JOHN L. BELL

DIVERGENT CONCEPTIONS OF THE CONTINUUM IN
19TH AND EARLY 20TH CENTURY MATHEMATICS AND
PHILOSOPHY

The opposition between continuity and discreteness has animated the
development of mathematics since antiquity. Indeed, tradition de-
fined mathematics as ‘“‘the science of discrete and continuous mag-
nitude”. A striking example of this opposition — amounting, one
might say, to a collision — is the Pythagorean discovery of incom-
mensurable magnitudes. Here the realm of continuous geometric
magnitudes resisted the Pythagorean attempt to reduce it to the
discrete form of pure number. The theory of proportions later in-
vented by Eudoxus to resolve the problem of incommensurability was
in essence an extension of the idea of number — i.e., of the discrete —
adequate to the task of expressing the relations between continuous
magnitudes.

The opposition resurfaced with renewed vigour in the seventeenth
century with the emergence of the differential and integral calculus.
Here the controversy centred on the concept of infinitesimal.
According to one school of thought, the infinitesimal was to be re-
garded as an actual, infinitely small, indivisible element of a contin-
uum, similar to the atoms of Democritus, except that now their
number was considered to be infinite. Calculation of areas and vol-
umes, i.e., integration, was thought of as summation of an infinite
number of these infinitesimal elements. An area, for example, was
taken to be the “‘sum of the lines of which it is formed”. Thus the
continuous was, in a way, again reduced to the discrete, but now,
with the intrusion of the concept of the infinite, in a subtler and more
complex way than before.

The conception of infinitesimals as actual entities was gradually
displaced by the idea — originally suggested by Newton — of the
infinitesimal as a continuous variable which becomes arbitrarily small.
By the start of the nineteenth century, when the rigorous theory of
limits was in the process of being created, this new conception of
infinitesimal had gained general acceptance. In general, a continuum
such as a line was now understood not to consist of “points” or
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“indivisibles”, but to be the domain of values of a continuous vari-
able. At this stage, then, the discrete had given way to the continuous.

But the development of mathematical analysis in the latter half of
the nineteenth century led mathematicians to demand greater preci-
sion in the theory of continuous variables, and above all in fixing the
concept of real number as the value of an arbitrary such variable. The
1870s saw the emergence of the modern arithmetico-set-theoretical
conception of real number, largely at the hands of Dedekind and
Cantor. The newly fashioned ordered field of real numbers became
known as the arithmetical continuum because it was held that this
number system is entirely adequate for the analytical representation
of all types of continuous phenomena. In particular, a line, or the
domain of values of a continuous variable, is represented as a set of
distinct real numbers, identified as “points”. In this scheme of things
there was no place for the concept of infinitesimal, which accordingly
departed the scene for a time. Thus the continuous was, once again,
reduced to an assemblage of separate discrete points. This last
reduction, underpinned by the development of set theory, has, as we
all know, become the reigning orthodoxy among mathematicians.

Even so, the doctrine that the continuous is fully explicable in
terms of the discrete has never remained unchallenged. Typically, the
doctrine’s opponents accept that a continuum is an inexhaustible
source of points, but deny that it can be “‘reconstituted” from these
latter. Witness, for example:

Aristotle

No continuum can be made up of indivisibles, as for instance a line out of points,
granting that the line is continuous and the point indivisible'

Leibniz
A point may not be a constitutive part of a line.”

Kant
Space and time are quanta continua. . .points and instants mere positions.. and out
of mere positions viewed as constituents capable of being given prior to space and

time neither space nor time can be constructed.’

Among philosophers of the late 19th and early 20th centuries,
both Bergson and Whitehead emphasized the primordial nature of the
phenomenon of continuity. But six figures of this period — du Bois-
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Reymond, Veronese, Brentano, Peirce, Weyl and Brouwer — stand out
as champions of the irreducibility of the continuum concept to dis-
creteness. My remarks here will be chiefly devoted to Brentano,
Peirce, and Weyl. I begin, however, with some brief observations on
the first pair of members of our sextet.

Paul du Bois- Reymond was a prominent mathematician of the later
19th century who made significant contributions to real analysis,
differential equations, mathematical physics and the foundations of
mathematics. While accepting many of the methods of the Dedekind-
Cantor school, and indeed embracing the idea of the actual infinite,
he rejected its associated philosophy of the continuum on the grounds
that it was committed to the reduction of the continuous to the dis-
crete. So in 1882 he writes:

The conception of space as static and unchanging can never generate the notion of a
sharply defined, uniform line from a series of points however dense, for, after all,
points are devoid of size, and hence no matter how dense a series of points may be, it
can never become an interval, which must always be regarded as the sum of intervals
between points.

Du Bois-Reymond took a somewhat mystical view of the con-
tinuum, asserting that its true nature, being beyond the limits of
human cognition, would forever elude the understanding of mathe-
maticians. Nevertheless this did not prevent him from developing his
own theory of the mathematical continuum, his so-called *“‘calculus of
infinities”, during the 1870s and 80s. As well as offering an account of
mathematical magnitude and a scheme for comparing and distin-
guishing actual infinite quantities, it also incorporates a theory of
actual infinitesimals, a notion that he had long championed. He
writes:

The infinitely small is a mathematical quantity and has all its properties in common
with the finite... A belief in the infinitely small does not triumph easily. Yet when
one thinks boldly and freely, the initial distrust will soon mellow into a pleasant
certainty. . .A majority of educated people will admite an infinite in space and time,
and not just an “‘unboundedly large”. But they will only with difficulty believe in the
infinitely small, despite the fact that the infinitely small has the same right to exis-
tence as the infinitely large. ..

Were the sight of the starry sky lacking to mankind; had the race arisen and
developed troglodytically in enclosed spaces; had its scholars instead of wandering
through the distant places of the universe telescopically, only looked for the smallest
constituents of form and so were used in their thoughts to advancing into the
boundless in the direction of the unmeasurably small: who would doubt then that the
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infinitely small would take the same place in our system of concepts that the infinitely
large does now? Moreover, hasn’t the attempt in mechanics to go back down to the
smallest active elements long ago introduced into science the atom, the embodiment
of the infinitely small? And don’t as always skillful attempts to make it superfluous
for physics face with certainty the same fate as Lagrange’s battle against the dif-
ferential?

