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506 A useful four-valued logic Ch. XII §81

And we are then led to our last thought. We do think that “admissibility”
has some kind of an “if-then” in it. So if what we have heretofore called
“extensional admissibility” does not, then what is needed is a new theorem—
not just a relevant proof of an old one. Perhaps it would be a new theorem
using restricted quantification as described in §80.3.1(4). But, however that
comes out, this true relevantist has to look around the logical landscape and
say not just that he has not seen a relevant proof of the admissibility of the
d.s., but that he has not seen even a bad proof of it. Of course such a claim
would outrage a classicalist; but Our Hero should not let that bother him.

In any event, we applaud the steadfast courage of the true relevantist as
described here. In contrast to the old-fashioned logical empiricists and the
new-fashioned nominalists and such, the true relevantist is truly tough-
minded, with nary a soft spot in his head. His brow wrinkles, his jaw juts,
and he will never, ever use the d.s.

A sober closing: see Lance 1988 for a detailed argument that deep philo-
sophical commitments based on understanding language from a truly social
perspective support the use of some form of relevance logic as the only viable
standard of all reasoning in any social context.

§81. A useful four-valued logic: How a computer should think. The work
of the previous section can be understood from a number of points of view.
On one of these we can see it as working out a four-valued logic, the values

being the various subsets of {T, F }. We propose that this four-valued logic
should sometimes be used.

§81.1. The computer. A lot of work has been done recently on applying
many-valued logics to the design of computer circuitry and thus giving them
application (see Wolf’s bibliography in Dunn and Epstein 1977); so what,
you may ask, is special about offering a four-valued logic as “useful™? In fact
we think we are indeed involved in an odd sort of enterprise; for in the
present context we want to use “logic” in a narrow sense, the old sense:
“logic” in the sense of an organon, a tool, a canon of inference. And it is our
impression that hardly any of what individual practitioners of many-valued
logic have done is directly concerned with developing logics to use as prac-
tical tools for inference. Hence the peculiarity of our task, which is to suggest
that a certain four-valued logic ought to be used in certain circumstances as
an actual guide to reasoning.

Our suggestion for the utility of a four-valued logic is a local one. It is
not the Big Claim that we all ought always to use this logic (unlike the rest
of this book, this section does not comment on that claim), but the Small
Claim that there are circumstances in which someone—not you—ought to
abandon the familiar two-valued logic and use another instead. It will be
important to delineate these circumstances with some care.
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The situation we have in mind may be described as follows. In the first
place, the reasoner who is to use this logic is an artificial information pro-
cessor, that is, a (programmed) computer. This already has an important con-
sequence. People sometimes give as an argument for staying with classical
two-valued logic that it is tried and true, which is to say that it is imbued

ment for anyone who is interested. as we occasionally are, in practicality:; it
is akin to Quine’s principle of “minimal mutilation,” though we specifically
want the emotional tone surrounding familiarity to be kept firmly in mind.
But, given that in the situation we envisage the reasoner is a computer, this
argument has no application. The notion of “familiarity to the computer”
makes no sense, and surely the computer does not care what logic is familiar
to us. Nor is it any trouble for a programmer to program an unfamiliar logic
into the computer. So much for emotional liberation from two-valued logic.

In the second place, the computer is to be some kind of sophisticated
question-answering system, where by “sophisticated” we mean that it does
not confine itself, in answering questions, to just the data it has explicitly in
its memory banks, but can also answer questions on the basis of deductions
that it makes from its explicit information. Such sophisticated devices barely
exist today, but they are in the forefront of everyone’s hopes. In any event,
the point is clear: unless there is some need for reasoning, there is hardly a
. need for logic.

Thirdly, the computer is to be envisioned as obtaining the data on which
it is to base its inferences from variety of sources, all of which may be
Supposed to be on the whole trustworthy, but none of which can be assumed
to be that paragon of paragons, a universal truth-teller. There are at least
two possible pictures here. One puts the computer in the context of a lot of
fallible humans telling it what is so and what is not, or, with rough equiv-
alency, a single human feeding it information over a stretch of time. The
other picture paints the computer as part of a network of artificial intellj-
gences with whom it exchanges information. In any event, the essential feature
is that there is no single. monolithic, infallible source of the computer’s data.
but that inputs come from several independent sources. In such circumstances
the crucial feature of the situation emerges: inconsistency threatens. Elizabeth
tells the computer that the Pirates won the Series in 1971: Sam tells it other-
wise. What is the computer to do? If it is a classical two-valued logician, it
must give up altogether talking about anything to anybody, or, equivalently,
it must say everything to everybody. We al know all about the fecundity
of contradictions in two-valued logic: contradictions are never isolated, in-
fecting as they do the whole system. Of course the computer could refuse (o
entertain inconsistent information. But in the first place that is unfair both
to Elizabeth and to Sam, each of whose credentials are, by hypothesis, nearly
impeccable. And in the second place, as we know all too well. contradictions
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may not lie on the surface. There may be in the system an undetected con-
tradiction, or, what is just as bad, a contradiction that is not detected until
long after the input that generated it has been blended in with the general
information of the computer and has lost its separate identity. But still we
want the computer to use its head to reason to just conclusions yielding
sensible answers to our questions.

Of course we want the computer to report any contradictions that it finds,
and in that sense we by no means want the computer to ignore contradictions.
It is just that where there is a possibility of inconsistency, we want to set
things up so that the computer can continue reasoning in a sensible manner
even if there is such an inconsistency, discovered or not. And, even if the
computer has discovered and reported an inconsistency in its baseball infor-
mation, such as that the Pirates both won and did not win the Series in
1971, we would not want that to affect how it answered questions about air-
line schedules. But if the computer is a two-valued logician, the baseball con-
tradiction will lead it to report that there is no way to get from Bloomington
to Chicago. And also, of course, that there are exactly 3,000 flights per day.
In an incisive phrase, S. C. Shapiro calls this “polluting the data.” What we
are proposing is to Keep Our Data Clean. (Shapiro and Wand 1976 and
also Shapiro separately have independently argued for the utility of relevance
logics for question-answering systems, and have suggested implementation;
see §83 for a detailed account.)

So we have a practical motive for dealing with situations in which the
computer may be told both that a thing is true and that it is false (at the
same time, in the same place, in the same respect, etc., etc., etc.).

There is a fourth aspect of the situation, concerning the significance of
which we remain uncertain, but which nevertheless needs mentioning for a
just appreciation of developments below: our computer is not a complete
reasoner, who should be able to do something better in the face of contradic-
tion than just report. The complete reasoner should, presumably, have some
strategy for giving up part of what it believes when it finds its beliefs incon-
sistent. Since we have never heard of a practical, reasonable, mechanizable
strategy for revision of belief in the presence of contradiction, we can hardly
be faulted for not providing our computer with such. In the meantime, while
others work on this extremely important problem, our computer can only
accept and report contradictions without divesting itself of them.

This aspect is bound up with a fifth: in answering its questions, the com-
puter is to reply strictly in terms of what it has been told, not in terms of what
it could be programmed to believe. For example, if it has been told that the
Pirates won and did not win in 1971, it is to so report, even though we could
of course program it to recognize the falsity of such a report. The point here
is both subtle and obvious: if the computer would not report out contra-
dictions in answer to our questions, we would have no way of knowing that
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\lan
its data base harbored contradictory information. (We could, if we wished, isor of
ask it to give a supplementary report, e.g., as follows: “I've been told that the Profes-
Pirates won and did not win; but of course it ain’t so”: but would that be jence

useful?)

Approximation lattices. Always in the background and sometimes in the
foreground of what we shall be working out is the notion of an approximation
lattice, due to Scott 1970b, 1972, 1973a; see the Compendium Gierz. Hofmann,
Keimel, Lawson, Mislove, Scott 1980. Let us say a word about this concept
before getting on. You are going to be disappointed at the mathematical
definition of an approximation lattice: mathematically it is just a complete
lattice. That is, we have a set A on which there is a partial ordering ,
and for arbitrary subsets X of A there always exist least upper bounds
LIX € A and greatest lower bounds [MX € A (two-element ones written Xy
and xry). But we don’t call a complete lattice an approximation lattice unless
it satisfies a further, nonmathematical condition: it is appropriate to read
x £y as “x approximates y.” Examples worked out by Scott include the
lattice of *approximate and overdetermined real numbers,” where we identify
an approximate real number with an interval, and where x = y just in case
y & x. The (only) overdetermined real number is the empty set. As a further
example Scott offers the lattice of “approximate and overdetermined func-
tions” from A to B, identified as subsets of A x B. Here we want [ = g Just
in case f = g.

In such lattices the directed sets are important: those sets such that every
pair of members x and y of the set have an upper bound z also in the set.
For such a set can be thought of as approximating by a limiting process to
its union LIX. That is, if X is directed, it makes sense to think of LIX as
the limit of X. (An ascending sequence x, = ... = x; = . .. is a special case
of a directed set.) And now when we pass to the family of functions from
one approximation lattice into another (or of course the same) approximation
lattice, Scott has demonstrated that what are important are the continuous
functions: those which preserve nontrivial directed unions (i.e.. [(LIX) =
U {fx: x & X}, for nonempty directed X). These are the only functions that
respect the lattices qua approximation lattices. This idea is so fundamental to
developments below that we choose to catch it in a “thesis™ to be thought
of as analogous to Church’s thesis:

ScoTT’s THESIS. In the presence of complete lattices A and B, naturally
thought of as approximation lattices, pay attention only to the continuous
functions from A into B, resolutely ignoring all other functions as violating
the nature of A and B as approximation lattices.

