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Abstract

We study the expansion of stable structures by adding predicates for arbitrary sub-
sets. Generalizing work of Poizat-Bouscaren on the one hand and Baldwin-Benedikt-
Casanovas-Ziegler on the other we provide a sufficient condition (Theorem 4.7) for
such an expansion to be stable. This generalization weakens the original definitions
in two ways: dealing with arbitrary subsets rather than just submodels and removing
the ‘small’ or ‘belles paires’ hypothesis. We use this generalization to characterize in
terms of pairs, the ‘triviality’ of the geometry on a strongly minimal set (Theorem
2.5). Call a set A benign if any type over A in the expanded language is determined
by its restriction to the base language. We characterize the notion of benign as a kind
of local homogenity (Theorem 1.7). Answering a question of [8] we characterize the
property that M has the finite cover property over A (Theorem 3.9).

Let M be a stable structure in a language L and form an L(P ) = L∗-structure (M, A) by
interpreting a new predicate P as the set A. When is the new structure stable? Clearly
the structure induced on A (called Aind) must be stable and so it is natural to assume Aind

is stable. But stability of Aind is not sufficient [12]. Poizat [12] and Bouscaren [6] restrict
the question by assuming the set A is the universe of a submodel. Baldwin and Benedikt
[3] restrict the question by assuming the set A is a set of L-indiscernibles. Casanovas and
Ziegler [8] generalize ‘model’ and ‘indiscernible’ to ‘nfcp over A’. (nfcp is short for ‘does
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not have the finite cover property’; we spell out the technical definitions below.) All of this
earlier work also makes a ‘smallness’ or ‘belles paires’ assumption on (M, A). In the spirit
of [3], we call (M,A) pseudosmall if (M,A) is elementarily equivalent to a structure (N,B)
which is small: every L-type over Bm (for finite m) is realized in N .

This article springs from two intuitions of the first author. 1) The smallness hypothesis
can be replaced by a weaker notion, which we call benign, (in a sense explained in Section 3
replacing ‘saturation’ with ’homogeneity’). 2) Almost all subsets of a stable model are
benign. Most intuitively, A is benign if for any α ∈ M −A, tp(α/A) |= tp∗(α/A). (Here, tp
denotes the L-type and tp∗ the type in L∗.) We see below that the first intuition is largely
correct. In [1] with Shelah we provide an example of a subset of a superstable theory which
is not benign. We then modify the notion of benign to get a notion (weakly benign) that,
as shown below, has the useful consequences of benign and such that ([1]), every subset of a
superstable theory is weakly benign.

In Section 1 we rephrase ‘benign’ as a homogeneity condition which is local in two senses:
we work over a fixed set A and we work with respect to a finite set ∆ of formulas. We
pass to the uniform (true in all L∗-elementarily equivalent structures) version of benign
and locally homogeneous and show uniform locally homogeneous is equivalent to uniformly
benign. There are several reasons beyond curiosity for generalizing the study of expansions
from naming submodels to naming arbitrary sets. Indiscernible sets formed the natural
subject in [3]; such expansions arise, for example, in the study of bicolored fields [4]; in
Section 2, we will use these expansions to characterize geometric properties of strongly
minimal sets. Section 3 describes three properties of an L(P ) theory: pseudosmall, bounded,
uniformly benign which are increasingly weaker. As in Section 1 pseudosmall is derived from
a notion, small, defined for a single structure (M, A) and pseudosmall means all elementarily
equivalent L(P )-structures are small. Answering a question of [8], we show that small and
pseudosmall are equivalent if and only if M does not have the fcp over A. Further we show
that for theories without fcp, pseudosmall is equivalent to ‘all models are locally saturated’
(defined in Section 3). In Section 4 we show that for uniformly benign structures, (M,A) is
stable if M is stable and the induced (properly construed) structure on A is stable.

The stability of (M, A) depends on two inputs: a ‘smallness’ hypothesis on A and the
stability of the ‘induced’ structure on A. The smallness hypothesis might be given either on
the single model (M, A) or on its theory; these alternatives coalesce in the presence of the
nfcp over A (Section 3). There are a number of alternatives for the stability hypothesis.

Definition 0.1 The basic formulas induced on A can be:

1. the traces on A of parameter free L-formulas (induced structure);

2. the traces on A of L-formulas with parameters;

3. the traces on A of parameter free L(P )-formulas (#-induced structure, A#);
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4. the traces on A of L(P )-formulas with parameters.

If the ambient theory is stable, the first two are same so we name only one. Although 3)
and 4) do define different classes, we use only 3). The following example of Benedikt uses
the idea of the third example in Example 3.19 to show the need to consider 3) instead of 1).

Example 0.2 Form a structure M with a two sorted universe; one sort contains the complex
field, a binary relation E links the two with each field element indexing one member of a
partition of the second sort into infinite sets. Now let N extend M by putting one new point
in the set indexed by a if and only if a is a real number. Now M and N are isomorphic
and are ω stable nfcp. But the structure (N, M) is unstable. The induced structure on M
is stable since in fact no new sets are definable. In the #-induced structure the formula
(∃x)E(x, y) ∧ x 6∈ P defines the reals so the #-induced structure is unstable.

It may not be easy to check either that Aind or A# is stable. In Aind while the quantifier-free
formulas are just induced from L, in order to verify the stability one must do an induction
on quantifiers which is nontrivial. For example, Baldwin and Holland [4] constructed a
bicolored field by a variant of the Hrushovski construction that is not ω-stable but whose
stability class is unknown. It fairly easy to check that the structure imposed on the black
points is minimal (every definable set is finite or cofinite) at the Rφ-level but the stability of
even Aind remains open.

Remark 0.3 Although we deal in this paper exclusively with expansions by unary predi-
cates, this is not an important restriction; the case of arbitrary n-ary relations reduces to the
unary case. Let M be a stable L-structure and for some 1 <≤ n < ω, let R be an n-place
predicate on M , which to be interesting is not L-definable. Denote by M eq a model of T eq

constructed from M . Let ε(x, y) be the equivalence relation on Mn defined by

[M |= ε(x, y) ↔ ∧ixi = yi].

Let Mε be the quotient structure by ε. For any 0 < m < ω, denote by Def∅,m(Mε) a set
of all ∅-definable subset of Mm

ε and by Def∅(Mε) :=
⋃

m Def∅,m(Mε). Define a model M ′

with universe Mε in the language {=} ∪ {PX |X ∈ Def∅(Mε)} such that ∀m < ω, ∀X ∈
Def∅,m(Mε),∀a, . . . , am ∈ Mε

[M ′ |= PX(a1, . . . , am) ↔ (a1, . . . , am) ∈ X].

