Skip to main content
Log in

Classical Behavior of the Dirac Bispinor

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is usually supposed that the Dirac and radiation equations predict that the phase of a fermion will rotate through half the angle through which the fermion is rotated, which means, via the measured dynamical and geometrical phase factors, that the fermion must have a half-integral spin. We demonstrate that this is not the case and that the identical relativistic quantum mechanics can also be derived with the phase of the fermion rotating through the same angle as does the fermion itself. Under spatial rotation and Lorentz transformation the bispinor transforms as a four-vector like the potential and Dirac current. Previous attempts to provide this form of transformational behavior have foundered because a satisfactory current could not be derived.(14)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S.L. Adler, Phys.Lett.B 221(1), 39–43 (1989).

    Google Scholar 

  2. S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, Oxford, 1995).

    Google Scholar 

  3. S.L. Altmann, Rotations, Quaternions, and Double Groups (Clarendon Press, 1986).

  4. J. Anandan, Nature 360, 307–313 (1992).

    Google Scholar 

  5. S.B.M. Bell and D.C. Mason, Comput.J. 33, 386–387 (1990).

    Google Scholar 

  6. A.V. Berezin, E.A. Tolkachev, and F.I. Fedorov, Sov.Phys.J. 24(10), 935–937 (1981).

    Google Scholar 

  7. J.D. Bjorkin and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    Google Scholar 

  8. A.W. Conway, Proc.Roy.Soc.London A 162, 145 (1937).

    Google Scholar 

  9. A.W. Conway, Pont.Acad.Sci.Acta 12, 259 (1948).

    Google Scholar 

  10. A.W. Conway, in Selected Papers, J. McConnell, ed.(Dublin Institute for Advanced Studies, Dublin, 1953), pp.179–222.

    Google Scholar 

  11. A.J. Davies, Phys.Rev.D 41(8), 2628–2630 (1990).

    Google Scholar 

  12. P.A.M. Dirac, Proc.Roy.Irish Acad.A 50, 261–270 (1945).

    Google Scholar 

  13. V.V. Dvoeglazov and A. del Sol Mesa, NASA Conference Public, 3286 (1994), pp.333–340.

  14. J.D. Edmonds, Jr., Int.J.Theor.Phys. 6(3), 205–224 (1972a).

    Google Scholar 

  15. J.D. Edmonds, Jr., Lett.Nuovo Cimento 5(7), 572–574 (1972b).

    Google Scholar 

  16. J.D. Edmonds, Jr., Found.Phys. 3(3), 313–319 (1973).

    Google Scholar 

  17. J.D. Edmonds, Jr., Am.J.Phys. 42, 220–223 (1974).

    Google Scholar 

  18. J.D. Edmonds, Jr., Int.J.Theor.Phys. 10(4), 273–290 (1974).

    Google Scholar 

  19. J.D. Edmonds, Jr., Lett.Nuovo Cimento 13(5), 185–186 (1975).

    Google Scholar 

  20. J.D. Edmonds, Jr., Found.Phys. 5(2), 239–249 (1975).

    Google Scholar 

  21. J.D. Edmonds, Jr., Found.Phys. 5(4), 643–648 (1975).

    Google Scholar 

  22. J.D. Edmonds, Jr., Int.J.Theor.Phys. 13(6), 431–435 (1975).

    Google Scholar 

  23. J.D. Edmonds, Jr., Found.Phys. 6(1), 33–36 (1976).

    Google Scholar 

  24. J.D. Edmonds, Jr., Lett.Nuovo Cimento 15(1), 15–16 (1976).

    Google Scholar 

  25. J.D. Edmonds, Jr., Found.Phys. 7(7-8), 585–587 (1977).

    Google Scholar 

  26. J.D. Edmonds, Jr., Found.Phys. 8(5-6), 439–444 (1978).

    Google Scholar 

  27. J.D. Edmonds, Jr., Am.J.Phys. 46(4), 430–431 (1978).

    Google Scholar 

  28. J.D. Edmonds, Jr., Lett.Nuovo Cimento 21(13), 465–467 (1978).

    Google Scholar 

  29. J.P. Elliott and P.G. Dawber, Symmetry in Physics?Vol.1: Principles and Simple Applications (Macmillan, New York, 1979).