(Though honesty compels us to attribute the thesis to Scott. the same policy
bids us note that the formulation is ours and that, as it is stated, Scott may
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not want it or may think that some other thesis in the neighborhood is more
important, for example, that every approximation lattice (intuitive sense) isa

continuous lattice (sense of Scott 1972a).)
You will see how we rely on Scott’s thesis in what follows.

Program. The rest of this section is divided into three parts. Part 1 (§81.2)
considers the case in which the computer accepts only atomic information.
This is a heavy limitation, but provides a relatively simple context in which
to develop some of the key ideas. Part 2 (§81.3) allows the computer to accept
also information conveyed by truth-functionally compounded sentences; and in
this context we offer a new kind of meaning for formulas as certain mappings
from epistemic states into epistemic states. In Part 3 (§81.4) the computer is
allowed also to accept implications construed as rules for improving its data

base.

§81.2. Part 1. Atomic inputs. We first consider the computer receiving
only “simple” or atomic bits of information on the basis of which to answer

(possibly complex) questions.

§81.2.1. Atomic sentences and the approximation lattice A4. Now and
throughout this paper you must keep firmly fixed in mind the circumstances
in which the computer finds itself, and especially that it must be prepared
to receive and reason about inconsistent information. We want to suggest a
natural technique for employment in such cases: when an item comes in as
asserted, mark it with a “told True” sign, and when an item comes in denied,
mark with a “told False” sign, treating these two kinds of tellings as alto-
gether on a par. In a phrase we have used elsewhere, this is a “double-entry
bookkeeping” and it is easy to see that it leads to four possibilities. For each
item in its basic data file, the computer is going to have it marked in one of
the following four ways: (1) just the “told True” sign, indicating that that
item has been asserted to the computer without ever having been denied; (2)
just the value “told False,” which indicates that the item has been denied
but never asserted; (3) no “told” values at all, which means the computer is in
ignorance, has been told nothing; (4) the interesting case: the item is marked
with both “told True” and “told False.” (Recall that allowing this case is a
practical necessity because of human fallibility.)

These four possibilities are precisely the four values of the many-valued
logic we are offering as a practical guide to reasoning by the computer. Let
us give them names:

T: just told True (warning: not same as T of §50 and elsewhere)
F: just told False (ditto)

None: told neither True nor False

Both: told both True and False
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So these are our four values, and we baptize: 4 = [T, F, None, and Both|.
Of course four values do not a logic make, but let us nevertheless pause a
minute to see what we have so far.

The suggestion requires that a system using this logic code each of the
atomic statements representing its data base in some manner indicating
which of the four values it has (at the present stage). It follows that the
computer cannot represent a class merely by listing certain elements, with
the assumption that those not listed are not in the class. For, just as there
are four values, so there are four possible states of each element: the computer
might have been told none, one, or both of “in the class” and “not in the
class.” Two procedures suggest themselves. The first is to list each item with
one of the values T, F, or Both, for these are the elements about which the
computer has been told something; and to let an absence of a listing signify
None, i.e., that there is no information about that element. The second proce-
dure would be to list each element with one or both of the “told” values,
“told True” and “told False,” not listing elements lacking both “told™ values.
This amounts to the §50 relations of formulas to (told) truth values. Obviously
the procedures are equivalent, and we shall not in our discourse distinguish
between them, using one or the other as seems convenient.

The same procedure works for relations, except that it is ordered pairs
that get marked. For example, a part of the correct table for Series winners,
conceived as a relation between teams and years, might look like this:

(Pirates, 1971 T i {Pirates, 1971 True
{Orioles, 1971> F {Orioles, 1971 False

But if Sam slipped up and gave the wrong information after Elizabeth had
previously entered the above, the first entry would become

{Pirates, 1971 Both or {Pirates, 1971) True, False

To be specific, we envision (in this Part of the section) the epistemic state
of the computer to be maintained in terms of a table giving one of four
values to each atomic sentence. We call such a table a set-up (following an
isomorphic use of Routley and Routley 1972; see §16.2.1); i.e, a set-up is,
mathematically, a mapping from atomic sentences into the set 4 = {T, F,
None, Both!. When an atomic formula is entered into the computer as either
affirmed or denied, the computer modifies its current set-up by adding a
“told True” or “told False™ according as the formula was affirmed or denied;
it does not subtract any information it already has, for that is the whole
point of what we are up to. In other words, if p is affirmed, it marks p with
T if p was previously marked with Nome, with Both if p was previously
marked with False; and of course leaves things alone if p was already marked
cither T or Both. So much for p as input.
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The computer not only accepts input, but answers questions. We consider
only the basic question as to p; this it answers in one of four ways: Yes, No,
Yes and No, or I don’t know, depending on the value of p in its current
set-up as T, F, Both, or None. (It would be wrong to suppose that these four
answers are either dictated by the four-valued logic or excluded by the two-
valued logic; it is just that they are made more useful in the four-valued
context. See Belnap 1963 and Belnap and Steel 1975.)

Warning—or, as N. Bourbaki says, tournant dangereux (co): “told True”
is not equivalent to T. The relationships are rather as follows. In the first
place, the computer is told True about some sentence 4 just in case it has
marked A either with T or with Both. Secondly, the computer marks 4 with
T just in case it has been told True of 4 and has not been told False of 4.
And similarly for the relation between F and “told False.” These relationships
are certainly obvious, but also in practice confusing. It might help always
to read “told True” as “told at least True,” and T as “told exactly True.”

We now make the observation that consitutes the foundation of what
follows: these four values naturally form a lattice under the lattice-ordering
“approximates the information in”; indeed they form an approximation lattice
in the sense we described above: :

Both

T . Ad v F
LR
kg
None

In this Hasse diagram joins (L!) and meets () are least upper bounds and
greatest lower bounds, respectively, and = goes uphill. None is at the bottom
because it gives no information at all; and Both is at the top because it gives
too much (inconsistent) information, saying as it does that the statement so
marked is held both told True/told False. As we mentioned above, Scott has
studied approximation lattices in detail and in a much richer setting than
we have before us; yet still this little four-element lattice is important for
much of his work. We remarked above that, according to Scott’s thesis, the
important functions in the neighborhood of an approximation lattice like A4
are the continuous ones. We do not, fortunately, have to deal with continuity
for a while, since in the finite case it turns out that for a function f to be
continuous is just for it to be monotonic, i.e., for it to preserve the lattice
ordering: a = b implies fa = fb.

For example, suppose a function g on A4 is such that it takes T into F
and F into T: g(T) = F, g(F) = T. Then, given that g is monotonic, since
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T T Both we must have F g(Both) and similarly T = g{ Both). So we must
have g(Both) = Both. In a similar way, it is casy to calculate that g(None) =
None—if g is to be monotonic, as all good functions should be,

§81.2.2. Compound sentences and the logical lattice L4. Now this func-
tion g is no mere example of a monotonic function on the lattice Ad of
approximate and inconsistent truth values. In fact we are in the very presence
of negation, which some have called the original sin of logic, but which we
clearly need in a sufficiently rich language for our computer to use—just to
be able to answer simple yes-no questions. To see that g really is negation,
consider first that the values T and F, representing as they do the pure case,
should act like the ordinary truth values the True and the False; so obviously
wewant ~T = F, and ~F = T. And then Scott’s thesis now imposes on us
a unique solution to the problem of extending negation to the values of our
foursome; we must have ~ None = None and ~ Both — Both if negation is
to be an acceptably monotonic function on the approximation lattice A4.

We can summarize the argument in a small table for negation,

‘ None | F [ T | Both |
[ m I[ t | tt | m |
I R VI T | F | Bo |

Here “tt” in the upper right-hand corner means that the value was given by
truth-table considerations, and “m” indicates that monotonicity was invoked.

Having put negation in our pocket, let’s turn to conjunction and the dis-
junction. We start with truth-table considerations for the T-F portion of the
tables, and then invoke monotony (in each argument place) and easy con-
siderations to extend them as indicated.

& .\ None | F | T | Both |

! | f i

: m | ] m | |

None i None | ‘ None |
i| ‘ tt | tt I !'

Foo | F | F | |

! m | it | m |

T : None | F .' T | Both |

| i !

‘ | m [ m !

Both | | Both | Both |
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v None F Both
m m
None None None
m tt tt m
F None F Both
}
tt it
T T
{ m g}
i Both Both Both
|

a&b =a
a&b =b

it avbi=b
iff avb=a

With just ordinary truth tables and monotonicity, it would appear we
have to stop with these partial tables; on this basis neither conjunction nor
disjunction—unlike negation—is uniquely determined. Of course we might
make some guesses on the basis of intuition, but this part of the argument
is founded on a desire not to do that; rather, we are trying to see how far
we can go on a purely theoretical basis.

It turns out that, if we ask only that conjunction and disjunction have some
minimal relation to each other, then every other box is uniquely determined.
| ‘ There are several approaches possible here, but perhaps as illuminating as
i any is to insist that the orderings determined by the two in the standard
way be the same; which is to say that the following equivalence (see e.g., the
end of §28.2.1.) holds:

For look at the partial table for conjunction. One can see that T is an identity
element: a&T = a, for all a. So, if conjunction and disjunction fit together
as they ought, we must have av T = T, for all a, which fills in two boxes of
the v-table. And similar arguments fill in all except the corners.

For the corners we must invoke monotonicity (after the above lattice argu-
| ment). For example, since F = Both, by monotonicity (F & None) = (Both &
i None), so F = (Both & None). Similarly, None = F leads to (Both &
None) = (Both & F), ie., (Both & None) = F. So, by antisymmetry in A4,
(Both & None) = F. These additional results are brought together in the fol-
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lowing tables, where “f” indicates use of the above fit between & and v,
and “m” again indicates monotonicity.