So, M ′ = (Mε, PX)X∈Def∅(Mε). Denote by R′ the set of ”names” of n-tuples from Mn satisfy-
ing R. Then, (M, R) and (M ′, R′) are mutually interpretable so (M,R) is stable iff (M,′ R′)
is stable.
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1 Benign and Locally Homogeneous Pairs

In this section we introduce the notions of benign and locally homogeneous pairs. These
concepts represent a weakening of the notion ‘small’ from [8], which provided a common
framework for Poizat’s [12] notion of ‘belles paires’ and the Baldwin-Benedikt [3] notion of
pseudosmall. We describe the relations among these notions in Section 3. In the following
definitions, each formula in ∆ (∆′) has the same partition of its variables among ‘true vari-
ables’ and parameters. Throughout the paper we deal with a language L and an expansion
L(P ) by a unary predicate P . We often use ∗ for L(P )-for brevity. If no language is specified
we mean L; but sometimes we write the L for emphasis. And if we speak of (M, A) this
implies the language is L(P ).

We are speaking of types of finite tuples unless we explicitly say otherwise.

Definition 1.1 1. The set A is benign in M if for every α, β ∈ M if p = tp(α/A) =
tp(β/A) then tp∗(α/A) = tp∗(β/A) where the ∗-type is the type in the language with a
new predicate P denoting A.

2. (M, A) is uniformly benign if every (N, B) which is L(P )-elementarily equivalent to
(M, A) is benign.

3. The set A is weakly benign in M if for every α, β ∈ M if stp(α/A) = stp(β/A) implies
tp∗(α/A) = tp∗(β/A) where the ∗-type is the type in the language with a new predicate
P denoting A.

4. (M, A) is uniformly weakly benign if every (N,B) which is L(P )-elementarily equiva-
lent to (M, A) is weakly benign.

These notions are closely related to the following homogeneity conditions on M .

Definition 1.2 1. The pair (M,A) is locally homogeneous if tpL(α/A) = tpL(β/A) im-
plies for every finite ∆ ⊆ L and any m ∈ M , with tp∆(m/α, A) = q(x, α, A) ∈
S∆(Aα), q(x, β, A) (the result of replacing α with β in q∆(x, α)) is realized in M .

2. The pair (M, A) is uniformly locally homogeneous if for every finite ∆ there is a finite
∆′ ⊇ ∆ such that for any m ∈ M , with tp∆(m/α, A) = q(x, α, A) ∈ S∆(Aα) and
tp∆′(α/A) = tp∆′(β/A) then q(x, β, A) (the result of replacing α with β in q∆(x, α))
is realized in M .

Note that the concept of local homogeneity is orthogonal to saturation notions. Unlike
saturation it deals with finite ∆ rather than all of L, but since |A| may be the same as
|M | it is not implied by saturation either. The following lemma characterizes uniform local
homogeneity. For convenience, we assume ∆ is closed under negation. Recall that a structure
is weakly saturated if it realizes every consistent type over the empty set.
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Lemma 1.3 1. Local homogeneity is preserved by L(P )-elementary equivalence.

2. If (M,A) is locally homogeneous and weakly saturated then (M, A) is uniformly locally
homogeneous.

Proof. For any finite ∆ ⊂ L(P ), let µ∆,∆′ denote

(∀t1)(∀t2)((∀u ∈ P )
∧

χ∈∆′
[χ(t1,u) ↔ χ(t2,u)] → (∀x)(∃y)

∨

θ∈∆

(∀u ∈ P )θ(x, t1,u) ↔ θ(y, t2,u)).

To see i) note that (M, A) is uniformly locally homogeneous if and only if for any finite
∆ ⊂ L(P ), there is a finite ∆′ ⊇ ∆ such that (M,A) |= µ∆,∆′ .

Using i), if (M, A) is locally homogeneous but not locally homogeneous, there is a finite
∆ such that for every ∆′ ⊇ ∆, the following set of formulas Γ∆,∆′(t1, t2) is consistent.

{(∀u ∈ P )
∧

χ∈∆′
[χ(t1,u) ↔ χ(t2,u)] : χ ∈ L}∪{¬(∀x)(∃y)

∨

θ∈∆

(∀u ∈ P )θ(x, t1,u)∧¬θ(y, t2,u)).

But if (M,A) is weakly saturated,
⋃

∆′⊂L Γ∆,∆′(t1, t2) is realized and then (M, A) is not
locally homogeneous. 21.3

With this in hand we easily conclude:

Corollary 1.4 The following are equivalent.

1. The pair (M,A) is uniformly locally homogeneous.

2. Every elementary extension of the L(P )-structure (M,A) is uniformly locally homoge-
neous.

3. Every elementary extension of the L(P )-structure (M, A) is locally homogeneous.

4. Every weakly saturated elementary extension of the L(P )-structure (M,A) is locally
homogeneous.

Lemma 1.5 Suppose T is stable and the L(P )-structure (M, A) is benign, then (M, A) is
locally homogeneous.

Proof. Fix a type q(x, α, A) which is realized in M and a finite ∆ ⊆ L. Let the L-formula
over A dqθ(α, a) define the restriction of q to ∆. That is, dqθ(α, a) holds if and only if
θ(x, α, a) ∈ q. Then the formula

(∃x 6∈ P )(∀u ∈ P )
∧

θ(x,y,z)∈∆

θ(x,y,u) ↔ dqθ(y,u)

is in tp∗(α/A) and thus in tp∗(β/A), so q∆(x, β, A) is realized. 21.5

But, this does not yield uniform local homogeneity. The following example is derived
from Shelah’s example ([1]) of a pair (M,A) where A is not benign.
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Example 1.6 We build a pair (M,A) which is benign but not uniformly benign (and con-
sequently locally homogeneous but not uniformly locally homogeneous). We start by de-
scribing the prime model M of the theory T ∗. The language L∗ contains relation symbols
Si(x), E(x, y), U(x), R(x, y, z) and P (x). The elements not in U are αi, βi for i < ω and Si

holds exactly of αi. Each of R(x, y, αi), R(x, y, βi), define an equivalence relation refining the
same equivalence class of E. The equivalence relations R(x, y, αi) and R(x, y, βi) cross cut
each other. In fact R(x, y, α)∧R(x, y, β) implies x = y. We say ‘subdiagonal of the checker-
board on an E-class’ for a set which contains exactly one representative of each equivalence
class of R(x, y, αi) and all but one class of R(x, y, βi). For each n, P (M) intersects the nth
equivalence class of E in a subdiagonal of the checkerboard determined by R(x, y, αn) and
R(x, y, βn). Then T ∗ satisfies both

(∃∞w)(∀v)(∀x)E(x,w) → (∃y)P (y) ∧R(y, x, v)

and
(∃∞w)(∃v)(∃x)E(x,w) → (∀y)P (y) ∧ ¬R(y, x, v).

