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Abstract. We study the fragment of Peano arithmetic formalizing the
induction principle for the class of decidable predicates, IA;. We show
that I'A, is independent from the set of all true arithmetical IT»-sentences.
Moreover, we establish the connections between this theory and some
classes of oracle computable functions with restrictions on the allowed
number of queries. We also establish some conservation and independence
results for parameter free and inference rule forms of A;-induction.

An open problem formulated by J. Paris (see [4, 5]) is whether I A; proves
the corresponding least element principle for decidable predicates, LA,
(or, equivalently, the X;-collection principle BX';). We reduce this ques-
tion to a purely computation-theoretic one.

1 Introduction and motivation

The schema of induction for decidable predicates I A; is considered to be rather
exotic. Indeed, the stronger schema of induction for r.e. predicates X, appears
more naturally in the formalization of various mathematical and metamathe-
matical arguments and presently has the status of one of the most important
and well-understood fragments of PA.

Nonetheless, the class of decidable relations is natural from a recursion-
theoretic point of view, and we shall see below that IA; also corresponds to
sufficiently interesting models of computation. The present paper is an attempt
to fill several obvious gaps in our understanding of I A;.

In Section 2 we accumulate some basic information on A;-induction. In Sec-
tion 3 we prove that IA; is independent from the set of all true arithmetical
II,-sentences. Some corollaries on the parameter-free versions of IA; are ob-
tained in Section 4. Our further analysis of I A; is based on a reduction of IA;
to an inference rule form of Aj-induction, which is obtained in Section 5. In
particular, this allows us to characterize in Section 6 the X3-theorems of I A;.

In Section 7 we approach the problem formulated by J. Paris, that is, the
question whether IA; contains the X-collection schema BX;. We only obtain
partial results in this direction. However, a characterization of the classes of
provably total computable functions of the extensions of I Ay by true II;-axioms
is obtained, which yields a reduction of IA; versus BY; problem to a purely
computation-theoretic question.
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2 Preliminaries

Elementary Arithmetic EA is a first order theory formulated in the language with

the symbols (0,1, +, -, 2%, <, =) which all have the usual meaning in the structure

of natural numbers N. EA has some finite set of basic open axioms defining these

symbols together with the induction schema for bounded formulas (this theory

is denoted IAG*™ (exp) in [5]). It is known that EA is finitely axiomatizable.
The schema I A; is defined as follows.

IA; = Yz (p(z) & ¥(z)) = 1,
for all p € X1, ¢ € II;, where
I, == ¢(0) AVz(p(z) = p(z + 1)) = Vzp(z)

is the usual induction formula for ¢ (parameters in ¢ and ¢ are allowed). Abusing
the terminology, IA; will also denote the extension of EA by this schema.

This definition is based on the characterization of decidable predicates as
those which are simultaneously Yy and IT;. Alternatively, one can define decid-
able predicates as those having computable characteristic functions. A universal
Turing machine can be naturally represented in EA, that is, one can write out a
Y -formula &, (x) ~ y expressing “e-th computable function on input x converges
to y”. Then one arrives at the following axiom alA;:

Ve (Vady <1&.(x) 2y — Ip, (z)~0)-
The proof of the following lemma is straightforward, so we omit it.

Lemma 1. IA; and al A, are equivalent over EA.

This presents an evidence that our formulation of IA; is reasonably stable
— different approaches yield equivalent systems. We also have the following

Corollary 1. TA; is finitely axiomatizable (over EA).

On a par with IA; we shall consider the least element principle and the order
induction schema. Letting

L, = 3zp(z) — Fz (p(x) AVy <2 —9(Yy)),
Ol, :==Vz (Vy < zp(y) — p(z)) = Vop(z),

the schemata LA; and OIA; are naturally defined as follows:

LA, . Vz(p(z) ¢ ¢¥(x)) = Ly,
OIA,: Yz (o(z) ¢ ¢(z)) = Ol,,
where ¢ € Xy and ¢ € II;.

Obviously, over EA one has L, & OI., = I, hence LA; - I A, but the
converse is an open problem formulated by J. Paris (see [5,4]).



Open problem: 1Ay - LA?

Why does the usual argument for the equivalence of L and I not work?
Usually one proves
loy<apy) = Ol,,

which is also provable in EA, but EA need not recognize that Yy < x ¢(y) is
decidable (A;), if so is ¢. The natural principle establishing this property is the
schema of X -collection:

BXYy: Vr <adyp(z,y) = F2Vr <aJy <z p(z,y),

for ¢ € ¥;. Informally, this axiom states that if a computable function is total
on an interval [0, a], then there is a uniform bound on the size of its values on
[0,a]. R. Gandy (see [5]) proved that BX is equivalent to LA;, hence the usual
argument does not help to solve Paris’ problem.

BY) is a well-studied fragment of arithmetic. It is known that BY; follows
from ¥;-induction I'X, but not conversely. In fact, by J. Paris [7] and H. Fried-
man, BY is IIo-conservative over EA. Yet, BY); is strong from the point of view
of the set of all true IIs-sentences, T'hir, (N). C. Parsons [9] showed that B, is
independent from this (non-r.e.) theory: Thy, (N) ¥ BX;. So, we can draw the
following diagram of fragments of arithmetic below IX;:

I3

LAl = BZl PRA

1A,

EA

Here, PRA denotes the fragment of the primitive recursive arithmetic in the
language of EA, which can be axiomatized over EA by infinitely many I1>-axioms
stating the totality of the generating functions of the Grzegorczyk hierarchy.!
Notice that PRA is not included in BY; by J. Paris and H. Friedman, and BY
is not included in PRA by C. Parsons. It is also well-known that IX; is II-
conservative over PRA [8]. It is open, whether I'A; is properly included in BX;
(we conjecture that it is).