One of du Bois-Reymond’s severest critics was Georg Cantor, who
fought an unceasing battle against the concept of infinitesimal, and
more generally against the idea that the continuous was in some
essential way ““‘irreducible” to the discrete. While du Bois-Reymond
did not hesitate to employ geometric and visual intuition whenever he
felt it necessary, Cantor, by origin a number-theorist, was naturally
inclined to the discrete, as his work, from analysis of discontinuities
to set theory, shows. Cantor’s strictures against the work of the next
member of our sextet, Giuseppe Veronese, were, if anything, even
more virulent.

Veronese was an outstanding member of the Italian school of
geometry in the last quarter of the 19th century. In 1891 he published
his exhaustive work on the foundations of geometry, whose title in
approximate English translation reads: Foundations of geometry of
several dimensions and several kinds of linear unit, presented in ele-
mentary form. In this work Veronese develops n-dimensional projec-
tive geometry, including non-Euclidean geometries, from first
principles in a synthetic and unified way. Controversially, he also
introduces “‘non-Archimedean” geometries containing both infinites-
imal and infinitely large segments. On publication this work attracted
the scathing criticism not only of Cantor, but also of Peano and Kill-
ing. Yet Hilbert later called it “profound”, and incorporated some of
Veronese’s ideas into his own later Grundlagen der Geometrie.

As a geometer Veronese naturally took an essentially geometric
view of the continuum. He begins his Foundations with a complaint
about the use of real numbers as the basis of geometry. Spatial
intuition, he says, is what furnishes us with the basal geometric ob-
jects and their inherent properties, so that the proper procedure in
geometry is a synthetic one

which always treats figures as figures, works directly with the elements of the figures
and separates and unites them so that each truth and each step of a proof is
accompanied as far as possible by intuition.

In answer to the question “What is the continuum?”’ Veronese writes:
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This is a word whose meaning we understand without any mathematical definition,
since we intuit the continuum in its simplest form as the common characteristic of
many concrete things, such as, for example, to give some of the simplest, the time and
the place occupied in the external neighbourhood of the object sketched here, or by a
plumb line, if one takes no account of its physical properties and its thickness (in the
empirical sense).

For Veronese points are nothing more than signs indicating ‘‘posi-
tions of the uniting of two parts” of a (rectilinear) continuum. They
are, as for Aristotle,

...a product of mental abstraction. .. not parts of the rectilinear object.

And so, Veronese writes,

The hypothesis that the point is not part of the rectilinear continuum (and also has
no parts in itself) means that all the points we can imagine in it, however many that
may be, do not constitute the continuum when they are joined together, and
choosing a part (XXH) as small as one wants of the object (for time, an instant),
however indeterminate, which is to say without X and XM being fixed in our
thoughts, intuition tells us that this part is always continuous.

Veronese contrasts his own account of the continuum with that of
Cantor and Dedekind in the following words:

Cantor and Dedekind. . .assert in their valuable works that. .. the one-one relation
between the points of [a] line and the points forming the real continuum is arbitrary.
They certainly obtain this continuum by means of a sequence of abstract definitions
of symbols which, although possible, are arbitrary... According to Dedekind, the
numerical continuum is necessary in order to clarify the idea of the continuum of
space. According to us, however, it is the intuitive rectilinear continuum which, by
means of a point without parts, that serves to give us abstract definitions with respect
to the continuum itself, of which the numerical continuum is only a special case. In
this way, the definitions appear not as a force which keeps our mind in check, but
finds its complete justification in the perceptual representation of the continuum.
One must take some account of this representation in the discussion of basic con-
cepts, but without leaving the field of pure mathematics. Moreover, it would be truly
marvellous if an abstract form as complicated as the numerical continuum obtained
not only without being guided by the intuitive, but, as is done nowadays by some
authors, from mere definitions of symbols, should then find itself in agreement with a
representation as simple and primitive as that of the rectilinear continuum.

Franz Brentano, the modern philosopher most concerned with the
nature of the continuous, was also a critic of the idea of an ‘‘discret-
ized” continuum. The greater part of Brentano’s philosophy has its
starting-point in Aristotelian doctrine, and his conception of the
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continuum constitutes no exception. Aristotle’s theory of the contin-
uum rests upon the assumption that all change is continuous and that
continuous variation of quality, of quantity and of position are
inherent features of perception and intuition. Aristotle considered it
self-evident that a continuum cannot consist of points. Any pair of
unextended points, he observes, are such that they either touch or are
totally separated: in the first case, they yield just a single unextended
point, in the second, there is a definite gap between the points. Aris-
totle held that any continuum — a continuous path, say, or a temporal
duration, or a motion — may be divided ad infinitum into other con-
tinua but not into what might be called “discreta’ — parts that cannot
themselves be further subdivided. Accordingly, paths may be divided
into shorter paths, but not into unextended points; durations into
briefer durations but not into unextended instants; motions into
smaller motions but not into unextended ‘“‘stations’’. Nevertheless,
this does not prevent a continuous line from being divided at a point
constituting the common border of the line segments it divides. But
such points are, according to Aristotle, just boundaries, and not to be
regarded as actual parts of the continuum from which they spring. If
two continua have a common boundary, that common border unites
them into a single continuum. Such boundaries exist only potentially,
since they come into being when they are, so to speak, marked out as
connecting parts of a continuum; and the parts in their turn are
similarly dependent as parts upon the existence of the continuum.