Thus both (M, A) and N, B) satisfy T ∗ where A = P (M) as described, while (N, B) adds an
infinite E class D and P (N) ∩D is a subdiagonal for the checkerboard on D given by new
elements of ¬U , α and β. But then (M, A) is benign (since Si distinguishes αi from βi) but
(N, B) is not.

The following requires no stability hypothesis.

Theorem 1.7 Suppose (M, A) is uniformly locally homogeneous. Then, (M, A) is benign.

Proof. Suppose α, β ∈ M − A and tp(α/A) = tp(β/A). For each φ ∈ L(P )(A), we want to
show that

(M, A) |= φ(α) iff (M, A) |= φ(β)

Let n be the number of quantifiers in φ and ∆0 the set of atomic formulas from L(P ) which
occur in φ. Let ∆i+1 be ∆′

i, where ’ is the operator from the uniform homogeneity of (M,A)
which assigns to ∆ the set of formulas ∆′ which are sufficient to guarantee ∆-equivalence.
Now we claim (M, A, α) is n-game equivalent to (M, A, β) in the language with atomic
formulas ∆0. At the ith play of the game, duplicator plays the same point γ as spoiler if the
point is in A and plays the δi realizing tp∆i

(γi, βA) if not. (The formula exhibited in the
last paragraph of Lemma 1.4, guaranteed by the uniform local homogenity, shows δi exists.)
21.7 Now the main result of this analysis is:

Theorem 1.8 If M is stable then (M,A) is uniformly benign if and only if it is uniformly
locally homogenous.
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2 Expansions of Strongly Minimal Sets

The next few results illustrate the distinction between the situation here, where the predicate
P is allowed to name an arbitrary subset of the universe and the earlier restriction that only
submodels be named. When the ambient structure is strongly minimal, naming a submodel
always preserves ω-stability. In fact, [7], the rank of the pair theory can be used to classify
the geometry of the strongly minimal set. The pair theory has finite rank if and only if
the strongly minimal set is locally modular. By allowing arbitrary subsets, we can extend
this classification to distinguish trivial geometries. (On reading a preliminary version of this
paper, Yevgeniy Vasilev pointed out that a variant on Buechler’s argument allows one to
characterize trivial strongly minimal sets by: the pair theory has rank one if and only if the
strongly minimal set is trivial.)

For any set A contained in a strongly minimal model M , if α, β are in acl(A) and
tpL(α/A) = tpL(β/A) then there is an elementary permutation of acl(A) taking α to β.
If A ⊆ M and M is strongly minimal this permutation extends to an automorphism of M .
Again, when M is strongly minimal any two points not in the algebraic closure of a set A
are automorphic over A. This establishes the following well-known fact:

Fact 2.1 If M is strongly minimal every subset of M is benign. By Lemma 1.4 and Theo-
rem 1.7, this means every subset of M is uniformly benign.

We included the argument for the previous result to emphasize that strong minimality
was used twice in the proof. In fact there are sets that are not benign because of algebraic
types. Now we see the role of the geometry.

Fact 2.2 Let M be a trivial strongly minimal model in a countable language L and A ⊂ M .
Then the pair (M,A) is superstable.

Proof. Let (N,B) be an |M |+-saturated elementary extension of (M, A) in language L(P ).
It suffices to show that the group G of automorphisms of N which fix M pointwise and B
setwise has only 2ℵ0 orbits on N−(M∪B). If not there exist 〈ai : i < (2ℵ0)+〉 ⊂ N−(M∪B)
such that no g ∈ G maps ai to aj if i 6= j. By strong minimality, for each i there exists an
L-elementary monomorphism fi : M ∪acl(a0) → M ∪acl(ai) and is the identity on M . If for
each i 6= j, f−1

i (acl(ai)∩B) 6= f−1
j (acl(aj)∩B), there are more than continuum many subsets

of acl(a0). So for some i, j, hij = fj · f−1
i : acl(ai) → acl(aj) is an L-elementary map which

preserves B. Moreover, h = hij ∪ hji is an elementary permutation of M ∪ acl(ai) ∪ acl(aj).

By triviality, h extends to an L-automorphism ĥ of N which fixes N \ (acl(a1) ∪ acl(a2))
pointwise. Since h also preserves B on (acl(ai) ∪ acl(aj)), ĥ ∈ G. This contradiction yields
the result. 22.2

Note that the restriction to a countable language here is purely for convenience. In fact,
the triviality is necessary for this result. Modifying an argument from [5], we show:
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Fact 2.3 If G is a group which is not finitely generated, there is an expansion of G by a
unary predicate which is unstable.

Proof. Choose inductively 〈ai, bi〉 so that no ai (or bi) is in the subgroup generated by the
set of aj, bj, j < i (aj : j ≤ i, bj, j < i). Let cij = ai · bj. Now we define the order property
by the formula P (x · y) by letting P name {cij : i < j}. 22.3

This shows that no locally modular strongly minimal set remains stable under all unary
expansions. To include strongly minimal sets which have no group structure we have the
following variant.

Fact 2.4 Let M be a strongly minimal set such that algebraic closure is not trivial. There
is an expansion of M by a unary predicate which is unstable.

Proof. First consider 〈ai, bi : i < ω〉 a family of algebraically independent elements from a
saturated elementary extension of M . Choose c00 ∈ acl(a0, b0) \ (acl(a0)∪ acl(b0)) witnessed
by a formula φ(x, y, v). Since all pairs of elements from 〈ai, bi〉 realize the same type there
exists cij ∈ acl(ai, bj) \ (acl(ai) ∪ acl(bj)) satisfying φ(ai, bj, cij). Moreover, unless k = i and
` = j, we have ¬φ(ak, b`, cij). Now for each n < ω, choose in M by elementary submodel a
set 〈an

i , b
n
i : i < n〉 ∪ 〈cn

i,j : i, j < n〉 which satisfy the φ(x, y, v)-type of 〈ai, bi : i < n〉 ∪ 〈ci,j :
i, j < n〉. Make these sets disjoint. Now let P denote the set 〈cn

i,j : i < j < n〉. The formula

(∃v)(P (v) ∧ φ(x, y, v))

defines the order property for arbitrarily long sequences so (M, P ) is unstable. 22.4

Thus by passing from model-pairs to arbitrary subsets we are able to describe triviality.
In summary:

Theorem 2.5 Let M be a strongly minimal model and A ⊂ M . Then the geometry on M
is trivial if and only if for every subset A of M , the pair (M,A) is superstable.