L Alternatively, it can be axiomatized over EA by the inference rule form of X-
induction.



In the next section we shall show that IA; properly extends EA. In fact, we
shall improve a result of C. Parsons and show that Thy,(N) ¥ TA;. This also
implies that 1A is not included in PRA.

3 Independence of A;-induction

Our goal in this section is to prove the following result.

Theorem 1. Thy, (N) ¥ IA;.

Proof. We shall first prove the simpler statement EA ¥ IA;. Then we shall
modify this proof to obtain the stronger statement of the theorem. The idea of
the proof is a variation of the one in [2].

Since I Ay is Ils-conservative over EA, it would be hopeless to try to prove
the consistency of EA in IA;. So, rather than showing EA ¥ TA; directly we
shall construct a Ily-sentence 7 such that it is easy to prove

EA+ 7t/ IA; + 7.
In fact, for a suitable 7 we want
FEA+7) #F(IA + ),

where F(T') is the class of provably total computable functions of a theory T'.
Recall that a function g € F(T) iff for some ¢(x,y) € X,

L g(x) =y < NF o(z,y),
2. THVxIy o(z,y).

It is known that F(EA) coincides with the class of (Kalmar) elementary
functions £. These can also be characterized in the following ways:

1. The functions whose computation time is bounded by exp(™ (z) for some
constant n, where

exp(z) = 27, exp™*1) () = exp(exp™ ().

2. The closure of 0, 1, +, -, exp, projection functions and the characteristic func-
tion of < by composition and bounded recursion.

3. Bounded recursion in 2. can be replaced (modulo adding some simple initial
functions) by either of the following operators: bounded u-operator, bounded
sum, bounded product.

For an arbitrary 7' containing EA not too much can be said about F(T')
except that F(T) contains £ and is closed under composition. It is also easy
to see that 1) F(T) only depends on the Il>-fragment of T'; 2) adding true
IT;-axioms to T' does not change the class F(T').

For a class of functions K let E(K) denote the closure of £ U K under com-
position and bounded recursion. C(K) is the closure of £ UK under composition
alone; we also write C(f) instead of C({f}).



The classes C(f) precisely correspond to the provably total computable func-
tions of true ITs-sentences. To see this let EA(f) denote a conservative extension
of EA formulated in the language with the symbols for all elementary functions
and a new function symbol f. Axioms of EA(f) are (open) defining equations
for all elementary functions and the schema of induction for open formulas not
containing f. In other words, no mathematical axioms about f are added. Any
bounded formula not containing f is EA(f)-equivalent to an open one. Moreover,
it is known that EA(f) admits a purely universal axiomatization.

Lemma 2. If m is a sentence in the language of EA of the form Vz3y ¢(x,y)
with ¢ bounded, then F(EA + ) = C(f), where f(z) := py. o(z,y).

Proof. Representing ¢ as an open formula and adding the axiom Vzp(z, f(z))
to EA(f) we obtain a conservative purely universal extension of EA + 7. Then
the inclusion F(EA+ ) C C(f) follows from Herbrand’s theorem. The opposite

inclusion is immediate (details can be found, e.g., in [1]).

Now we are going to analyze the classes F(I Ay +) for m € II;. By the abuse
of notation, the set of all open formulas in the language of EA(f) (which may
involve f) will be denoted C(f). This notation is justified, because every open
formula in EA(f) is equivalent to the one of the form t(x) = 0, for a suitable
C(f)-term t. IC(f) denotes the induction schema for open formulas and the
corresponding extension of EA(f).

Let 7 = Va3yp(x,y) be as in Lemma 2 with ¢ bounded. The bounded formula
p(z,y) A\Vz < y—p(x, z) represents the graph of the function f(z) := uy. o(z,y)
and hence defines a canonical interpretation of f in EA+m. For this interpretation
we observe the following

Lemma 3. IA; + « interprets [C(f).

Proof. It is sufficient to show that the interpretation of any open formula of
EA(f) is provably A; in EA 4 7, that is, it is provably equivalent both to a X-
and to a II;-formula.

First, we notice that for any EA(f) term ¢(x), the formula t(x) = y is EA(f)-
equivalent to a purely existential formula ¢ (x, y) as well as to a purely universal
formula v (@, y) such that every atomic subformula of ¢); either does not contain
the symbol f or has the form f(u) = v for 4 and v variables. This is the usual
process of unwinding complex terms, which works in pure logic with equality.
For example,

f(h(f(z),a)) =y & Fuv (f(z) =

which has the required form assuming h is an elementary function.

Since every open formula is equivalent to the one of the form t(x) = 0, it
follows, more generally, that any open formula has such purely existential and
purely universal representations in EA(f).