& ' None F
| f
None ’ None F
f
F F F
T / None F T T Both
m f
Both F F Both Both
v None F T Both
f m
None None None T T
F / None F / T / Both 1
f f
T T T T T
=]
m f
Both T Both T Both

We don’t know whether we should be surprised or not, but in fact these
tables (isomorphic to Smiley’s matrix of $15.3. which is their historical as
opposed to theoretical source) do constitute a lattice, with conjunction as
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meet and disjunction as join; a lattice which can be pictured as follows:

T

None L4 Both
F

Let us agree to call this the logical lattice L4 (it is the SL of §34.1), to
distinguish it from the approximation lattice A4. The ordering on L4 we write
as a < b; we write meets as a&b, and joins as avb. We note that in the logical
lattice, each of the values None and Both is intermediate between Fand T;
and this is as it should be, for the worst thing to be told is that something
you cling to is false, simpliciter. You are better off (it is one of your hopes)
either being told nothing about it or being told both that it is true and also
that it is false; while of course best of all is to be told it is true, with no
muddying of the waters. Nevertheless, surely most of you must be puzzled, if
you are thinking about it, concerning the rules for computing the conjunction
and disjunction of None and Both: (None & Both) = F, while (None v Both) =
T. We ask you for now only to observe that we were driven to these equations
by only three considerations: ordinary truth tables, monotonicity, and fit
between & and v. But we shall have more to say about this.

We can now use these logical operations on L4 to induce a semantics for a
language involving &, v, and ~, in just the usual way. Given an arbitrary
set-up s—a mapping, you will recall, of atomic formulas into 4—we can
extend s to a mapping of all formulas into 4 in the standard inductive way:

S(A&B) = s(4)&s(B)
s(AvB) = s(A)vs(B)
5[ ~d) = ~ald)

And this tells us how the computer should answer questions about complex
formulas based on a set-up representing its epistemic state (what it has been
told): just as it does for answering questions about atomic formulas, it should
answer a question as to 4 by Yes, No, Yes and No, or [ don’t know, according
as the value of 4 in s (e, s(A)) is T, F, Both, or None.

The preceding discussion will have struck you as abstractly theoretical; we
should next like to take up negation, conjunction, and disjunction from an
altogether different and more intuitive point of view. The question to which
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is ~:an ¢

we are going to address ourselves is this: Given our intuitive understanding ;,f«;;:;;r ?fs

of the meaning of the four truth values as indicating markings of sentences - 'f‘? ¢

with either or both of the True and the False, what is a plausible way to [ Senee,

extend these values to compound sentences when we know the values of the
ingredient sentences?

In the context of our enterprise, we can sharpen this question and dis-
tinguish it from others. We are not asking, What is meant by the truth-
functional connectives of English—or any language, informal or formal?
Rather, we are simply asking, How do we want our computer to answer our
questions about compound sentences, given that we have decided how it is
supposed to answer our simpler questions? The question presupposes some-
thing nontrivial: namely, that in fact we want a functional relationship be- ;
tween how the computer answers questions about the parts and how it i :
answers questions about the whole when its input is entirely atomic. The :

reason for this presupposition? We think it tends to simplify our dealings 2SSILY
with the computer by increasing our intellectual control over what we our-
selves have created, and, furthermore, it is likely to be more easily and effi-
ciently managed by the computer than some other than truth-functional
alternatives. But it is not an article of faith. ! - i
Let us take up negation first. The inevitable thing to say seems to be that ) Beinap.
~ A should be marked “told True” just in case 4 is marked “told False,” 'bl e, pre-
and vice versa. In other words, we want the computer to answer “Yes” to . tory way of
¥~ A7’ just in case it answers “No” to “A7” and vice versa. But then consider 55 — of
the correspondences: ‘ ey
None: marked with neither raicks: Wit
F: marked with just told False o s
T: marked with just told True ':' initi‘atcd
Both: marked with both. L the book is
It immediately comes out that we should mark ~ 4 with Both if 4 is, with "the current
None if A is, and with T or F if A is F or T. For example, if 4 is marked concerning
None, ie., with neither told True nor told False, then ~ A should also be to Acker-
marked with neither. If you know nothing about A, then you know nothing cal com-
about ~ A. And the same reasoning works for Both: if you know too much consider-
about 4, then you also know too much about ~ A. ;.that
In a similar way, we can give intuitive clauses for evaluation of conjunc- s fr'om
tions and disjunctions, as follows: including
deyer.
Mark (4&B) with at least told True just in case both A and B have s examined
been marked with at least told True. icussed ex-
Mark {4&B) with at least told False just in case at least one of A and phical mo-
B have been marked with at least told False.
975.
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This completely determines how to mark conjunctions,

Mark (4 v B) with at least told True just in case at least one of 4 and
B have been marked with at least told True.

Mark (4vB) with at least told False just in case both 4 and B have
been marked with at least told False.

And this similarly uniquely determines disjunction, given our intuitive cor-
respondence between our four values None, F, T, Both on the one hand, and
markings with neither, one, or both of told True and told False on the other.

There is another way to read this table, which we give only for one case:

we are declaring that we want the computer to answer “Yes” to “(4 vB)?”
just in case it is prepared to answer “Yes” fo either “47” or “BY And we
note that this is plausible only when, as at present, all input is atomic, so
that all disjunctions are decided. In general, commencing with Part 2, we
might often expect that the computer can tell us that it was told “4 v B”
when it wasn’t told either 4 or B: “told” does not in general distribute over
disjunction. But it does in the special, present case, when the entire epistemic
state is to be thought of as carried by a set-up.

This intuitive “double-entry bookkeeping” account of the connectives is
exactly that of §50.3 with regard to its structure. What we can now go on
to observe is that the intuitive account exactly agrees with the theoretically
based account deriving from Scott’s approximation lattices. For ex
consider one of the odd corners, (Both & None) = F. Well, suppose 4 has been
marked both told True and told False, and B with neither (corresponding to
Both and None, respectively). Then the computer must mark (4&B) at least
told False, since one of its components is marked at least told False; and
it must not mark it at least told True, since not both
so marked (assuming atomic input only). So we must mark it exactly told
False. So (Both & None) = F. In other even more informal words, in this
circumstance the computer has a reason to suppose (A&B) told False, but
none to suppose it told True. So, although the oddity of (Both & None) = F
doesn’t go away, it anyhow gets explained.

ample,

of its components are

§81.2.3. Entailment and inference: The four-valued logic. Where are we?
Well, we haven’t got a logic, i.e., rules for generating and evaluating inferences,
(In our case we really want the former; we want some rules for the computer
to use in generating what it implicitly knows from what it explicitly knows.)
What we do have is four interesting values, with indications as to how these
are to be used by friend computer, and three splendid connectives, with com-
plete and well-motivated tables for each. And, as we all know, lots of other
connectives can be defined in terms of these; so for our purposes three is
enough.

Suppose we have an argument involving these connectives. The question is,
when is it a good one? Again we want to give an abstractly theoretical
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answer, and then an intuitive answer. (And then several more answers, too,
if there is time enough. For the question is fascinating.)

The abstract answer relies on the logical lattice we took so much time to
develop. It is: entailment goes uphill. That is, given any sentences 4 and B
(compounded from variables by negation, conjunction, and disjunction), we
will say that A entails or implies B just in case for each assignment of one
of the four values to the variables, the value of 4 does not exceed (is
less-than-or-equal-to) the value of B. In symbols: s(4) < s(B) for each set-up
s. This is a plausible definition of entailment whenever we have a laitice of
values that we can think of as somehow being graded from bottom to top;
and, as we suggested when first presenting you with the logical lattice, we
can indeed think of None and Both as being intermediate between awful F and
wonderful T.

Now for an account which is close to the informal considerations under-
lying our understanding of the four values as keeping track of markings with
told True and told False: say that the inference from 4 to B is valid, or that
A entails B, if the inference never leads us from told True to the absence of
told True (preserves Truth), and also never leads us from the absence of told
False to told False (preserves non-Falsity). Given our system of markings,
to ask this is hardly to ask too much.

(We note that in §50.6 we have shown that it suffices to mention truth
preservation, since if some inference form fails always to preserve non-Falsity,
then it also fails to preserve Truth. But, as we suggested in §50.6, the False
really is on all fours with the True; so it is profoundly natural to state our
account of “valid” or “acceptable” inference in a way that is neutral with
respect to the two.)

Finally we have a logic, that is, a canon of inference, for our computer
to use in making inferences involving conjunction, negation, and disjunction,
as well of course as whatever can be defined in terms thereof. We note that
this logic has two key features. In the first and most important place, it is
rooted in reality. We gave reasons why it would be good for our computer
to think in terms of our four values, and why the logic of the four values
should be as it is. In the second place, though we have not thrown around
many hen-scratches, it is clear that our account of validity is mathematically
rigorous. And obviously the computer can decide by running through a truth-
tabular computation whether or not a proposed inference is valid. But there
is another side to the logician’s job, which is codifying inferences in some
axiomatic or semi-axiomatic way that is transparent and accordingly usable.
[f this sounds mysterious, it is not; we just mean that a logician, given a
semantics, ordinarily tries to come up with proof theory for it; a proof theory
that is consistent and complete relative to the semantics.

Fortunately the job has aiready been done. It will come as no surprise to
anyone, other than the odd reader who elected to read this section first, that
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520 A useful four-valued logic Ch. XII §81
we have given still another characterization of the tautological entailments—
the system E.;,—of §15.1. And although we cannot help taking note of this
additional evidence for the stability of E¢s., our interests in this section lie
in altogether different directions.

