
Nuel Belnap Under Carnap’s Lamp:

Flat Pre-semantics

Abstract. “Flat pre-semantics” lets each parameter of truth (etc.) be considered sepa-

rately and equally, and without worrying about grammatical complications. This allows

one to become a little clearer on a variety of philosophical-logical points, such as the use-

fulness of Carnapian tolerance and the deep relativity of truth. A more definite result of

thinking in terms of flat pre-semantics lies in the articulation of some instructive ways of

categorizing operations on meanings in purely logical terms in relation to various parame-

ters of truth (etc.); namely, closing vs. leaving open, local vs. translocal, and anchored vs.

unanchored. Basic relations among these categories are established.
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1. Introduction

Semantics presupposes grammar.1 There are nevertheless “pure theories”
of values (such as the extensions of [3]) and meanings (such as Carnap’s
intensions) that are unencumbered by grammar, and that are in this sense
properly pre-semantic rather than “semantic” in the strict sense. The only
application of pre-semantics is to semantics itself, and all its conceptions are
directed to this end. Why then isolate pre-semantic concepts? In the first
place, pre-semantics helps us become clear that some of the deepest semantic
ideas are quite independent of notational systems (grammars). Second, in
the tolerant spirit of Carnap, we believe that one is likely to want a variety of
complementary (noncompeting) pre-semantic analyses—and most especially,
a variety of pre-semantic treatments of one and the same “language.” One
does not have to “believe in alternative logics” to repudiate the sort of abso-
lutism that comes not from logic itself, but from narrow-gauge metaphysics
or epistemology. Carnap tried to soften this absolutism by illustrating with
his two “methods,” and his variable language “L”, but although Carnap’s
beneficent influence is legendary, it seems worth repeating the lesson: There
can and should be multiple useful, productive, insightful and pertinent anal-
yses of the same target. Pre-semantics therefore emphasizes the usefulness
of thinking in terms of a variety of pre-semantic systems.

One thing that stands out more clearly in pre-semantics is the likeness be-
tween the semantic treatment of different semantic parameters as they arise

1 Cheerful thanks to Martin Allen, Adrian Staub, and Matthew Weiner.
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in various branches of logic. A pre-semantic policy of help in this endeavor
is reliance on “flat” pre-semantics, which is the topic of this essay. By this
we mean a style of pre-semantics that lets each and every parameter of truth
stand on its own, democratically, so that the individual contributions of each
parameter—be it domain, interpretation of a particular predicate letter, as-
signment to a particular variable, set of worlds, etc.—can be fairly discussed
without metaphysical or epistemic distraction. Indeed, our chief aim in us-
ing flat pre-semantics is to describe purely logical ways of categorizing the
semantic meanings of “modes of combination” (e.g. connectives, operators
on terms, predication) in their various relations to individual parameters in
a fashion that ignores the unsteady boundary between “extensional” and
“intensional” logic. See section 5 especially for the parameter-relative ideas
of local vs. translocal, closing vs. leaving open, and anchored vs. unanchored,
as they apply to the pre-semantic correlates of connectives and the like.

The flat pre-semantic approach makes it obvious that truth is nearly
always relative. In contrast, sometimes philosophers speak in a way that
presupposes that “the” fundamental notion of truth is absolute. If, how-
ever, “fundamental notion” means “the notion to which you should primarily
pay attention,” then that is the wrong track. In fact: The truth is seldom
absolute. In helpful Tarski-style semantic analyses, the fundamental con-
cept of truth is hardly ever the (of course definable) absolute version. It is
instead almost always the version of truth that is relativized to (or parame-
terized by, or made to depend upon) something. Analogy: The parenthood
binary relation is more fundamental than the (definable) one-place parent-
hood property, even if for a particular stated purpose the property is more
“important” than the relation. In old-fashioned language, “parenthood” is
an essentially relational concept; and so is truth.

The jargon of Tarski’s own articles (such as [6]) tends to conceal this fact.
Tarski’s fundamental notion is “satisfaction,” in the expression “sequence s
satisfies sentence A.” That, however, is but a stylistic variant of “sentence A
is true with respect to the sequence s.” The latter terminology emphasizes
that Tarski’s essential idea was to relativize truth—to sequences—whereas
his own terminology, we think in some part for the worse, suppresses this
fact. Flat pre-semantics allows us to throw a raking light on Tarski’s insight,
and thereby reveals what is all too easily ignored.

There is in Tarskian model theory additional relativization of truth: Even
simple truth-table analysis relativizes truth, namely, to “rows” or “assign-
ments” (the terminology is irrelevant). For example, you are not entitled to
the concept of a “tautology” unless you are willing to speak words such as
“A is ‘true in every row’,” where an English preposition, here “in,” carries



Under Carnap’s Lamp 3

the relativization. It is always easy and sometimes useful to suppress this
fact of practice; here, however, we let the fact shine forth in order to provide
what illumination it can. Our special concern is with the massive likeness of
the practices of “extensional” and “intensional” semantics.2 It will be obvi-
ous, however, that we are proceeding at a level of generality that encourages
us to see many important likenesses among semantic analyses, including a
special favorite of Carnap, the likeness between the semantic treatment of
sharply different “categorematic” grammatical categories such as sentences
on the one hand and terms on the other, and between different “operator”
grammatical categories such as sentential connectives, term operators, and
predicates.

The chief technical results of this essay occur only in section 5; earlier
sections lay the groundwork so that those results may be put in the proper
context. Before section 5, everything should look like the same old thing,
flatly expressed. By exploiting the generality that flatness permits, we make
some aspects of some standard ideas stand forth a little more clearly.3 In sec-
tion 5 we move beyond mere flattening: We categorize meaning-operations
in terms of their structural relations to the parameters on which truth de-
pends. Only at that point do we find some new ideas arising out of flat
pre-semantics.

2. Intrusions

We keep grammar and set-class theory in the background. Here we say an
intrusive word about each.

Grammatical intrusion. At the abstract level that is relevant to our
concerns, we think of a grammar as involving the following. Categorematic
expressions, such as sentences or terms, with the idea that a semantics will
then give a “value” of some kind to each categorematic expression. Syncate-
gorematic expressions, such as “∼” or “&” or “(”, which play a role in some
grammatical operation. Grammatical operations, or modes of combination
or functors, each of which is a (grammatical) function taking categorematic
expressions as input, and producing a categorematic expression as output.4

2 We use the historical and practical word, “practices,” because, following [7], we have
neither seen nor been able to imagine a way in which to formulate a compelling theoretical
difference.

3 Some . . . some . . . standard: These are modest aspirations. They recognize that
flattening can also make some things more difficult to see than they were before, and they
certainly do not include the hope that all semantic ideas either ought to be or can be
represented in flat pre-semantics.

4 The grammatical phrase, “mode of combination,” although striking a chord, is not
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Example: the operation which, given two sentential inputs A1 and A2, pro-
duces an appropriate “conjunction” of those two sentences, perhaps having
the appearance “(A1 &A2)”.

It is often reasonable, and Carnapian, to see the division between cat-
egorematic and syncategorematic expressions as more a matter for the lin-
guist than for the speakers. Given a population of speakers in the process
of communicating, there is no more reason to expect a uniquely determined
“structural manual” than there is to expect a uniquely determined “transla-
tion manual.”5 As always, however, there is no inference from “not uniquely
determined” to “not uniquely reasonable,” much less to “unhelpful.”

Set-class intrusion. We need to say something about sets, classes, and
types. We do not need to say much, because the essential ideas of semantics
and pre-semantics do not seem to us to depend much on foundational dis-
tinctions. Still, when we say “set” we have in mind something like Zermelo-
Fraenkel set theory, and when we say “class” we mean to suggest a collection
that might, by its sheer size, outrun that theory. Then when we come to
collecting subcollections, there are two cases. (1) If we are collecting subsets
of a given set, then we know by ZF that the collection itself is a set. (2) If,
however, we collect subclasses of a given class, the new collection will need
to be at a higher type. In exactly the same way, when we come to functions,
there are two cases. (1) If the domain is specified here as a set, of course the
function itself can be a set in the usual ZF way. (2) If, however, the domain
is specified here as a class, then we should expect the function to be “up”
at a higher type. In short, please interpret us as consistent. It can’t hurt.