In its fundamentals Brentano’s synechology — his theory of the
continuum — is akin to Aristotle’s. Brentano regards continuity as an
essentially perceptual phenomenon, rather than as a mathematical
construction. Indeed, Brentano took a somewhat dim view of the
efforts of mathematicians to “‘arithmetize” the continuum — that is, to
construct it from points. His attitude varied from rejecting them as
inadequate to according them the status of ““fictions™. (In a letter to
Husserl drafted in 1905, Brentano asserts that “I regard it as absurd
to interpret a continuum as a set of points.””) This is not surprising
given his Aristotelian inclination to take mathematical and physical
theories to be genuine descriptions of empirical phenomena rather
than idealizations: certainly, if such theories were to be taken as
literal descriptions of experience, they would amount to nothing more
than “misrepresentations’. Indeed, Brentano writes:

We must ask those who say that the continuum ultimately consists of points what
they mean by a point. Many reply that a point is a cut which divides the continuum
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into two parts. The answer to this is that a cut cannot be called a thing and therefore
cannot be a presentation in the strict and proper sense at all. We have, rather, only
presentations of contiguous parts. ... The spatial point cannot exist or be conceived
of in isolation. It is just as necessary for it to belong to a spatial continuum as for the
moment of time to belong to a temporal continuum.*

Brentano held that the idea of the continuous is derived from
primitive sensible intuition:

Thus I affirm that... the concept of the continuous is acquired not through com-
binations of marks taken from different intuitions and experiences, but through
abstraction from unitary intuitions. . .Every single one of our intuitions — both those
of outer perception as also their accompaniments in inner perception, and therefore
also those of memory — bring to appearance what is continuous.’

Brentano suggests that the continuous is brought to appearance by
sensible intuition in three phases. First, sensation presents us with
objects having parts that coincide. From such objects the concept of
boundary is abstracted in turn, and then one grasps that these objects
actually contain coincident boundaries. Finally one sees that this is all
that is required in order to have grasped the concept of a continuum.

Continuity is manifested in sensation in a variety of ways. In visual
sensation, we are presented with extension, something possessing
length and breadth, and hence with something such that between any
two of its parts, provided these be separated, there is a third part.
Every sensation possesses a certain gualitative continuity in that the
object presented in the sensation could have a given manifested
quality (colour, for example) in a greater or less degree, and between
any two degrees of that quality lies still another degree of that quality.
Finally, each sensation manifests temporal continuity: this is most
evident when we perceive something as moving or at rest.

Brentano recognizes that continua have qualities which cause them
to possess multiplicity — a continuum may manifest continuity in
several ways simultaneously. This led him to classify continua into
primary and secondary: a secondary continuum being one whose
manifestation is dependent upon another continuum. Here is
Brentano himself on the matter:

Imagine, for example, a coloured surface. Its colour is something from which the
geometer abstracts. For him there comes into consideration only the constantly
changing manifold of spatial differences. But the colour, too, appears extended with
the spatial surface, whether it manifests no specific colour-differences of its own — as
in the case of a red colour which fills out a surface uniformly — or whether it varies in
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its colouring — perhaps in the manner of a rectangle which begins on one side with
red and ends on the other side with blue, progressing uniformly through all colour-
differences from violet to pure blue in between. In both cases we have to do with a
multiple continuum, and it is the spatial continuum which appears thereby as pri-
mary, the colour-continuum as secondary. A similar double continuum can also be
established in the case of a motion from place to place or of a rest, in which case it is
a temporal continuum as such that is primary, the temporally constant or varying
place that is the secondary continuum. Even when one considers a boundary of a
mathematical body as such, for example a curved or straight line, a double continuity
can be distinguished. The one presents itself in the totality of the differences of place
that are given in the line, which always grows uniformly, whether in the case of
straight, bent, or curved lines, and is that which determines the length of the line. The
other resides in the direction of the line, and is either constant or alternating, and
may vary continuously, or now more strongly, now less. It is constant in the case of
the straight line, changing in the case of the broken line, and continuously varying in
every line that is more or less curved. The direction-continuum here is to be com-
pared with the colour-continuum discussed earlier and with the continuum of place
in the case of rest or motion of a corporeal point in time. In the double continuum
that presents itself to us in the line it is this continuum of directions that is to be
referred to as the secondary, the manifold of differences of place as such as the
primary continuum.®

Brentano’s distinction of primary and secondary continua can be
neatly represented within category theory: to put it succinctly, a primary
continuum is a domain, a secondary continuum a codomain. We form a
category c—the category of continua— by taking continua as objects and
correlations between continua as arrows. Then, given any arrow

A L, Bin c, the domain 4 of fmay be taken as a “primary’’ continuum
and its codomain B as a ‘“‘secondary” continuum. In Brentano’s
example of a coloured surface, for instance, the primary continuum A4 is
the given spatial surface, the secondary continuum B is the colour
spectrum, and the correlation fassigns to each place in 4 its colour as a
position in B. In the case of a corporeal point moving in space, the
primary continuum 4 is an interval of time, the secondary continuum B
a region of space, and the correlation fassigns to each instant in A the
position in B occupied by the corporeal point. Finally, in the case of the
varying direction of a curve the primary continuum 4 is the curve itself,
the secondary continuum is the continuum of measures of angles, and
the correlation f assigns to each point on the curve the slope of the
tangent there: thus f'is nothing other than the first derivative of the
function associated with the curve.

For Brentano the essential feature of a continuum is its inherent
capacity to engender boundaries, and the fact that such boundaries
can be grasped as coincident. Boundaries themselves possess a quality
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which Brentano calls plerosis (“‘fullness”). Plerosis is the measure of
the number of directions in which the given boundary actually
bounds. Thus, for example, within a temporal continuum the end-
point of a past episode or the starting point of a future one bounds in
a single direction, while the point marking the end of one episode and
the beginning of another may be said to bound doubly. In the case of
a spatial continuum there are numerous additional possibilities: here
a boundary may bound in all the directions of which it is capable of
bounding, or it may bound in only some of these directions. In the
former case, the boundary is said to exist in full plerosis; in the latter,
in partial plerosis. Brentano writes:

...the spatial nature of a point differs according to whether it serves as a limit in all
or only in some directions. Thus a point located inside a physical thing serves as a
limit in all directions, but a point on a surface or an edge or a vertex serves as a limit
in only some direction. And the point in a vertex will differ in accordance with the
directions of the edges that meet at the vertex... I call these specific distinctions
differences of plerosis. Like any manifold variation, plerosis admits of a more and a
less. The plerosis of the centre of a cone is more complete than that of a point on its
surface; the plerosis of a point on its surface is more complete than that of a point on
its edge, or that of its vertex. Even the plerosis of the vertex is the more complete the
less the cone is pointed.’