§81.24. Observations. Some observations now need to be made before
pushing further.

First, we note that not derivable from these principles, and not semantically
valid, are the paradoxes of “implication” A& ~ 4 — B and 4 - Bv~B. In
context, the failure of these principles is evident. The failure of the first simply
means that just because we have been told both that A is True and that A
is False, we cannot conclude: everything. Indeed, we may have been told
nothing about B, or just that it is False. And the failure of the second is
equally evident: from the fact that we have been told that A is True, we cannot
conclude that we know something about B. Of course B is ontdlogically either
True or False, and such ontological truth values will receive their due; but
for Bv~ B to be marked told True is either for B to be marked told True
or for B to be marked told False: and it may have neither mark. Or, for
a different way of counterexampling 4 — Bv ~ B, A may have Just been told
True while (Bv ~ B) has both values because B does.

These inferences are not wanted in a scheme that is designed not to break
down in the presence of “contradictions™ and since contradictions really do
threaten in the circumstances we describe. their absence is welcome.

We would be less than open, however, if we failed to point out the absence
of what at first sight looks like a more harmless principle: our old friend (7),
(AvB)&~ A — B. Surely. one would think. our computer should be able to
argue that if it is told that one of 4 and B is True. and it is told that A4 is
False, then it must have been told that B is True. That’s true; unless—and
of course this is a critical “unless”—there is an inconsistency around. In fact
the inference that the canon allows is just exactly

(AvB)&c~A — (A&~ A)v B.

That is, having determined that the antecedent is at least told True, we allow
the computer to conclude: either B is at least told True, or something funny
s going on; i.e., it’s been told that 4 is both True and False. And this, you
will see, is right on target. If the reason that (Av B)&~ A is getting thought
of as a Truth is because 4 has been labeled as both told True and told False,
then we certainly do not want to go around inferring B. The inference is wholly
inappropriate in a context where inconsistency is a live possibility.

The second observation is that our four values are proposed only in connec-
tion with inferences, and are definitely not supposed to be used for determining
which formulas in &, v, and ~ count as so-called “logical truths.” In fact,
no formula takes always the value T: so that property surely won't do as a
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semantic account of logical truth. There are, on the other hand, formulas that
never take the value F, e.g, Av~ A4; but this set is not even closed under
conjunction and does not contain (4v ~ A)&(Bv ~ B), which can take F when
A takes None and B takes Both. So just don’t try to base logical truth on these
values.

Thirdly, let us consider ontology versus epistemology. One of the difficulties
that often arise in relating many-valued logics to real concerns is that one
tends to vacillate between reading the various values as epistemic on the one
hand, and ontological on the other. Does Fukasiewicz's middle value, 4,
mean “doesn’t have a proper truth value.” or does it mean “truth value
unknown™? In informal explanations of what is going on, logicians sometimes
move from one of these readings to the other in order to save the interest of
the enterprise.

Our four values are unabashedly epistemic. According to our instructions.
sentences are to be marked with either a T or an F, a None or a Both. according
to what the computer has been told; or, with only a slight (but dangerous)
metaphor, according to what it believes or knows. Does this somehow make
the enterprise wrong-headed? Or not logic? No. Of course these sentences
have truth values independent of what the computer has been told; but who
can gainsay that the computer cannot use the actual truth value of the sen-
tences in which it is interested? All it can possibly use as a basis for inference
is what it knows or believes, i.e.. what it has been told.

But we can do better than this. Let us get the ontology into the act by
splitting our four epistemic values into two. one representing the case in which
the sentence is ontologically true, the other the case in which it is false.
Obviously we then get eight values instead of four. each of which we may
visualize as an ordered pair, the left entry of which is an epistemic value T.
F, None, or Both, while the right entry is one of Frege's ontological values the
True and the False. Giving the usual classical two-valued tables to the con-
nectives, and also and equivalently, interpreting the implicative connective
in the usual way, we are led to the following lattice picture (this is not an
approximation lattice; it is isomorphic to M,, of §18.4 and elsewhere):

(T, 1r11c:

—

None. Trie)e—" - =+(Both. True)
(None, True) e (T.False) _— 0 e
| ~_ __.-h__‘___H__f:_/ >

(None. False)s— viF True) oq Both, False)

(F, False)
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The &s and vs can be computed, respectively, as greatest lower bounds
and least upper bounds, while negation-pairs are: two left, two center, two
right, and top-bottom (not the Boolean way). The values of this new many-
valued logic have a mixed status: they are in part epistemological and in part
ontological. Should we then move to this logic? It is entertaining to observe
that there is no need to do so for inferences; for exactly the same inferences

been told by authority we by and large trust. Secondly, and more prosaically,
observe that all the inferences sanctioned by the four-valued canon are aj-
ready approved in two-valued logic; so adding as a condition that ontological
truth is to be preserved is to add a condition that is already satisfied and

from four to eight values for Judging inferences. In the words of a famous
philosopher, “Do not multiply many values beyond necessity.”

If, however, for some reason (we do not Jjust now know what) someone
wanted an account of logical truth in &, v, and ~, then one could invoke

of what you’ve been told (according to the left entry). Then, not surprisingly,
one finds out that the two-valued tautologies are precisely the logical truths
on this account, Not surprisingly, because we invoke values only ontological,
throwing away (in the eight-valued case) all the information of the epistemic
values.

Let us say explicitly, if it is not obvious, that we think this codification
of truth-functional logical truths not important to the computer; for what
was wanted was a way of reasoning from and to truth-functional compounds,
not a sorting of these compounds.

Our fourth “observation” is not so much an observation as it is an incon-

essential on anyone’s view. In the second, our developments can be taken
as explaining the feeling that they should be identified, for just look at the
logical lattice L4: there Both and None occupy (d
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metrical positions between F and T, and in this sense are “identified.” For
instance, we allow the inference from neither to F , and to neither from T,
and thus treat them alike.

Still, though this response may be helpful, we are not altogether happy
with it. And we much prefer to leave the discussion as at this stage incomplete.

Our penultimate observation concerns the suggestion that the computer
keep more information than we have allowed it to keep. Perhaps it should
count the number of times it has been told True or told False, or perhaps
it should keep track of its sources by always marking, for example, “told
True by Sam at 2200:03 on 4 August 1973.” We do not see why these ideas
should not be explored, but two comments are in order. The first is that it
is by no means self-evident how this extra information is to be utilized in
answering questions, in inference, and in the input of complex sentences. That
is, one should not be misled by the transparency of the idea in the case of
atomic sentences. The consequence of this first comment is merely that the
exploration lies ahead. The second is the practical remark that there are
severe Costs in carrying extra information, costs which may or may not be
worth incurring. And if there are circumstances in which they are not worth
incurring, we are back to the situation we originally described.

Lastly, we want to mention some alternatives without (much) discussing
them. Gupta has noted that one could define the value of 4 in s not directly
as we have done, but rather by reference to all the consistent sub-set-ups of
s. Definitions: s’ is a sub-set-up of s if it approximates it: s’ = s. And s’ is
consistent if it never awards Both. Finally, let s(4) be defined, in Gupta’s way,
by s(4) =L {s'(4): s’ is a consistent sub-set-up of s}, where s'(4) is as already
defined. The idea is clearly dual to van Fraassen’s 1969a definition of
true-in-a-valuation by reference to all the complete (i.e., all truth-value gaps
filled) “supervaluations” of a given valuation. One notes that if s(p) = Both
then the question as to p (on s) will be answered “Yes and No” as before,
while the question as to p& ~ p will be answered just “No,” instead of “Yes
and No.”

A related idea is to follow van Fraassen 19692 directly by looking at all
the complete super-set-ups of a given set-up: this would give always “Yes”
to pv~p. And carrying this idea to its logical conclusion would combine
the two ideas (if possible).

All these things are possible. One would hope, however, that the discussion
of the alternatives would circulate around the question, How in fact do we
want the computer to answer our questions? Thus they would not be mere
possibilities.

Quantifiers. Quantifiers introduce a number of subtleties to which we shall
merely tip our hat, while recognizing that treating them in detail is quite
essential to our enterprise.
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There is in the first place the question of whether “the” domain is finite
or infinite. Both cases can plausibly arise. In the latter case. there is a ques-
tion of how the computer is to represent infinite information with its finite
resources, but one should not infer from the existence of this problem that
the computer can't or shouldn’t involve itself with quantification over infinite
domains. Surely it should be allowed to answer “Is there a number such
that ... ?” queries (if it can).

In the second place, there is the question of whether the computer has a
name for everything in “the” domain, so that we can employ the substitu-
tional interpretation of the quantifiers, or, on the other hand, does not have
a name for each entity in “the” domain, so that the domain-and-values inter-
pretation is forced. Again: both cases can plausibly arise, though attending
to standard examples like baseball queries or airline flights might have made
one think that in the computer situation everything always has a name. But.
for example, in some of Isner’s work (1975) the computer is told “there is
something between a and b” in a context in which it hasn't got a complete
list of either the names or the entities against which to interpret this state-
ment. And still it must work out the consequences, and answer the questions
it is given. (Of course it is OK for the computer to make up its own name
for the “something” between a and b; but that is both an important and an
entirely different matter.)

In any event, the semantics given for the connectives extend to universal
and existential quantifiers in an obvious way, and we suppose the job done.
And the various alternatives mentioned above turn out not to make any
difference to the logic (with the obvious exception of the finite everything-
has-a-name case): the valid “first degree entailments” of §40 do admirably
(supplemented, in the finite case, with the principle that a conjunction that
runs through the domain implies the appropriate universal statement).