At various points, grammar, pre-semantics, and semantics deal with func-
tions from entities of kind K. Each of these functions will have a definite
n-arity (0 6 n), but its particular n-arity will hardly matter. We minimize
distracting detail later if we agree now to treat all of these n-ary functions
from entities of kind K as technically one-place. We may do this by letting
lists of length n serve as (single) arguments for the n-ary functions in which
we are interested. We let ∅ be the empty list, and we feel free informally to
“identify,” when convenient, a singleton list with its single occupant. Given
a technically one-place partial operation on lists, we feel free to call it n-ary
(0 6 n) when all of its arguments are of length n.

as accurate as Curry’s word “functor.” A functor is just: a grammatical function. From
this perspective, the negation connective is not the symbol ∼; it is the very function (a
functor) that maps each sentence A into ∼A.

5 The phenomenon of linguistic underdetermination does not, that is, start with “mean-
ing.” It is already present with “structure.” To suppose otherwise is to use the forces of
metaphysical or epistemological predisposition in order to deform logical insight.
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3. Pure theory of value and meaning

With Carnapian tolerance in mind, we shall think of S as standing for a
particular “pre-semantic system.” That will give us a modest way of uniting
with a single label ideas that belong together.

3.1. Basic “ontology” of flat pre-semantics

A particular pre-semantic system, S, can be understood as constituted by
six ideas. Here is a list.

Six Fundamental pre-semantic ideas. Choose S. To understand S as a
pre-semantic system (in the present sense), one needs to grasp the following:
(1) S-values; (2) S-points; (3) S-parameters; (4) the S aux-function and
S-auxiliaries; (5) S-meanings; and (6) S-operations.

The ideas of S-values, S-points, S-parameters, and the S aux-function
will be primitive, whereas the ideas of S-meanings and S-operations will be
defined; but the defined ideas are nevertheless equally essential to the notion
of a pre-semantic system and therefore are equally entitled to be on our list
of “fundamental pre-semantic ideas.”

A “pre-semantic” system, S, becomes “semantic” by relating its (4)
“S-meanings” to categorematic expressions of a language, and its (5) “S-
operations” either to syncategorematic expressions used in making grammat-
ical combinations, or to the modes of combination themselves (whichever one
prefers). While emphasizing the theoretical difference between pre-semantics
and semantics, there is, as we have said, no point to pre-semantic systems
without potential semantic application, and we shall therefore largely sup-
press the difference in treating preliminary examples.

3.2. S1: an example

It will help to start with a familiar example intended to introduce the six
ideas as “explicanda” before we become rigorous. (Nevertheless, in order
to put these six ideas into perspective, it may be helpful to consult the
more abstract Fig. 1 below.) The example, S1, which is just a pre-semantics
for a standard quantificational logic, comes in two parts. First we describe
the grammar of the language that is the target of S1, because although
theoretically independent, in practice, pre-semantics needs to be guided by
grammar. And then we describe S1 itself as a pre-semantic system that
illustrates the six listed ideas.

Example 3.1. (Simple quantificational language: its grammar). The target
of S1 is one of the standard quantification grammars, namely, a grammar
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with (only) predicate letters and individual variables as “atoms.” Predica-
tion in the standard grammar combines a predicate letter with a suitable list
of variables to form an “atomic sentence.” S1, however, declines to consider
either the predicate letter or the variables as categorematic components of
the predication; they serve S1 as mere syntactic auxiliaries (syncategoremat-
ica). As a consequence, the grammar of the language relevant for S1 may
be given as follows.

Categorematic expressions. (Only) sentences that are (1) either open or
closed, and (2) either atomic or complex.

Our grammatical terminology here is not the most common.6 More often one reads

“formula” where we say “sentence,” and “sentence” where we say “sentence containing no

free variable.” The more common terminology is all right for many purposes, as long as

one realizes that by design or not, it tends to conceal what we here emphasize, namely, the

relativization of truth! In fact, grammatically speaking, there is nothing “nonsentential”

about either “it is a horse” or “x is a horse,” and we may expect semantically that each

of these two sentences (or call them formulas as long as it does not confuse you) receives

a truth value—properly parameterized, of course.

Modes of combination (that is, grammatical operations). (1) For each
“atomic” sentence, a 0-ary grammatical operation that generates exactly
that sentence (from the empty list of arguments).7 (2) A few standard truth
functional connectives, such as the negation connective, which transforms
a sentence, A, into ∼A. (3) For each individual variable, x, at least one
quantificational connective, such as the universal quantifier for x, which
transforms a sentence, A, into ∀xA.

An n-ary connective properly speaking is any function from n-ary lists of sentences

into sentences, with perhaps the added conditions that outputs uniquely determine in-

puts, and that there are no infinitely descending decompositional chains (no ambiguity).

It is a regrettable accident of familiar artificial languages that it is easy when explaining

logical grammar to confuse connectives with certain symbols or symbol-patterns (syncat-

egorematica). Perhaps, however, spreading the confusion arises out a desire to enrich

the logical message with some physicalistic subtext. Fortunately this particular confusion

does not stand in the way of learning truth tables and the like. It is on the other hand an

illogical and harmful historical aberration that it is seldom made explicit that quantifiers

are non-truth-functional connectives.

6 Passages in smaller print are explanatory—we trust usefully so. Still, there is some
sense in which these passages are redundant for the purely technical development.

7 This is of course a bit of a technical fiddle; we allow it not so much because it is
enlightening, but because it makes it easier, later, to say more gracefully some things that
would otherwise be awkward.
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Example 3.2. (S1: a pre-semantics for a simple quantificational language).
The pre-semantic system, S1, is targeted at the quantificational language
characterized in Example 3.1. The six fundamental ideas of pre-semantics,
when specialized to S1, we elucidate as follows.

1. S1-values. The S1-values are just the truth values, T and F; there are
no other S1 values. This follows up the decision to treat only the sentences
(both open and closed) as categorematic: The idea of an “S-value” in this
jargon is exactly what could be attached to a grammatically categorematic
expression.

In each application, the semanticist is forced to make numerous decisions, some of

which are “don’t-cares” and some of which he or she might wish to defend on philosophical

or empirical or other grounds. For us, in this enterprise, all such decisions are don’t-cares

in the (limited) sense that when we offer a semantic system based on certain of these

decisions, we do not mean to suggest by that alone that other decisions would somehow

be faulty. In treating standard quantification, for example, one might well choose to treat

the variables as themselves categorematic, giving rise to another pre-semantic system, S1′ ,

distinct from S1, intended to apply to essentially the same language. In S1′ , in addition to

truth values, individuals would also be S1′ -values. We ought to count as foolish anyone who

thinks that there is something wrong with S1′ ; but provided tolerance reigns, there is also

nothing wrong with S1 choosing to place the emphasis on sentential values by denying, in

the context of its particular analysis, a categorematic status to individual variables. Each

of S1 and S1′ is enlightening in its own way.

2. S1-points. S1-points encode whatever information is needed in order to
determine a definite S1-value, that is, a definite truth value, for the consid-
ered simple quantificational grammar. Namely, as we learned from Tarski,
a S1-point encodes the following. (a) a domain, (b) for each predicate let-
ter, an appropriate subset of (or relation on) the domain, and (c) for each
individual variable, a member of the domain. One may think of these three
sorts of items, to which we shall repeatedly return, either as “components”
or as “coordinates” of S1-points.

More customary are the longer phrases valuation point or point of evaluation, and

indeed we always mean that the short word, “point,” should carry the intent of these

longer phrases. We could as well have said “S1-index” instead of “S1-point,” as does [5].

3. S1-parameters. The S1-parameters articulate the S1-points into their
separate components (or features or aspects or whatever). In flat pre-
semantics, we are after the most refined articulation. We wish to keep sepa-
rate track of each feature of an S1-point that contributes to the truth values
of sentences. Namely, to review the items listed under our story about S1-
points, the following: (a) the domain parameter, (b) a parameter for each
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predicate letter, and (c) a parameter for each individual variable. These are
the items of which S1 needs to track separately as it examines their influence
on S1-meanings and S1-operations as defined below.