Brentano believed that the concept of plerosis enabled sense to be
made of the idea that a boundary possesses “‘parts”, even when the
boundary lacks dimensions altogether, as in the case of a point. Thus,
while the present or “now” is, according to Brentano, temporally
unextended and exists only as a boundary between past and future, it
still possesses two “parts’ or aspects: it is both the end of the past and
the beginning of the future. It is worth mentioning that for Brentano
it was not just the “now” that existed only as a boundary; since he
held that “‘existence’ in the strict sense means ‘‘existence now’, it
necessarily followed that existing things exist only as boundaries of
what has existed or of what will exist, or both.

Brentano ascribes particular importance to the fact that points in a
continuum can coincide. On this matter he writes:

Various other thorough studies could be made [on the continuum concept] such as a
study of the impossibility of adjacent points and the possibility of coincident points,
which have, despite their coincidence, distinctness and full relative independence.
[This] has been and is misunderstood in many ways. It is commonly believed that if
four different-coloured quadrants of a circular area touch each other at its centre, the
centre belongs to only one of the coloured surfaces and must be that colour only.
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Galileo’s judgment on the matter was more correct; he expressed his interpretation
by saying paradoxically that the centre of the circle has as many parts as its
periphery. Here we will only give some indication of these studies by commenting
that everything which arises in this connection follows from the point’s relativity as
involves a continuum and the fact that it is essential for it to belong to a continuum.
Just as the possibility of the coincidence of different points is connected with that
fact, so is the existence of a point in diverse or more or less perfect plerosis. All of this
is overlooked even today by those who understand the continuum to be an actual
infinite multiplicity and who believe that we get the concept not by abstraction from
spatial and temporal intuitions but from the combination of fractions between
numbers, such as between 0 and 1.3

Brentano’s doctrines of plerosis and coincidence of points are well
illustrated by applying them to the traditional philosophical problem
of the initiation of motion: if a thing begins to move, is there a last
moment of its being at rest or a first moment of its being in motion?
The usual objection to the claim that both moments exist is that, if
they did, there would be a time between the two moments, and at that
time the thing could be said neither to be at rest nor to be in motion —
in violation of the law of excluded middle. Brentano’s response would
be to say that both moments do exist, but that they coincide, so that
there are no times between them; the violation of the law of excluded
middle is thereby avoided. More exactly, Brentano would assert that
the temporal boundary of the thing’s being at rest — the end of its
being at rest — is the same as the temporal boundary of the thing’s
being in motion — the beginning of its being in motion — but the
boundary is twofold in respect of its plerosis. The boundary is, in
fact, in half plerosis at rest and in half plerosis in motion.

As we have seen, Brentano’s analysis of the continuum centred on
its phenomenological and qualitative aspects, which are by their very
nature incapable of reduction to the discrete. Brentano’s rejection of
the mathematicians’ attempts to “‘arithmetize” the continuum — to
represent it in discrete terms — is thus hardly surprising. He might, on
the other hand, have been more sympathetic to the accounts of the
continuum put forward by the other members of our sextet — all of
whom, as I have observed, took the continuous as something nec-
essarily transcending the discrete.

This brings me to Peirce. Peirce’s view of the continuum was, in a
sense, intermediate between that of Brentano and the arithmetizers.
Like Brentano, he held that the cohesiveness of a continuum rules out
the possibility of it being a mere collection of discrete individuals, or
points, in the usual sense. But he also held that any continuum
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harbours an unboundedly large collection of points — in his colourful
terminology, a supermultitudinous collection — what we would today
call a proper class. Peirce held that if “enough” points were to be
crowded together by carrying insertion of new points between old to
its ultimate limit they would — through a /ogical “‘transformation of
quantity into quality” — lose their individual identity and become
fused into a true continuum. Here are his observations on the matter:

It is substantially proved by Euclid that there is but one assignable quantity which is
the limit of a convergent series. That is, if there is an increasing convergent series, A
say, and a decreasing convergent series, B say, of which every approximation exceeds
every approximation of A, and if there is no rational quantity which is at once
greater than every approximation of A and less than every approximation of B, then
there is but one surd quantity so intermediate. . . There is one surd quantity and only
one for each convergent series, calling two series the same if their approximations all
agree after a sufficient number of terms, or if their difference approximates toward
zero. But this is only to say that the multitude of surds equals the multitude of
denumerable sets of rational numbers which is. .. the primipostnumeral® multitude.

...We remark that there is plenty of room to insert a secundipostnumeral multitude
of quantities between [a] convergent series and its limit. Any one of those quantities
may likewise be separated from its neighbours, and we thus see that between it and
its nearest neighbours there is ample room for a tertiopostnumeral multitude of other
quantities, and so on through the whole denumerable series of postnumeral quan-
tities.

But if we suppose that all such orders of systems of quantities have been inserted,
there is no longer any room for inserting any more. For to do so we must select some
quantity to be thus isolated in our representation. Now whatever one we take, there
will always be quantities of higher order filling up the spaces on the two sides.

We therefore see that such a supermultitudinous collection sticks together by logical
necessity. Its constituent individuals are no longer distinct and independent subjects.
They have no existence — no hypothetical existence — except in their relations to one
another. They are not subjects, but phrases expressive of the properties of the con-
tinuum.

...Supposing a line to be a supermultitudinous collection of points, ... to sever a line
in the middle is to disrupt the logical identity of the point there, and make it two
points. It is impossible to sever a continuum by separating the connections of the
points, for the points only exist by virtue of those connections. The only way to sever
a continuum is to burst it, that is, to convert what was one into two.'°

There is some resemblance between Peirce’s conception of a con-
tinuous line and John Conway’s system of surreal numbers. Conway’s
system may be characterized as being an #5,-field for every ordinal «,
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that is, a real-closed ordered field S which satisfies the condition that,
for any pair of subsets X, ¥ for which every member of X is less than
every member of Y, there is an element of S strictly between X and
Y.'! It is not hard to show that, between any pair of members of S
there is a proper class'® of members of S — in Peirce’s terminology, a
supermultitudinous collection. Nevertheless, S is still discrete: its
elements, while supermultitudinous, remain distinct and unfused
(were it not for this fact, Conway would scarcely be justified in calling
the members of S “‘numbers’). On the face of it the discreteness of S
would seem to imply that the presence of superabundant quantity in
Peirce’s sense is not enough to ensure continuity. (Of course,
Brentano would have dismissed this idea'® altogether.)