§81.3. Part2. Compound truth-functional inputs. We can pause now if
we like with regard to the overall title of this section, for it would be possible
to do so and still claim the title appropriate: we really have presented a four-
valued logic and argued that it is useful. But there is a fair bit more to do.
some of it of theoretical interest, some of it practical. We begin with con-
siderations closer to the practical.

§81.3.1. Epistemic states. So far, in Part 1, we have been considering the
situation in which the epistemic state of the computer could be represented
by tables specifying for the various atomic formulas which of the four values in
4 cach is to take. We called the mathematical equivalent of such a table a set-
up; that is, a set-up s is a mapping from all atomic formulas into 4: | p) e4
Let S be the set of all set-ups, and recall that each seS extends uniquely to
map all formulas into 4: s(A4) € 4.
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§81.3.1 Epistemic states

Each set-up s represents (not what is true but) what the computer has
been told. But can every epistemic state of the computer be represented by
a set-up? If in fact, as in Part 1, only atomic sentences are affirmed or denied
to the computer, of course; but not in general otherwise. For example, no
single set-up can represent the state the computer should be in when it is
told that either P, the Pirates, or O, the Orioles. won in 1971, but it isn’t told
which. Set-ups can, by judicious use of None. represent some kinds of incom-
plete information, but not this kind. For any single set-up in which “either
P or O” (with obvious meaning) is marked told True is a set-up in which
either P or O is also marked told True and. hence, has too much informa-
tion. Any such set-up would lead the computer to answer “Yes™ either to the
question, Did the Pirates win? or to the question, Did the Orioles win? And
the computer should not be able to answer either of these questions, having
been told only that either the Pirates or the Orioles won.

The solution to this problem is well known in the logical literature, going
back to Carnap 1942 at least. It has been used in epistemic and doxastic
logic by Hintikka 1962 and has also been worked out for computers by Isner
1972, 1975: one uses a collection of set-ups to represent a single epistemic
state, the rough and partial idea being that the computer takes a formula as
something it has been told if it comes out told True on each of the set-ups
forming its current epistemic state. For example, when told that either the
Pirates or the Orioles won, the computer would represent this information
by building two set-ups, one in which the Pirates get T and the Orioles None.
and the other in which the Orioles get T and the Pirates None. Later. when it is
asked whether the Pirates won, it will say that it doesn’t know. since the
Pirates are not marked Tin every state, and also not F in every state: and
similarly if it is asked about the Orioles. But if it is asked “Did either the
Pirates or the Orioles win?" then it will answer affirmatively, since that
sentence is marked told True in both of the set-ups in its epistemic state.

Let us, therefore, at least for the duration of this Part, define an epistemic
State as a nonempty collection of set-ups, a (nonempty) subset, that is, of S.
(If we later omit “nonempty,” please supply it, or identify the empty set with
the unit set of the set-up that marks everything in sight with Both.) We let ES
be the set of all epistemic states, and use “E” as ranging over ES. Let E be
an epistemic state. Then the “meaning” of E is that the computer has been
told that the world is accurately (but perhaps incompletely) described by at
least one of the set-ups in E. As from the beginning the possibility exists that
such a description is inconsistent.

E represents the basis on which we want the computer to answer our
questions. And let us now state more completely and more accurately how
We want our questions answered, by defining the value of a sentence in an
epistemic state: in symbols, E(A4) for E  ES and A a formula. Note how the
key idea of approximation is mobilized to give insight into what is going
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on: the value of a sentence in an epistemic state is to be determined by taking
the meet of all its values in the separate states—the meet to be taken not in
the logical lattice L4 but in the approximation lattice A4. In notation:

E(4) =1"1{s(A): seE}.

The idea of this definition is straightforward and intuitively appealing. In
the first place. we noted that set-ups individually tend to give us more infor-
mation than we’ve got about a formula, or in the language of approximation,

E(4) = s(A) for all seE.

Now what we are saying is that E(4) should be defined so as to be maximal
while retaining this relationship; i.e.. E(4)—the value of 4 in F—should be
the greatest lower bound of all the s(A) for seE.

EXAMPLE. Let E = {5, 5'), where

s(P)=T s(P) = None) E(P) = None
s(O) = None s1O)=T ‘) Hiens J E(O) = None
s(By=T s'B)y=F ' E(B) = None
siM)=T s'(M) = Both EM)=T

Further, though E(P) = E(O) = None, clearly E(PvO) =T,

Let us. as usual, relate this to marking told True and told False: it all
amounts to saying that we should mark 4 told True in E if it is marked
told True in all set-ups in E, and mark it told False if it is marked told
False in all set-ups in E: recognizing, as always, that this recipe allows
marking 4 with neither or both. On this account the similarities emerge to
van Fraassen 1969a’s supervaluations. to definitions of necessity and impos-
sibility in modal logic (e.g., Kripke 1963), and to evaluation of epistemic
operators in Hintikka 1962. But of course in all those cases set-ups are re-
stricted to those which are consistent, nor is there any sense in which any of
those logics are four-valued, or even three-valued. (Van Fraassen’s formulas
can take three values, but the third does not have a logical relation to the
other two, nor is his semantics truth-functional.)

[n now extending the account of question-answering, again treat only the
simple question as to 4 in the context of an epistemic state E. It goes just
as before: the computer answers Yes, No, Yes and No, or [ don’t know, ac-
cording as the value E(4) of 4 in E is T, F, Both, or None. If, for example, the
value of A in its current state is Both. the computer answers “Yes and No.”
Of course, in this case the asker of the question will know that the answer
is based on an inconsistency—and so will the computer. Indeed, this is how
the computer would naturally report an inconsistency in an epistemic state;
recall that the answer does not have the ontological force of “That’s the way
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the world is,” but rather has the epistemic force of “That’'s what I've been
told (by people I trust to get it generally right).”

There are at least three situations in which the computer has to deal with
formulas: when asked a question, as we have just discussed; when calculating
or inferring, which we have discussed some and to which we shall return,
and when a formula is input. It is this last which is now up for discussion,
but further developments are going to be easier if some additional approxi-
mation lattices are introduced at this point.

§81.3.2. More approximation lattices. Note first that the family S of all
set-ups constitutes a natural approximation lattice AS, where the order is
pointwise:

s & ¢ iff, for each atomic sentence p, s(p) &= s'(p) (in A4).

That is, one set-up approximates another if, for each atomic formula p, the
information the first set-up gives about p approximates the information the
other set-up gives about p. Our point is not only that AS is a complete lat-
tice (we need that mathematically), but that it is natural to interpret its
ordering as an approximation: if one increases the information on one of the
atomic formulas, one increases the information in the set-up.

Since AS is infinite, for the first time in the course of these deliberations,
the approximation-lattice ideas of limit and of continuity now come into
their own. We won’t dwell on this, but do point out one application. Let us
say that a set-up is finite if it gives values other than None to only finitely
many atomic formulas. Then every set-up s is the limit of a set of finite set-
ups: s =1IX for some X a directed set of finite set-ups. This is important
if the computer can directly represent only finite set-ups.

Moving up a level, we can also define a natural approximation-lattice
ordering on the set ES of epistemic states. Naturally we want

E < E implies E' C E,

since the smaller epistemic state E gives more definite information; but the
converse won’t do {unless both E and E' are closed upward; see below).
The right definition, yielding the above as a special case, is as follows:

E C E'iff every s'eE’ is approximated by some seE.

For example, let

S S/ S//
sip)=T sip)=T s'(p)=T
s(q) = None S@=T s"(4) = None
s(r) = None s'(r) = None s'(inn=T
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Then E = {s} approximates E' = {s’, s”}. Note that neither E nor E’ gives
any information about ¢ or r, but E’ tells us that gvris T

[t is not true that this ordering of ES yields a lattice; antisymmetry fails.
There are two ways to make it a lattice, both of which we mention and
neither of which we employ. We begin the first by defining an equivalence
relation by

E is equivalent to E' iff each approximates the other.

We then “divide through” by this relation: take equivalence classes. This
easily turns out to be a complete lattice, and a natural approximation lattice
(partly since the equivalence is natural).

The second uses the method of “representatives” instead of equivalence
classes. Define a state E as closed upward if s = s’ and seE imply s'cE.
Where CES is the set of all nonempty closed-upward states, it constitutes
a natural approximation lattice ACES under the ordering defined above. In-
deed in this case it is obvious that the ordering we defined above does in
fact agree with the superset relation, so that obviously we have a complete
lattice. One might worry, however, that we have cut out some interesting
states. Not so: define the upward closure of E by:

C(E) = the family of set-ups approximated by some set-up in E.

Clearly C(E) is both upward closed and equivalent to E; so if we liked we
could use C(E) as the “representative” of E. (Note also that E and E’ are
equivalent just in case C(E) = C(E’); everything fits.)

But we choose to stay with ES and its ordering even though it is not a
lattice, for, although both the lattice of equivalence classes and the lattice
ACES are mathematically convenient (indeed we constantly rely on the con-
venience of the latter), they depart from practicality: the computer cannot
work with the elements of these lattices since these elements are grossly
infinite.

Let us then define AES as ES supplied with the ordering above and also
with a couple of lattice-like operations which (1) give results equivalent to
those obtained by passing through ACES and (2) preserve finiteness. The
most natural meet operation is obviously just union:

EREE— Ed
And the join:
EUE’ = {sus" seE, s'eE'}.

Also, analogously, for the general meet 11X and general join LI X, where X
is a subset of ES.

It is important that our valuation function E(A4) is not only monotonic in
the argument E but, in an appropriate sense, continuous in AES; in spite
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of the fact that meets, used in the definition of E(A), are notoriously badly
behaved in approximation lattices.

