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I. In the Garden

1. Suppose that we are enjoying the Garden of Eden one day when The
Gardener happens by and makes the following speech.

I thought you might enjoy playing some games—keep you out
of trouble.
I have three coins. The first is fair. The second has a bias in
favour of heads given by a rational number (strictly) between
zero and one, and the the third has a bias given by an irrational
number between zero and one. I flipped the fair coin to choose
between the second and third coins and dubbed the chosen one
The Coin. Then I repeatedly tossed The Coin to generate an
infinite binary sequence (0’s corresponding to heads, 1’s to tails),
which I call The Sequence.
I have in mind two games. Each has the following structure. I
pose a question about The Sequence. You propose a strategy
for answering this question on the basis of finite data sets: a
function that takes as input binary strings (encoding outcomes
of finite numbers of tosses of The Coin) and gives as output
conjectures (possible answers to the question posed). Let r̂1 be
the conjecture that your strategy yields when it sees the first bit
of The Sequence, r̂2 be the conjecture that it yields when when
show the first two bits of The Sequence, and so on. Your strategy
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succeeds if the sequence of conjectures r̂1, r̂2, r̂3, . . . converges
to the truth about The Sequence. If your strategy succeeds then
you get something nice—a piece of that fruit you like. If your
strategy fails then something unpleasant happens to you (not
something infinitely bad—just very, very bad).
The first game. The question is: What is the limiting relative
frequency R of 0’s in The Sequence?
The second game. The question is: Is R a rational number or an
irrational number?

Should we play the first game? Should we play the second game?

II. What Rationality Permits

2. I myself do not enjoy unpleasantness. And I have been around enough
to know that, when motivated, The Gardener can make things very
unpleasant indeed. And, frankly, fruit is not all that hard to come by
in the Garden of Eden. Knowing that winning one of these games has
only small positive utility whereas losing one has unknown but great
disutility, I am going to play only if I have a strategy that has no chance
of losing no matter what the bias of The Coin. I hope the reader will
agree that this attitude is rationally permitted.

Now, by the Strong Law of Large Numbers, no matter what the
actual bias R of The Coin, there is chance one that tossing it an infinite
number of times will generate an infinite sequence in which the relative
frequency of heads is R.1 It follows that I have no chance of losing the
first game if I use the straight rule to generate my conjectures, guessing
that the bias is k{n when I am told that heads has come up k times in n
tosses.

There are no similarly good strategies for the second game—

1See, e.g., Billingsley (1995), Theorem 6.1. Here and throughout we assume that
since The Sequence is generated by repeated tossing of The Coin, we can treat
its bits as independent and identically distributed random variables.
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unsurprisingly, since, intuitively, we are getting little or no information
about whether or not R is rational from the finite data sets that we
see.2 Indeed, it can be shown that every strategy for playing the second
game has one or the other of the following features.3 (i) There is a
nonempty open subinterval J of the unit interval such that for each
rational number b P J, there is a non-zero chance that tossing a coin
of bias b would generate a sequence that would lead the strategy to
lose the second game. (ii) There is a set K of irrational numbers in the
unit interval that is dense and uncountable (indeed co-meagre) and
such that for any b P K, there is zero chance that tossing a coin of bias
b would generate a sequence that would lead the strategy to win the
second game. Thus there is no strategy that gives me zero chance of
losing the second game. So I am not going to play.

3. Maybe you are sharper than I am and are able to estimate the disutility
of losing these games—and so are able to determine a probability p such
that it is worth playing these games, so long as the chance of winning is
at least p. But this on its own will not allow you to determine whether
it is worth playing the second game because you cannot calculate the
chance of winning without knowing the chance, for each subinterval of
the unit interval, that bias of The Coin lies in that subinterval. But we
do not have access to that information since we don’t know anything
about how The Gardener selected the pair of coins from which The
Coin was chosen.

III. What Bayesianism Permits

4. According to factory-model Bayesianism, a Bayesian agent is someone
who maximizes subjective expected utility in choosing actions, whose
credal state at any time is representable by a (countably additive)
probability measure on the relevant space of possibilities, who updates

2Cover (1973) is the classic treatment of this problem. For further discussion
and references, see Kleijn (2023), §9.1.2.