    Google Scholar 

  30. J.P. Elliott and P.G. Dawber, Symmetry in Physics?Vol.2: Further Applications (Macmillan, New York, 1979).

    Google Scholar 

  31. D. Finkelstein, J.M. Jauch, and D. Speiser, in The Logico-Algebraic Approach to Quantum Mechanics II, C.A. Hooker, ed.(D.Reidel, Dordrecht, 1979), pp.367–421.

    Google Scholar 

  32. P.R. Girard, Eur.J.Phys. 5, 25–32 (1984).

    Google Scholar 

  33. W. Gough, Eur.J.Phys. 7, 35–42 (1986).

    Google Scholar 

  34. W. Gough, Eur.J.Phys. 8, 164–170 (1987).

    Google Scholar 

  35. W. Gough, Eur.J.Phys. 10, 188–193 (1989).

    Google Scholar 

  36. W. Gough, Eur.J.Phys. 11, 326–333 (1990).

    Google Scholar 

  37. F. Gürsey, Rev.Fac.Sci.Istanbul A 20, 149–171 (1956).

    Google Scholar 

  38. F. Guürsey, Rev.Fac.Sci.Istanbul A 21, 33–35 (1956).

    Google Scholar 

  39. D. Hestenes, Am.J.Phys. 39, 1013–1027 (1971).

    Google Scholar 

  40. D. Hestenes and R. Gurtler, Am.J.Phys. 39, 1028–1038 (1971).

    Google Scholar 

  41. J. Keller and S. Rodriguez-Romo, J.Math.Phys. 31(10), 2501–2510 (1990).

    Google Scholar 

  42. J. Lambek, Math.Intell. 17(4), 7–15 (1995).

    Google Scholar 

  43. S. De Leo, Prog.Theor.Phys. 95(6), 1029–1039 (1996).

    Google Scholar 

  44. S; De Leo, Int.J.Mod.Phys.A 11(21), 3973–3985 (1996).

    Google Scholar 

  45. S. De Leo, J.Math.Phys. 37(6), 2955–2968 (1996).

    Google Scholar 

  46. S. De Leo and P. Rotelli, Phys.Rev.D 45(2), 575–579 (1992).

    Google Scholar 

  47. S. De Leo and P. Rotelli, Phys.Theor.Phys. 92(5), 917–926 (1994).

    Google Scholar 

  48. A.J. Mac Farlane, J.Math.Phys. 3(6), 1116–1129 (1962).

    Google Scholar 

  49. K. Morita, Prog.Theor.Phys. 70(6), 1648–1665 (1983).

    Google Scholar 

  50. K. Morita, Prog.Theor.Phys. 75(1), 220–223 (1986).

    Google Scholar 

  51. K. Morita, Prog.Theor.Phys. 90(1), 219–236 (1993).

    Google Scholar 

  52. I.R. Porteous, Topological Geometry, 2nd ed. (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  53. P. Rastall, Rev.Mod.Phys. 36, 820–832 (1964).

    Google Scholar 

  54. P. Rotelli, Mod.Phys.Lett.A 4(10), 933–940 (1989a).

    Google Scholar 

  55. P. Rotelli, Mod.Phys.Lett.A 4(18), 1763–1771 (1989b).

    Google Scholar 

  56. P. Rowlands, Spec.Sci.Technol. 17(4), 279–282 (1994).

    Google Scholar 

  57. P. Rowlands, Spec.Sci.Technol. 19, 243–251 (1996).

    Google Scholar 

  58. L.H. Ryder, Quantum Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  59. E.J. Schremp, Phys.Rev. 99(5), 1603–1603 (1955).

    Google Scholar 

  60. J. Souc- ek, J.Phys.A 14, 1629–1640 (1981).

    Google Scholar 

  61. J.L. Synge, Commun.Dublin Inst.Adv.Stud.A 21, 1–67 (1972).

    Google Scholar 

  62. W. Ulmer and H. Hartmann, Nuovo Cimento 47A(1), 59–73 (1978).

    Google Scholar 

  63. P.G. Vroegindeweij, Found.Phys. 23(11), 1445–1463 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, S.B.M., Cullerne, J.P. & Diaz, B.M. Classical Behavior of the Dirac Bispinor. Foundations of Physics 30, 35–57 (2000). https://doi.org/10.1023/A:1003686924816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003686924816

Keywords

Navigation