Certain elements of ES are of particular interest, namely those which char-
acterize and are characterized by formulas. For each A4, define the truth set
of A and the falsity set of A as follows:

s: T = s(4)}

Tset(A) = {
A) = {s: F C s(4))

Fset(

A is marked told True by all and only members of Tset(A), and told False
by the members of Fset(4). Both of these sets are closed upwards, hence in
CES. The next section in effect investigates some of their properties.

§81.3.3. Formulas as mappings: A new kind of meaning. Now we turn
to a question of considerable interest, and a question on which our various
approximation lattices can shed considerable light: How is the computer to
interpret a truth-functional formula 4 as input? Clearly it is going to use A
to modify its present epistemic state; and indeed it is not too much to say
that defining how the computer uses the formula 4 to transform its present
epistemic state into a new epistemic state is a way—and a good way—of
giving 4 a meaning. Consequently we want to associate with formula 4 a
transformation, a mapping from epistemic states into new epistemic states.
Furthermore, we also want to know what the computer is to do when the
formula A4 is denied to the computer; so actually we associate with
a formula A two functions, one representing the transformation of epistemic
state when A is affirmed, the other the transformation when A4 is denied.
Let us call these two functions 4* and 4~ How to define them?

Recall that A* is to map states into states: A™(E) = E'. The key ideas in
defining what we want E’ to be come from the approximation lattice. First,
In our context we are assuming that the computer uses its input always to
increase its information, or at least it never uses input to throw information
away. (That would just be a different enterprise; it would be nice to know
how to handle it in a theory, but we don’t.) And we can say this accurately
in the language of approximation: E = 4 *(E). Second, 47 (E) should cer-
tainly say no less than the affirmation of A: Tset(A) = A*(E). Third and
lastly, we clearly want 4*(E) to be the minimum mutilation of E that renders
A4 at least told True. “Minimum mutilation” is Quine’s fine phrase, but in the
approximation lattice we can give a sense to it that is no longer merely meta-
phorical: namely, we want the least of those epistemic states satisfying our
first two conditions. That is, we should define

AT (E) = ELiTset(A4);

for that is precisely the minimum mutilation of E that makes 4 at least told
True. (Recall that, in any lattice, xLuy is the “least (minimum) upper bound.”)
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Having agreed on this as the definition of AT, it is easy to see that A~ (E)
should be the minimum mutilation of E that makes A at least told false

A™(E) = ELiFset(A).

The above definitions accurately represent the meaning of A4 as input, but
they do involve a drawback: the Tsets and Fsets may be infinite, or at least
large, and so do not represent something the computer can really work with.
For this reason, and also for its intrinsic interest, we offer another explica-
tion of A* and A4, this time inductive, but still very much involving the idea
of minimum mutilation.

First, what is the computer to do to its present epistemic state, when an
atomic formula, p, is affirmed? Recalling that p must be marked at least told
True in the result, and that it will not be such unless it is such in each mem-
ber of E, it is clear that what the computer must do is run through each
set-up in E and add told True to p- This will make p T if it was None before,
it will leave it alone if it was already either Tor Both, and will make it Both if
it was F. And this is obviously the minimum thing the computer can do. De-
fining py as that set-up in which p has Tand all other atoms have None, we
can say this technically as follows (note where minimum mutilation comes in):

P"E = {suip;: seE}
And, with py defined similarly,
p~E = {sLipg: seE}.

The union is in the approximation lattice AS of all set-ups.

The recursive clauses, which represent a way of giving meaning to the
connectives (different from—though of course related to—the usual “truth
conditions” account), now come easily.

(A&B)* = A*oB*

That is, to make A&B true by mimimum mutilation, first minimally mutilate
to get B true, and then minimally mutilate the result to get A true as well.
(The “o” is for composition of functions.) It had better turn out, and it does,

that (A&B)™ = (B&A)*—i.e., that the order of minimal mutilation makes no
difference. Next, obviously,

(~A)*r =4,
And
(AvB)*t = AE(A™(E)mB™*(E))

That is, one makes the mimimum mutilations for A and B separately, and
then one finds the best (maximum) among all the states that approximate
both of these—which is just their set-theoretical union. For example, if E is
a singleton {s} in which pv ¢ has None, (pvq)"E is obtained by “splitting” s
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into two new states, in one of which p has T while g and everything else stay
the same, and in the second of which ¢ has T while p and everything else
remain fixed.

We give the clauses for A~ without comment;

(el = 4
(4&B)~ = JE(A~(E)mB~(E))
(AVB)™ = A=oB-

We have given two separale accounts of the meaning of 4 as input
(affirmed or denied), so we had better observe that they agree. A third ac-
count of some merit begins by defining A* and 4~ as functions from set-ups
§ into states E:

A"s={sLis s e Tset(4)}
A7s = {sius": s'¢ Fset(A)}

Il

Then

ATE=U{d*s:se E}
A"E=U{A"s:seE)

And there are a number of other variations; e.g.,
(A&B)*E = A*ELB*E

§81.3.4. More observations. What we have done is use the approxima-
tion lattices not only to spell out in reasonably concrete terms what the
computer is to do when it receives a formula as affirmed or denied, but,
further, we have given a new theoretical account of the meaning of formulas
as certain sorts of mappings from epistemic states into epistemic states. It is
clear that there remains work to be done here in finding the right abstract
characterizations and general principles, unless it has already been done
somewhere or other; but we make a few comments.

To set the stage, recall that Scott has observed that the family of all
continuous functions from an approximation lattice into itself (or indeed
another) naturally forms a new approximation lattice, and it is important
that our 4* and A~ functions are members in good standing. But the A4+
functions (we may drop reference now to the 4- functions, since 4~ =
(~A4)7) form but a limited subset of all these functions, and it would be
desirable to characterize an appropriate subset, without. however, leaning
too heavily on linguistic considerations. One feature they all have in com-
mon is that they are one and all (weakly) ampliative:

EC 4*E,

or, where [ is the identity function on ES,

= A,
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And this feature is a hallmark of our entire treatment: the computer is never
to throw away information, only to soak it up. It is easy to see that the family
of all continuous functions “above” I themselves form an approximation
lattice—the lattice of all ampliative and continuous functions—which is
closed under such pleasant operations as composition. (I is the bottom of
this lattice.)

Another feature of the A* is that they are permanent: once A* is done to
a state E, it stays done, and does not have to be done again, no matter how
much the computer later learns. In symbols:

ATE C E' implies A*E' = E'.

These three features taken together can very likely be taken as a proper
intrinsic characterization of the “kind” of functions represented by our truth-
functional formulas. For a function f is continuous, ampliative, and per-
manent just in case f can be characterized as improving the situation by
some fixed amount. That is, just in case there is some fixed element E, such
that f(E) = ELIE,, for all E. And that sounds right.

The interested reader can verify that from these principles one can deduce
what are perhaps the most amusing of the properties of the 4* functions:
composition is the same as join, hence is commutative and idempotent:

A+OB+ e B+DA+
Che s

We do not like to leave this discussion on such an abstract note, and so we
conclude with a more practical remark. What “permanence” in the above
sense means for the computer is that it has a choice when it receives A4 as an
input: it can, if it likes, “remember” the formula A4 in some convenient stor-
age, or, if it prefers, it can “do” A4 to its epistemic state and then forget
about it. Since the meaning of 4 is a permanent function, 4 will be per-
manently built into the computer’s present and future epistemic states. In the
next Part there will emerge important contrasts with this situation.

§81.3.5. Quantifiers again. Quantifiers introduce problems which must
be worked through but which we do not work through. The chief difficulty
comes from the fact that we must keep our set-ups and epistemic states finite
for the sake of the computer, whereas a quantified statement contains in-
finitely much information if the domain is infinite. We are going to offer only
some murky comments.

In the first place, we will stay with the substitutional interpretation of the
quantifiers so as not to have to modify the definition of “set-up.” So quanti-
fication is always with respect to a family of constants suitable for substi-
tution: VxAx is the generalized conjunction of all its instances, and 3xAx the
generalized disjunction of its instances. So, given a substitutional range, the




§81.4 Part 3. Tmplicational inputs and rules

W
w
(Y

reader can supply the right definitions for s(VxAx) and s(3xAx). Second, we
are going to suppose that the substitution range is infinite; otherwise there
is no problem. Third, with considerable hesitation, we are going to attach
the substitution range to the entire epistemic state E, rather than permit the
various set-ups in E to come with different substitutional ranges.

The problem is not really how to answer questions about quantified for-
mulas (though there may be difficulty in practice), but in how to treat them
as input. Perhaps it is obvious what we want for the existential quantifier:
given 3xAx as input, add a new constant ¢ to the substitutional range, and
then make the minimum mutilation that makes Ac True. But we are not yet
clear how to justify this procedure in approximation terms.

The universal quantifier as input is where the real problem lies: it can lead
from a finite state E (ie., a finite collection of finite set-ups) to an infinite
state E’. What is probably best is to apply the universal quantifier (mutilate
minimally to make an instance true) only for a while; this will force the com-
puter to remember the universally quantified formula so that it can be ap-
plied again later, if necessary. (What counts as “necessary” is: as much as is
needed to answer the questions asked.) The various finite states obtained by
repeatedly applying VxAx in this way clearly have as a limit the minimum
mutilation in which VxAx is True.

Some of what is needed can be better appreciated from the point of view
of Part 3, and we drop the matter for now.