3See the proof of Theorem 2 in Koplowitz, Steif, and Nerman (1995).

these credal states by conditionalization on available data, and who
defers to known chance facts (in the sense that their credal states agree
with any known facts about objective chances). We will also henceforth
restrict attention to Bayesian agents for whom declining to play either
of our games has less utility than playing and winning (and for whom
losing has finite disutility).

After hearing The Gardener’s speech, the credences of a Bayesian
agent concerning the bias of The Coin will be encoded in a probability
measure µ0 on the open unit interval (the space of possible biases of
The Coin). Because µ0 defers to known chance facts, we can assume
that if σ is a binary string containing k 0’s and ` 1’s, then conditional
on the bias of The Coin being r, µ0 assigns probability rkp1´ rq` to
the proposition JσK that The Sequence begins with σ. This allows us
to calculate, for each binary string σ, the probability that µ0 assigns
to JσK.4 It follows that µ0 induces a probability measure µ̃0 on Cantor
space (the space of infinite binary sequences).5 Then a Bayesian agent
whose data is given by a k-bit binary string σ will have a posterior
probability distribution µ̃k “ µ̃0p¨ | JσKq on Cantor space, which will
determine a unique probability measure µk over the possible biases of
The Coin.6

Fix a Bayesian agent with a prior µ0 on the unit interval that induces
prior µ̃0 on Cantor space. For either of our games, and for any strategy
π for playing that game, we can consider the set Wπ of binary sequences
that lead to victory when that strategy is played. Then µ̃0pWπq is the
probability that our agent assigns to winning the game if strategy π

is played. Our agent will certainly agree to play a game if there is a
strategy for which this probability is one.

4This is the integral over the unit interval of f prq :“ rkp1´ rq` (with respect to
the measure µ0).

5The Carathéodory Extension Theorem implies that fixing the probability that
µ0 assigns to each JσK determines a unique probability measure µ̃0 on Cantor
space (defined on the sigma-algebra generated by the JσK)—see, e.g., Billingsley
(1995), Theorem 11.3.

6This follows from de Finetti’s Representation Theorem—see, e.g., Billingsley
(1995), Theorem 35.10.
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Consider the following strategy that our agent might use to play
the first game: after the kth bit of The Sequence is revealed, calculate
the mean of µk and use that as your conjecture as to the bias of The
Coin. According to any prior µ0 the set of binary sequences that result
in victory for this strategy has probability one.7

Consider the following strategy that our agent might use to play
The Gardener’s second game: after the kbit of The Sequence is revealed,
calculate the probability that µk assigns to the set of rational numbers in
the unit interval; if this number is greater than one-half, conjecture that
the bias of The Coin is rational, otherwise conjecture that it is irrational.
Any prior will assign measure one to the set of sequences for which
this strategy leads to victory.8

So any Bayesian agent (with utilities obeying the minimal constraints
imposed above) will agree to play both of the games offered by The
Gardener.

5. There is a challenge here. It appears that rationality at least permits
playing the first game while declining to play the second. But this
pattern of behaviour will not be adopted by any agent satisfying the
strictures of the factory-model Bayesian analysis of rationality. Should
philosophers with Bayesian inclinations argue that, contrary to appear-
ances, the factory-model Bayesian account is nonetheless correct? Or
should they revise the factory-model analysis in order to allow the
existence of rational agents who elect to play the first game but not the
second?

6. This challenge is a relative of one issued in Belot (2013). In that paper
it was observed that problems like guessing whether an infinite binary
data stream gives the expansion of a rational number or an expansion
of an irrational number have the following features: on the one hand,
any method for approaching this problem that is open-minded in a

7That is: Bayes’ estimates for this problem are consistent in the Bayesian sense—
see, e.g., Billingsley (1995), 475.

8This is a consequence of Doob’s Martingale Convergence Theorem—see, e.g.,
Schervish and Seidenfeld (1990), Theorem 2.

certain sense fails to converge to the truth for a large (indeed co-meagre)
subset of possible data-streams; on the other hand, every agent whose
credal state is represented by a probability measure and who updates by
conditionalization is subjectively certain that their beliefs will converge
to the truth.