The contrast is with a system that has only three parameters, (a) a domain param-

eter, (b) an interpretation (which would be internally complex), and (c) an assignment

(also internally complex). The style of flat pre-semantics is flat precisely in the sense

that the separate parameters are in no way organized into a hierarchy. Certainly various

S1-parameters (e.g., the domain parameter vs. the F2 parameter vs. the x1 parameter)

have different conceptual roles, and certainly the various S1-parameters naturally group

together under the headings (a), (b), and (c). That is what makes it tempting (and of-

ten useful) to speak of just three parameters instead speaking of the flat list of all the

infinitely many individual items. Here, however, our emphasis is explicitly structural, and

at the level of structure, each parameter, whether for domain or for F2 or for x1, is just:

a parameter. By this flattening we mean, for present purposes, to emphasize likeness over

difference and articulation over clumping.

4. The S1 aux-function and S1-auxiliaries.8 In order to appreciate the
role of the S1 aux-function, make a picture in your head of a rectangular
array rather like the “reference columns” normally found over to the left of
a truth table (see Fig. 1).

First, imagine that the individual S1-parameters (or their names) are
written across the top of the reference columns. In this position, S1-param-
eters can serve as column headings: the domain parameter, the F1 param-
eter, . . ., the x1 parameter, . . . . Because we are doing “flat semantics,”
each parameter should be written separately. We shall use “p” to range over
S1-parameters.

Second, imagine the S1-points (or their names) as written down the left.
In this position, S1-points can serve as row headings. In contrast to the
S1-parameters, however, you will have in mind no “natural” names for the
S1-points. So just make up a few: v1, v2, . . . . The letter “v” will remind
us that these are “valuation points,” relative to which we may find a truth
value for each sentence.

So now you have S1-parameters p as column headings, and S1-points v
as row headings, of a rectangular array. How is the array to be filled in?
That is the job of the S1 aux-function.

The S1 aux-function tells you what lies at the intersection of row and
column. It tells you, for example, what the domain is at the S1-point v1, or
what the interpretation of F3 is at the point v5, or what the value of x7 is
at the point v2.

8 We put up with ugly jargon in order to emphasize the role of these items.
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These “intersection entities” are auxiliary to the semantics: They need
be neither S1-values nor S1-meanings. For lack of a better idea, we therefore
write AuxS1

for the S1 aux-function. AuxS1
is defined for every S1-point

v and every S1-parameter p, so that the domain of definition of AuxS1
is

definable in terms of the other fundamental pre-semantic ideas.9 AuxS1
re-

mains a primitive, however, because it is only constrained by rather than
definable by those other ideas: The various values of AuxS1

are radically di-
verse, and we simply label these values as S1-auxiliaries. We write AuxS1

(v,
p) for the value of AuxS1

at the S1-point, v, and the S1-parameter, p. These
S1-auxiliaries fill in the rectangular array for which the S1-parameters serve
as column headings and the S1-points as row headings. The S1-auxiliaries
include sets (the domains), more sets (interpretations of e.g. a one-place
predicate letter, F1), relations (e.g. an interpretation of a two-place predi-
cate letter, F5), and “individuals” (e.g., an assignment to x2).

The aux-function for the particular system S1 has the following proper-
ties. The lettering refers to our conception of S1-points as described under
(2) above.

(a) If p1 is the domain parameter, AuxS1
(v, p1) is always a nonempty

set: “the domain of v.” (b) If p1 is the parameter for any n-ary predicate
letter, F , then AuxS1

(v, p1) is an n-ary relation on “the domain”; that is,
on “the domain of v.” In still longer words, for each S1-point v, if p1 is the
parameter for a n-ary predicate letter, F , and p2 is the domain parameter,
then AuxS1

(v, p1) is an n-ary relation on AuxS1
(v, p2). Investigations not

needing the present level of abstraction, or that are not harmed by con-
cealing the fact that “the domain” is itself an S1-parameter, often say “the
interpretation (or value) of F in v,” and use a much shorter notation such
as “v(F )”. (c) When p1 is the parameter for the individual variable, x, then
AuxS1

(v, p1) is a member of “the domain” (as spelled out just above). A
frequent jargon is something like “the value of x on v,” or just “v(x)”.

S1 puts no further “necessary” conditions on its points, its parameters,
and its aux-function. In other words, to a first approximation, given any
nonempty set, and no matter how you choose appropriate values for the
other parameters, there is always a S1-point such that the S1 aux-function
gives that set to the domain parameter, and also gives each other parameter
its chosen value.

9 Some pre-semantic systems are perhaps best understood as offering AuxS(v, p) as an
only partial function. As a mere technical convenience, and with no philosophical point in
mind, we may simulate this partiality by giving AuxS(v, p) some dummy auxiliary value
when it would otherwise be undefined.
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How does this “first approximation” need to be refined? Well, it is
possible to be cagey or disputatious or merely worried about just which
nonempty sets are covered by the quantifier word “any” as it occurs in our
approximation, “given any nonempty set.” So far as we know, as long as
S1 covers a great many nonempty sets, we always find that S1 provides
significant logical enlightenment.

5. S1-meaning. An S1-meaning is defined as a function from the S1-points
into the S1-values. S1-meanings, like S1-values (i.e., truth values) belong to
sentences: The S1-meaning of a sentence shows how its S1-value (its truth
value) varies as one varies the items listed just above under (a), (b), and (c)
of our account of S-points.

The phrase “S1-meaning” is neither pretentious nor unpretentious, but just right—for
S1. The system S1 itself is both interesting and also relatively impoverished, and in exactly
the same way, so is the idea of S1-meaning. Philosophers who detest meaning will, in a sort
of pseudo-scientific or atheistic spirit, reject the phrase “S1-meaning” as meaningless; but
that rejection is an aberration not to be encouraged. Other philosophers, those who think
that all meaning must be deep, will, in a pseudo-humanist or worshipful spirit, reject the
phrase “S1-meaning” as heretical; but these philosophers are equally to be discouraged.
Persons of sound judgment do not confuse meaning with religion.

Observe that this example makes it plain that “S-meaning” is an entirely abstract
logical idea. It is not the same as the more specific and perhaps more metaphysical idea
of “intension,” when that is defined as (something equivalent to) a pattern of values (e.g.
truth values or individuals) as one varies the world-of-evaluation parameter throughout
the set-of-worlds parameter (see section 6).

Pre-semantics demands that each S-meaning have a comprehensible in-
ternal structure. It is this that separates S-meanings so sharply from S-
values. Flat pre-semantics meets this demand by rendering S-meanings as
functions—from (possibly structureless) S-points into (possibly structure-
less) S-values.

In [3], each sentence acquired both an extension and an intension. In very much the
same way, and with explicit dependence on Carnap, both S1-values (truth values) and S1-
meanings attach to sentences. There is here, however, a critical point that Carnap did not
make sufficiently clear: Although given a sentence, A, it makes “absolute” sense to speak
of its S1-meaning, the same is far from true for the way S1-values (truth values) relate to
A. For A does not have any truth value “absolutely.” Instead, of course, in S1 “the truth
value of A” is always relative to some S1-point, which encodes domain, interpretation, and
assignment.

It can therefore be either helpful or misleading to say that in S1, sentences have both

a truth value and an S1-meaning. There will be no problem as long as one keeps firmly in

mind both (1) that S1 gives sentences truth values relative to an S1-point, and (2) that

S1 gives sentences S1-meanings “absolutely.”

6. S1-operation. A S1-operation is defined as a function from S1-meanings
to S1-meanings. Just as S1-meanings belong (only) to sentences, so S1-
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operations belong (only) to connectives of the grammar being considered
(Example 3.1). The S1-operation associated with a connective shows how,
in the spirit of Frege, the S1-meaning of the constructed sentences depends
(entirely) on the S1-meanings of its sentential parts. In the grammar being
considered, the primitive connectives include not only the truth functional
ones, but also ∀x1, ∃x2, etc. It is obvious from Tarski’s work that the S1-
meaning of e.g. ∀x1A depends exclusively on the S1-meaning of A, and that
we understand the meaning of ∀x1—if in fact we do—by understanding how
it maps each possible S1-meaning of the part, A, into a S1-meaning of the
complex, ∀x1A.

Spirit of Frege? Well, we do take up the Fregean idea that we think valuable, which is

that “the meaning of a compositional whole should depend on the meanings of its parts.”

And we refuse to take up the Frege idea that “the truth value of a compositional whole

should depend (entirely) on the truth values of its parts.” The latter is violated in S1 by

the quantificational connectives, a point to which Fregean “senses” are irrelevant. One

can of course present a semantic system for quantificational logic in a way that conceals

that the meaning of e.g. ∀x1A depends on the meaning of A, a procedure that is likely to

be harmless where the aim is purely technical.