§81.4. Part 3. Implicational inputs and rules. In Part 1 we pretended that
all information fed into the computer was atomic, so we could get along with
set-ups. In Part 2 we generalized to allow information in the form of more
complex truth-functional formulas, a generalization which required moving
to epistemic states. Now we must recognize that it is practically important
that sometimes we give information to the computer in the form of rules
that allow it to modify its own representation of its epistemic state in direc-
tions we want. In other words, we want to be able to instruct the computer
to make inferential moves that are not mere tautological entailments. For
example, instead of physically handing the computer the whole list of Series
winners and nonwinners for 1971, it is obviously cheaper to tell the com-
puter: “the Pirates won; and further, if you've got a winner and a team not
identical to it, that team must be a nonwinner” (i.e., VxVy(Wx&x #y—~Wy)).
In the presence of an obviously needed table for identity and distinctness or
else in the presence of a convention that different names denote different
entities (not a bad convention for practical use in many a computer setting),
one could then infer that “The Orioles won” is to be marked told False.

Your first thought might be that you could get the effect of “given 4 and
B, infer C,” or “if 4 and B, then C,” by feeding the computer “~Av~Bv(C.”
But that won’t work: the latter formula will tend to split the set-up you’ve
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got into three, in one of which A4 is marked told False, etc.; whereas what
is wanted is (roughly) just to improve the single set-up you've got by adding
told True to C provided that 4 and B are marked told True (and otherwise
to leave things alone). (Connections of this idea with that of Belnap 1970
and 1973 need exploring.) It is (roughly) this idea we want to catch.

§81.4.1. Implicational inputs. Let us introduce “4— B” as representing
the implication of 4 to B; so what we have is notation in search of a meaning.
But we have found in the previous section just the right way of giving meaning
to an expression construed as an input: the computer is to improve its epi-
stemic state in the minimum possible way so as to make the expression True.
So let us look forward to treating A— B as signifying some mapping from
states into states such that A—B is True in the resultant state.

Obviously if we are to pursue this line, we must know what it is for A— B
to be True in a state. This is a delicate matter. One definition that suggests
itself is making 4 — B True in a state E just in case E(A4) < E(B) (in the logical
lattice Ld4); but although we don’t have any knock-down arguments against
the fruitfulness of this definition, we are pretty sure it is wrong. We think it
will be more fruitful to define A—B closer to the following; modify every
set-up you are considering to make A— B True in it. So let us first define
what it is for A—B to be “True in a set-up”; and naturally for this we turn
to the logical lattice L4; let us specify that A— B is True in s just in case
s(4) < s(B) (Note that we do not give A—B values in 4; A—B is just True
or False in s, never both or neither, since not merely “told.”)

It might be tempting now to define 4—B as True in state E if True in
every set-up s in E, and False otherwise, but that would be wrong. The
reason is that the Truth of A— B is not closed upward; s = s’ and A— B True
in s do not together guarantee that A— B is True in s’. But epistemic states
are supposed to be equivalent to their upward closures. The next thing to
try is to look just at the minimal members M(E) of each state E, ie, those
set-ups in E which are minimal with respect to the approximation ordering
between set-ups. For, in any state E in which every set-up is approximated
by some minimal set-up, nonminimal set-ups (those not in M(E)) can be
thought of as redundant. In particular they do not contribute to the value
of any formula and should not contribute to the value of implications. So
it would be plausible to define 4— B as True in a state if it is True in every
minimal member. And indeed this will work if E is finite or if every s in E
is finite; for then every descending sequence

e et T )

in E is finite, and so in fact M(E) is equivalent to E. Of course for real ap-
plications on the computer this will always be so. But let us nevertheless
give a definition that will work in the more general case: A—B is True in
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E if, for every seE, there is some s’eE such that s' s, and 4B is True in
sf

We claim for this definition the merit of passing over equivalent states:
given E and E’ equivalent, 4—B will have the same truth value in each.
The reason that if A— B is True in the closure of E then it is True in E as
well (the hard part) is that there cannot be in the closure of E an infinitely
descending chain of set-ups in which the truth value of A— B changes infinitely
often. Sooner or later as you pass down the chain, the truth-value of A-B
will have to stabilize as either True or False. And under the hypothesis that
A—B is True in the closure of E, in each chain it will have to stabilize as
True; which is enough to get it True in E. And the reason that there cannot
be an infinitely descending chain of set-ups in which the truth value of 4— B
flickers is that any such flicker must be caused by a change in either s(4) or
S(B); but since this function is monotonic in s, once having changed the
value of 4 or B in the only permitted (downward) direction, one can never
change it back up again. So at most the value of 4 can change twice, and
similarly for B; which means that A— B can change at most four times,

One more note of profound caution: the notion of the Truth of A—>B in
E is dramatically different from the notion of A’s being told True in B in
that the former is not monotonic in E, whereas the latter is: E — E’ guarantees
that if 4 is at least Tin E then it is so in E’, but does not guarantee that if
A—Bis True in E it is so in E’. (The falsity of 4—B fares no better.) We
shall see later how this influences the computer to manipulate 4— B and 4
quite differently; now, however, we remark that this fact is not in conflict
with Scott’s thesis, since we have not got something that can be represented
as a function from one approximation lattice into another. In particular, the
usual characteristic function representing the set of E in which 4 — B is True
will not work, since the two truth values True and False do not constitute
an approximation lattice.

Now back to our enterprise of defining 4— B in such a way as to make it
a mapping from epistemic states E to states E’ in such a way as to represent
minimum mutilation yielding Truth—in exact analogy with our results in
the previous section.

Since we know what it is for A— B to be true in s, we know that it has a
truth set: Tset (4—B) = \8: A—B true in s}. So one might try just defining

(A>B)*E = E U Tset(4— B)

as before. There may be something in the vicinity that works, but this doesn’t:
since one of the set-ups in which 4— B is True is that in which every atomic
formula has None, this (A—>B)" is just the identity function (up to equi-
valence). It is also worth noting that Tset(A— B) is not closed upward and
S0 not well-behaved. Nor will it do to try to close it upward—by the remark
above, that would yield the family of ail set-ups. In any event, we take a
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536 A useful four-valued logic Ch. XII §81

different—and, we think, intuitively plausible—path to defining (4—B)* as
a function that minimally mutilates E to make A— B true.

We propose first to define A— B on set-ups s, looking forward to the fol-
lowing extension to states:

(A—>B)*E = U{(4—~B)*s: seE)

So we are up to defining (A4—»B)* on a set-up s—with the presumption
doubtless that the value will be some state E’ (we may have to “split” s).
The idea is, as always, that we want to increase the information in s as little
as possible so as to make 4— B true. If we keep firmly in mind that “in-
crease of information” is no mere metaphor, but is relative to an approxi-
mation lattice, it turns out that we are guided as if by the hand of the Great
Logician.

One case is easy. If A— B is already True in s, the minimum thing to do
is to just leave s alone. Now in order to motivate the definition to come,
consider all the ways that p—gq, for example, could be False in s. The pos-
sibilities, which refer to the logical lattice L4, are laid out under p and ¢
below (ignore for now the right-hand column).

p q Essential to make p—gq True
T None Raise g to T
i Both || Raise p to Both
T F Raise p to Both and q to Both
None F Raise p to F
Both 7 Raise q to Both

Now try the following. Keep one eye on the logical lattice L4 (§81.2.2) and
the other on the approximation lattice A4 (§81.2.1) and use your third to
verify the claims made in the right-hand column. For example, the first entry
says, in effect, that if p—q is False because pis T and q is None then it
does no good to raise p (in the approximation lattice Ad), for the only place
to which to raise it is to Both; and (in the logical lattice L4) that still doesn’t
imply q (make p—q True). So g must be raised. (An important presupposi-
tion of these remarks is that we may speak only of “raising” in the approxi-
mation lattice A4, never of “lowering™; the computer is never to treat an
input as reducing its information, never to treat it as a cause to “forget”
something. And you will recall that this constraint is a local one, certainly
not part of what we think is essential to the Complete Reasoner.)

Next note the following analysis of the table, where s is the current set-up
and E’ is the new state. All the raisings of g occur when T C s(p), and all




§81.4.1 Implicational inputs 537

the raisings of p occur when F = s(q). Further. the raising of ¢ consists in
always making 7 C E'(g) and the raising of p consists in making F C E'(p).
That is, as might have been expected, making p—q True consists in making
q have at least 7 when p does and in making p have at least F when q does.

Let us divide the problem (and abandon the special case of atomic for-
mulas). One thing we must do is make B have at least T when A does. Let
us call the corresponding statement: 4 —rB. We want to make B told True
if 4 is, and in a minimal way. But we already know the minimal way of
making B told True. So the following definition of (4—.B)* is pretty well
forced:

(A-;B)*s = B* {s} if' s € Tset(A); i.e., if T T s(A),
) if s ¢ Tset(A); i.e., if T & s(A).

I

This account of (4 —rB)™ matches very well the intuitions that led Ryle
1949 (see §6) to say that “if-then”s are inference tickets. For (A—;B)* is
exactly a license to the computer to infer the conclusion whenever it has got
the premiss in hand. For example, if it finds that “The Pirates won™ is marked
T, then “The Pirates won —, the Orioles didn’t” will direct it to make the
minimum mutilation that marks “the Orioles didn’t” with at least T (Recall
from the previous section that B* is the minimum mutilation making B at
least T)

There is already much food for thought here, and a host of unanswered
questions. We do note that Scott’s thesis is not violated: (4—,B)" is indeed
a continuous function from the space of set-ups to that of states—and. with
the previous extension, from states into states. That it is depends on the fact
that Tsets are (1) always closed upward and (2) “open™ if LI X & Tset(4) for
directed X, then xeTset(4) for some x e X. (The topological language fits
the situation: it means that no point in X can be approached as the limit
of a family of points lying entirely outside of X.) The point of this remark
is to draw the consequence that we cannot sensibly use 4—,B in the absence
of these conditions; hence, since the Tset for 4 —7B is not closed upward,
we cannot make sense of (4—,B)—,C. In contrast, all we need from B is
the continuity of B*: so A—=(B—+C) is acceptable. (Note how the approxi-
mation idea and Scott’s thesis guide us through the thicket.)