3 The role of the local fcp

Casanovas and Ziegler introduced useful localizations to sets of two important model the-
oretic notions: the finite cover property over A and stability over A. We show here that
these notions form a bridge between small and pseudosmall. We then discuss the notion of
bounded, introduced in [3] but fully explored in [8]. We show that in the presence of nfcp
over A, pseudosmall implies bounded implies uniformly benign and these implications are
strict. In this section, the only stability assumptions are made explicitly.

Definition 3.1 We say M has the finite cover property over A if there is a formula φ(x,y, z)
such that for each k < ω there are a tuple m ∈ M and a family (ai)i∈I of tuples from A such
that the set

{φ(x,ai,m) : i ∈ I}
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is k-consistent but not consistent.

Note that ‘fcp over A’ is preserved by L(P )-elementary equivalence. This notion is key
to relating the following concepts.

Definition 3.2 1. The pair (M,A) is small if for every finite sequence β ∈ M , every
L-type over Aβ is realized in M .

2. The pair (M, A) is pseudosmall if the L(P )-structure (M, A) is L(P )-elementarily
equivalent to a small pair.

3. The L(P )-theory T ∗ is pseudosmall if some model (M, A) of T ∗ is small; whence every
model of T ∗ is pseudosmall.

4. (M, A) is locally saturated if for any b ∈ M , for any L-formula φ(x,y,u), any
φ(x,y,b)-type over A is realized in M .

Our definition of pseudosmall is the Casanovas-Ziegler [8] definition of small; we want to
preserve the distinction between small and pseudosmall made in [3], although both of the
notions in [3] were marginally stronger than these. Small is a natural weakening of Poizat’s
concept [12] of ‘belles paires’ by dropping the requirement of |L|+-saturation (and in our
context working over subsets rather than models). We will show that T ∗ is pseudosmall
is the same as every model of T ∗ is locally saturated. For this we need first a little more
notation.

Note that in the definition of local saturation, it makes little difference whether we think
of a φ-type as containing only instances of φ or both positive and negative instances since
we can always code φ by a φ′ so that positive instance of φ′ determine both positive and
negative instances of φ.

Notation 3.3 1. For a pair of formulas φ(x,y,u) and ψ(y, z,u) we emulate Poizat [12]
and say [φ(x,y,u), ψ(y, z,u), n](z,u) holds if

(∀y0 ∈ P ) . . . (∀yn−1 ∈ P )[
∧

i<n

ψ(yi, z,u) → (∃x)
∧

i<n

φ(x,yi,u)].

2. Suppose M does not have the finite cover property over A. Let T ′ be the theory axiom-
atized by the sentences

(∀zu)[[φ(x,y,u), ψ(y, z,u), nφ](z,u) ∧ (∃y0, . . .ynφ
)ψ(yi, z,u)] (1)

→ (∃x)(∀y)[P (y) → (ψ(y, z,u) → φ(x,y,u))],

where nφ is chosen by nfcp so the every nφ-consistent φ-type over A is consistent.
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By the remark about φ and φ′ just before the last result, we could as well have written
ψ(y, z,u) ↔ φ(x,y,u) in last line of part 2). Note that while nfcp implies stability, nfcp
over A does not.

The notion of a bounded formula comes from [3].

Definition 3.4 An L(P ) formula φ is bounded if has the form:

(Q1y1 ∈ P ), . . . (Qkyk ∈ P )ψ(x,y)

where each Qi is ∃ or ∀ and ψ is an L-formula.

Casanovas and Ziegler [8] localized stablity to a subset by the following definition.

Definition 3.5 M is stable over A if in every (N, B) elementarily equivalent to (M, A),
every type over B is definable by a bounded formula with parameters from B.

Equivalently, in every (N, B) elementarily equivalent to (M,A), there are only |B| types
over B. They note that ncp over A implies stable over A. It is easy to show:

Fact 3.6 If M has nfcp over A, (M,A) |= T ′ if and only if (M, A) is locally saturated.

Answering a question of [8], we are going to characterize the finite cover property over
A. For this we require some special notation.

Definition 3.7 For any formulas φ(x,y,u) and ψ(y, z,u), we say FCPφ,ψ(M,A) holds if
for all n < ω, there are cn,mn ∈ M such that {φ(x, a,mn) : a ∈ ψ(M, cn,mn)

⋂
Alg(y)} is

n-consistent but not consistent.

Note that (M, A) ≡ (N, B) and FCPφ,ψ(M,A) then FCPφ,ψ(N,B).

Lemma 3.8 If FCPφ,ψ(M,A) holds then (M, A) is not both small and |L|+-saturated.

Proof. Consider the type qφ,ψ(z,u):

{[φ(x,y,u), ψ(y, z,u), n](z,u) : n < ω} ∪ {¬(∃x)(∀y ∈ P )[ψ(y, z,u) → φ(x,y,u)}
∪{(∃y0 ∈ P ) . . . (∃yn ∈ P )

∧

i<n+1

ψ(yi, z,u) : n < ω}.

This L(P )-type is consistent, since by FCPφ,ψ, [φ(x,y,u), ψ(y, z,u), k](cn,mn) holds for
each k ≤ m but ¬(∃x)(∀y ∈ P )[ψ(y, cn,mn) → φ(x,y,mn) since ¬(∃x)

∧
i<n φ(x,an

i ,mn).
As (M, A) is |L|+-saturated, qφ,ψ(z,u) is realized by some m, c ∈ M . For such m, c,
any extension to a complete type over A

⋃
m of the consistent infinite set of φ-formulas:

{φ(x, a,m) : M |= ψ(a, c,m),a ∈ A}, is not realized in M . This contradicts that (M, A) is
small. 23.8

We rely on a theorem of Casanovas and Ziegler for one direction of the following equiva-
lence. The new direction answers a question raised in [8].
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Theorem 3.9 Suppose T ∗ = Th(M, A) is pseudosmall. M does not have fcp over A if and
only if every |L|+-saturated (N,B) |= T ∗ is small and M is stable over A.

Proof. Deducing pseudosmall implies small from nfcp over A is Theorem 5.2 of [8].
Conversely, suppose M does have fcp over A, witnessed by a formula φ(x,y,u).

Suppose that φ(x,y,u) has the finite cover property over A. Our goal is to find a formula
ψ which witnesses this property as in Definition 3.7. Take an infinite W ⊆ ω such that for
any n ∈ W , there are elements an

i such that {φ(x,an
i ,mn) : i ≤ n} is n-consistent but

inconsistent and so n + 1-inconsistent. Let A0 := {an
i : n ∈ W, i ≤ n}. By the choice of A0,

φ has the fcp over A0.
Theorem 3.9 is immediate from Lemma 3.8 and the following Proposition 3.10. For the

proof of Proposition 3.10, we will refine W several times. It seems clearest to give the proof
as a series of reductions.