This finishes our account of the pre-semantic system, S1. Before proceed-
ing, and in order to encourage verbal explanations to mingle with geometric
intuitions, we call attention to the diagram of Fig. 1, which is relevant to
any pre-semantic system, S, whether it be S1, or truth-tables, or a sophisti-
cated intensional system. Speaking in terms of pictures, a flat pre-semantics
always looks very much like a truth table.

3.3. Alternatives to the S aux-function

Because the idea of the S aux-function is clumsy, we mention two alterna-
tives.

(1) One may identify S-points as functions from the S-parameters into
the S-auxiliaries (or, if the parameters be few enough, one may identify them
with sequences of S-auxiliaries á la Tarski). In this representation, which is
perhaps most usual, only the S-parameters are taken as technically without
internal structure, and one may drop the aux-function.

(2) One may identify each S-parameter as a function from S-points to
S-auxiliaries. In this case, only the S-points are taken as technically without
internal structure, and, again, one may drop the aux-function.

Plans (1) and (2) are felt to be substantially equivalent to each other;
and each to be equivalent to a third plan, which is used here:
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S-point S-parameter S-auxiliary S-meaning

(entire column)

S-value

S-operation (mapping from cols. to cols.)

v E

I

Ψ

Aux(v,p)

Ψ(I)p I Ψ(I)

Aux(v,p)v

Ψ

Figure 1. Six fundamental notions of pre-semantics

(3) S-points and S-parameters are each taken by S as without structure,
leaving their interaction to be determined externally by AuxS , the S aux-
function. We use this less graceful third alternative not for novelty, but
only to emphasize that connection between points and parameters does not
depend on some set-theoretic trick. You must have S-points and you must
have S-parameters, and whether or not points or parameters have a function-
like structure, you must have an account of “the auxiliary determined by the
S-point v and the S-parameter p.” Flat semantics emphasizes this. For any
other purpose, one should certainly feel free to use whichever of the three
plans seems most helpful for the immediate purpose.

What does it cost us to be sure that the three plans are indeed equally
available for S? Only that (1) S-point-as-function is really enough to iden-
tify a S-point, and (2) analogously for S-parameter-as-function. That is, we
must say that S does not admit two (distinct) S-points whose structuring
by the S-parameters is exactly the same, nor analogously for two (distinct)
S-parameters. We’ll refer to this property of a pre-semantic system as “ar-
ticulation.”

The benefit is that if a pre-semantic system is articulated, we are less
likely to be confused in our thinking about it just because of the equivalence
of (1), (2), and (3). Evaluation of the cost of enforcing articulation depends
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on which direction we are considering. Half of articulation is that no two
(distinct) parameters should behave exactly the same on all points. It is easy
to invent a system that fails to have this feature. For example, let “gorse”
and “furze” be two predicate parameters, and suppose that as a way of
instituting a Carnapian “meaning postulate,” we wished to constrain points
such that the two predicate parameters must always be assigned exactly the
same subset of the domain. It is hard to find any logical reason to forbid
such a system even though it would not be articulated. For an example
in the other direction, take the [4] case of contexts of utterance, and let
these contexts be, for this toy example, S-points. Let the S-parameters
be speaker, place, and time of context. Certainly speaker, place, and time
do not exhaust all of the features of a context that are of interest to a
philosopher of language. Consider that to process the indexical “you,” one
would wish at least to consider an audience or auditor of the context. It is
therefore natural to imagine that S should admit two contexts as distinct
points (or parts of points) that are exactly alike with respect to the given
S-parameters, speaker, place, and time, but differing in e.g. auditor. In such
a case, S would not be articulated, and you would be misled if you tried the
easy maneuvering between (1), (2), and (3) that articulation underwrites.

3.4. Technical definition of a flat pre-semantic system, S

Just for the record, or, as Kaplan says, for a reality check, we put the key
ideas together as a theoretical definition of a “pre-semantic system.”

Definition 3.3. Pre-semantic system S is a pre-semantic system iff S is a
structure 〈ES , V S , PS , IS , ΨS, AuxS〉 satisfying the following conditions.

1. ES is a nonempty class. Members of ES are called S-values.
If we wish to deal with values appropriate to sentences classically understood, T and

F, the two (distinct) truth values, presumably belong to ES. If we wish to deal with values

appropriate to singular terms, then very likely an extremely large array of individuals will

figure as S-values. All that is required of an S-value is that it be thought of as a potential

semantic value of a categorematic expression of a language at which S is targeted. There

is no general theory of S-values as such.

2. V S is a nonempty class. Members of V S are called S-points. When S is
understood, v ranges over V S, so that v is a S-point.

An S-point is endowed with all the information required by S to determine a definite

S-value for each categorematic expression in the target language. The system S1 described

above offers one familiar example of S-points. There is no general theory of S-points as

such.
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3. PS is a nonempty class. Members of PS are called S-parameters. When
S is understood, p ranges over PS , so that p is a S-parameter; P ranges over
subclasses of PS , so that P is a class of S-parameters; and −P = PS−P .

Technically speaking, a parameter is nothing but an index, a column heading of some-

thing required to fix a S-value. In each application, however, each parameter is given some

significance that in practice is typically indicated by its name, e.g. “the domain parameter”

or “the x3 parameter,” or “the set-of-worlds parameter.” Indeed, because of the indexing

role of parameters, as long as one knows what one is doing, there is no harm “identify-

ing” a parameter with its name, or with the bit of notation, if any, with which it may

be associated, or with a number or numeral picking out its position in some ordered list,

if there be one. For example, it matters not if one identifies the x3 parameter with “the

x3 parameter”, or with x3, or with “x3”, or with 3, or with “3.” As long as its function

is clear, its “identity” is of no consequence. There is no general theory of parameters as

such.

4. For S a pre-semantic system, AuxS is a (higher type) function whose do-
main of definition is exactly the class V S×PS . AuxS(v, p) is an S-auxiliary
value, namely, the S-auxiliary value determined by v and p. When S is
understood, pv is defined as AuxS(v, p), and is read: the value of (the
S-parameter) p at (the S-point) v. AuxS(v, p) is a component of (the S-
point) v.

Auxiliary values need not (but may) also be S-values. For example, standard propo-

sitional logic takes sentences as its family of categorematic expressions, and awards truth

values T and F to these as their S-values. In addition, however, a pre-semantics for this

logic can use T and F as auxiliary values in the “reference columns,” so that T and F serve

a double role, as both S-values (of categorematic expressions) and S auxiliary values (of

parameters). Here is a contrasting case. Standard model-theoretic quantificational seman-

tics uses nonempty sets as auxiliary values of “the domain” parameter. These nonempty

sets do not, however, occur as values of any categorematic expression. Auxiliary values

need not (but may) attach to some “atomic” bit of the target language.

Articulation defined (but not assumed). For S-points v1 and v2, if AuxS(v1,
p) = AuxS(v2, p) for every S-parameter, p, then v1 = v2. For S-parameters
p1 and p2, if AuxS(v, p1) = AuxS(v, p2) for every S-point, v, then p1 = p2.

5. IS is the (higher type) class V S 7→ES of all functions from V S into ES .
Members of IS are called S-meanings. When S is understood, I ranges over
IS.

Later we describe a number of examples. The word “meaning” alone would here be

Wrong, but “S-meaning” is honest and accurate, and there is, we think, no other word

that will do. The intent of the pre-semantic system, S, is that S-meanings shall be the

richest meaning that S attaches to categorematic expressions such as sentences or terms.
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There is no assumption, however, that each S-meaning should attach to some categore-

matic expression; there are far too many S-meanings to expect that kind of expressive

completeness.

6. 1-ΨS is the (yet higher type) class IS 7→ IS of all 1-ary functions from IS

into IS , and similarly for n-ΨS . Members of n-ΨS are called S-operations.
When n = 1, we write just ΨS. When S is understood, ψ ranges over ΨS.

Suppose ψ ∈ ΨS , I ∈ IS, and v ∈ V S . Then ψI ∈ IS, and ψIv ∈ ES. In designing

a system, S, one intends to attach pre-semantic S-operations to grammatical modes of

combination, those by which the target language constructs its complex categorematic

expressions from its simpler categorematic expressions; for example, one may attach a

certain S-operation to the negation connective.