Peirce’s conception of the number continuum is also notable for
the presence in it of an abundance of infinitesimals, a feature it shares
with du Bois-Reymond’s and Veronese’s ‘“‘non-Archimedean” num-
ber systems (I do not know whether Peirce was aware of their work).
Peirce championed the retention of the infinitesimal concept in the
foundations of the calculus, both because of what he saw as the
efficiency of infinitesimal methods, and because he regarded infini-
tesimals as furnishing the ““glue” that caused points on a continuous
line to lose their individual identity: indeed, he writes

The very word continuity implies that the instants of time or the points of a line are
everywhere welded together.

In defending infinitesimals, he remarks that

It is singular that nobody objects to v/ —1 as involving any contradiction, nor, since
Cantor, are infinitely great quantities much objected to, but still the antique prejudice
against infinitely small quantities remains.'*

Peirce actually held the view that the conception of infinitesimal is
suggested by introspection — that the specious present is in fact an
infinitesimal:

It is difficult to explain the fact of memory and our apparently perceiving the flow of
time, unless we suppose immediate consciousness to extend beyond a single instant.
Yet if we make such a supposition we fall into grave difficulties, unless we suppose
the time of which we are immediately conscious to be strictly infinitesimal.'”

We are conscious of the present time, which is an instant, if there be any such thing
as an instant. But in the present we are conscious of the flow of time. There is no flow
in an instant. Hence, the present is not an instant.'®
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In concluding my remarks on Peirce I quote from a letter addressed
by Peirce in 1900 to the editor of Science in which he defends his
views on infinitesimals against the strictures of Josiah Royce:

Professor Royce remarks that my opinion that differentials may quite logically be
considered as true infinitesimals, if we like, is shared by no mathematician “outside
of Italy”. As a logician, I am more comforted by corroboration in the clear mental
atmosphere of Italy than I could be by any seconding from a tobacco-clouded and
bemused land (if any such there be) where no philosophical eccentricity misses its
champion, but where sane logic has not found favor.

I come now to Weyl.

Weyl’s philosophical outlook was influenced by Brentano, but
above all by Husserl (who was, of course, a student of Brentano).
Weyl accepted the principal tenet of Husserlian phenomenology —
that the only things which are directly given to us, that we can know
completely, are objects of consciousness, and it is these with which
philosophy, and all knowledge, must begin.

Weyl gave a great deal of thought to the concept of the continuum.
During the period 1918-1921 he wrestled with the problem of pro-
viding it with an exact mathematical formulation free of the taint of the
actual infinite. As he saw it in 1918, there is an unbridgeable gap
between intuitively given continua (e.g. those of space, time and mo-
tion) on the one hand, and the “‘discrete” exact concepts of mathe-
matics (e.g. that of real number) on the other. For Weyl the presence of
this split meant that the construction of the mathematical continuum
could not simply be “read off”” from intuition. Rather, he believed at
this time that the mathematical continuum must be treated as if it were
an element of the transcendent realm, and so, in the end, justified in the
same way as a physical theory. In Weyl’s view, it was not enough that
the mathematical theory be consistent; it must also be reasonable.

Das Kontinuum (1918) embodies Weyl’s attempt at formulating a
theory of the continuum which satisfies the first, and, as far as pos-
sible, the second, of these requirements. In the following passages
from this work he acknowledges the difficulty of the task:

... the conceptual world of mathematics is so foreign to what the intuitive continuum
presents to us that the demand for coincidence between the two must be dismissed as
absurd."’

... the continuity given to us immediately by intuition (in the flow of time and of
motion) has yet to be grasped mathematically as a totality of discrete “‘stages” in
accordance with that part of its content which can be conceptualized in an exact way.'®
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Exact time- or space-points are not the ultimate, underlying atomic elements of the
duration or extension given to us in experience. On the contrary, only reason, which
thoroughly penetrates what is experientially given, is able to grasp these exact ideas.
And only in the arithmetico-analytic concept of the real number belonging to the
purely formal sphere do these ideas crystallize into full definiteness.'”

When our experience has turned into a real process in a real world and our phe-
nomenal time has spread itself out over this world and assumed a cosmic dimension,
we are not satisfied with replacing the continuum by the exact concept of the real
numb%, in spite of the essential and undeniable inexactness arising from what is
given.

However much he may have wished to do so, in Das Kontinuum
Weyl did not aim to provide a mathematical formulation of the
continuum as it is presented to intuition, which, as the quotations
above show, he regarded as an impossibility (at that time at least).
Rather, his goal was first to achieve consistency by putting the
arithmetical notion of real number on a firm logical basis, and then to
show that the resulting theory is reasonable by employing it as the
foundation for a plausible account of continuous process in the
objective physical world.?!

As a practicing mathematician, Weyl had come to believe that, the
work of Cauchy, Weierstrass, Dedekind and Cantor notwithstanding,
mathematical analysis at the beginning of the 20th century could not
bear the weight of logical scrutiny, for its essential concepts and pro-
cedures involved vicious circles to such an extent that, as he says,
“every cell (so to speak) of this mighty organism is permeated by
contradiction.” In Das Kontinuum he tries to overcome this by pro-
viding analysis with a predicative formulation — not, as Russell and
Whitehead had attempted, by introducing a hierarchy of logically
ramified types, which Weyl seems to have regarded as too complicated
— but rather by confining the comprehension principle to formulas
whose bound variables range over just the initial given entities (num-
bers). Thus he restricts analysis to what can be done in terms of natural
numbers with the aid of three basic logical operations, together with
the operation of substitution and the process of “‘iteration”, i.e.,
primitive recursion. Weyl recognized that the effect of this restriction
would be to render unprovable many of the central results of classical
analysis — e.g., Dirichlet’s principle that any bounded set of real
numbers has a least upper bound®*— but he was prepared to accept this
as part of the price that must be paid for the security of mathematics.

