IR�
proves RFN	n���T��� The opposite inclusion is proved in the usual way�

After the 	rst application of �n���IR we obtain a theory which is a �n��

axiomatized extension of a �n�� axiomatized theory containing I�n� So� the
second claim of the corollary follows by Corollary ��
� q�e�d�

Now we turn to the proof of Theorem �� There are several ways one can go
about relativization� Our method is similar to the one employed in Sieg �
�� and
Ono ���� but has some additional twists� The general idea is to introduce enough
Skolem functions in order to reduce Theorem � to � for a language with additional
function symbols� However� in order to make this idea work one should be careful
as to the choice of these Skolem functions� because the classes of functions we
dealt with in the proof of Theorem � were not always elementarily closed�

Our 	rst goal is to restate Theorem � for a language with additional function
symbols� Let 
�x� be a function� Relativized analogues of classes of functions
considered in the proof of Theorem � are de	ned as follows�

E� �� E�
��

C��K� �� C�K � E���

Notice that C��f� � C��
� f�� by Proposition ��
�
Let ���
� denote the class of bounded formulas in the language of EA �with

symbols for all Kalmar elementary functions� enriched by a function symbol for 
�
��
� formulas are those of the form �x�� � � � � xn A�x�� � � � � xn� a�� where A � ���
��

Classes ��
n and ��

n are de	ned in a similar manner�
Relativized version of Kalmar elementary arithmetic� EA�� is a theory for�

mulated in the language with a function symbol for 
� In addition to the usual
axioms of EA it has a schema of induction for ���
� formulas� This formulation
of EA� is not purely universal because of the presence of bounded quanti	ers�
We show how to reformulate it in a purely universal way�

First of all� we show that one can naturally ���
� de	ne the graph of �
 and
prove in EA� that this relation de	nes a total function� For example� one can
	rst de	ne an auxiliary function t�x� by

t�x� �� �z � x� �i � x 
�i� � 
�z��

The graph of t is clearly ���
�� and since t�x� � x holds provably in EA�� the
totality of t is easily proved by ���
� induction� So� we introduce a function

��



symbol for t and then de	ne m�x� �� 
�t�x��� It is easy to see� provably in EA��
that

m�x� � max
i�x


�x��

Now we de	ne the graph of �
 as follows�

�
�x� � y �� y � Seq � lh�y� � x � 
 � �i � y �y�i � 
�i��

where lh�y� denotes the length of a sequence y� To show that

�x�y �
�x� � y ����

we notice that

�
�x� � �y� y � Seq � lh�y� � x � 
 � �i � x 
�i� � �y�i�

So� given a x we can 	nd a sequence y � hm�x�� � � � � m�x�i that majorizes 


on the interval �
� x�� Then we apply ���
� least element principle to 	nd the
minimal such y� This proves �����

The following two useful properties of the function �
 are obviously provable
in EA��


� �x ��
�x� � Seq � lh��
�x�� � x � 
��

�� �x� y �x � y 
 �
�x� 	e �
�y���

Here x 	e y means that x is an initial segment of a sequence y� In particular� the
second property shows that �
 is a provably increasing function� By ��� �Proposi�
tion 
��� page ��
� we know that for such functions ����
� induction is reducible
�over EA� to induction for predicates elementary in the graph of �
� i�e�� for for�
mulas built up from �
�x� � y and elementary ones using boolean connectives and
quanti	ers bounded by elementary functions� Since the graph of �
 is ���
�� we
see that ����
� induction schema is available in EA��

On the other hand� let EA�� be a theory formulated in the language of EA
enriched by a function symbol for �
� Axioms of EA�� are those of EA plus
induction schema for open formulas plus formulas 
 and � above� We have just
seen that it is contained� or rather interpreted� in EA�� The opposite containment
is also true�

Proposition ���� EA� is equivalent to EA���

Proof� First of all� formalizing the proof of Proposition ��� we can show that
C��
� is provably closed under bounded summation�

Lemma ���� For every term g�x� a� in the language of EA�� we can �e
ectively

�nd a term G�x� a� such that EA�� proves�

G�
� a� � g�
� a��

G�x � 
� a� � G�x� a� � g�x � 
� a��

��



Notice that any two terms satisfying the above equations are provably equal in
EA��� We shall denote G�x� a� by

P
i�x g�i� a�� A similar lemma holds for bounded

multiplication�

Lemma ���� For every ����
� formula ��a� there is a term 
��a� such that

EA�� � �x ���x� � 
��x� � 
��

Proof� Induction on the build up of �� Boolean connectives are treated as in
Lemma ��
� Bounded quanti	ers are translated using Lemma ��
 as follows�

�x � y ��x� a� �
X
x�y


��x� a� � 
� ��
�

whenever 
� satis	es the induction hypothesis� We only need to demonstrate
equivalence ��
� in EA�� using open induction�

For the implication ��� we prove

X
x�y


��x� a� � 
 � u � y 
 
��u� a� � 
 ��
�

by an obvious quanti	er free induction on y� For the opposite implication �
� we
reason as follows� Assume �x � y��x� a�� Then prove by quanti	er free induction
on u� and with y a parameter� that

�u � y
X
x�u


��x� a� � 
�

Conclude
P

x�y 
��x� a� � 
� Notice that the induction here� being applied as a
schema� does not involve the side formula �x � y ��x� a� �which is not quanti	er
free�� q�e�d�

&From Lemma ��� it follows that� using open induction only� we can prove all
instances of ����
� induction in EA��� Now we notice that the function 
 can be
de	ned by a term in EA���


�x� �� ��
�x��x�

This means that ���
� induction is reducible to ����
� induction� and we may
conclude that EA� is equivalent to EA��� since the two interpretations we con�
structed are mutually inverse� q�e�d�

Proposition ���� EA�� has a purely universal axiomatization �in the language
with symbols for �
 and for all elementary functions
�

Proof� In the standard axiomatization of EA�� the instances of quanti	er free
induction

A�
� � �y � x �A�x� 
 A�x � 
�� 
 �y � xA�y�

�




are bounded� but not literally quanti	er free� We show that in an axiomatization
of EA�� these formulas can be replaced by quanti	er free ones� To this end we
have to improve a little upon Lemma ���� We show that in the proof of Lemma
��� only a number of purely universal theorems of EA�� could be used�

Indeed� the treatment of boolean connectives in Lemma ��
 only requires a
	nite number of equivalences� like

jx
�
� yj � 
 � x � y�

or
x � y � 
 � �x � 
 � y � 
��

To handle the bounded quanti	ers we can simply take open formulas ��
� as
axioms� However� the proof of the implication

�x � y 
��x� a� 

X
x�y


��x� a� � 
� ����

poses a problem�
Let m�y� a� be a function de	ned by

m�y� a� �� �x � y� 
��x� a� �� 
�

It is well�known that m�y� a� belongs to E �� �cf Rose �
���� and hence� is de	nable
via bounded summation and multipliction� Moreover� in EA�� one can prove
natural properties of � operator by quanti	er free induction� in particular�

X
x�y


��x� a� �� 
 
 
��m�y� a�� a� �� 


is provable in EA��� This formula clearly implies ����� and so� we can take it as an�
other open axiom� Thus� we see that Lemma ��� follows from a number of purely
universal theorems of EA��� Taking these theorems together with open transla�
tions of all instances of quanti	er free induction yields an open axiomatization of
EA��� q�e�d�

Let us also note that Lemma ��� and Proposition ��� actually show that� in
order to quanti	er free represent any individual ����
� formula one only needs a
	nite fragment of EA��� i�e�� 	nitely many �Kalmar elementary� function symbols
and 	nitely many open EA�� axioms for them� We shall use this fact later� for we
do not want to be involved in a rather technical proof of 	nite axiomatizability
of the whole of EA���

Now we can formulate a relativized version of �a particular case of� Theorem ��

Theorem �� Let T be a �nite ���
� axiomatized theory� Then

�EA�� � T����
� �IR� � RFN	��

�
�T ��

�




Proof� We check that everything in the proof of Theorem � relativizes� �Notice
that the relativized theorem is formulated in such a way that 	nite axiomatiz�
ability of EA�� is not used�� We take a purely universal formulation of EA�� and
introduce a new function symbol f for the standard witness of the �single� ���

�

axiom of T � At the cost of introducing into the language of T 	nitely many func�
tion symbols for elementary �in �
� functions� and adding 	nitely many purely
universal axioms of EA�� we may assume that the graph of f is open and T has
a 	nite purely universal axiomatization in the language with f �

Main steps in the proof of Theorem � were as follows� �a� De	ning the evalua�
tion function for f �terms using only one primitive recursion over C�f�# �b� Prov�
ing the totality and natural commutation properties for evalf inside �T����IR�#
�c� Showing that ���evalf� induction schema is available in �EA�� � T����IR�#
�d� Proving uniform re%ection principle for open formulas of T �in the language
with f� by ���evalf� induction�

Step �a� relativizes simply because C���f� � C��
� f�� So� relativizing the
	rst part of Proposition ��� we obtain a ���

� de	nition of the evaluation function
eval��f �e� x� for terms in the language of T � and show its totality and natural
properties in �EA�� �T����

� �IR�� This only depends on the assumption that f has
a ����
� graph and that EA�� contains enough ����
� induction� This accounts
for �b��

The proof of �c� depends on the results of Section �� most notably on Lemma
���� These results relativize as they are� using the fact that the function �
 is
provably increasing� Then the proof of relativized Proposition ��� is also unprob�
lematic� This gives us a natural satifaction predicate in �EA�� � T����

� �IR� for
quanti	er free formulas of T � Sat��f�e� x�� The proof of �d� is no di�erent from
Proposition ��
� Here we essentially rely on the fact that T is a 	nite and purely
universal theory� q�e�d�

Remark ���� Obviously� the analog of Theorem � also holds for extensions of
the language of arithmetic by more then one additional function symbol �
�

Proof of Theorem 	� For the sake of clarity of presentation we only give a
proof of this theorem for n � 
� For larger n the proof is very similar�

Let T be a 	nite extension of I�� with the only �
 axiom

� �� �u�v�w ���u� v� w��

with �� bounded� At the cost of introducing 	nitely many �Kalmar elementary�
function symbols and purely universal axioms for them we may assume that ��
is open� Let

��x� �� �u�v ��u� v� x�

be an arbitrary �� formula� Again� we may assume � open� possibly slightly
increasing the language of T � We are going to show that

�T����IR� � �x �ProvT �p�� $x�q� 
 ��x���

��



To this end 	rst we introduce Skolem functions in order to eat up the in�
nermost universal quanti	ers in � and �� i�e�� new function symbols 
�u� x� and
��u� v� together with the axioms�

��u� 
�u� x�� x� 
 ��u� v� x�� ����

���u� v� ��u� v�� 
 ���u� v� w�� ����

Clearly� axioms ���� and ���� logically imply

� � �u�v���u� v� ��u� v�� and

��x� � �u��u� 
�u� x�� x��

Let T� be a theory obtained by adding to T axioms ���� and ����� Obviously�
T� has a 	nite ����

� axiomatization� and ��x� is equivalent in T� to a ��
� formula�

Lemma ��	� There is an interpretation ���� of EA����� � T� in T such that�


a� ���� is identical on formulas in the language of T �


b� If A � ������
� then �A�� is equivalent to a �� formula in T �

Proof� The graphs of � and 
 can be de	ned as follows�

�
�u� x� � y�� �� ����u� y� x� � �w � y��u� w� x�� 
 ��z��u� z� x� � y � 
�#

���u� v� � y�� �� �����u� v� y� � �w � y���u� v� w�� 
 ��z��u� v� z� � y � 
��

Notice that graphs of 
 and � are �� under this interpretation� and that EA

proves that 
 and � are total functions �although� in general� they are not ' and
cannot be ' recursive��

It is easy to check that interpretations of the axioms ���� and ���� are provable
in EA� The strength of I�� is needed to prove the interpreted axioms of EA������
We have already noticed that EA����� can be axiomatized by induction schema for
bounded formulas in the graphs of �
 and ��� Such formulas are naturally translated
into ������ formulas� and ������ induction schema is available in I��� This
proves that ���� is the required interpretation� Property �a� is obvious� and for
�b� it is su�cient to demonstrate that ����
� ��� formulas are �� in T under the
interpretation in question� By Lemma ��� every ����
� ��� formula is equivalent
to an open formula in EA������ Such formulas are obviously equivalent in EA�����

to �� formulas in the graphs of �
 and ��� Since the graphs of �
 and �� are ���
interpretations of these formulas are �� in T � q�e�d�

An obvious corollary of this lemma is the fact that T� is a conservative
extension of T � and this fact is provable in EA �because T� is a 	nite theory��
Now we are in a position to invoke Theorem �� Since T� is 	nite and ����

�

axiomatized� we have

�EA����� � T��������
� �IR� � �x �ProvT��p�u��u� 
�u� $x�� $x�q� 
 �u��u� 
�u� x�� x���

��



Since
T� � ��x� � �u��u� ��u� x�� x��

by the provable conservativity of T� over T it follows that

EA � ProvT��p�u��u� ��u� �x�� �x�q�� ProvT �p�� �x�q��

and therefore

�EA����� � T��������
� �IR	 � �x �ProvT �p�� �x�q�� ��x���

So
 we can �nd ������
� formulas I��x�� � � � � Ik�x� such that
 for each i


EA����� � T� � Ii��� � �x �Ii�x� � Ii�x� 
��� ����

and

EA����� � T� � f�xIi�x�ji � 
� � � � � kg � �x �ProvT �p�� �x�q�� ��x��� ����

Since ����
 being an interpretation
 distributes over boolean connectives and
quanti�ers
 from ���� we obtain �� formulas I�� �x�� � � � � I

�

k �x� such that

T � I�i ��� � �x �I�i �x� � I�i �x� 
���

for all i� And ���� implies that

T � f�xI�i �x�ji � 
� � � � � kg � �x �ProvT �p�� �x�q�� ��x���

so we obtain
�T����IR	 � �x �ProvT �p�� �x�q�� ��x���

This �nishes the proof of the main part of Theorem �� The other part is no
di�erent from that of Theorem �
 q�e�d�

� Conclusion

In this paper we introduced natural notions of reducibility and congruence of rules
in formal arithmetic� We classi�ed various forms of induction rules of restricted
arithmetical complexity �over EA� modulo congruence relation� It turned out
that these forms
 most commonly
 fall into one of the three main �distinct� cate�
gories� �a� rules congruent to induction axiom schemata� �b� rules congruent to
�n induction rule �n�IR� �c� rules congruent to �n induction rule �n�IR�

We gave characterizations of �n�IR and �n�IR in terms of iterated re�ection
principles� These characterizations provide natural axiomatizations for closures
of arbitrary theories containing EA under these rules� It turns out that the
number of iterations of re�ection principles precisely corresponds to the depth of

��



nestings of applications of induction rules� This shows
 in particular
 that the
two ways of axiomatizing theories are tightly related�

Besides
 these characterizations yield several important corollaries concerning
�nite �non�axiomatizability of theories axiomatized by induction rules
 optimal
complexity of their axiomatizations
 and give wide su�cient conditions for the
equivalence of �closures of theories by� �n�� and �n induction rules�

Proof�theoretic analysis of provably recursive functions of theories axioma�
tized by rules allows us to sharpen
 and give easy new proofs of
 several old
results� For example
 we prove Peter�s theorem on reduction of nested recursion
to primitive recursion and Finite Basis Theorem for Kalmar elementary func�
tions� We also reproduce some results of Parsons �
�	 and Sieg �
�
 
�	
 e�g�
 we
show that Parsons� result on �� conservativity of I�� over ���IR is interderivable
with �a particular case of� so�called Fine Structure Theorem on uniform re�ection
principles of U�Schmerl �
�	�

I hope the results of this paper will convince the reader of the fact that rules
in arithmetic are an interesting independent object of study� and that a detailed
analysis how particular rules work not only often reveals peculiar e�ects
 but may
have useful applications in other topics of proof theory�
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