It is possible to overcome this earlier challenge if one is willing to
revise factory-model Bayesianism: by employing frameworks other than
Cantor space to model unlimited binary data streams or by countenanc-
ing imprecise priors or merely finitely additive priors, one can show the
existence of generalized Bayesian agents who are not certain of success
in situations in which failure is typical for the relevant problem.9

The challenge developed in the present paper differs in a couple
ways from the earlier version: open-mindedness plays no role in the
new version; and whereas in the original version the problem at hand
required agents to distinguish between a countable subset of Cantor
space and its complement, in the new version the problem involves
distinguishing between two uncountable subsets of Cantor space.10 It
would be surprising (but interesting) if there were any difficulties in
adapting the revisionist approaches noted above to the present version
of the orgulity objection.

The real point of this paper is to address the silent majority of
Bayesians who did not think of the original orgulity argument as putting
pressure on the factory-model account. Questions about learning are

9For alternatives to Cantor space, see Huttegger (2015, 2022). On imprecise
priors, see Weatherson (2015). On what can be accomplished using merely
finitely additive priors, see Elga (2016), Cisewski et al. (2018), Pomatto and
Sandroni (2018), Nielsen and Stewart (2019), and Gong et al. (2020). On finite
additivity: for reasons discussed in Belot (2023), I think that it is crucial for
Bayesians that at least some rationally permitted priors should be computable—
and that (in rich contexts) there are interesting obstructions to developing an
account of computable merely finitely additive probability measures.

10There is also a difference in rhetoric: the topological distinction between
meagre and co-meagre subsets of Cantor space plays a peripheral role in the
present discussion. On the epistemological (ir)relevance of this distinction,
see Belot (2013), Huttegger (2015), Cisewski et al. (2018), Nielsen and Stewart
(2019), and Zaffora Blando (2023).
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sometimes shrugged off as being mere variants of the problem of
induction. It is less easy to dismiss a puzzle about decision and action
(even a fanciful one).

IV. Morals?

7. We have seen that each Bayesian agent is subjectively certain that
the strategies considered in Section III above will lead to victory in
both of The Gardener’s games. But of course subjective certainty can
come apart from objective chance: a Bayesian agent whose prior is
concentrated on the first third of the unit interval and who faces a data
stream generated by flipping a fair coin is never going to give accurate
estimates of that coin’s bias; a Bayesian agent who is certain that The
Coin is fair if it has a rational bias is not going to be perform well in
the second game if the coin has some other rational bias.

8. The Bayesian strategy considered above for the first game has the
feature that for any bias that The Coin might have, flipping a coin of that
bias has zero chance of generating a sequence that would lead to that
strategy losing the game if and only if the prior used assigns positive
probability to each non-empty open subinterval of the real line.11 On the
other hand, there is no prior with the feature that playing the Bayesian
strategy considered above for the second game is guaranteed to lead
to victory in this sense. Indeed, since we are restricting attention to
priors that defer to known chance facts, given how The Coin was chosen
we can assume that µ0 assigns equal probability to the set of rational
biases and to the set of irrational biases. So it can be written in the form
µ0 “

1
2 µR `

1
2 µI , where µR and µI are probability measures on the unit

interval, with µR assigning probability one to the subset of rational
numbers and µI assigning probability one to the subset of irrational
numbers. If µR assigns positive probability to each rational number
in the unit interval, then for each rational bias that The Coin might
have, there is chance one that the strategy under discussion will lead to

11This follows from Theorem 1 of Freedman (1963).

victory if The Sequence is generated by flipping a coin of that bias.12 It
then follows from the result mentioned in Section II that for any such
prior, there is a large set of irrational biases that The Coin might have
such that there is no chance that an agent playing this strategy would
win the second game.

9. Bayesian agents cannot see that the second game is harder than the
first because in practical deliberation they do not distinguish between
the aspects of their credences that correspond to known facts about
objective chance and those that do not—and because in situations in
which known facts about objective chance are too scant to determine a
probability for each event of interest, in order to be rational by Bayesian
lights agents must supplement known chance facts by further agent-
relative probabilities. Even outside of the magical context of the Garden
of Eden, where rewards and punishments can be determined by the
behaviour of a completed ω-sequence, it is natural for anyone who
accepts the existence of objective chance facts to be wary of purported
accounts of rationality that require one to ignore in one’s practical
deliberations the distinction between these two sorts of probabilities.
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