For its intrinsic interest, note that. in the lattice of all ampliative functions,
we have

((A=yB)*cA*) O B*
but not
(A"o(A—;B)*) Z B*,

Maybe this has something to do with some of the nonpermutative logics,
and maybe not.
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Turning back now to our principle task, the defining of (4—B)*, we have
completed part of our task by defining (4—;B)", which makes B true if 4
is. The other part is by way of the function

(A—>gB)"s = A~ {s} if s € Fset(B); i.e., if F = s(B),
L2
(s} if {s} ¢ Fset(B), i.e., if F L s(B).

This is the function that makes A told False, minimally, if B is.

Before pushing on to define (4—B)™, let us pause to note just a thing or
two about (A—B)". This family of functions has in common with the 4+
that each is ampliative:

I = (A—>B); ie, EC (4—;B)"E.

In contrast, however, these new functions are not “permanent” in the sense
defined at the end of Part 2. That means that, once the computer has “done”
(A—¢B)", it may have to do it again; this is a consequence of the fact that
the truth set of A—B is not upward closed: adding new information can
falsify 4A— B. But there is one property in the vicinity that (4—;B)" shares
with 47 at least one doesn’t have to do it twice in a row:

fof = f

for f = (4—;B)".

Closely related to the permanence-impermanence distinction between the
two sorts of ampliative functions is the way they behave under composi-
tion: all the truth-functional ampliative functions permute with each other
(AToB* = BToA™), but the — functions permute neither with each other
nor with the truth functions. The clearest example of the latter is the in-
equality:

(pTo(p—=19)") # ((p—~19) T op™)

Applying the right-hand side to an s in which p and g each have None yields
a state in which first p is made told True, and then, as a consequence of this,
q is made told True, too. But applying the left-hand side to s does not fare
so well: p—rg does no work, since p is not at least Tin s; so the outcome
is only the marking of p as told True without changing gq.

By noting that (4—zB)* = (~B—;~A)", we can be sure that this func-
tion has both the virtues and the shortcomings of (4—;B)*—except that it
has the additional shortcoming that not only is (4— pB)—;C impossible,
since the falsity set of (4—;B)~ is not closed upward, but so is 4— ¢(B— zC),
since (B—¢C)~ is not defined. (We can if we like have A—(B—;C))

The shortcomings of the arrow functions make us see that we cannot
define (4—B)™ as simply the composition of (4—;B)* and (4—;B)*. For
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A—B might not be True in the result. Intuitively, (4—.B)™ might cause
nothing to happen, since B is None in the set-up s in question; while (4 —.B)”
causes B to be marked not only told True (since A4 is) but told False as well.
This can happen if B is a formula like p& ~p which cannot be made told
True without being made told False as well. Then., if A still has the value T,
A— B will be false. So the composition of (4 —¢B)” with (4= ;B)" (in either
order) is not the minimum increase making A—B true in the result. As a
special solution to this problem; one finds that (4 —¢B)"o(A—B) o(A—(B)"
works admirably: first make 4 False if B is; then make B True if A is: then;
once more, make A False if B is. Since A— B is true in the result. one need
do nothing else; one has indeed found the minimum. In particular,

((A=B)"o(4—B)*)s = (4—B)*s
(A—=B)" = (A—>1B) o(A— B)*o(A—,B)*.

So we take this as a definition of what 4— B means as a mapping of epi-
stemic states into epistemic states.

We conclude this section with two remarks. First, we have offered no logic
for rules (4—B)": there is Just much work to be done.

Second, 4— B has been construed as a rule and has been given “input”
meaning. It has been given no output meaning, and it is not intended that
the computer answer questions about it. In particular, we have given no
meaning to denying A—B; (A—B)™ has not been given a sense. We are not
sure whether this is a limitation to be overcome or Jjust a consequence of
our presenting A— B as a rule; for we do not know what it would mean to
tell the computer not to use the rule (4—B)*. One might try to give sense
to (A—B)~ by instructing the computer to make E(A4) (L E(B): but this is an
instruction that it is not always possible for the computer to carry out. Or
the counterexample idea of §49 might work.

§81.4.2. Rules and information states. This last subsection Is going to
be altogether tentative, and altogether abstract, with just one concrete
thought that needs remembering, which we learned from Isner: probably the
best way to handle sophisticated information states in a computer is by a
judicious combination of tables (like our epistemic states) and rules (like our
A—B or a truth-functional formula that the computer prefers to remember,
or a quantificational formula that it must remember). For this reason. as
well as for the quite different reason that some rules may have to be used
again (are not permanent, must be remembered), we can no longer be satisfied
to represent what the computer knows by means of an epistemic state. Rather,
this must be represented by a pair consisting of an epistemic state and a set
of rules:

{R, E).
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E is supposed to represent what the computer explicitly knows, and is subject
to increase by application of the rules in theset R. F
should suppose that E is finite, but for some not.

Let us dub such a pair an information state, just so that we don’t have to
retract our previous definition of “epistemic state.” But what is a rule? Of
what is R a set? A good thing to mean by rule,
context, might be: any continuous and ampliative mapping from epistemic
States into epistemic states. As we mentioned above, the set of all continuous
functions from an approximation lattice into itself has been studied by Scott;
it forms itself a natural approximation lattice. It is. furthermore, easy to see
that the ampliative continuous functions form a natural approximation
lattice, and one which is an almost complete sublattice of the space of all
the continuous functions: all meets and joins agree, except that the join of
the empty set is the identity function I instead of the totally undefined
function. Intuitively: the effect of an empty set of rules is to leave the epi-
stemic state the way it was.

So much for the general concept of rule, of which the various functions
A7, A, (A-;B)", (A—=¢B)*, and (4—B)* are all special cases. We now
have to say what a set R of rules means. Of course we want to express it as
a mapping from epistemic states into epistemic states. Let us begin by saying
that a rule p is satisfied in a state E if applying it to E does not increase
information: p(E) = E, and by saying also that a set R of rule
in E if all its members are. Then what we want a set of rules to do is to
make the minimum mutilation of E that will render all its members satisfied.
Even if R is a unit set, simple application of its member might not work
to satisfy it. And even if R is a finite set of rules, each of which is satisfied
after its own application, the simple composition of R might not be ade-
quate: All of this can be derived from considerations we adduced in defining
(A—=B)". But there is a general construction which is bound to work.

Let R be a set of rules. Let Re be the closure of R under composition.
This is a directed set; the composition fog of f and o

g will always provide an
upper bound for both f and g if they are monotonic and ampliative. Now
take the limit: || Ro.

or many purposes we

or ampliative rule, in this

S is satisfied

Claim: take any E and any set R of rules. Then
mutilation of E in which all rules in the set R
R(E) for LI Ro(E).)

LIR>(E) is the minimum
are satisfied. (Below we write

In this way we give meaning to the pair consisting of an epistemic state
E and a set of rules R. There is that state R(E) consisting of “doing” the
rules in all possible ways to E, and it is in regard to this state that we want
our questions answered in the presence of E and R. Of course R(E) can be
infinitely far off from E. This will certainly happen if the computer is dealing
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with infinitely many distinct objects and some rule involves universal quanti-
fication; so in practice, “I don’t know” might have to mean either: “I haven’t
computed long enough” or have positive evidence that T haven’t been
told.”

Because of the Importance of computers that maintain both (1) sets of
rules and (2) tables (epistemic states), the idea of information states (R, E)
should be studied in detai]. We close this section with just a few idle defini-
tions in the area which might or might not turn out to be fruitful,

When are two states equivalent? There seem to be at least two ideas:
RL,E)) is currently equivalent to {R,, E,> just in case Ry(E,) = R,(E,);
which is to say, they give the same answers to the same questions. And they
are strongly equivalent if adding the same information to each always pro-
duces currently equivalent results: (Rj, E,uE) is currently equivalent to
CR;, E;uED, for all E. Such information states would answer alike not only
all present questions, but also all future questions asked after the addition
of the same information to each.

We defined a rule p as satisfied in an epistemic state E if p(E) = E. We
could similarly define a rule as satisfied in an information state <R, E) in
one of two ways: currently satisfied if satisfied in E, and ultimately satisfied
if satisfied in R(E). A third notion brings in just the set R: perhaps saying
that a rule p is in Jorce in R might be defined by: p C R; ie, p approxi-
mates R. But this is not a “relevant” idea of being in force; e.g., for each 4
the rule (4—A4)* is in force in every R.

PROBLEM. What is a relevant ideg?

§81.4.3. Closure. Lest it have been lost, let us restate the principal aim
of this section: to propose the usefulness of the scheme of tautological entail-
ments as a guide to inference in a certain setting, namely, that of a reasoning,
question-answering computer threatened with contradictory information. No
reader of this book can possibly suppose that Larger Applications have not
occurred to us; e.g, application of some of the ideas to a logic of impera-
tives, or to doxastic logic, or to the development of The One True Logic.
But because of our fundamental conviction thatlogic is occasionally practical,
we did not want these possibilities to loom so large as to shut out the light
required for dispassionate consideration of our far more modest proposal.

§82. Rescher’s hypothetical reasoning: An amended amendment. Rescher
1964—henceforth HR—proposes a way of reasoning from a set of hypotheses
that may include some of our beliefs and also hypotheses contradicting those
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