Proposition 3.10 Suppose that φ(x,y,u) has the finite cover property over A. Then for
any A′ (A0 ⊆ A′ ⊆ M) such that M is stable over A′ there exists ψ(y, z,u) such that
FCPφ,ψ(M, A′).

Proof. For any n ∈ W , i ≤ n put

Bn
i :=

⋂{φ(M, an
j ,mn) : j 6= i, j ≤ n}.

It follows from the definition that Bn
i ⊂ ¬φ(M, an

i ,mn) and Bn
i ∩Bn

j is empty when i 6= j ≤ n.
For any formula η(x), let Cn

j (η) denote η(M) ∩Bn
j and `(n, η) := |{j ≤ n : Cn

j (η) 6= ∅}|.
Definition 3.11 Let θ(x,v,u) be a formula, W ′ be an infinite subset of W , Γ := {en ∈
M lg(v) : n ∈ W ′} be a family of parameters.

1. We say that the triple (θ,W ′, Γ) is unbounded if `(n, θ(x, en,mn)) is unbounded on
any infinite W ′′ ⊆ W ′.

2. Let f < ω; we say that the unbounded triple (θ, W ′, Γ) is f-minimal, if ∀n ∈ W ′,∀b ∈ A′

[`(n, θ(x, en,mn) ∧ φ(x,b,mn)) ≤ f or `(n, θ(x, en,mn) ∧ ¬φ(x,b,mn)) ≤ f ].

Assume momentarily the following lemma.

Lemma 3.12 There exist a formula θ∗(x,v,u), an infinite subset W ∗ of W , and a family
of parameters Γ∗ := {en ∈ M lg(v) : n ∈ W ∗} such that the following holds for some f < ω:

1. The triple (θ∗,W ∗, Γ∗) is unbounded. In particular, for each n ∈ W ∗, `(n, θ∗(x, en,mn) ≥
2f .

11



2. The triple (θ∗,W ∗, Γ∗) is f -minimal.

On the basis of Lemma 3.12 we complete the proof of Proposition 3.10 and thus Lemma 3.9.
For each n fix Xn ⊂ n + 1 so that if j ∈ Xn, Cn

j (θ∗(x, en,mn)) 6= ∅. Then |Xn| =
`(n, θ∗(x, en,mn)) ≥ 2f . Choose cn

j ∈ Cn
j (θ∗(x, en,mn)) for j ∈ Xn. Let cn := ∪j≤2fc

n
j ,

z := ∪j≤2fzj and ψ(y, z,u) be the first order formula expressing:

|φ(M,y,u) ∩ {z0, . . . , z2f}| > f.

For each n ∈ W ∗, by f -minimality for any a ∈ A′, φ(x,a,mn) ∧ θ∗(x, en,mn) holds either
for less than f of the cn

j (for j ∈ Xn) or for all but f of them. So, for any a ∈ A′ we have
|= ψ(a, cn,mn) if and only if all but f of the cn

j are contained in φ(M, a,mn). This implies
that if tn is greatest such that tn · f ≤ `(n, θ∗(x, en,mn)) then

{θ∗(x, en,mn) ∧ φ(x,a,mn) : a ∈ ψ(M, cn,mn) ∩ A′}

is tn-consistent. Clearly then, {φ(x, a,mn) : a ∈ ψ(M, cn,mn) ∩ A′} is tn-consistent. By
definition, φ(cn

j ,an
i ,mn) holds if i 6= j so each φ(x,an

i ,mn) is satisfied by more than f of
the cn

j . Thus {an
0 . . . , an

n} ⊆ ψ(M, cn,mn)∩A′. By the choice of {an
0 . . . , an

n}, {φ(x,a,mn) :
a ∈ ψ(M, cn,mn) ∩A′} is not consistent. Since f is fixed and tn goes to infinity with n, we
have FCPφ,ψ(M, A′). 23.10

Proof of 3.12. Let Γ := {mn : n ∈ W}. The triple (x = x,W, Γ) is unbounded since
`(n,x = x) = n + 1. Thus on the basis of Lemma 3.13 (below), we can either find a triple
(θ∗,W ∗, Γ∗), which is f -minimal for some f < ω, or we can inductively construct a tree of
instances of conjunctions of φ(x,w,u) with ¬φ(x,w,u), violating the stability of M over
A′; cf. Corollary 4.4 of [8]. The ‘in particular’ clause is easily satisfied by taking a tail of
any W ∗ which satisfies the other conditions. 23.12

So we are reduced to showing:

Lemma 3.13 Suppose the triple (θ(x,y,u), W, Γ), where Γ = 〈dnmn : n ∈ W 〉), is un-
bounded. Either

1. for some f < ω and some infinite W ∗ ⊆ W , the triple (θ, W ∗, Γ) is f -minimal or

2. there is a Γ′ = 〈dnenmn : n ∈ W en ∈ A′〉 such that both (θ(x,y,u)∧φ(x,w,u),W, Γ′)
and (θ(x,y,u) ∧ ¬φ(x,w,u), W, Γ′) are unbounded.

Proof. We claim that for any f < ω there exists nf ∈ W such that for all n ∈ W with
n ≥ nf there exists en(f) ∈ A′ such that:

`(n, θ(x,dn,mn) ∧ φ(x, en(f),mn)) > f and `(n, θ(x,dn,mn) ∧ ¬φ(x, en(f),mn)) > f. (2)
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If not, ∃f < ω, ∀n < ω, ∃k(n, f) ∈ W (k(n, f) > n) such that ∀b ∈ A′

`(k(n, f), θ(x,dn,mn) ∧ φ(x,b,mn)) ≤ f or `(k(n, f), θ(x,dn,mn) ∧ ¬φ(x,b,mn)) ≤ f.

This means that the unbounded triple (θ, W ′, ∅), where W ′ := {k(n, f) : n < ω}, is f -
minimal and we are finished. Thus, there exists an infinite family of sets of parameters from
M

Γf := {en(f) ∈ A′ : n ∈ W,nf ≤ n}, f < ω

satisfying property 2. For all f < ω, (nf ≤ nf+1). Let

Γ∗ := {en : n ∈ W,∀f < ω[nf ≤ n < nf+1 → en = en(f)]}.
Then the triples (θ(x,y,u) ∧ φ(x,w,u),W, Γ′) and (θ(x,y,u) ∧ ¬φ(x,w,u),W, Γ′) are un-
bounded as required. 23.13

Having proved the last reduction we conclude the proof of Theorem 3.9. 23.9

Let us sum up the connections between pseudosmallness and local saturation.

Theorem 3.14 Suppose M does not have the finite cover property over A. Then the fol-
lowing conditions are equivalent:

1. (M, A) is pseudosmall.