Under the considered interpretation atomic subformulas of the form f(u) =v
are replaced in 9y and ¢; by the bounded formulas

p(u,v) AVz < 0 ~p(u, 2),

which yields, respectively, X;1- and II;-formulas in the language of EA. Since
EA+ 7 proves all the interpreted theorems of EA(f), the interpretations of C(f)-
formulas are provably Ay in EA + 7.

It is useful at this point to introduce a dual form of induction, which I call
the interval search principle:

Sy = p(a) N=pb) Aa <b— 3z € [a,b) (p(x) A —p(z + 1)).

The search principle essentially states that a 0-1 valued function f (represented
by ¢ on [a,b]) such that f(a) = 0 and f(b) = 1 must change its value at some
point x of the interval, that is, f(z) = 0 and f(xz + 1) = 1. Notice that we do
not claim that the point z should be the minimal possible one.

Trivially, over EA, S, = I, (take a = 0), and I,(y4q) = S,. It follows
that SA; = IA; and SC(f) = IC(f). ?

Now we prove that [C(f) verifies that f has a local maximum on any
bounded interval. Notice that the predicate “f has a local mazimum at 7 can
be expressed by an open formula LM (a, b, z):

(e=anf(@)> flz+ 1))V (@=bAf@) > f&— 1)V
(a<w<bAf@—1)< f@)Af@+1) < f()).

Lemma 4. IC(f) proves that f has a local mazimum point on any bounded
interval:
Va < b3z € [a,b] LM (a,b, z).

Proof. Apply SC(f) to the formula ¢(z) := f(x + 1) > f(z) and the interval
[a,b — 1]. If =p(a) then the local maximum is at a; if (b — 1) then the local
maximum is at b. Otherwise, by SC(f) we obtain a point x such that z + 1 is a
local maximum of f.

Remark 1. The same argument shows that IC(f) verifies the existence of a local
maximum for any function, whose graph is definable by a C(f)-formula.

Hence, if EA+ 7 F IA; + 7, then by Lemma 2 the problem of finding a local
maximum point of f(x) = py.o(x,y) on a bounded interval belongs to C(f).
However, by the following lemma this is, generally, impossible.

Lemma 5. There is a recursive function f (with an elementary graph) such
that no function t(a,b) € C(f) faithfully computes a local mazimum point of f
on interval [a,b], that is, for every such t,

NE 3Ja,b(a < bA-LM/(a,b,t(a,b))).

2 Notice that the reduction of S to I depends on the presence of parameters. Below
we show that the parameter free versions of IA; and SA; are not equivalent.



Take 7 := VaIy p(x,y), where ¢ is a bounded formula representing the graph
of f from this lemma. Then, by the construction, EA+7 ¥ I A; + 7, which shows
EA ¥ T Ay. So, it remains for us to construct such an f.

Before doing so we notice that any C(f)-term can be considered as a program
with an oracle for a function f which may only ask a bounded number of oracle
queries (this number is bounded by the number of occurrences of the symbol
f in ¢ and does not depend on the input of the program). The running time is
then bounded by an elementary function of the size of the input together with
all the oracle answers.

Notice that the naive search algorithm in the worst case uses b —a + 1 oracle
queries to find a local maximum point of f on [a,b]. The more efficient binary
search algorithm uses 2 -log(b — a) + O(1) queries: first check, if a or b is a local
maximum; if not, compare the values of f at [(a +)/2] and [(a+b)/2] + 1 to
decide, if a local maximum of f is found in the left or in the right half of [a, b].
It is intuitively clear that a bounded number of queries in generally not enough
to find a local maximum point. In fact, it would be sufficient for our present
purposes to prove a simple logarithmic lower bound on the number of queries

first. (Sharp upper and lower bounds of the form log, n + O(1), where « is the

1+v5
2

‘golden section’ constant , were subsequently obtained in [10]).

Lemma 6. Fiz an interval [a,b] and assume that My is an oracle Turing ma-
chine such that for any function f, My(a,b) asks < log(b—a+1)—log3 queries.
Then there is a function f such that My does not faithfully compute a local
mazimum point of f on [a,Db].

Proof. Consider such a machine My. Let ¢ := log(b — a + 1) — log 3, then the
number of points of the interval [a,b] is b—a +1=3-29.

Define f on [a, b] simultaneously with the computation of M(a,b). The com-
putation is devided into stages. Stage n begins when the n-th query is being
asked. At every stage n, f will be defined on two subintervals [a, a,] and [b,,, b]
of the interval [a,b] and undefined everywhere inbetween. f may be defined ar-
bitrarily outside the interval [a, b].

At stage 0 set f(a) = f(b) := 0, ag := a, by := b and start computing
Mf (a, b).

At stage n, as soon as the next value of f(u) for some w is queried, choose
one of the three possible cases.

Case 1: u € (an,b,) and v — a,, < b, — u. Set any1 := u, by41 := b, and
define f(z) := f(ap) + (z — ay,) for all z € (an,u]. Output the value f(u) and
continue the computation of My (go to the next stage).

Case 2: u € (ap,by) and u—ay, > by —u. Set byy1 := u, apy1 := a,, and define
f(z) := f(by) + (by, —z) for = € [u,by,). Output the value f(u) and continue the
computation of M.

Case 3: u ¢ (an, by). Then f(u) is already defined. Output this value, do not
change a,, and b,, and continue the computation of M.