3.5. Useful notation

We close this section by introducing some notation generally useful in dis-
cussing any pre-semantic system, S.

Definition 3.4. (Projection, agreement, parameter shift). Fix S. Projec-
tion. pv (the projection of v onto p) is the value of the S-parameter, p, in
the S-point, v. In other words, pv = AuxS(v, p). Agreement in P . For any
set, P , of S-parameters, v1 =P v2 iff v1 and v2 agree on every S-parameter
in P : ∀p[p ∈ P → pv1

= pv2
]. Frequent case: (v1 =PS−P v2), which says that

v1 and v2 agree everywhere outside of P . Parameter shift. Suppose that p
is a S-parameter, v1 is an S-point, and z any entity. Provided there is an
S-point, v2, such that (1) v1 = PS−{p} v2 and (2) pv2

= z, we define [z/p]v1
as the S-point, v2 such that (1) v1 = PS−{p} v2 and (2) pv2

= z. That is,
[z/p]v1 is the S-point that is exactly like v1, except with the auxiliary value
of the parameter, p, shifted to z (if there is such an S-point). When (1) and
(2) hold, we say that [z/p]v1 exists.

4. Properties of S-meanings in flat pre-semantics

Here we define, in the present setting, a standard way of categorizing S-
meanings (here, S-meanings). Because the standard way is so thoroughly
well-known, we may be extremely brief. In contrast, ways of categorizing
S-operations have been little explored, which accounts for the greater length
of the section that follows this.

Definition 4.1. (Properties of S-meanings). Fix S. I is closed in (or
constant in or categorical in or independent of or stable in) P (or I is P -
closed) iff ∀v1∀v2[(v1 =PS−P v2) → (Iv1 = Iv2)]. Otherwise I is open in (or



16 N. Belnap

dependent on) P . I is (absolutely) closed (etc.) iff I is closed (etc.) in PS .
Otherwise I is (absolutely) open (etc.).

These various phrases, historically used in differing contexts and with differing rhetor-
ical forces, have exactly the same structural meaning: namely, that the S-meaning, I ,
is such that, for each v, Iv will maintain a constant value no matter how you vary the
P -components of v (as long as you leave the other components alone). In quantification
theory, if x1 does not (as a grammatical fact) occur free in A, then the S1-meaning attached
to A is (as a pre-semantic fact) certain to be closed in the parameter for x1.

If I is absolutely closed, then I is of course a constant function, delivering always the

same S-value at every S-point. The least interesting instance of this abstraction is the

one most frequently exploited by logical theorists: When Iv = T for every v, then I is a

pre-semantic representation of the S1-version of “logical truth,” a notion that many think

is of too little logical utility in proportion to the attention that it has attracted.

5. Properties of S-operations in flat pre-semantics

Here we finally make good on our plan, adumbrated at the beginning of this
essay, to use flat pre-semantics as a platform for describing purely logical
ways of categorizing various ways in which S-operations can be related to
S-parameters.

5.1. Operation properties explained

We categorize S-operations, in relation to a set of parameters, in terms of
four fundamental dichotomies: essentially 0-ary vs. +-ary, local vs. translo-
cal, closing vs. leaving open, and anchored vs. unanchored. These four di-
chotomies describe (not meanings but) S-operations in their relation to pa-
rameters. Doubtless these simple ideas have been isolated in similar semantic
generality elsewhere, but, except for the first, we have not happened to come
across them; therefore, unlike the dichotomous properties of S-meanings of
Definition 4.1, we shall, regrettably, need to introduce unfamiliar words for
them. We begin with a rough explanation of each of the four, specialized to
the case of a single parameter (instead of a set of parameters). Also these
preliminary explanations will concern the “semantics of connectives,” a topic
that is more familiar than the “pre-semantics of S-operations.”

Four fundamental dichotomous relations of S-operations to S-

parameters. The following thumb-rules, stated in terms of (relativized)
truth, are intended to help explain the four dichotomies in a rough way.
Imagine that we are considering an S-operation that is attached to some
connective, ∆. Here, however, we loosen our account by speaking directly of
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the connective, ∆. The discussion pretends, in effect, that each S-meaning
is expressed by some sentence, A.

We are trying to decide how ∆ relates to some S-parameter, p.

Essentially 0-ary vs. essentially +-ary. Is ∆A always the same S-
meaning regardless of A? If so, ∆ is essentially 0-ary. But if sometimes A
makes a difference to ∆A, then ∆ is essentially +-ary.

Locality vs. Translocality. In calculating whether ∆A is true at an S-
point, v1, you will in general need to look at S-points other than v1. But do
you need to look at any that differ from v1 on the S-parameter, p? If you
never do, ∆ is local in p. If sometimes you do, ∆ is translocal in p.

Closing vs. Leaves open. Is the variation of p, taken by itself, irrelevant
to the truth value of ∆A? In other words, if you hold all other parameters
fixed and vary just p, does this ever make a difference to ∆A? In still other
words, are there two S-points that are the same everywhere else but at p,
and that nevertheless give different truth values to ∆A? If so, then ∆ leaves
p open. If not, ∆ closes p. In other words, ∆ closes p if ∆A is always closed
in p, and ∆ leaves p open if ∆A is sometimes open in p.

Anchored vs. Unanchored. Suppose that you can find a sentence, A, such
that making a particular change in—and only in—p makes no difference to
the pattern of values of A. But suppose that same change nevertheless makes
a difference to the value of ∆A. If so, then ∆ has the special “anchoring”
relationship to p: In order to determine the value of ∆A, you (sometimes)
need to know the very identity of the auxiliary value of p, and not just its
contribution to the pattern of values of A. Otherwise, ∆ is unanchored in p.

Here are the strict pre-semantic definitions of these four ideas.

Definition 5.1. (Essentially 0-ary vs. +-ary). Fix S. ψ is essentially 0-ary
iff ∀I1∀I2∀v[ψI1v = ψI2v]; which is to say, iff ∀I1∀I2[ψI1 = ψI2]. In other
words, and perhaps most usefully, ∃I2∀I1[ψI1 = I2]. ψ is essentially +-ary
iff ψ is not essentially 0-ary.

Unlike the dichotomies to come, the 0-ary vs. +-ary dichotomy does not relate to a

specified set of parameters. For ψ to be essentially 0-ary is for it entirely to ignore its

arguments; that is, an essentially 0-ary S-operation is a constant function, so that for any

S-meaning argument whatsoever, its output is one and the same S-meaning.

Definition 5.2. (Closes vs. leaves open). Fix S. ψ closes P iff ∀I∀v1∀v2[v1
=PS−P v2 → ψIv1 = ψIv2]. So ψ closes p iff ∀I∀v∀z[[z/p]v exists →
ψI([z/p]v) = ψIv]. And ψ leaves P open iff ψ does not close P .
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For an S-operation, ψ, to close a set of S-parameters, P , is for its every output, ψI ,
to be itself closed (or constant) in P .

A paradigm is the S1-meaning, call it ψ, attached to ∃x1. ψ closes the x1 parameter.
Take any sentence, A. Recall that in S1, the truth value of a sentence depends on the
domain, on the interpretation of each predicate letter, and on the value of each variable.
That ψ closes the x1 parameter implies that no matter the S1-meaning, I , attached to A,
the S1-meaning, ψI , which is attached to ∃x1A, will be such that the truth value of ∃x1A

is certain not to depend on the x1 parameter. If ∃x1A is true [or false] at a certain point,
v1, then it will remain true [or false] if the x1 parameter, which is a component of v1, is
varied in any way that you like. In other words, if ψIv1 = T [or = F], then the same holds
if v1 is replaced by any other S1-point that differs from v1 only in respect of the value of
its x1 parameter.

An essentially 0-ary S-operation closes (leaves open) P iff the S-meaning that is its

output is closed (open) in P .