2. Every |L|+-saturated elementary extension of (M, A) is small.

3. (M, A) |= T ′.

4. (M, A) is locally saturated.

Proof. We have already noted (Fact 3.6)) the equivalence of 3) and 4). 1) implies 2) is
immediate from Theorem 3.9. But 2) implies that (M,A) has an L(P )-elementary extension
which is locally saturated. By Fact 3.6 this extension and a fortiori (M, A) model T ′. So 2)
implies 3).

Now for 4) implies 1), let (M ′, A′) be an |L|+-saturated L(P )-elementary extension of
(M, A). Let b ∈ M ′. For arbitrary q ∈ S(A′∪b) consider the set of restrictions {qφ : φ ∈ L}
of q to φ-types over A′∪b. For each qφ there exists an L-formula dφ(y, aφ,b) with parameters
from (A′ ∪ b) such that dφ(y,aφ,b) defines qφ. Denote A′

q := ∪φ∈Laφ. Thus, |A′
q| = |L|.

Then consider the set of L(P )-formulas:

r(x, A′
q ∪ b) := {(∀y)[P (y) → (dφ(y,aφ,b) ↔ φ(x,y,b))] : φ ∈ L}.

To see r(x, A′
q ∪ b) is consistent we invoke the nfcp. Since (M, A) is locally saturated,

(M, A) |= T ′ and for every n and φ, the formula (defined in Notation 3.3)

[φ(x,y,u), ψ(y, z,u), n](aφ,b) ∧ (∃y0, . . .yn)ψ(yi, aφ,b)]
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holds in (M, A). (Replace φ by ¬φ if φ(x, a,b) ∈ qφ for only finitely many a ∈ A). So both
(M, A) and (M ′, A′) satisfy (∃x)(∀y)[P (y) → (ψ(y, aφ,b) ↔ φ(x, aφ,b))]. Since this holds
for every formula φ, r(x, A′

q ∪ b) is consistent. Since (M ′, A′) is |L|+-saturated, r(x, A′
q ∪ b)

and thus q is realized in M ′. Thus (M ′, A′) is small and consequently (M,A) is pseudosmall.
23.14

Without assuming nfcp one can prove any (M,A) which has a small L(P )-elementary
extension is locally saturated. But the following example shows that Theorem 3.14 requires
the nfcp hypothesis.

Example 3.15 The following (M,A) has fcp over A, and is small (a fortiori pseudosmall
and locally saturated) but is not ℵ1-saturated.

L contains one equivalence relation E. There is one class of each finite cardinality. If n
is even half the elements of the class with n elements are in A. If n is odd, all elements of
the class are in A. There are ℵ1 classes with size ℵ1, each with half its elements in A. There
are ℵ1 classes with size ℵ1 which do not intersect A. Note that (M, A) is not ℵ1-saturated as
an L(P )-structure because the type of an infinite class with all elements in A is consistent
but not realized.

Now let (N, B) be elementarily-equivalent in L(P ) to (M, A) but have an infinite class
which is entirely in P . Then (N, B) is still pseudosmall but no L(P )-elementary extension
of (N, B) is small and (N,B) is not locally saturated.

We can combine the results of Section 1 with Theorem 3.9 to get a short proof of the
following.

Theorem 3.16 Suppose T ∗ is pseudosmall. If (M,A) |= T ∗ and M does not have fcp over
A, (M, A) is uniformly benign.

Proof. By Theorem 3.9, every |L|+-saturated elementary extension (N,B) of (M,A) is
small and so obviously locally homogeneous. By Lemma 1.4, (M,A) is uniformly locally
homogeneous. Apply Theorem 1.7. 23.16

Now we turn to the analysis of the connections between our notions and those in [3] and
[8].

Definition 3.17 (M, A) is bounded if in (M, A) every L(P ) formula is equivalent to a
bounded formula.

In [8] 5.3 the authors give two other equivalents of ‘bounded’, in terms of conditions on
extensions of permutations of A. We have three properties of an L(P ) theory T ∗: pseu-
dosmall, bounded, uniformly benign. The first can be replaced by a property of a single
model (M, A) (small) if M does not have fcp over A. The three properties of the theories
are related as follows.
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Fact 3.18 1. If (M, A) is small then (M, A) is benign.

2. M does not have fcp over A and (M,A) is pseudosmall then (M, A) is bounded.

3. If (M,A) is bounded then (M,A) is uniformly benign (= uniformly locally homoge-
neous).

Fact 3.18 1 is a triviality. Fact 3.18 2 is Proposition 2.1 of [8]; Fact 3.18 3 follows easily from
the second equivalent condition to bounded in Lemma 5.3 of [8]. Together, the last two yield
a more round-about proof of Theorem 3.16. None of these implications are reversible.

Example 3.19 1. Let T be the standard ω-stable theory with fcp. (That is, theory whose
‘standard’ model is an equivalence relation with one class of size n for each finite n
and no infinite classes.) Let (N, M) be a pair of models of T with M ≺ N such that M
contains an entire infinite equivalence class from N . Then (N,M) is not small since
the type of an element in that class but not in M is omitted in N . But by Bouscaren
[6](or by observation) (N,M) is uniformly benign. Here, N has fcp over M .

2. Benedikt suggests to modify the previous example by considering (N,A) where A is one
entire infinite equivalence class of some nonstandard model N of T . Now, (N,A) is
not small but (by observation) (N, A) is uniformly benign and N does not have fcp over
A.

3. Let M be a structure with two infinite equivalence classes and let A omit one point from
one class and two from another. Then (M, A) is uniformly benign but not bounded.
And its theory could not be better behaved.

4 Stable Pairs

Casanovas and Ziegler generalized the arguments of Poizat, Bouscaren, Baldwin and Benedikt
to show ‘ bounded’ and Aind stable implies the pair structure is stable. We now show that the
hypothesis ‘bounded’ can be weakened to ‘uniformly weakly benign’ at the cost of strength-
ening the stability requirement on A. More precisely, the next few lemmas combine to show
that if (M, A) is uniformly weakly benign and both M and A# (see next paragraph) are
stable then (M, A) is stable.

Consider the language L# whose basic predicates are the relations induced on A in the
sense of Definition 0.1.3. We denote by A# the expansion of A to an L#-structure. It is easy
to show by induction on the construction of L#-formulas that for every φ#(x) ∈ L#, there
exists L(P )-formula φ∗(x) such that for every a ∈ A the following holds:

A# |= φ#(a) ↔ (M, A) |= φ∗(a). (3)
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Suppose (M, A) ≺ (N,B) and b,b′ ∈ B. It is immediate that if b and b′ have the same
L#-type over A then tp∗(b|A) = tp∗(b′|A). Equation 3 together with Definition 0.1.3. means
that for every b,b′ ∈ B, b and b′ have the same L#-type over A (in the sense of B#) if and
only if they have the same L(P )-type over A (in the sense of (N, B).

