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1 Introduction

The notion of Galois connection has been generalized from the point of
view of fuzzy set theory in [2]. The main aim of the present paper is to
characterize the lattices of fixed points of fuzzy Galois connections.

A residuated lattice [12, 11, 8, 7] is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉
where

(i) 〈L,∧,∨, 0, 1〉 is a lattice with the least element 0 and the greatest
element 1,

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is associative, commutative,
and the identity x⊗ 1 = x holds,



(iii) ⊗ and → satisfy the adjointness property, i.e.

x ≤ y → z iff x⊗ y ≤ z

holds for each x, y, z ∈ L (≤ denotes the lattice ordering).

Residuated lattices play the role of the structures of truth values in fuzzy
logic and fuzzy set theory [7, 8, 9]. A semantically complete first-order
many-valued logic with semantics defined over complete residuated lattices
is described in [8]. Thorough the paper L denotes a complete residuated
lattice. For the properties of complete residuated lattices needed in the
sequel we refer to [2].

Recall that an L-set (or fuzzy set) [5, 6, 14] in a universe set X is any
function A : X → L. The value A(x) is interpreted as the truth value of
“x is element of A”. Similarly, a fuzzy relation between X and Y is any
function I : X×Y → L. By { a/x} (where a ∈ L, x ∈ X) it is meant a fuzzy
set given by { a/x}(x) = a and { a/x}(x′) = 0 for x′ ∈ X, x′ 6= x. In this
perspective, classical sets (relations) are identified with 2-sets (2-relations)
where 2 denotes the two-element Boolean algebra of classical logic. The set
of all L-sets in a given universe X will be denoted by LX . For A1, A2 ∈
LX , the subsethood degree [5] of A1 in A2 is defined by Subs(A1, A2) =
∧

x∈X(A1(x) → A2(x)). We write A1 ⊆ A2 for Subs(A1, A2) = 1.

Definition 1 ([2]) An L-Galois connection (fuzzy Galois connection) be-
tween the sets X and Y is a pair 〈↑, ↓〉 of mappings ↑ : LX → LY ,
↓ : LY → LX , satisfying

Subs(A1, A2) ≤ Subs(A↑
2, A

↑
1) (1)

Subs(B1, B2) ≤ Subs(B↓
2 , B

↓
1) (2)

A ⊆ (A↑)↓ (3)

B ⊆ (B↓)↑ . (4)

for every A,A1, A2 ∈ LX , B,B1, B2 ∈ LY .

Note that for L = 2 we get the classical notion of Galois connection [3, 10].
The lattices of fixed points of Galois connections have been characterized
in [13]. In Section 2 we provide a generalization of that characterization for
L being any complete residuated lattice.

The following theorem shows that L-Galois connections are precisely the
mappings induced by binary L-relations.
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Theorem 2 ([2]) For a binary L-relation I ∈ LX×Y denote 〈↑I , ↓I 〉 the
mappings defined by

A↑I (y) =
∧

x∈X

(A(x) → I(x, y)) for y ∈ Y (5)

B↓I (x) =
∧

y∈Y

(B(y) → I(x, y)) for x ∈ X (6)

for any A ∈ LX , B ∈ LY . For an L-Galois connection 〈↑, ↓〉 between X and
Y denote I〈↑,↓〉 the binary L-relation between X and Y defined by

I〈↑,↓〉(g,m) = { 1/g}↑(m). Then 〈↑I , ↓I 〉 is an L-Galois connection and
it holds

〈↑, ↓〉 = 〈
↑I

〈↑ ,↓〉 ,
↓I

〈↑ ,↓〉 〉 and I = I〈↑I ,↓I 〉.

2 Lattices of fixed points

In this section, we denote by 〈↑, ↓〉 and I the corresponding L-Galois con-
nection and L-relation between X and Y , respectively, omitting thus the
indicies.

Definition 3 A fixed point of 〈↑, ↓〉 is a pair 〈A,B〉 ∈ LX × LY such that
A↑ = B and B↓ = A.