We claim that after n stages (n queries), if n < ¢, the interval (a,, b,) will be
nonempty. Let p, denote the number of points in [ay, b,]. Recall that py = 3 - 21



and by the construction
1 1

DPnt+1 2> §pn - 5

Summing up the geometric progression we obtain

1
Pn > 2_np0_1-

Hence, p, > 3 — 1 = 2, which means that (a,,b,) is nonempty.

We assume that My (a,b) terminates after n < g queries and outputs a local
maximum point z of f. By the construction of f,  may only belong to [ay, by],
because there are no local maxima anywhere else on [a, b]. Yet, if x € [ap, by] we
can always define f on the remaining nonempty interval (a,,b,) in such a way
that x will not be a local maximum point. A contradiction.

Now we are going to prove Lemma 5.

Proof. Let to(a,b),t1(a,b),... be an (effective) enumeration of all C(f)-terms
of the variables a,b. The required function f will be ‘pasted’ of finite functions
fn ¢ [an,bn] = N defined on disjoint intervals and such that t,(a,,by) is not a
local maximum of f,.

Let g, be the number of occurrences of the symbol f in ¢,,. Choosing b,, —a,, >
3:29" —1 and letting f, be as in the previous lemma would imply that t,, does not
faithfully compute its local maximum on [a,, b,]. It only has to be guaranteed,
in addition, that f has an elementary graph and is everywhere defined.

To this end, the whole construction should be made effective. As in [1] we
define f in terms of a clock Turing machine, that is, a Turing machine with an
additional read-only tape which contains the current time (the number of steps
of the computation). The content of the clock tape can be copied on the work
tape in one step. Obviously, clock Turing machines are polynomially simulated
by the ordinary ones.

The clock Turing machine computing the values of f will be constructed in
such a way that, whenever a value f(x) is being defined, it has to exceed the
current value of the clock. Since the size of the full protocol of the computation is
polynomial in the number of steps, this entails that the graph of f is elementary.
This requirement, however, is easy to fulfill by modifying the construction of f
in Lemma 6, e.g., as follows.

Assume we have already constructed the functions f; for i < n and now
consider the term t,. Pick a fresh interval [a,b] of size 3 - 2% such that a >
max{z : f(z) is defined}. Define f(z) := current time, if z = b or (z < a
and f(z) is undefined). Start computing the value ¢,(a,b) in accordance with
the construction in Lemma 6 (¢, plays the role of My). Instead of defining
f(z) := f(an) + (z — ay,) in Case 1, put f(z) := f(an) + T + (z — ay,), where T
is the current time (and similarly in Case 2). In Case 3 the value f(u) may now
not yet be defined (if w > b); in this case put f(u) :=T.

After ¢, stages the term t,(a,b) will be evaluated to a certain z. We can
define f on the remaining interval (ag, , by, ) in such a way that z is not a local



maximum point, if & € [ag,, by, |, and the values of f exceed the current value
of the clock. Then f satisfies all the requirements. This completes the proof of
Lemma 5 and shows the independence of IA; from EA.

We prove Theorem 1 essentially by relativizing the above arguments. Assume
Thi,(N) F IA;. Since 1A, is finitely axiomatizable, there is a particular true
IT5-sentence w9 = VoIyy(x,y) such that EA + mg - IA;. We know that F(EA +
mo) = C(g), where g(z) := py.i(z,y).

Notice that the presence of additional initial recursive functions does not
change anything in the proof of Lemma 5, so we obtain the following version.

Lemma 7. Let g be a total recursive function. Then there is a recursive function
f (with an elementary graph) such that no function t(a,b) € C(g, f) faithfully
computes a local maximum point of f on interval [a,b], that is, for every such t,

NF Ja,b(a <bA-LM/(a,b,t(a,b))).

As above, let ¢(x,y) represent the graph of f and let 7 := VaIyp(z,y). We
obviously have F(EA + mo +7) = C(g, f). Hence, open formulas in the language
of EA(g, f) are (interpreted as) provably A; in EA + mg + 7. As in Lemma 4 we
obtain that mg + m + IA; interprets IC(g, f), therefore it proves that on any
interval a local maximum point of f exists. Yet, Lemma 7 implies that this is
impossible to prove in EA 4+ 79 + 7, which completes the proof of Theorem 1.

4 Parameter free schemata

The results of the previous section can be strengthened and yield additional
information about parameter free A;-induction schema IA;. We also let SA]
denote the schema SA; without parameters. (In both cases, parameters are the
additional free variables occurring in the formulas p(z) and ¥(z).) In general,
we think that SA is more interesting than IA; , for the reasons explained in
Section 6. Here we show that SA; is properly stronger than IA; and collect
some other facts on these two schemata.

The proof of Lemmas 3 and 4 directly shows that = + SA] proves the exis-
tence of a local maximum point of the witnessing function of w. Hence, as before
EA+7F SA[, for any true IT,-sentence m. Also notice that any r.e. set X of true
II>-sentences follows from a single true I1>-sentence — the uniform I7,-reflection
principle for EA + X . Thus, we obtain the following corollary.

Corollary 2. For any sound r.e. IIy-aziomatized theory T', T ¥ SAT .

This implies, for example, that SA] is independent from PRA, as well as
from the set of all IT>-theorems of PA.

On the other hand, it is easy to see that the schema SA; follows from the
set, of all true Il>-sentences.

