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ABSTRACT.	A	popular	strategy	for	understanding	the	probabilities	that	arise	in	
physics	is	to	interpret	them	via	reductionist	accounts	of	chance—indeed,	it	is	
sometimes	 claimed	 that	 such	 accounts	 are	 uniquely	 well-suited	 to	 make	
sense	of	the	probabilities	in	classical	statistical	mechanics.	Here	it	 is	argued	
that	 reductionist	 accounts	 of	 chance	 carry	 a	 steep	 but	 unappreciated	 cost:	
when	applied	to	physical	theories	of	the	relevant	type,	they	inevitably	distort	
the	relations	of	probability	that	they	take	as	input.		

	

1.	Introduction	

Some	physical	theories	can	be	thought	of	as	having	the	following	form.	First,	the	set	

of	worlds	physically	possible	according	to	the	theory	are	singled	out	(typically,	via	

equations	 whose	 solutions	 represent	 those	 worlds).	 Then,	 a	 probability	 measure	

over	 the	 space	 of	 worlds	 is	 given—call	 this	 the	 theory’s	 statistical	 postulate.	 The	

paradigm	example	of	a	theory	that	can	be	put	in	this	form	is	classical	Boltzmannian	

statistical	mechanics:	 under	 David	 Albert’s	 influential	 regimentation,	 for	 example,	

the	 theory	 is	 given	 by	 specifying	 microphysical	 dynamical	 laws	 and	 a	 postulate	

about	the	thermodynamic	properties	of	the	initial	condition	of	the	universe,	which	

jointly	serve	to	single	out	a	set	of	possible	worlds,	together	with	a	further	postulate	

that	can	be	thought	of	as	giving	a	probability	measure	over	this	set	of	worlds	(see	

[Albert	2000:	ch.	4;	2015:	ch.	1]).		
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The	 statistical	 postulate	 of	 a	 theory	 can	 seem	mysterious.	 How	 should	we	

interpret	the	probabilities	involved?	What	does	it	mean	to	say	that	the	probability	of	

one	world	is	x,	while	the	probability	of	another	is	y?	What	would	it	mean	to	say	that	

one	such	assignment	was	correct	and	another	incorrect?		

Some	will	be	happy	to	think	of	the	probabilities	here	as	ideal	credences.	On	

their	picture,	in	asserting	a	theory	of	this	form,	physicists	first	tell	us	to	believe	that	

the	 actual	 world	 belongs	 to	 a	 certain	 set	 of	 worlds,	 then	 go	 on	 to	 tell	 us	 how	 to	

distribute	our	credence	over	those	worlds.1	

But	many	find	that	sort	of	picture	deeply	unsatisfying.	It	 is	true	that	part	of	

what	you	do	when	you	tell	me	that	Newton’s	laws	of	motion	are	true	is	to	advise	me	

about	 how	 manage	 my	 beliefs—but	 what	 you	 say	 concerns	 the	 structure	 of	 the	

physical	 world,	 not	 something	 about	 which	 beliefs	 are	 rational	 or	 irrational.	 It	

would	be	nice	if	we	could	find	a	way	of	understanding	the	statistical	postulates	that	

arise	 in	 physics	 as	 likewise	 directly	 concerned	 with	 the	 physical	 rather	 than	 the	

rational—as	 directly	 concerned	 not	 with	 credences	 but	 with	 chances	 (of,	 for	

example,	particular	processes	of		creation	or	annihilation	of	particles.2	

In	the	present	setting,	two	obstacles	stand	in	the	way.	(i)	In	the	first	instance,	

the	statistical	postulate	of	a	theory	assigns	probabilities	to	complete	histories	of	the	