Therefore, if 〈A,B〉 is a fixed point then A↑↓ = A and B↓↑ = B. We
are going to show that fixed points of 〈↑, ↓〉 correspond to the maximal
rectangles contained in I. For A ∈ LX , B ∈ LY , denote by A⊗B the L-
set in X × Y defined by (A⊗B)(x, y) = A(x) ⊗ B(y). Call a rectangle any
pair 〈A,B〉 ∈ LX × LY . There is a naturally defined ordering ≤ defined
on the set of all rectangles by 〈A1, B1〉 ≤ 〈A2, B2〉 iff for all x ∈ X, y ∈ Y

it holds A1(x) ≤ A2(x) and B1(y) ≤ B2(y). A rectangle 〈A,B〉 is said
to be contained in I if A⊗B ⊆ I. The following theorem generalizes the
observation of the classical case stating that fixed points are just maximal
rectangles of I which are filled with 1’s (if we consider the two-valued relation
I as a matrix-table of 0’s and 1’s).

Theorem 4 For each A ∈ LX , B ∈ LY it holds that 〈A,B〉 is a fixed point
of 〈↑, ↓〉 iff it is a maximal rectangle contained in I.

P r o o f . Let 〈A,B〉 be a fixed point. If it were not maximal, there would
be 〈A′, B′〉 ∈ LX × LY such that 〈A,B〉 < 〈A′, B′〉. Hence, there exists an
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x ∈ X such that A(x) < A′(x) or y ∈ Y such that B(y) < B′(y). Suppose
the former, i.e. A(x) < A′(x) for some x ∈ X (the latter may be handled
analogously). By assumption, B(y) ≤ B′(y) holds for all y ∈ Y , therefore
A′(x) ⊗ B(y) ≤ A′(x) ⊗ B′(y) ≤ I(x, y), and thus A′(x) ≤ B(y) → I(x, y)
holds for each y ∈ Y . We conclude

A(x) < A′(x) ≤
∧

y∈Y

(B(y) → I(x, y)) = B↓(x),

a contradiction to A = B↓ (〈A,B〉 is a fixed point).
Conversely, let 〈A,B〉 be a maximal rectangle contained in I. We have

to show A = B↓ and B = A↑. From A(x) → B(y) ≤ I(x, y) it follows
A(x) ≤ B(y) → I(x, y) for all x ∈ X, y ∈ Y , i.e. A(x) ≤ B↓(x) =
∧

y∈Y (B(y) → I(x, y)), thus A ⊆ B↓.
〈

B↓, B
〉

is contained in I, since

B↓(x) ⊗ B(y) ≤ I(x, y) is equivalent to B↓(x) ≤ B(y) → I(x, y) which
holds evidently. If A 6= B↓, i.e. A(x) < B↓(x) for some x ∈ X, then

〈A,B〉 <
〈

B↓, B
〉

, a contradiction to the maximality of 〈A,B〉 among the

rectangles contained in I. The condition B = A↑ may be shown analogously.
2

Denote L (X,Y, I) = {〈A,B〉 ∈ LX × LY | A↑ = B, B↓ = A} the set of
all fixed points of 〈↑, ↓〉. Clearly, for 〈A1, B1〉, 〈A2, B2〉 ∈ L (G,M, I) it holds
A1 ⊆ A2 iff B1 ⊇ B2. Introduce therefore the partial order ≤ on L (X,Y, I)
by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 ( iff B1 ⊇ B2).

The characterization of the ordered sets of fixed points is given by the fol-
lowing theorem.

Note that for a complete lattice V, a subset K ⊆ V is
∨

-dense (supre-
mally dense) in V (

∧

-dense (infimally dense) in V ) if for each v ∈ V there
is K ′ ⊆ K such that v =

∨

K ′ (v =
∧

K ′).