Lemma 8. Thy,(N) - SAT.



Proof. To derive SA; consider the premise Vz(p(z) ¢ 1(x)). If it is true, then
the conclusion S, is equivalent to a formula of complexity II> and follows from
Thi,(N). If it is false, then for some n we have

NE =(p(n) < ¢(n)).

This formula is a boolean combination of X;-formulas, so it is provable in
Thi,(N), and thus
Thi,(N) F =Vz(e(z) < ¢()).

If SAT were finitely axiomatizable, by compactness Lemma 8 would contra-
dict Corollary 2.

Corollary 3. SAT is not finitely aziomatizable.

We can also separate SA; and I A; . First, almost as in the proof of Lemma 8
we obtain

Lemma 9. Thy, (N) - TAT.

Proof. One only has to realize that a formula of the form —(p(7) < (7)), if
valid, is provable already in Thyr, (N).

Corollary 4. IAT ¥ SAT.
Proof. Notice that since Thy, (N) F IAT, for any true IT>-sentence 7, we have
F(r+1A7)=F(EA+m).

The latter property fails for SA;, as we have seen from the proof of Corollary 2.

5 Reduction of IA; to A;-induction rule

In order to approach I A; vs. BX| question a more careful analysis of the schema
IA; is necessary. We simplify the picture by reducing I A; to the corresponding
Aq-induction rule.

A1 -induction rule is the following rule of inference:

Va(p(z) ¢ P(z))
1, ’

Al—lR :

where ¢ € Xy and ¢ € II;.

Notice that the premise and the conclusion of the rule are (equivalent to)
II,-sentences, whereas the schema IA; has arithmetical complexity II3. Thus,
the behaviour of the rule will be easier to describe in computational terms than
that of the axiom schema.

Also notice that all the usual theories, such as EA or PRA, are closed under
this rule: by Herbrand’s theorem provably A;-formulas ¢ of EA are provably
equivalent to bounded formulas, hence the induction principles I, for such ¢ are
all EA-provable. On the other hand, the results of the previous section show that
there is a true IIs-sentence 7 such that EA + 7 is not closed under A;-IR. The
aim of this section is to establish the following result.



Theorem 2. For any II3-sentence 7, [ A1+ is ITs-conservative over m+A1-IR.

Proof. To prove this theorem we first formulate a certain Gentzen-like rule
corresponding to IA; and by free cut-elimination procedure establish the IT5-
conservativity of this rule over its restricted version. Then the restricted version
is shown to be equivalent to A;-IR.

We use the standard formalism of Tait calculus [11], that is, we treat sequents
as sets of formulas (understood as their disjunctions). Formulas are built up
by connectives A,V and quantifiers from atomic formulas and their negations
(hence, -, —, <+ are defined operations). We also keep apart the alphabets of
free and bound variables. We shall work in the language of EA.

Our sequential version of I Ay is the following rule:

A, ~p(a),p(a) A, p(a),pla) A,p0) A -pla),pla+1)
Al—lRl : A,(P(t)

where ¢ is a term, ¢ and ¢ are X;-formulas, A is a finite set of formulas, and
the free variable a does not occur in A, ¢(t). p(t) is called the main formula of
the inference.

It is clear that IA; is closed under A;-IR’, if one translates the sequents as
disjunctions. Using A;-IR' it is also easy to derive the schema I A, if one takes
for A the set {=Vz(o(z) + ¥ (x)), 2¢(0), Vz(p(z) = @(z + 1))} and for t a
free variable. 3

Then we obtain the following version of free cut-elimination.

Lemma 10. Every derivation using A1-IR' and predicate logic can be effectively
transformed into a derivation in which every cut-formula or its negation is the
main formula of an induction inference.

Proof. This can be shown essentially as in [11]. We omit the details.

Let A;-IR"” denote the rule A;-IR" with the restriction that A consists of
purely universal or purely existential formulas. As a corollary of the free cut-
elimination we observe the following lemma.

Lemma 11. Let T be a II3-axiomatized theory containing EA. Then T + 1A,
is IT>-conservative over T + A-IR".

Proof. We may assume that the axioms of T' are brought into prenex normal
form, that is, they have the form

Ver .. VepJyr .- Ay Az, - oo Tk, Y1, - - 5 Y1),

where A is a IT;-formula. Consider a derivation in predicate logic together with
A1-IR' of a sequent T, X, where =T denotes a finite number of negated axioms
of T as above, and X is a set of X;-formulas (possibly, with parameters). By

% Later we shall treat the other nonlogical axioms of IA;, including equality axioms,
as side assumptions.



free cut-elimination we may assume that every cut-formula in this derivation is
the main formula of a A;-induction inference. Thus, it has complexity X or IT;.
Every formula occurring in the derivation is a subformula of a cut-formula or of
a formula occurring in the end sequent. Thus, it has to be X; or II; unless it
belongs to =T or has one of the following forms:

1. 3zppgr - T2k Vyr . VY= Ay, .o Sty Tontls - -+ 5 Tk Y1, - - - 5 Y1), Where t; are
terms, 1 < m < k;
2. YYmgr . Yy— A, -tk G, Gy Yt - -+ 5 Y1), Where ¢ are terms, a;

are distinct free variables, 1 < m < [.