Definition 5.3. (Local vs. translocal). Fix S. ψ is local in P at v1 iff for
every I1 and I2, if ∀v2[v1 =P v2 → I1v2 = I2v2] then ψI1v1 = ψI2v1. ψ is
translocal in P at v1 iff there is a I1 and a I2 such that ∀v2[v1 =P v2 →
I1v2 = I2v2] but nevertheless ψI1v1 6= ψI2v1. That is, iff ψ is not local in
P at v1. We may also say that v1 witnesses the translocality of ψ in p. ψ is
local in P iff ψ is local in P at every v. ψ is translocal in P iff ψ is not local
in P . So ψ is translocal in p iff ∃I1∃I2∃z[∀v[[z/p]v exists → I1([z/p]v) =
I2([z/p]v)] and ∃v[[z/p]v exists and (ψI1)([z/p]v) 6= (ψI1)([z/p]v)]]. Finally,
ψ is (absolutely) local [translocal] iff ψ is local [translocal] in PS .

That is, ψ is local in P at v if it treats two S-meanings the same at v as long as those
S-meanings are the same for S-points that agree with v inside of P . Thus, ψ is translocal
in P at v iff you can find two S-meanings, I1 and I2, that are exactly alike for all S-points
agreeing inside of P with v, but nevertheless ψI1v differs from ψI2v.

Locality of ψ in P appears to have an intricate definition, but the idea is simple: In
calculating the S-value of ψI at v, one needs to look at most at local auxiliary values of
parameters in P . One does not need to look at any auxiliary P -values beyond the ones
that occur as components of v. In contrast, if sometimes one needs to look at auxiliary
P -values other than those occurring as components of v, then ψ is translocal.

Here are some examples from S1 and nearby.

1. Let ψ be attached to any truth functional connective. Then ψ is absolutely local,
hence local in every S1-parameter.

2. Conversely, if any S1-operation, ψ, is absolutely local, then ψ is truth-functional.

3. Switching grammatical categories, identity when added to standard quantification
theory is absolutely local, just like truth functions.

4. Let ψ be attached to the connective, ∃x1.

• ψ is translocal in the x1 parameter. This is an abstract way of noting that
you cannot calculate a truth value for ∃x1A at an S1-point, v1, without
considering the various values of A at S-points, v2, that differ from v1 with
respect to the x1 parameter.
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• But ψ is local in the x2 parameter. That is, as Tarski taught us, whereas
you must vary the auxiliary value of the x1 parameter in order to calculate
a truth value for ∃x1A at v1, at the same time you must not vary the value
of the x2 parameter. You must consider only other S1-points, v2, that are
exactly the same as v1 in their x2 components.

5. One might have supposed that some combinations of closing vs. leaving open and
local vs. translocal were ruled out; but in fact all are possible. In the following
examples, permit us to omit some words by attributing these properties directly
to the connectives themselves (instead of to the S1-operations that the Tarskian
semantics uniquely attaches to the connectives).

• Negation is local in each S1-parameter, and leaves each of them open. Ditto
for ∀x1 in the x2 parameter.

• ∀x1 is translocal in the x1 parameter, and closes it.

• The connective that transforms A into (∀x1A ∨ ∼A) is translocal in the x1

parameter (because of the left disjunct) and also leaves open the x1 parameter
(because of the right disjunct).

• The “excluded middle” connective taking A into (A ∨ ∼A) is local in every
S1-parameter, and also closes them all. (This connective is apparently unary,
but essentially 0-ary.)

The purpose of these four examples is just to bring out that the terrain is too tricky to be
hurried over. See Fact 5.6 and Fact 5.7 below for a more systematic survey. We remark
in addition that if ψ is any one of the S1-operations attached to a standard connective
of first-order logic, then ψ is local in the domain parameter and in each predicate-letter
parameter. And indeed it is precisely this fact that guides the formulation of the Tarski
inductive definition of (relativized) truth, which holds the values of the domain and the
predicate-letter parameters fixed, while allowing the (auxiliary) values of the individual-
variable parameters to vary, by means of the distinctive Tarski concept of “satisfaction.”

Finally, note that every essentially 0-ary S-operation is, vacuously, absolutely local.

Definition 5.4. (Anchored vs. unanchored). Fix S. ψ is anchored in P

iff there is a S-meaning, I, and there are S-points v1 and v2, such that v1
=PS−P v2 and ∀v3∀v4[(v3 =PS−P v4 and v1 =P v3 and v2 =P v4) → Iv3
= Iv4] and ψIv1 6= ψIv2.

10 So ψ is anchored in p iff ∃I∃z1∃z2[∀v[[z1/p]v
exists and [z2/p]v exists → I([z1/p]v) = I([z2/p]v)] and ∃v[[z1/p]v exists and
[z2/p]v exists and (ψI)([z1/p]v) 6= (ψI)([z2/p]v)]. ψ is unanchored in P iff
ψ is not anchored in P : For every S-meaning, I, and for all S-points, v1 and
v2, if v1 =PS−P v2 and ∀v3∀v4[(v3 =PS−P v4 and v1 =P v3 and v2 =P v4) →
Iv3 = Iv4], then ψIv1 = ψIv2. Or contrapositively: For every S-meaning,
I, and for all S-points, v1 and v2, if v1 =PS−P v2 and ψIv1 6= ψIv2, then
∃v3∃v4[(v3 =PS−P v4 and v1 =P v3 and v2 =P v4) and Iv3 6= Iv4].

10 The fundamental intuitions were worked out with Matthew Weiner, who provided
the language of “anchoring,” and with Martin Allen.
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Again the definition is not immediately transparent, but the principle, although less
familiar than e.g. locality, is important. Consider a S-operation, ψ, and a set of S-
parameters, P . The question is, in calculating ψI , can you find a case in which a change
in P does not make a difference to the pattern of values of I (as one varies parameters
outside of P ), but that same change does make a difference to ψI? If so, then ψ is anchored
in P , and otherwise it is unanchored.

Example of anchoring. Consider the S1-operation attached to ∀x1, and consider the
domain parameter. It “should” be that the universal quantifier on x1 is anchored in the
domain. And it is. It is sufficient to find a certain sentence, A, such that (1) its truth
value is independent of the domain, whereas (2) the truth value of ∀x1A depends on the
domain. For example, let A be F1x1. Evidently the truth value of this does not depend
on the domain parameter (once every other parameter is fixed), whereas the truth value of
∀x1F1x1 obviously does depend on the domain parameter (even if every other parameter
is fixed). The input is independent of the domain, the output is dependent on the domain.
So this single example is more than enough to show that the S1-operation attached to the
∀x1 is anchored in the domain parameter.

Example of unanchoring. Consider again the S1 operation attached to ∀x1, but now
consider the F1 parameter. It “should” be that the universal quantifier on x1 is unanchored
in the F1 parameter. The idea is that in passing from A to ∀x1A, you cannot find a pair
of S1-points such that a difference in truth values of the output at those points can be
attributed entirely to a change in the (auxiliary) value of F1, except insofar as that change
contributes to a change in the pattern of values of the input, A.

Perhaps it will help if we reduce to absurdity the claim that the universal quantifier
in x1 is anchored in F1. Assume two S-points, v1 and v2, that are exactly alike outside of
the F1 parameter and that give different values to the output, ∀x1A, say T at v1 and F at
v2. Because of the F at v2, there must (by the semantics of the universal quantifier) be a
point, v4, that is exactly like v2 outside of x1, and that gives A the S1-value F. Now define
v3 as follows: it is just like v4 outside of F1 (hence also just like v4 on x1), and just like
v1 on F1. So v3 is exactly like v1 outside of x1. Hence, since ∀x1A is T at v1, it must (by
the semantics of the universal quantifier) be that A is T at v3. But then v3 and v4 have
the following features: They give different truth values to A, even though they are exactly
alike outside of F1. And this reduces to absurdity the claim of anchoring: Any change in
F1 that (all by itself) makes a difference to the truth values of the output also sometimes
makes a difference (all by itself) to the truth values of the input.

Observe that even when we have put these examples in terms of sentences, it is really
a pre-semantic fact that ∀x1 is anchored in the domain parameter and not in the F1

parameter. It is no mere accident of grammar.
Finally, note that for essentially 0-ary S-operations, being anchored (unanchored)

comes to the same thing as leaving open (closing), which in turn is the same thing as the
output S-meaning being open (closed).

5.2. Possible and impossible combinations of operation properties

There are four dichotomies. For compactness, permit us temporary use of
unmemorable acronyms for the various properties of S-operations in relation
to a set P of S-parameters.

Definition 5.5. (Acronyms for dichotomies). Fix S and P .
0 vs. +: the dichotomy between essentially 0-ary and essentially +-ary.
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C vs. O: the dichotomy between Closing and leaving Open.