Theorem 5 Let I ∈ LX×Y . (1) L (X,Y, I) is a complete lattice in which
infima and suprema can be described as follows:

∧

j∈J

〈Aj , Bj〉 =

〈

⋂

j∈J

Aj , (
⋂

j∈J

Aj)
↑

〉

=

〈

⋂

j∈J

Aj , (
⋃

j∈J

Bj)
↓↑

〉

, (7)

∨

j∈J

〈Aj , Bj〉 =

〈

(
⋂

j∈J

Bj)
↓,

⋂

j∈J

Bj

〉

=

〈

(
⋃

j∈J

Aj)
↑↓,

⋂

j∈J

Bj

〉

. (8)
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(2) Moreover, a complete lattice V = 〈V,≤〉 is isomorphic to L (X,Y, I) iff
there are mappings γ : X × L → V , µ : Y × L → V , such that γ(X × L) is
∨

-dense in V, µ(Y × L) is
∧

-dense in V, and a⊗ b ≤ I(x, y) is equivalent
to γ(x, a) ≤ µ(y, b) for all x ∈ X, y ∈ Y , a, b ∈ L.

P r o o f . Part (1) of the assertion follows directly from the fact that
L (X,Y, I) is the set of all closed points of the Galois connections 〈↑, ↓〉 be-
tween the complete lattices 〈LX ,⊆〉 and 〈LY ,⊆〉 [2, first Remark] and [10].

Part (2): Let L (X,Y, I) and V be isomorphic. We show the existence
of γ, µ with the desired properties. It suffices to show the existence for
V = L (X,Y, I) because for the general case V ∼= L (X,Y, I) one can take
take γ ◦ ϕ : X × L→ V , µ ◦ ϕ : Y × L→ V , where ϕ is the isomorphism of
L (X,Y, I) onto V. Let then γ : X×L→ L (X,Y, I), µ : Y ×L→ L (X,Y, I)
be defined by

γ(x, a) =
〈

{ a/x}↑↓ , { a/x}↑
〉

,

µ(y, b) =

〈

{

b/y
}↓
,
{

b/y
}↓↑

〉

for every x ∈ X, y ∈ Y , a, b ∈ L. Since for each 〈A,B〉 ∈ L (X,Y, I) it

holds A =
⋃

x∈X

{

A(x)/x
}

, and B =
⋃

y∈Y

{

B(y)/y
}

, it follows from (7)

and (8) that γ(X,L) and µ(Y,L) are
∨

-dense and
∧

-dense in L (X,Y, I),
respectively. Furthermore, for any x ∈ X, y ∈ Y , a, b ∈ L we have γ(x, a) ≤

µ(y, b) iff { a/x}↑↓ ⊆
{

b/y
}↓

iff { a/x}↑ ⊇
{

b/y
}

iff { a/x}↑ (y) ≥ b iff
∧

x′∈X { a/x} (x′) → I(x′, y) = { a/x} (x) → I(x, y) ≥ b iff a → I(x, y) ≥ b

iff a⊗ b ≤ I(x, y). Hence, γ and µ obey the required properties.
Conversely, let γ and µ with the above properties exist. We prove the

assertion by showing that there are monotone mappings ϕ : L (X,Y, I) → V ,
ψ : V → L (X,Y, I), such that ϕ ◦ ψ = idL(X,Y,I) and ψ ◦ ϕ = idV . We will
need the following claims.

Claim A. γ(x,
∨

j∈J aj) =
∨

j∈J γ(x, aj), µ(y,
∨

j∈J aj) =
∧

j∈J µ(y, aj) for
each x ∈ X, y ∈ Y , {aj | j ∈ J} ⊆ L, i.e. γ(x, ) : L → V are com-
plete lattice

∨

-morphisms and µ(y, ) : L → V are dual complete lattice
∧

-morphisms.