Now consider any application of A;-IR" in this derivation. We may apply the
quantifier rules to all the side formulas of its premises which have types 2 and 1
in order to replace such occurrences by the negated instances of the axioms of
T. Thus, we obtain the sequents in which all formulas either belong to =7 or to
Xy UII;. The former can then be cutted away by axiom sequents

Var .. Yoy .- Ay Az, .o Tk, Y1, - - 5 Y1)

In this way every application of A;-IR’ is transformed into the one with X U IT;
side formulas, that is, into an application of A;-IR”. The whole derivation is
then transformed into a derivation in T+ A;-IR".

Notice that the rule A;-IR” maps IIr-formulas to ITo-formulas. We would
like to simplify it a bit. Notice that by introducing fresh free variables for the
universal quantifiers we may assume all the side formulas in an application of
A1-IR” to be X;. Then we obtain the following Hilbert-style form of this rule:

A = Va(p(r) & ¢(z))
AT, (%)

where ¢ € ¥y and A,y € II; (A, ¢ and ¢ may also contain parameters).
Lemma 12. The rules Ai-IR" and () are equivalent.

Proof. To derive A;-IR" from (¥) accumulate all the side formulas A into the
formula A. For the opposite reduction, let A be the set {—A4,1(0), Iz(p(z) A

Yz +1))}-

For a rule R, let [T, R] denote the closure of a theory T under the unnested
applications of R. Rules R; and R» are congruent if, for any T extending EA,
[T,R:1] = [T, R>] (see [1]). The proof of the previous lemma actually shows
that A;-IR” and (%) are congruent. Obviously, congruence implies deductive
equivalence (interderivability) of the rules.

Lemma 13. A;-IR" and A-IR are congruent.



Proof. Tt is sufficient to show that [T, A1-IR"] C [T, A;-IR] for any theory T
extending EA. We also do not distinguish between A;-IR" and the rule (x).
Assume

T+ A(a) = Ve(p(z,a) < Y(z,a)), (1)

where a w.l.o.g. is the only parameter in the given formulas. Given X -formulas
o = Juog(u) and 7 = Jury(u) with o9 and 79 bounded, we shall use the following
witness comparison notation:

o < 7:=3u(oo(u) AVy <u-1p(y)),
o =2 7:=3u (og(u) AVy < u-19(y)).
We shall use the same notation for formulas logically equivalent to X, having

in mind some fixed way of bringing them into graphically Y¥;-form (no matter
which). The following properties hold provably in EA:

(oVT) >0 <TVT <0, (2)
o710, (3)
(0 X TAT <0), (4)
ONT =50 <T. (5)

Now we define

By(a,z) :=[mA 2 (o V)]V (¢ 2 ),
Bi(a,z) := [(p V) < 2A] A (=) < ¢).
Notice that both formulas are X;. We claim that
T + Va,z (Bo(a,z) < =B (a,)).

The implication (—) follows from (4). For a proof of (+) by (1) and (2) we
obtain
THRAZ (V=) VI(pV ) <Al

Therefore,
T+ =[(pV ) <-A] = By.

On the other hand,

TE(eV) <-4—=(pV-)
= (X)) V(=Y <),

and thus

TH(eV) <2AANA( <p) =9
—)B().



It follows that
T+ =Bj(a,z) — Bola,x).

We have shown that A;-IR is applicable to By and therefore
[T, A-IR] F I, (a).
On the other hand, by (3)
THA—=[RAZ(eV )

= (Bo ¢ p 2 ).
By (1) and (5) we obtain

TEA= (p 2o o),

and since x does not occur in A this implies
T+ A(a) = Vz (Bo(a,z) <> ¢(z,a))
= (I, (a) & I,(a)).

Hence,
T+ Ip,(a) = (Ala) = Iy(a)),

and
[T, A-IR] F A(a) = I,(a).

This completes the proof of Lemma and of Theorem 2.

6 More on parameter restrictions

Here we introduce a version of I A; with a natural parameter restriction, which
yields an axiomatization of the set of X'3-consequences of I A;.
Consider the following schema:

sIAL: Vr,z (p(z,z) & Y(z,2)) = Vzl,(2),

Here ¢ € Xy, ¢ € II;, and z denotes all the parameters in ¢ and . s[A; can
be called A;-induction schema with separated parameters, in the sense that the
parameters z are quantified apart in the premise and in the conclusion.

First, we are going to show that sIA; is equivalent to SA; . To this end, we
analyze the corresponding inference rules. Aq-search rule is as follows:

Va(p(z) & P(r))

A1-SR :
IS Sw )

where ¢ € Yy and ¢ € II;. It is clear that A;-SR is congruent to A;-IR. We
let A;-SR™ denote the rule A;-SR for formulas ¢(z) and ¢(z) without extra
parameters.



Lemma 14. A,-SR™ is congruent to A;-IR.

Proof. Tt is sufficient to derive A;-SR by a single application of A;-SR™. So,
consider an arbitrary theory 7" and assume

T FVz,a(p(z,2) © 0(3,2))
(w.l.o.g. we consider a single parameter z). We have to show that
[T, A;-SR™] - V2S,(2).