In "’ 6 of Das Kontinuum Weyl probes the relationship between the
intuitive and mathematical continua. He poses the question: Does the
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mathematical framework he has erected provide an adequate repre-
sentation of physical or temporal continuity as it is actually experi-
enced ? He begins his investigation by noting that, according to his
theory, if one asks whether a given function is continuous, the answer
is not fixed once and for all, but is, rather, dependent on the extent of
the domain of real numbers which have been defined up to the point
at which the question is posed. Thus the continuity of a function must
always remain provisional; the possibility always exists that a function
deemed continuous now may, with the emergence of “new” real
numbers, turn out to be discontinuous in the future.23

To reveal the discrepancy between this formal account of conti-
nuity based on real numbers and the properties of an intuitively given
continuum, Weyl next considers the experience of seeing a pencil
lying on a table before him throughout a certain time interval. The
position of the pencil during this interval may be taken as a function
of the time, and Weyl takes it as a fact of observation that during the
time interval in question this function is continuous and that its
values fall within a definite range. And so, he says,

This observation entitles me to assert that during a certain period this pencil was on
the table; and even if my right to do so is not absolute, it is nevertheless reasonable
and well-grounded. It is obviously absurd to suppose that this right can be under-
mined by “an expansion of our principles of definition” — as if new moments of time,
overlooked by my intuition could be added to this interval, moments in which the
pencil was, perhaps, in the vicinity of Sirius or who knows where. If the temporal
continuum can be represented by a variable which “ranges over” the real numbers,
then it appears to be determined thereby how narrowly or widely we must under-
stand the concept “real number’ and the decision about this must not be entrusted to
logical deliberations over principles of definition and the like.**

To drive the point home, Weyl focuses attention on the funda-
mental continuum of immediately given phenomenal time, that is, as he
characterizes it,

... to that constant form of my experiences of consciousness by virtue of which they
appear to me to flow by successively. (By “experiences” I mean what I experience,
exactly as I experience it. I do not mean real psychical or even physical processes
which occur in a definite psychic-somatic individual, belong to a real world, and,
perhaps, correspond to the direct experiences.)*

In order to correlate mathematical concepts with phenomenal time in
this sense Weyl grants the possibility of introducing a rigidly punctate
“now” and of identifying and exhibiting the resulting temporal
points. On the collection of these temporal points is defined the
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relation of earlier than as well as a congruence relation of equality of
temporal intervals, the basic constituents of a simple mathematical
theory of time. But even if this is granted, Weyl viewed the experi-
enced continuous flow of phenomenal time as constituting an insu-
perable barrier to the whole enterprise of representing the temporal
continuum in terms of individual points, and even to the character-
ization of “‘individual temporal point™ itself. As he says,

The view of a flow consisting of points and, therefore, also dissolving into points
turns out to be mistaken: precisely what eludes us is the nature of the continuity, the
flowing from point to point; in other words, the secret of how the continually
enduring present can continually slip away into the receding past.

Each one of us, at every moment, directly experiences the true character of this
temporal continuity. But, because of the genuine primitiveness of phenomenal time,
we cannot put our experiences into words. So we shall content ourselves with the
following description. What I am conscious of is for me both a being-now and, in its
essence, something which, with its temporal position, slips away. In this way there
arises the persisting factual extent, something ever new which endures and changes in
consciousness.®

Weyl sums up what he thinks can be affirmed about “objectively
presented time” — by which I take it he means “phenomenal time
described in an objective manner” — in the following two assertions,
which he claims apply equally, mutatis mutandis, to every intuitively
given continuum, in particular, to the continuum of spatial extension:

1. An individual point in it is non-independent, i.e., is pure noth-
ingness when taken by itself, and exists only as a “point of tran-
sition” (which, of course, can in no way be understood
mathematically);

2. It is due to the essence of time (and not to contingent imperfections
in our medium) that a fixed temporal point cannot be exhibited in
any way, that always only an approximate, never an exact deter-
mination is possible.?’

The fact that single points in a true continuum ‘‘cannot be exhibited”
arises, Weyl continues, from the fact that they are not genuine indi-
viduals and so cannot be characterized by their properties. In the
physical world they are never defined absolutely, but only in terms of
a coordinate system, which, in an arresting metaphor, Weyl describes
as “‘the unavoidable residue of the eradication of the ego.” This
metaphor, which Weyl was to employ more than once (e.g. in Weyl
(1950, p. 8 and 1963, p. 123) reflects the continuing influence of
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phenomenological doctrine: in this case, the thesis that the existent is
given in the first instance as the contents of a consciousness.

By 1919 Weyl had come to embrace Brouwer’s views on the
intuitive continuum. The latter’s influence looms large in Weyl’s next
paper on the subject, On the New Foundational Crisis of Mathematics,
written in 1920. Here Weyl identifies two distinct views of the con-
tinuum: “‘atomistic” or “‘discrete”’; and “‘continuous”. In the first of
these the continuum is composed of individual real numbers which
are well-defined and can be sharply distinguished. Weyl describes his
earlier attempt at reconstructing analysis in Das Kontinuum as
atomistic in this sense:

Existential questions concerning real numbers only become meaningful if we
analyze the concept of real number in this extensionally determining and delimiting
manner. Through this conceptual restriction, an ensemble of individual points is, so
to speak, picked out from the fluid paste of the continuum. The continuum is
broken up into isolated elements, and the flowing-into-each other of its parts is
replaced by certain conceptual relations between these elements, based on the
“larger-smaller” relationship. This is why I speak of the atomistic conception of
the continuum.?®

By this time Weyl had indeed come to repudiate atomistic theories
of the continuum, including that of Das Kontinuum. He writes:

In traditional analysis, the continuum appeared as the set of its points; it was con-
sidered merely as a special case of the basic logical relationship of element and set.
Who would not have already noticed that, up to now, there was no place in math-
ematics for the equally fundamental relationship of part and whole? The fact,
however, that it has parts, is a fundamental property of the continuum; and so (in
harmony with intuition, so drastically offended against by today’s “atomism”) this
relationship is taken as the mathematical basis for the continuum by Brouwer’s
theory. This is the real reason why the method used in delimiting subcontinua and in
forming continuous functions starts out from intervals and not points as the primary
elements of construction. Admittedly a set also has parts. Yet what distinguishes the
parts of sets in the realm of the “divisible” is the existence of “elements’ in the set-
theoretical sense, that is, the existence of parts that themselves do not contain any
further parts. And indeed, every part contains at least one “‘element”. In contrast, it
is inherent in the nature of the continuum that every part of it can be further divided
without limitation. The concept of a point must be seen as an idea of a limit, ““point”
is the idea of a limit of a division extending in infinitum. To represent the continuous
connection of the points, traditional analysis, given its shattering of the continuum
into isolated points, had to have recourse to the concept of a neighbourhood. Yet,
because the concept of continuous function remained mathematically sterile in the
resulting generality, it became necessary to introduce the possibility of “triangula-
tion” as a restrictive condition.
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Like Brentano, Weyl knew that to ““shatter a continuum into isolated
points” would be to eradicate the very feature which characterizes a
continuum — the fact that its cohesiveness is inherited by every one of
its parts.