Proof of Claim A. The
∧

-density of µ(Y,L) implies that γ(x,
∨

j∈J aj) =
∧

〈y,b〉∈X µ(y, b) for some X ⊆ Y × L. Hence, γ(x,
∨

j∈J aj) ≤ µ(y, b) which
implies (

∨

j∈J aj)⊗b ≤ I(x, y), for each 〈y, b〉 ∈ X. From aj⊗b ≤ (
∨

j∈J aj)⊗
b we have aj⊗b ≤ I(x, y), i.e. γ(x, aj) ≤ µ(y, b) for every j ∈ J . This implies
∨

j∈J γ(x, aj) ≤
∧

〈y,b〉∈X µ(y, b) = γ(x,
∨

j∈J aj).
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Conversely, the
∧

-density of µ(Y ×L) again implies the existence of some
X ⊆ Y × L such that

∨

j∈J γ(x, aj) =
∧

〈y,b〉∈X µ(y, b). That means that for
each j ∈ J , 〈y, b〉 ∈ X we have γ(x, aj) ≤ µ(y, b), i.e. aj ⊗ b ≤ I(x, y). This
implies

∨

j∈J(aj ⊗ b) ≤ I(x, y) and, by
∨

j∈J(aj ⊗ b) =
∨

j∈J aj ⊗ b, further
∨

j∈J aj ⊗ b ≤ I(x, y), i.e. γ(x,
∨

j∈J aj) ≤ µ(y, b) for each 〈y, b〉 ∈ X, thus
γ(x,

∨

j∈J aj) ≤
∧

〈y,b〉∈X µ(y, b) =
∨

j∈J γ(x, aj), proving γ(x,
∨

j∈J aj) =
∨

j∈J γ(x, aj).
µ(y,

∨

j∈J aj) =
∧

j∈J µ(y, aj) may be proved analogously using the
∨

-
density of γ(X × L). Q.E.D.

Claim B. I(x, y) =
∨

γ(x,a)≤µ(y,b) a⊗ b.

Proof of Claim B. The inequality I(x, y) ≥
∨

γ(x,a)≤µ(y,b) a⊗ b follows imme-
diately. For a = I(x, y), b = 1 we have a⊗ b = I(x, y) ⊗ 1 ≤ I(x, y), hence
γ(x, I(x, y)) ≤ µ(y, 1), thus the equality holds. Q.E.D.

Define the mapping ϕ : L (X,Y, I) → V by

ϕ(A,B) =
∨

x∈X

γ(x,A(x)) (9)

for each 〈A,B〉 ∈ L (X,Y, I).
The monotonicity of ϕ follows from Claim A, (9) and the fact that

〈A1, B1〉 ≤ 〈A2, B2〉 implies A1(x) ≤ A2(x) for each x ∈ X.
We prove the existence of an inverse mapping ψ of ϕ. Define ψ : V →

L (X,Y, I) by

ψ(v) = 〈A,B〉, where A(x) =
∨

γ(x,a)≤v

a, B(y) =
∧

µ(y,b)≥v

b (10)

for each v ∈ V , and every x ∈ X, y ∈ Y . First, we show that for each v ∈ V ,
ψ(v) is a fixed point of L (X,Y, I), i.e. A↑ = B and B↓ = A. We show only
B↓ = A, the second case may be proved symmetrically. By Claim B we have

B↓(x) =
∧

y∈Y

B(y) → I(x, y) =
∧

y∈Y

(
∧

µ(y,b)≥v

b→
∨

γ(x,a)≤µ(y,b)

a⊗ b).

We show A(x) ≤ B↓(x). We have

∨

γ(x,a)≤v

a⊗
∧

µ(y,b)≥v

b ≤
∨

γ(x,a)≤v≤µ(y,b)

a⊗ b ≤
∨

γ(x,a)≤µ(y,b)

a⊗ b,

i.e.
A(x) =

∨

γ(x,a)≤v

a ≤
∧

µ(y,b)≥v

→
∨

γ(x,a)≤µ(y,b)

a⊗ b
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holds for each y ∈ Y , hence also