We shall reason informally and treat ¢ as a 0—1-valued total computable function
f(z,2) (formally, f(x,z) =y will stand for (p(z,2) Ay = 0)V(=(x, z) Ay = 1)).
We have to prove in [T, A;-SR™]:

Vz,a (f(0,2) =0A f(a,2z) =1—= 3z <a(f(x,z) =0A f(z+1,2) =1)).

The problem is to get rid of the parameter z.
Consider the elementary function

h(z,a):= Y ((h+1),

i<(z,a)

where (i); denotes the second component of the pair ¢ in the standard one-to-one
encoding of pairs. We define a new function g by putting together pieces of f as
follows:
g(h(z,a) + ) := f(x,z), forall z <a.

In other words, g restricted to the interval [h(z,a), h(z,a) + a] encodes the first
a + 1 values of f(-,z). The definition of h ensures that for different pairs (z,a)
these intervals do not intersect and cover N, that is, g is well-defined. (In fact,
the intervals are ordered in the order of pairs (z,a).)

It is also clear from our assumption about f that g is total and recursive,
hence, definable by a A;-formula in T'. So, if f(0,z) = 0 and f(a,z) = 1, by
A;-SR™ applied to g and the interval [h(z, a), h(z, a)+a] we obtain g(h(z,a)) =0
and g(h(z,a) + a) = 1, hence

3 € [h(z,0), h(z,a) + a) (g(z) = 0 A g(z + 1) = 1).

This implies

A <a(f(r,z) =0A f(z+1,2) =1))
by the definition of g.
Corollary 5. sIA; = SAT.

Proof. Clearly, SA] C sI Ay, because I, (;44) = S, For the opposite inclusion
let 7 denote the formula Vz, z(p(x, 2) <+ ¥(z, 2)) and reason as follows:
SAT +7 D [m, A1-SR7]
[ﬂ', Al—lR]
I,.

T IV |



Since SA; is a schema and = is closed, Deduction theorem yields
SAT FVz,z (p(z,2) & P(z,2)) = VzI,(2).
So, we have the following inclusions:
EACITA] C SA] =sIA; C1A;.

Whether IA] properly extends EA is an open question (we conjecture that it
does). Notice that sIA; ¥ ITA;, because SA; follows from Thyy, (N), whereas
IA; does not, by Theorem 1.

Now we prove that sIA; (or SAT) precisely axiomatizes the X3-consequences
of IA;. This is interesting, because SA] is a set of boolean combinations of II,-
sentences. Thus, the relation of IA; to SA; is the same as that of IX; to IX
and of BY; to BX| [6]. In the present situation, though, the parameter-free
schema I A7 is too weak. So, in our opinion, SAT is a more adequate formulation
of parameter-free A;-induction than A7 .

Corollary 6. IA; is conservative over sIA, (and SA; ) for Xs-sentences.

Proof. Assume I'A; - o, where o is a X3-sentence. Then —o + IA; F L, whence
by Lemmas 11 and 13
-0+ A-IR+ L.

Notice that sIA; is closed under A;-IR, so by Lemma 12
-0 + SIAl l_ 1.

Hence, by Deduction theorem, sIA;  o.

7 On IA, versus BY; problem

In this section we characterize the classes of provably total computable functions
of extensions of IA; by true II-sentences. Thereby a reduction of the question
of separation of IA; from BX; to a purely computation-theoretic question is
obtained.

Our approach to the separation problem is similar to the one in Section 3. If
one constructs a true IIs-sentence 7 such that

F(r+1Ay) #F(r+ BX,),

then IAy # BX,. By the results of [2] we have a simple characterization of the
class F(r + BX,).

Lemma 15. Let be a true IIs-sentence of the form Vz3yp(x,y), with ¢ bounded.
Then F(m + BX1) = E(f), where f(z) = uy.o(z,y)-



It is known that E(f) = C(f), where f(z) := (f(0),... , f(z)). Moreover, if f
has an elementary graph, then E(f) = C(max;<, f(i)). So, any of the functions
f(z) or max;<, f(i) can be considered as the ‘hardest’ computation problem in
the class E(f).

Corollary 7. Let m be a true IIs-sentence of the form VaxIyp(x,y), with ¢
bounded, and let f(x) = py.o(z,y). If max;<, f(i) ¢ F(m + A1-IR), then IA; ¥
BX;.

Proof. It only has to be noticed that Theorem 2 implies that F(m + A;-IR) =
F(m + IA;). That m + BX; proves the totality of max;<, f(i) is obvious.

Our next goal is to obtain a recursion-theoretic characterization of the class
F(m+ A;-IR). In order to analyze A;-IR in terms of provably recursive functions
we introduce two equivalent forms of this rule. Recall that by Lemma 14 A;-IR
is congruent to the rule A;-SR™.

Lemma 16. A,-SR™ is congruent to the following rule:

Vedy < 1P:(z) =y
Va <b(Pz(a) 21V P:(b) ~0V Iz € [a,b) (Pe(z) 0N Ps(z + 1) = 1))

Proof. Both reductions are straightforward modulo the standard characteriza-
tion of the class of recursive predicates.

Our second version looks more complicated, but it has a technical advantage
of having quantifiers explicit. Let J(g,a,b, z) be the following formula (with a
function parameter g):

Az, u,v <z 2= {(x,u,v) A
[(la<z<bA(u)o=0A(Wo=1Ag
(m:a/\()g_l/\v_O/\g() u
(x=bAu=0A(v)o=0Ag(b) =v)

() =ungla+1) =v)V
)V
]

J(P.,a,b, z) denotes the result of replacing in J atomic subformulas of the form
g9(x) =y by Pc(z) ~y.