Denote by FE(X) the family of all L-finite equivalence relations over X and by FE∗(X)
the family of all L∗-finite equivalence relations over X. We will write stp(b|X) ≡ tp(b|X)
if for every E(x,y) ∈ FE(X) there exists mE ∈ X such that |= E(b,mE) and write
stp∗(b|X) ≡ tp∗(b|X) for the analogous notion for ∗-types. In the stable case, stp(b|X) ≡
tp(b|X) implies tp(b|X) is stationary.

Lemma 4.1 If (M, A) ≺ (N, B) then

1. M ↓A B (as L-structures)

2. stp(b|A) ≡ tp(b|A).

3. stp∗(b|A) ≡ tp∗(b|A).

Consequently, for any b,b′ ∈ B, tp(b|A) = tp(b′|A) implies tp(b|M) = tp(b′|M).

Proof. It is easy to see using (M, A) ≺ (N,B) that any formula φ(m,a,x) which is
satisfied by an element of B is satisfied by an element of A. This implies the type of B over
M does not fork over A. (See for example [2, III.3.12].)

We prove 3) and 2) is a special case. Let b ∈ B, E∗(x,y) ∈ FE∗(A). Then there
exists m ∈ M such that (N,B) |= E∗(m,b) since E∗ ∈ FE∗(A) and each E∗-class has a
representative in model (M, A). Then we have (N, B) |= E∗(m,b) ∧ P (b). As (M,A) ≺
(N, B), for some a ∈ A, N |= E∗(m,a) and by transitivity of E∗, (N, B) |= E∗(b,a). So,
E∗(x,a) ∈ tp∗(b|A).

The ‘consequently’ is immediate from 1) and 2). 24.1

We will say f is a strong partial automorphism over X if f preserves all strong types over
X. We need the following easy lemma which does not seem to have been remarked.

Fact 4.2 Suppose M =
⋃

κ<λ Aκ is a special model with X ⊂ A0. If b, b′ ∈ M realize the
same strong type over X there is an automorphism of M which fixes X pointwise, preserves
strong types over X, and maps b to b′.

Proof. Let M =
⋃

κ<λ Aκ. If f is a strong partial automorphism over X whose domain
contains X and is contained in some Aκ, then for any c ∈ M there is a d ∈ M such that
f ∪ 〈c, d〉 is a strong partial automorphism over X. (Just realized the type {E(v, f(a)) :|=
E(c, a), a ∈ dom f} where E ranges over all finite equivalence relations with parameters in
X.) Now fix a cautious enumeration of M as in Lemma 10.4.3 of [9]. Copying the proof of
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Theorem 10.4.4 of [9] but replacing elementary equivalence with the condition that sending
ai to di and bi to ci is a strong partial automorphism over X, we get the result. 24.2

We write S∗(X) for the collection of L(P )-1-types over X. We also need briefly some
quite special notation. Let S∗P (X) denote the set of L(P )−1-types q(y) over X which contain
the formula P (y). We first extend from the stability of A# to bounding the cardinality of
S∗P (X), for arbitrary X, not just subsets of A.

Lemma 4.3 Suppose M and A# are stable in |A|, and (M, A) is uniformly weakly benign.
Then, |S∗P (M)| ≤ |A|.

Proof. Let (N,B) be an elementary extension of (M,A) which is a special model of
(M, A, x)x∈X . Then, (N, B) is strongly λ-homogeneous and moreover if two points realize
the same L(P )-strong type over a set X of size λ there is an automorphism of (N,B)
mapping one to the other which fixes X pointwise and preserves L(P )-strong types over X.
The discussion before Lemma 4.3 shows that it suffices to prove the following:

Claim 4.4 If b,b′ ∈ B realize the same L(P )-type over A, then they realize the same L(P )-
type over M .

Proof. Notice that by 3) of Lemma 4.1, b and b′ have the same L(P )-strong type over
A. The choice of (N, B) implies by Fact 4.2 that there is an L(P )-automorphism h of (N,B)
which fixes A point-wise, preserves all L(P )-strong types over A and takes b′ to b. If the
lemma fails there is an L(P )-formula φ(x,y) such that

φ(m,b) ∧ ¬φ(m,b′).

So
φ(m,b) ∧ ¬φ(h(m),b).

By Lemma 4.1, M is independent from B over A. In particular, m ↓A B. So h(m) ↓h(A) h(B),
i.e. h(m) ↓A B. Since h preserves L(P )-strong types over A and consequently L-strong
types over A, stp(m|A) = stp(h(m)|A). The result follows by the following standard result
(e.g. Proposition 4.34 of [11]: stp(h(m)|A) = stp(m|A), m ↓A B and h(m) ↓A B imply
stp(h(m)|B) = stp(m|B).

Since (N, B) is weakly benign we conclude m and h(m) realize the same L(P )-type over
B. This contradiction yields the conclusion. 24.4

Lemma 4.3 follows since the stability of A# implies there are at most |A| L#-types over
A and by Claim 4.4 we have at most |A| L(P )-types over M which contain the formula P (x).
24.3

As we see in Lemma 4.5, it would suffice in Lemma 4.3 to show |S∗P (M)| ≤ |M |. Because
B is independent from M over A, we obtained the stronger bound |S∗P (M)| ≤ |A|, which
might be useful in the future. Now we adapt an argument of Bouscaren to get stability of
(M, A).
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Lemma 4.5 Let M be stable, (M, A) uniformly weakly benign, and |S∗P (M)| ≤ |M |. Then
(M, A) is stable.

Proof. We suppose that |M | = λ with λ|L| = λ. Let (N, B) be an |M |+-saturated elementary
extension of (M, A), [(M, A) ≺ (N,B)]. Consider any a ∈ N − (B ∪ M) and let p :=
tp(a/B ∪M). By what Bouscaren calls the Weak Definability Theorem [6][ page 214]; [10])
there is C(a) ⊂ B ∪M(|C(a)∪M | = λ) such that tp(a|C(a)∪M) has only one nonforking
extension to type over B∪M and it is p. We use this notation for various choices of a in the
following. The following claim is Lemma 2.3 of [6]; we repeat the proof for completeness.

Claim 4.6 Let b ∈ N \M , C(b) ⊂ (B ∪M) such that tp(aC(a)/M) = tp(bC(b)/M)) and
tp∗(C(a)/M) = tp∗(C(b)/M). Suppose further that stp(c/MC(b)) = stp(b/MC(b)), where
c ∈ N is the image of a under an L(P )-automorphism h fixing M and taking C(a) to C(b).
Then tp∗(a/M) = tp∗(b/M).