T vs. L: the dichotomy between Translocal and Local.

A vs. U: the dichotomy between Anchored and Unanchored.

Then there appear to be sixteen combinations; but only eight are really
possible. We deal first with the types that are possible, and then with those
that are not. We close this section by giving special consideration to a
combination that is possible but odd.

Fact 5.6. (Possible types of S-operations) The following eight types of S-
operations are possible in relation to a given set P of S-parameters: 0CLU,
0OLA, +CLU, +CTU, +OLU, +OLA, +OTU, +OTA.

The most evident collapse occurs for essentially 0-ary S-operations; for
these all that matters is whether the uniquely given output S-meaning is
open or closed in relation to P .

Proof. We give examples in terms of connectives taking a sentence A into
some familiar sentence . . .A. . ., supposing whenever possible a familiar S1-
type semantics for these connectives. (We use {x1} for the set containing
just the x1 parameter.) In several cases phenomena of interest do not seem
to appear in S1; in these cases we appeal in rough terms to grammars and
pre-semantic systems that are as familiar as possible.

0CLU examples. Two paradigms. (1) The 0-ary operation attached to the
0-ary grammatical function that produces the atomic sentence Fx1 from the
empty set of arguments; in the parameter-set P1−{F , x1}. (2) The unary
but essentially 0-ary operation taking any S1-meaning into the constant T
S1-meaning; in the set P1 of all S1-parameters. This operation is attached,
for example, to the unary grammatical function that takes any sentence A
into the excluded middle, (A ∨ ∼A).

0OLA example. Paradigm: The 0-ary operation attached to the 0-ary
grammatical function that produces the atomic sentence, Fx1, from the
empty set of arguments; in the parameter-set {x1}. (This example was
spelled out a bit under the definition, given above in Definition 5.4, of an-
choring.)

+CLU example. This odd combination can be illustrated in identity the-
ory, where it describes the operation attached to the connective that takes a
sentence, A, into the sentence ∀x1∀x2(x1 = x2)&A; in, for example, the set
of parameters {x1}. See Fact 5.9 below for more information on the oddity
involved. (We do not know if one can illustrate this oddity in quantification
theory.)
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+CTU example. Paradigm: The S1-operation attached to universal quan-
tification on x1 (that is, the connective that takes A into ∀x1A); in the set
{x1} of S1-parameters.

+OLU example. Two paradigms. (1) The S1-operation attached to the
negation connective (that is, the connective that takes A into ∼A); in the
set P1 of all S1-parameters. (2) The S1-operation attached to universal
quantification on x1 (that is, the connective that takes A into ∀x1A); in the
set {x2}.

+OLA example. Paradigm: The S1-operation attached to the universal
quantifier; in the parameter-set {the domain parameter}.

Another paradigm can be found attached to the Now: connective intro-
duced by Kamp into context-dependent tense logic. So suppose we have
tense logic with both a time parameter and a time-of-context parameter.
Consider the connective that takes A into Now:A, and the operation that
attaches thereunto. In the time parameter this operation is merely +CTU.
But in the time-of-context parameter, the Now: connective is +OLA, as we
wished to illustrate.

Another example—albeit perhaps not paradigmatic—is also found in S1:
the S1-operation attached to the connective that takes A into A&Fx1 is of
type +OLA in the parameter-set {x1}.

+OTU example. Seemingly odd but found in S1: the S1-operation at-
tached to the connective that takes A into (∀x1A ∨ ∼A); in the set {x1} of
S1-parameters.

+OTA example. Paradigm in tense logic: the operation attached to the
future tense connective (the connective that takes A into Will:A; in the
time parameter). Paradigm in modal logic: the S4 -type operation attached
to the necessity connective (the connective that takes A into �A); in the
world parameter. This type is also found in S1. The S1-operation attached
to the connective that takes A into ∃x1A&Fx1 is of type +OTA in the
parameter-set {x1}.

Next we treat the eight impossible combinations.

Fact 5.7. (Impossible combinations) The following combinations are im-
possible: 0CLA, +CTA, +CLA, 0CTA, 0CTU, 0OTU, 0OTA, 0OLU.

Proof. We show the following sub-combinations to be impossible: CA, 0T,
and 0OU. The combination CA rules out the first four listed above, while
0T rules out the fourth through seventh. And finally, 0OU prohibits the last
of those listed.
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CA is impossible. It is trivial from the form of the definitions that closing
implies unanchored.

0T is impossible. Fix S. Choose ψ and P . Suppose that ψ is essentially 0-
ary, and use this to choose I0 such that ∀I[ψI = I0], and therefore ∀I∀v[ψIv
= I0v]. So for arbitrary v, I1, I2, it must be that ψI1v = ψI2v. So, vacuously,
ψ is local in P .

0OU is impossible. Fix S. We derive a contradiction from the supposal
that ψ (a) is essentially 0-ary, (b) leaves P open, and (c) is unanchored in
P . Choosing witnesses to (b), let (d) v1 =PS−P v2 and (e) ψI1v1 6= ψI1v2.
Choose I2 so that (f) I2 is a constant S-meaning, ∀v1∀v2(I2v1 = I2v2). Then
(g) ψI1 = ψI2 by (a), so that (h) ψI2v1 6= ψI2v2 by (e) and (g). Finally, (d)
and (h) imply, via the “contrapositive” form of (c) given in 5.4, that I2v1 6=
I2v2. This contradicts (f).

There is just one thread hanging. In the proof of Fact 5.6, we illustrated
the possibility of +CLU in identity theory, but the example was peculiar.
Here, to close this discussion, we offer a structural characterization of its
oddness.

Definition 5.8. (Unique confinement). Fix S. An S-point, v1, uniquely
confines a set, P , of S-parameters iff every S-point that agrees with v1
outside of P also agrees with v1 on P : ∀v2[v1 =PS−P v2 → v1 =P v2].

The oddity, if such there be, is that if v1 uniquely confines P , then the variability

that we should expect a set of S-parameters, P , to exhibit, even when we hold fixed the

values of all other S-parameters, is missing when we start with the point v1. The paradigm

example of the unique confinement oddity is this. Almost always the x1-parameter, in S1,

permits real variation no matter from which S-point, v1, one starts. But consider a special

case in which the domain parameter of v1 is fixed at a domain with but a single member.

Then, of course, there is only apparent variability to the x1-parameter. Really, as long as

we consider points v2 that agree with v1 outside of the x1-parameter, and hence points,

v2, that agree with v1 on the domain parameter, we shall obviously find that the x1-value

of v2 is exactly the same as the x1-value of v1.

The following fact establishes that the combination +CL can occur only
in the presence of unique confinement.

Fact 5.9. (The combination +CL—Essentially +-ary, Closing and Local—
implies unique confinement) Given S, the +CL combination of essentially
+-ary with closing and local on P is impossible unless S sometimes permits
unique confinement of P . In other words, if no S-point uniquely confines P
and if ψ is both local in and closes P , then ψ is essentially 0-ary.
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Proof. Fix S. Suppose that (a) no S-point uniquely confines P , and that
(b) ψ is local in P . Further suppose that (c) ψ closes P . We show that (z)
ψ is essentially 0-ary. Choose I1 and I2; we need to show (y) ψI1 = ψI2,
which is to say, for arbitrary v0, that (x) ψI1v0 = ψI2v0.

Define the S-meaning, I3, by giving its value for each S-point, v, by cases
as follows: (d1) if not (v =P v0) then I3v = I1v, and (d2) if v =P v0 then
I3v = I2v. We can obtain (x) immediately by showing that (w1) ψI2v0 =
ψI3v0 and that (w2) ψI1v0 = ψI3v0.

To show (w1) we appeal to locality. By (d2) we have (e) ∀v2[v0 =P v2
→ I2v2 = I3v2]. Then we obtain the desired (w1) from (e) by locality, (b).

The argument for (w2) begins with an appeal to (a) the absence of
unique confinement of P by, in particular, v0: There is a v2 such that (f1) v0
=PS−P v2 but (f2) not v0 =P v2. Choose v, and suppose that (g) v =P v2.
Combining (g) with (f2) gives the falsity of (v =P v0), which with (d1) gives
I1v = I3v under the hypothesis (g). So (h) ψI1v2 = ψI3v2 from locality (b),
in analogy to the argument for (w1). Also (j1) ψI3v2 = ψI3v0 and (j2) ψI1v2
= ψI1v0 by (f1) and the fact (c) that ψ closes P . So by a chain of identities
from (h) and (j1) and (j2), we have (w2) as desired, which completes the
argument.