Lemma 17. A-SR™ is congruent to

Vedy @e(x) ~y Va,y (Pe(x) @y = (y)o < 1)
Va < b3z J(Pz,a,b, z)

Proof. To reduce A;-SR™ to this rule use Lemma 16 and go from a computable
0-1-valued function @, to the function @., which, if converges, outputs the pair
(P.(x), z), where z is the full protocol of the computation of &.(z). (Notice that
the graph of &,/ is elementary.)

For the opposite reduction go from @, (z) to the function (. (z))o.



In the following we shall not distinguish between A;-SR™ and any of the
rules in Lemmas 16, 17.

We introduce a new subrecursive search operator, which corresponds to this
rule. The status of the operator is similar to that of the bounded p-operator or
primitive recursion in that it allows to construct new total computable functions
from the old ones. It corresponds to the interval search principle in the same
way as the bounded p-operator corresponds to the least element principle.

Assume g is a function such that, for all z, (g(z))o < 1. Then S, denotes the
function

Sy(a,b) = pz.J(g,a,b, 2).

If g is computable, then so is S,. Intuitively, Sy(a,b) tries to compute all the
values of g on interval [a,b] in parallel. One eventually finds a point z € [a,b)
such that (g(x))o = 0 and (g(x 4+ 1))o = 1, or one establishes that (g(a))o = 1
or (g(b))o = 0. Then one outputs such an x together with a witness z that x is
as required.

S(K) will denote the closure of K U under composition and the search
operator g — S,. We have the following natural characterization.

Theorem 3. Let m be a true Ils-sentence of the form Va3ye(x,y), with ¢
bounded. Then F(m + IAy) = S(f), where f(x) = py. p(z,y).

Proof. The class of provably total computable functions only depends on the
II,-fragment of a theory, hence by Theorem 2 and Lemma 14

.7:(’/T+IA1) = .7:(7T+A1—|R) = .7:(’/T+A1-SR_).

It is also clear from Lemma 17 that F (7w + A;-SR™) is closed under the search
operator, so S(f) C F(r + A;-SR™).
For the converse inclusion we show by induction on the depth of nestings of
applications of A;-SR™ that every g € F(m + A;-SR™) belongs to S(f).
Indeed, let T be the extension of EA + 7 obtained by < n nested applications
of A;-SR™. Then T is II>-axiomatized, and by the induction hypothesis F(T") C
S(f). [T, A1-SR™] is axiomatizable over T by II>-sentences of the form

VbVa < b3z J(Pz, a,b, z) (6)
such that
Vrdy Ge(w) =y AVz,y (Pe(r) =2y = (y)o < 1)

is provable in T'. Moreover, we may only consider the functions @, with elemen-
tary graphs (as in the proof of Lemma 17). Then the witnessing functions for
the formulas (6) are precisely the functions Sg_(a,b), for all such &.. Hence, by
Lemma 2 and the induction hypothesis

F(IT,4:-SR7]) € C(F(T) U{S, : g € F(T)})
c S(f)-

This proves the induction step.



From Corollary 7 we obtain

Corollary 8. If there is a total recursive function f with an elementary graph
such that max;<, f(i) &€ S(f), then IA, # BX,.

The meaning of this corollary for us is that it reduces the original separa-
tion problem to the question of constructing a suitable function f. (Notice that
the assumption of the corollary is equivalent to the problem of separating the
classes S(f) and E(f) by a function f with an elementary graph.) Formally,
our reduction is one-sided, that is, only a sufficient condition for the separation
is suggested (e.g., information is being lost when we go from theories to the
corresponding classes of functions). However, we conjecture that the sufficient
condition actually holds and can be established using some existent techniques.
Moreover, we also believe that any explicit representation of max;<, f(¢) as an
S(f)-function (unlikely though it may be) would, in practice, yield a proof of
BEl in IAl

At present we only have partial results in the direction of separating S(f)
and E(f). The best we know is that S-operators without nestings do not suffice
to generate E(f) for a suitable recursive function f. But the same also holds
for the stronger bounded p-operators without nestings, by [3]. Doubly nested u-
operators already suffice to generate E(f), so this result does not really indicate
a difference between S(f) and E(f).

8 Concluding remarks

Apart from the intriguing A, versus BY; problem some interesting particular
questions concerning I A; are left open. Here we list some of them:

1. Is there a total function f with an elementary graph such that max;<, f(i) ¢
S(f)? Notice that the existence of such a function implies a stronger kind
of separation between IA; and BXYy, that is, an answer to the following
question:

Does BY; follow from I'A; together with all true IT>-sentences?

3. Is there a natural description of the class S(f) in terms of oracle Turing
machines? (We have in mind devices like, e.g., nondeterministic bounded
query Turing machines.)

Does I A7 follow from EA? From any r.e. set of true IT;-sentences?

Prove the analogs of the results of this paper for schemata of higher logical
complexity, in particular, for A, where n > 1. (This seems to be routine
using, e.g., the techniques of [1,2].)

N

Al

The results of this paper also strengthen the links between fragments of arith-
metic and query complexity.
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