A(x) =
∨

γ(x,a)≤v

a ≤
∧

y∈Y

(
∧

µ(y,b)≥v

b→
∨

γ(x,a)≤µ(y,b)

a⊗ b) = B↓(x),

holds. We now show the equality A(x) = B↓(x) as follows. Suppose there
is an a ∈ L such that for each y ∈ Y it holds

a ≤
∨

µ(y,b)≥v

b→ I(x, y) (11)

(i.e. a is a lower bound) and show that a ≤
∨

γ(x,a)≤v a = A(x) (i.e. A(x) is

the infimum, i.e. B↓(x)). (11) holds iff

a⊗
∨

µ(y,b)≥v

b ≤ I(x, y),

i.e. by a ⊗
∨

µ(y,b)≥v b =
∨

µ(y,b)≥v(a ⊗ b) we get that for each b such that
µ(y, b) ≥ v it holds a ⊗ b ≤ I(x, y). The last fact implies that for each b

such that µ(y, b) ≥ v it holds γ(x, a) ≤ µ(y, b) which holds for each y ∈ Y .
From the

∧

-density of µ(Y × L) it follows that v =
∧

v≤µ(y,b) µ(y, b), and
hence γ(x, a) ≤ v which implies a ≤

∨

γ(x,a′)≤v a
′ = A(x). We have proved

A = B↓.
Next we show that ϕ ◦ ψ = idL(X,Y,I) and ψ ◦ ϕ = idV . For each v ∈ V

we have by Claim A and the
∨

-density of γ(X × L)

ψ ◦ ϕ(v) = ϕ(A,B) =
∨

x∈X

γ(x,A(x)) =

=
∨

x∈X

γ(x,
∨

γ(x,a)≤v

a) =
∨

x∈X

∨

γ(x,a)≤v

γ(x, a) =

=
∨

γ(x,a)≤v

γ(x, a) = v,

i.e. ψ ◦ ϕ(v) = v. Consider now ϕ ◦ ψ(A,B) for 〈A,B〉 ∈ L (X,Y, I). First
we show

∨

x∈X

γ(x,A(x)) =
∧

y∈Y

µ(y,B(y)). (12)

The inequality
∨

x∈X γ(x,A(x)) ≤
∧

y∈Y µ(y,B(y)) is inferred from the fact
that for every x ∈ X, y ∈ Y we have γ(x,A(x)) ≤ µ(y,B(y)) which follows
from Claim B as here: γ(x,A(x)) ≤ µ(y,B(y)) holds iffA(x)⊗B(y) ≤ I(x, y)
iff A(x) ≤ B(y) → I(x, y) which holds because of A(x) =

∧

y′∈Y (B(y′) →

7



I(x, y)) ≤ B(y) → I(x, y). To get the equality (12), denote v = ϕ(A,B) =
∨

x∈X γ(x,A(x)). We show that
∧

y∈Y µ(y,B(y)) = v. From the
∧

-density
of µ(Y × L) we have clearly v =

∧

µ(y,b)≥v µ(y, b). We show that for each
y, b such that µ(y, b) ≥ v it holds b ≤ B(y). Indeed, if µ(y, b) ≥ v then
clearly µ(y, b) ≥ γ(x,A(x)) for all x ∈ X. If b ≤ B(y) is not the case
then consider b ∨ B(y). For each x ∈ X we have µ(y, b) ≥ γ(x,A(x)),
µ(y,B(y)) ≥ γ(x,A(x)), hence, by Claim A, µ(y, b ∨ B(y)) = µ(y, b) ∧
µ(y,B(y)) ≥ γ(x,A(x)). This implies A(x) ⊗ B(y) ≤ A(x) ⊗ (b ∨ B(y)) ≤
I(x, y), i.e. b ∨ B(y) ≤ A(x) → I(x, y) for each x ∈ X, i.e. b ∨ B(y) ≤
∧

x∈X A(x) → I(x, y) = B(y), i.e. b ≤ B(y), a contradiction. Furthermore,
from b ≤ B(y) it follows by Claim A that µ(y,B(y)) ≤ µ(y, b). Thus, from
v ≤ µ(y, b) it follows µ(y,B(y)) ≤ µ(y, b). We conclude