Proof. By the choice of c,

tp∗(aC(a)/M) = tp∗(cC(b)/M).

Since h fixed B setwise, tp(c/M ∪B) is the unique nonforking extension of its restriction to
C(b) ∪M . Now,

tp(aC(a)/M) = tp(bC(b)/M) = tp(cC(b)/M).

Since C(b) is chosen as C(a) was in the first paragraph, tp(b/B∪M) is the unique nonforking
extension of its restriction to C(b)∪M . Since stp(c/MC(b)) = stp(b/MC(b))), stp(b/M ∪
B) = stp(c/M ∪ B). This easily implies that for any d ∈ M \ A, stp(bd/B) = stp(cd/B).
Then, because (N, B) is weakly benign, tp∗(bd/B) = tp∗(cd/B). The last implies that
tp∗(b/M∪B) = tp∗(c/M∪B). Then, because tp∗(c/M) = tp∗(a/M), tp∗(a/M) = tp∗(b/M).
24.6

Claim 4.6 implies that tp∗(a/M) is characterized by a triple of types: tp(aC(a)/M),
tp∗(C(a)/M), and stp(a/MC(a)). Notice, that tp(aC(a)/M) ∈ S(M)|L| and tp∗(C(a)/M) ∈
S∗∗P (M), where S∗∗P (X) denotes the set of L(P ) − |L|-types q(y) containing P (yi) for each
i < |L|. For fixed tp(a/MC(a)), the finite equivalence relation theorem shows there are
at most 2|L| choices for stp(a/MC(a)). Thus, there are only λ choices for stp(a/MC(a)).
Since |S∗P (M)| ≤ |M | and λ|L| = λ, |S∗∗P (M)| ≤ |M | = λ. So,

|S∗(M)| ≤ |S(M)||L| × |S∗∗P (M)| × λ ≤ λ (4)

and we finish. 24.5

Combining Lemma 4.3 and the argument from Lemma 4.5,we have:
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Theorem 4.7 Let M be (super) stable, (M, A) uniformly weakly benign, and A# (super)
stable. Then (M,A) is (super) stable. And if L is countable and both M and A# are ω-
stable then so is (M,A).

Proof. We prove the ω-stable case. Superstability implies that each C(a) is finite. Thus
in the superstable case S∗∗P (X) reduces to a collection of L(P ) k-types for some k and the
types of the form tp(aC(a)/M) also become finite types over M . So the first two factors
in Equation 4 become |M |. In the ω-stable case the number of strong types over a set of
cardinality X is |X|. Thus, the third factor in Equation 4 is also |M | and we finish.

The following example illustrates the role of P ∗.

Example 4.8 Let M be the rational numbers under addition and let pi : i < ω be an
enumeration of the prime numbers. Let a0 = 1, b0 = 1/2 more generally ai = 1

p2i−1
, bi = 1

p2i
.

Let cij = ai · bj. Now if P is a subset of the cij, (M, P ) is uniformly benign (by Fact 2.1), but
(M, P ) is unstable for P chosen as in Fact 2.3. By Theorem 4.7, for such P , P ∗ is unstable.
It is also easy to see directly in this case that (∀x)[P (x · a−1

0 · v) → P (x · a−1
0 · w)] linearly

orders {c0i : i < ω}.

5 Context and Further Problems

This study has two somewhat disparate motivations. On the one hand we are trying to
understand the arguments arising from the study of ‘quantifier collapse’ in embedded finite
model theory. On the other we look at the problem of finding expansions of models which
preserve stability from an unusual perspective. The main aim of such constructions (stem-
ming from Hrushovski) is to find ‘sufficiently random expansions’ which preserve stability.
It is understood that ‘most’ expansions destroy stability. Our aim is rather to find simple
conditions which guarantee that stability is preserved – a possibility which arises from work
on embedded finite model theory and ‘belles paires’. The following two remarks extend the
connections with these two motivations. Theorem 7.3 of [3] still holds when the use of ‘pseu-
dosmall/bounded’ in the proof is replaced by ‘benign’. With the help of [1] this provides
a new proof for quantifier collapse in superstable theories. That is the crucial local argu-
ments in [3] or as refined in [8] are replaced by the global analysis of the structure of models
using Chapter V of [13]. The material relevant for databases requires only the following
(Theorem 5.2) weakening of Theorem 7.3 of [3]. We use the following notation from [3].

Notation 5.1 Let I be a subset of N and let L∗ be the expansion of L+ by constants {cα :
α < |I|}. Fix a permutation g of I and an enumeration {aα : α < |I|} of I. Then N g

1 is
the expansion of N where cα is interpreted as aα and N g

2 is the expansion of N where cα is
interpreted as g(aα).
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The following result is proved as Theorem 7.3 of [3], just noticing that the weaker hypotheses
are all that are used.

Theorem 5.2 Let N be a model that is stable and I be a set (sequence) of indiscernibles.
Suppose that (N, I) is benign and that (N, I) is ω1-saturated. For any permutation g on I
(order-preserving permutation of I),

N g
1 ∼L∗,p N g

2 .

Our main question remains:

Question 5.3 Is every subset of a stable theory weakly benign?

In view of [1] and Theorem 4.7, a positive response to the following question would yield
(M, I) is superstable and so avoid (shift?) much of the difficulty of [3].

Question 5.4 Let M be superstable and I an infinite set of indiscernibles. Is I# superstable?

In fact, the answer is yes in several natural cases: M is strongly minimal or I is based on a
regular type. In either case, every permutation of I extends to an automorphism of M and
so I# remains trivial and in particular stable. In the first case this is immediate from strong
minimality. The second was remarked in the last paragraph of [3]. So Question 5.4 is solved
by a positive response to the problem raised in [3]:

Question 5.5 Let M be superstable and I an infinite set of indiscernibles. Does every
permutation of I extend to an automorphism of M?

There are analogous versions of Question 5.4 for stable theories if Question 5.3 has a positive
answer. In another direction, we ask:

Question 5.6 None of this touches the work of [3] on theories without the independence
property (nip) In that context it is easy to find examples of non-benign sets. E.g. (Bouscaren)
Let A be Q without the closed interval [0, 1]. Then 0 and 1 realize the same type in L but not
in L+. order. But one could still ask something like, does (M, A) benign, M nip, Aind nip
imply (M,A) nip? Or more weakly, and more plausibly, does the order indiscernible version
[3] of Theorem 5.2 go through with nip rather than stable as the hypothesis.

The construction in Section 2 raises the following question.

Question 5.7 Let M be free abelian on 〈ai, bi〉. (Note M is strictly stable.) Choose P as
in Fact 2.3. Is P benign?
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