Weyl accordingly welcomed Brouwer’s construction of the con-
tinuum by means of sequences generated by free acts of choice, thus
identifying it as a ““‘medium of free Becoming™ which ‘“‘does not dis-
solve into a set of real numbers as finished entities”. Weyl felt that
Brouwer, through his doctrine of Intuitionism?’, had come closer
than anyone else to bridging that “unbridgeable chasm” between the
intuitive and mathematical continua. In particular, he found com-
pelling the fact that the Brouwerian continuum is not the union of
two disjoint nonempty parts — that it is, in a word, indecomposable.
“A genuine continuum,” declares Weyl, “cannot be divided into
separate fragments.” In later publications he expresses this more
colourfully by quoting Anaxagoras to the effect that a continuum
“defies the chopping off of its parts with a hatchet.”

I come finally to that most dissident of voices, Brouwer. In
Brouwer’s philosophy the femporal continuum played a predominant
role. Indeed it is the awakening of awareness of the temporal con-
tinuum in the subject, an event termed by Brouwer “The Primordial
Happening” or “The Primordial Intuition of Time”, that engenders
the fundamental concepts and methods of mathematics. In ‘“Math-
ematics, Science and Language” (1929), he describes how the notion
of number — the discrete — emerges from the awareness of the con-
tinuous:

Mathematical Attention as an act of the will serves the instinct for self-preservation
of individual man; it comes into being in two phases; time awareness and causal
attention. The first phase is nothing but the fundamental intellectual phenomenon of
the falling apart of a moment of life into two qualitatively different things of which
one is experienced as giving away to the other and yet is retained by an act of
memory. At the same time this split moment of life is separated from the Ego and
moved into a world of its own, the world of perception. Temporal twoity, born from
this time awareness, or the two-membered sequence of time phenomena, can itself
again be taken as one of the elements of a new twoity, so creating temporal threeity,
and so on. In this way, by means of the self-unfolding of the fundamental phe-
nomenon of the intellect, a time sequence of phenomena is created of arbitrary
multiplicity.*

But in his doctoral dissertation of 1907 he regards continuity and
discreteness as complementary notions, neither of which is reducible
to the other:
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...We shall go further into the basic intuition of mathematics (and of every intel-
lectual activity) as the substratum, divested of all quality, of any perception of
change, a unity of continuity and discreteness, a possibility of thinking together
several entities, connected by a “between”, which is never exhausted by the insertion
of new entities. Since continuity and discreteness occur as inseparable complements,
both having equal rights and being equally clear, it is impossible to avoid [regarding
each one of them as a primitive entity... Having recognized that the intuition of
continuity, of “fluidity” is as primitive as that of several things conceived as forming
together a unit, the latter being at the basis of every mathematical construction, we

are able to state properties of the continuum as ““a matrix of points to be thought of

as a whole”.’!

In that work Brouwer states quite categorically that the continuum is
not constructible from discrete points:

... The continuum as a whole [is] given to us by intuition; a construction for it, an
action which would create from the mathematical intuition ‘all’ its points as indi-
viduals, is inconceivable and impossible.*?

Later Brouwer was to modify this doctrine. In his mature
thought, he radically transformed the concept of “point”, endow-
ing points with sufficient fluidity to enable them to serve as gen-
erators of a “‘true” continuum. This fluidity was achieved by
admitting as ““points”’, not only fully defined discrete numbers such
as v2,n, e, and the like — which have, so to speak, already
achieved “being” — but also “numbers” which are in a perpetual
state of “becoming” in that their the entries in their decimal (or
dyadic) expansions are the result of free acts of choice by a subject
operating throughout an indefinitely extended time. The resulting
choice sequences cannot be conceived as finished, completed ob-
jects: at any moment only an initial segment is known. In this way
Brouwer obtained the mathematical continuum in a way compat-
ible with his belief in the primordial intuition of time — that is, as
an unfinished, indeed unfinishable entity in a perpetual state of
growth. Weyl had every reason to be impressed with Brouwer’s
achievement!

In Brouwer’s later conception, the mathematical continuum is
indeed ‘‘constructed”, not, however, by initially shattering, as did
Cantor and Dedekind, an intuitive continuum into isolated points,
but rather by assembling it from a complex of continually changing
overlapping parts. I do not doubt that Brentano would have found
Brouwer’s account of the continuum considerably more congenial
than that of the arithmetizers.
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NOTES

! Aristotle (1980), Ch. 1

Quoted in Rescher (1967), p. 109.

Kant (1964), p. 204.

Brentano (1974), p. 354.

Brentano (1988), p. 6.

Ibid., p. 21f.

Quoted in ibid., p. xvil.

Brentano (1974), p. 357.

Peirce assumed what amounts to the generalized continuum hypothesis in sup-
posing that each possible infinite set has one of the cardinalities N0,2N°722N°,....
These he termed denumerable, primipostnumeral, secundipostnumeral, etc.

10 Ppeirce (1976), p. 95.

" In their Introduction to Peirce [1992], Ketner and Putnam characterize Peirce’s
conception of the continuum as “‘a possibility of repeated division which can never

s 0w

© 0 N Ww

be exhausted in any possible world, not even in a possible world in which one can
complete [nondenumerably] infinite processes. This description would seem to apply
equally well to Conway’s conception.

12 To be precise, one can define, by transfinite recursion, an injection of the proper
class of ordinal numbers into any given open interval of S..