v =
∨

x∈X

γ(x,A(x)) ≤
∧

y∈Y

µ(y,B(y)) ≤
∧

µ(y,b)≥v

µ(y, b) = v,

i.e (12) holds. We therefore have

ϕ ◦ ψ(A,B) = ψ(
∧

y∈Y

µ(y,B(y))) =

=

〈

{〈x,
∨

γ(x,a)≤
∧

y∈Y
µ(y,B(y))

a〉 | x ∈ X},

{〈y,
∨

µ(y,b)≥
∧

y∈Y
µ(y,B(y))

b〉 | y ∈ Y }

〉

.

As ϕ ◦ ψ(A,B) ∈ L (X,Y, I), it suffices to show that

∨

γ(x,a)≤
∧

y∈Y
µ(y,B(y))

a = A(x).

From (12) we have γ(x,A(x)) ≤
∧

y∈Y µ(y,B(y)) and therefore

∨

γ(x,a)≤
∧

y∈Y
µ(y,B(y))

a ≥ A(x).

Conversely, if γ(x, a) ≤
∧

y∈Y µ(y,B(y)), then γ(x, a) ≤ µ(y,B(y)) for each
y ∈ Y , i.e. a ⊗ B(y) ≤ I(x, y), which yields a ≤ B(y) → I(x, y), for
each y ∈ Y , and hence a ≤

∧

y∈Y B(y) → I(x, y) = A(x) which implies
∨

γ(x,a)≤
∧

y∈Y
µ(y,B(y)) a ≤ A(x). We have proved ϕ ◦ ψ(A,B) = 〈A,B〉.
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It now suffices to show that ψ is monotone. If u ≤ v then for ψ(u) =
〈Au, Bu〉 and ψ(v) = 〈Av, Bv〉 we have Au(x) =

∨

γ(x,a)≤u a and Av(x) =
∨

γ(x,a)≤v a which implies Au(x) ≤ Av(x) for each x ∈ X, i.e. ψ(u) ≤ ψ(v).
The proof of Theorem 5 is complete. 2

Remark In [13], the author provides a natural interpretation of the fixed
points and their lattices which is based on the approach to concepts as de-
veloped by traditional (Port-Royal) logic [1]. Fixed points are in [13] called
formal concepts and the lattices of fixed points are called concept lattices.
The theory of concept lattices thus established has been then developed in
a series of papers. The intention is to have a theory of formal concepts
with applications in concept data analysis and conceptual knowledge repre-
sentation. Note that the application of lattices to data analysis have been
suggested already by Birkhoff. Formal concepts and concept lattices are, in
fact, models of sharp concepts and conceptual structures. The generaliza-
tion to many-valued (fuzzy) case makes it possible to model also non-sharp
concepts. We briefly outline the approach.

Let X represent the set of objects, Y the set of attributes, and let I(g,m)
be interpreted as the truth value of “the object x has the attribute y”.
Apparently, the fuzzy approach to I is appropriate since the relationship
“to have” between objects and attributes is non-sharp. Call 〈X,Y, I〉 an
L-context. By traditional logic, a concept consists of a collection A (extent
of concept) of objects and a collection B (intent of concept) of attributes
such that (a) B consists of all attributes shared by all objects of A and
(b) A consists of all objects sharing all the attributes of B. In the case of
empiric objects, both extent and intent are non-sharp. Therefore, it seems
reasonable to model A and B by L-sets. Obviously, (a) and (b) are expressed
by (5) and (6), respectively. It is thus natural to call a pair 〈A,B〉 ∈ LX×LY

an L-concept in 〈X,Y, I〉 iff A↑ = B and B↓ = A, i.e. iff 〈A,B〉 is a fixed
point. L (X,Y, I) is then called an L-concept lattice. The partial order ≤
models the conceptual hierarchy on L (X,Y, I). The main role of L (X,Y, I)
is to reveal the conceptual hierarchy hidden in the “input data” 〈X,Y, I〉.
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