We close by recording without proof an obvious connection, for essen-
tially 0-ary S-operations, between types of S-meanings as given in Definition
4.1 and types of S-operations as discussed in the present section.

Fact 5.10. (Properties of essentially 0-ary S-operations) Fix S. Suppose
that ψ is an essentially 0-ary S-operation (Definition 5.1), and that its
unique output is the S-meaning, I. Then (1) ψ is absolutely local, i.e., local
in the set of all S-parameters. (2) Whether ψ leaves P open or closes it
depends entirely on whether I is open (dependent on) or closed in (indepen-
dent of) P . (3) Whether ψ is anchored or unanchored in P depends entirely
on whether I is open (dependent on) or closed in (independent of) P .

6. Application to other pre-semantic systems

Suppose we take a modal logic for a language with a necessity connective
and a “it’s true in reality that” connective. For such a logic, let us construct
a very standard pre-semantic system, S2. The S2 parameters are these: set
of worlds, relation of relative possibility, real world, world of evaluation,
proposition letters. When we flatten, it is obvious that truth of a sentence
in many a standard modal logic is relative to each of these parameters. So
the S2-values are still the two truth values.
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Fixing attention on a single S2 point, v, auxiliary values must be as
follows. Of the set-of-worlds parameter at v: any set. Of the relative-
possibility parameter at v: a binary relation on the value of the set-of-worlds
parameter at v. Of the real-world parameter at v: a member of the value
of the set-of-worlds parameter at v. Of the world-of-evaluation parameter
at v: a member of the value of the set-of-worlds parameter at v. Of each
proposition letter parameter, a function from the value of the set-of-worlds
parameter into {T, F}, or, equivalently, a subset of the value of the set-of-
worlds parameter at v.

These standard Kripke-style choices give us the four primitives: S2-pa-
rameters, S2-points, S2-values, and S2-auxiliary values. Then S2-meanings
and S2-operations are defined uniformly from these, the S2-meanings being
functions from S2-points to S2-values, and the S2-operations being mappings
from S2-meanings into S2-meanings. Thus we have specified all six ideas
needed for a pre-semantic system.

Consider the S2-operations, ν and ρ, associated respectively with the
necessity connective and the “it’s true in reality” connective. Imagine that ν
reflects a Kripke “relative possibility” semantics for the necessity connective
and that ρ encodes the usual modal semantics for the “it’s true in reality”
connective. Also let q stand, in context, both for the proposition letter q qua
categorematic expression and qua parameter, and let Iq be the S2-meaning
associated with q qua categorematic expression.

• Iqv = (qv)(world-of-evaluationv).

• (νI)v = T if for all z, if (z ∈ set-of-worldsv and 〈world-of-evaluationv ,
z〉 ∈ relative-possibilityv) then I([z / world-of-evaluation]v) = T; and
otherwise (νI)v = F.

That is, νI is true at v iff I is true at all points just like v, except that
the world of evaluation has been shifted to a member of set-of-worldsv

that is relatively-possiblev at world-of-evaluationv .

• (ρI)v = I([real-worldv / world-of-evaluation]v).

That is, ρI is true at v iff I is true at the point that is just like v,
except that the world of evaluation has been shifted to the real world
of v.

Our notation is evidently difficult to read and write; were we to plan on using
these concepts much, abbreviating definitions would be in order. The only
point we wish to make, however, is that these operations have the following
relations to the various parameters of S2. We use the notation of Definition



26 N. Belnap

5.5. In this table we put the parameters down the side (including parameters
for proposition letters q and r) and the operations across the top, recalling
for the latter that we are using ν for necessity and ρ for reality, and using q
for the 0-ary operation producing the proposition letter q as a categorematic
expression.

ν ρ q

set of worlds +OLA +OLU 0CLU
relative possibility +OLA +OLU 0CLU

real world +OLU +OLA 0CLU
world of evaluation +OTA +CTU 0OLA
proposition letter q +OLU +OLU 0OLA
proposition letter r +OLU +OLU 0CLU

Most of this typing is revelatory, for example, the confusingly different re-
lations of the necessity and the reality operations to the real world and to
the world of evaluation. Observe that with a “natural” S5 semantics, ne-
cessity comes out +CTU in the world of evaluation, instead of +OTA. One
should therefore be slow in making a bald statement such as “in modal logic,
necessity . . . .”

Observe that when a proposition letter is taken as a parameter, its aux-
iliary S2-value at a point is an “intension” (function from worlds into truth
values). Nevertheless, when the same letter is taken as a categorematic
expression (a sentence), its S2-value at that same point is a truth value.
This is just right, and exactly in accord with both common practice and
Carnap’s method of extension and intension. Remark also that if one uses
proposition letters as bound variables in modal contexts, one treats such a
variable in exactly the same way as the constants: Its S2-auxiliary value
at a point is an intension, whereas its S2-value at a point is a truth value.
There is no difference in the underlying semantic treatment of propositional
constants and propositional variables. Carnap’s logical insight, amusingly
but unfortunately spoofed on metaphysical grounds by Quine (in the ap-
pendix to [3]), was to see that the same should be true of “atomic” symbols
of every type. Predicate symbols, whether constant or variable, should be
awarded intensions at points as S2-parameters, and extensions (of the proper
type) at points if taken as categorematic.11 Standard modal logic agrees.

11 [2] took the logical policy of uniformity even further, with results that have, alas,
been almost entirely ignored by the community of modal logicians. Take a higher-order
predicate such as “is contingent.” It is obvious that application of this predicate to a
first-level predicate, F , must take into account the entire “intension” of F , not just its
“extension” at the point of evaluation. In other and clearer words, predication at the
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What looks odd and even wrong-headed, however, from the point of view of
flat pre-semantics, is that standard modal logic treats individual variables
(always) and individual constants (sometimes) differently from proposition
letters and predicate letters. Standard modal logic forces the S2-auxiliary
values at points of individual variables (always) and individual constants
(sometimes) to be simple individuals instead of intensions (so-called indi-
vidual concepts). This is metaphysics, not logic. Flat pre-semantics makes
it plausible to distinguish S2-auxiliary values at points from S2-values at
points. Then one sees the logical wisdom of treating individual symbols in
exactly the same way as proposition letters for predicate letters: intensions
for S2-auxiliary values and individuals (extensions) for S2-values. Absent
metaphysical ideology, it figures: Atomic symbols of every type, whether
constant or variable, and of whatever type, should—if one is guided by
logic—be treated alike.

One last point about modal logic. We observed in the discussion of S1

that identity, like truth functions, is absolutely local (local in every parame-
ter). This is a logical remark, and supports the following: When an identity
is added to a Carnap-Bressan type of modal logic with individual concepts,
it is contingent identity rather than strict identity which is absolutely local,
and which is therefore the proper logical descendant of identity as used in
nonmodal contexts. Only an intrusion from some particular metaphysics
would lead one to think differently.

The more complicated the language, the more complicated the pre-
semantics, and the more helpful concept-sorting can be. Consider the logic
of indeterminism as most simply represented in branching time.12 One has
concrete momentary events called moments that are arranged in a tree, and
one has maximal chains in the tree that are called histories. One never
gets straight on indeterminism unless one becomes aware that truth needs
to be parameterized by both moments and histories. Having become clear
to this extent, it helps enormously to avoid foolish “logical fatalism” ar-
guments if one realizes that all ordinary tense and temporal constructions,
although translocal in the moment parameter, are local in the history pa-
rameter. Therefore they work exactly the same as they do in ordinary linear

higher order should be translocal in the world-of-evaluation parameter. By uniformity,
first order predication should also be translocal, taking into account the S2-value of the
terms to which the predicate is applied when the world-of-evaluation is varied. Bressan
provides significant illumination by putting this uniformity firmly into effect. (Naturally,
having made room for translocal predication in the pre-semantics, one will find that “most”
predicates turn out to be local in the world of evaluation.)

12 See for instance chapter 8 of [1].
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tense logic. This is a simple logical point, but one that seems difficult to
keep in mind. Having a word for it may help.
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