'3 On several occasions Brentano criticized Poincaré’s construction of the contin-
uum by repeated insertion of points.

14 Peirce (1976), p. 123

S Ibid., p. 124.

16 Ibid., p. 925.

17 Weyl [1987], 108.

' Ibid., 24.

Y Ibid., 94.

%0 Ibid., 93.

2l The connection between mathematics and physics was of course of paramount
importance for Weyl. His seminal work on relativity theory, Space-Time-Matter, was
published in the same year (1918) as Das Kontinuum; the two works show subtle
affinities.

22 In this connection it is of interest to note that on 9 February 1918 Weyl and
George Polya made a bet in Ziirich in the presence of twelve witnesses (all of whom
were mathematicians) that “within 20 years, Polya, or a majority of leading math-
ematicians, will come to recognize the falsity of the least upper bound property.”
When the bet was eventually called, everyone—with the single exception of
Godel—agreed that Polya had won.

23 This fact would seem to indicate that in Weyl’s theory the domain of definition of
a function is not unambiguously determined by the function, so that the continuity of
such a “function” may vary with its domain of definition. (This would be a natural
consequence of Weyl’s definition of a function as a certain kind of relation.) A simple



DIVERGENT CONCEPTIONS OF 19TH & 20TH CENTURY 83

but striking example of this phenomenon is provided in classical analysis by the
function f which takes value 1 at each rational number, and 0 at each irrational
number. Considered as a function defined on the rational numbers, f'is constant and
so continuous; as a function defined on the real numbers, f fails to be continuous
anywhere.

24 Weyl [1987], 88.

> Ibid., 88

*° Ibid., 91-92.

> Ibid., 92.

2 Weyl [1998], 91.

% For my remarks on Weyl’s relationship with Intuitionism I have drawn on the
illuminating paper van Dalen [1995].

30 Manocosu [1998], p. 45.

31 Brouwer [1975], p. 17.

32 Ibid., p. 45.

REFERENCES

Aristotle: 1980, Physics, Vol. II. Harvard University Press

Brentano, F.: 1988, Philosophical Investigations on Space, Time and the Continuum.
Translated by Barry Smith. Croom Helm.

Brentano, F.: 1974, Psychology from an Empirical Standpoint. Humanities Press.

Brouwer, L. E. J.: 1975, in A. Heyting (ed.), Collected Works, 1. North-Holland.

Hilbert, D.: 1926, ‘On the Infinite.” Translated from German original in Mathe-
maticsche Annalen 95 (1926). In Jean van Heijenoort, ed., From Frege to Godel: A
Source Book in Mathematical Logic, Harvard University Press, 1981. pp. 1879—
1931.

Kant, 1.: 1964, Critique of Pure Reason. Macmillan.

Mancosu, P.: 1998, From Brouwer to Hilbert: The Debate on the Foundations of
Mathematics in thel1920s. Oxford: Clarendon Press.

Peirce, C. S.: 1976, The New Elements of Mathematics, Vol. 111. Mouton Publishers
and Humanities Press.

Peirce, C. S.: 1992, in Kenneth Laine Ketner (ed.), Reasoning and the Logic of Things.
Harvard University Press.

Rescher, N.: 1967, The Philosophy of Leibniz. Prentice-Hall.

Weyl, H.: 1929, ‘Consistency in Mathematics”. Rice Institute Pamphlet 16, 245-265.
Reprinted in Weyl [1968] 11, pp. 150-170.

Weyl, H.: 1932, The Open World: Three Lectures on the Metaphysical Implications of
Science. Yale University Press.

Weyl, H.: 1940, Philosophical Essays in Memory of Edmund Husserl, Harvard Uni-
versity Press. Reprinted in Weyl [1968] II1, pp. 684-709.

Weyl, H.: 1946, ‘Mathematics and Logic: A brief survey serving as a preface to a
review of “The Philosophy of Bertrand Russell”.” American mathematical Monthly
53, 2-13.

Weyl, H.: 1950, Space-Time-Matter, tr. Henry L. Brose. New York: Dover, 1950.
(English translation of Raum, Zeit, Materie, Berlin: Springer Verlag, 1918.)



84 JOHN L. BELL

Weyl, H.: 1954, Address on the Unity of Knowledge. Columbia University Bicen-
tennial Celebration, 1954. Reprinted in Weyl [1968] IV, pp. 623-630.

Weyl, H.: 1963, Philosophy of Mathematics and Natural Science. New York: Athe-
neum. (An expanded Engish version of Philosophie der Mathematik und Natur-
wissenschaft, Miinchen: Leibniz Verlag, 1927.)

Weyl, H.: 1968, in K. Chandrasehharan, (ed.), Gesammelte Abhandlungen, 1-1V,
Berlin: Springer-Verlag.

Weyl, H.: 1969, “Insight and Reflection”. (Lecture delivered at the University of
Lausanne, Switzerland, May 1954. Translated from German original in Studia
Philosophica, 15, 1955.) In T.L. Saaty and F.J. Weyl, (eds), The Spirit and Uses of
the Mathematical Sciences, New York: McGraw-Hill. pp. 281-301.

Weyl, H.: 1985, ‘Axiomatic versus Constructive Procedures in Mathematics.’,
Mathematical Intelligencer 7(4), 10-17, 38.

Weyl, H.: 1987, The Continuum: A Critical Examination of the Foundation of Anal-
ysis, tr. S. Pollard and T. Bole. Kirksville, Mo.: Thomas Jefferson University Press.
(English translation of Das Kontinuum, Leipzig: Veit, 1918.)

Weyl, H.: 1998, ‘On the New Foundational Crisis in Mathematics’. (English
Translation of “‘Uber der neue Grundslagenkrise der Mathematik,” Mathematische
Zeitschrift 10(1921), 37-79. In Mancosu (1998), 86-122.

Weyl, H.: 1998a ‘On the Current Epistemological Situation in Mathematics.” English
translation of ‘Die Heutige Erkenntnislage in der Mathematik, Symposion 1,
(1925-1927), 1-32. In Mancosu 1998, 123-142.

Van dalen, D.: 1995, “Hermann Weyl’s Intuitionistic Mathematics’, Bulletin of
Symbolic Logic 1(2), 145-169.