																																																								
1	For	approaches	along	these	general	lines,	see,	e.g.,	[Ismael	2013:	95	f.],	[Sebens	and	Carroll	2014],	
and	[Winsberg	2008:		sec.	6].	
2	On	traditional	accounts,	the	content	of	an	assertion	or	of	a	belief	is	a	proposition	(perhaps	a	set	of	
possible	worlds,	perhaps	something	fancier).	Moss	[2015]	makes	a	powerful	case	that	assertions	and	
beliefs	can	have	as	 their	contents	sets	of	probability	measures	over	spaces	of	propositions.	On	this	
picture,	one	can	think	of	the	statistical	postulate	of	a	theory	as	having	a	straightforward	content,	and	
of	the	assertion	of	that	postulate	as	expressing	the	advice	to	bring	one’s	credences	into	line	with	it.	
But	 even	 if	 one	 adopts	 a	 picture	 of	 this	 kind,	 the	 distinction	 between	 credences	 and	 chances	
remains—and	many	will	still	feel	the	drive	to	interpret	statistical	postulates	in	terms	of	chances.	
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world,	rather	than	speaking	about	chances	within	worlds.	(ii)	More	needs	to	be	said	

about	what	we	are	talking	about	when	we	talk	about	chances.		

The	first	obstacle	can	be	overcome	by	noticing	that	assigning	probabilities	to	

possible	worlds	can	be	a	way	of	assigning	chances	to	possible	outcomes	of	processes	

within	a	world.	Consider	simple	worlds	at	which:	time	consists	of	just	ten	instants;	

and	at	each	instant	there	are	only	two	possible	states	that	the	world	can	be	in.	The	

histories	of	such	worlds	can	be	encoded	in	ten-bit	binary	sequences,	which	we	will	

write	using	H’s	and	T’s	rather	 than	1’s	and	0’s.	Suppose	that	we	begin	with	all	210	

such	histories,	and	then	decide	to	assign	equal	probability	to	each	history.	It	follows	

that	we	assign	probability	of	.5	to	the	set	of	worlds	whose	history	begins	with	H	and	

probability	 .5	 to	 the	 set	 of	worlds	whose	history	begins	with	T;	 in	 fact,	we	assign	

probability	 .5	to	the	set	of	worlds	at	which	the	state	at	any	given	instant	is	H	(and	

likewise	for	T);	and	when	we	calculate	the	probability	of	finding	any	given	pattern	of	

H’s	and	T’s	at	any	particular	set	of	instants,	we	get	the	same	answer	whether	or	not	

we	take	into	account	information	about	what	states	occur	at	any	instants	outside	of	

this	set.		

In	 this	 sort	 of	 case,	 it	 seems	natural	 to	 say	 that	 in	moving	 from	 the	 theory	

that	merely	told	us	which	histories	were	possible	to	one	on	which	each	is	stipulated	

to	be	equiprobable,	we	learn	something	about	the	chances	of	the	state	being	H	or	T	

at	each	 instant:	 the	chances	are	even	and	 they	are	 independent	of	any	 facts	about	

the	patterns	of	H’s	and	T’s	that	occur	at	other	instants.	The	state	at	each	instant	is	

determined	by	a	 toss	of	a	 fair	 cosmic	coin.	That,	 surely,	 is	quite	a	different	 theory	

from	what	we	would	have	if	we	had	begun	with	the	same	set	of	histories,	but	then	
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added	a	probability	measure	that	told	us	that	the	state	at	each	time	was	determined	

by	the	toss	of	a	cosmic	coin	whose	bias	in	favour	of	heads	was	.9.	Progress!	

What	 remains:	 explaining	 what	 talk	 about	 chance	 means.	 Some	 will	 think	

that	 our	 spade	 turns	 at	 this	 point—they	 will	 recommend	 taking	 chances	 to	 be	

metaphysically	 brute	 propensities.3	But	 many	 prefer	 one	 or	 another	 reductionist	

account	 of	 chance	 according	 to	 which	 there	 are	 no	 such	 things	 as	 chances,	

fundamentally	speaking:	reality	can	be	given	a	complete	description	in	non-chancy	

terms;	 a	 full	 description	 of	 this	 kind	 licenses	 a	 family	 of	 claims	 about	 the	 chance	

facts	 that	obtain	at	 the	world	 in	question;	but	 just	one	 such	 family—reductionists	

hold	 that	 the	 chancy	 supervenes	on	 the	non-chancy,	with	no	 two	worlds	differing	

about	chances	without	also	differing	in	their	non-chancy	facts.4	

		 The	 simplest,	 most	 direct,	 and	 least	 plausible	 form	 of	 reductionism	 is	

frequentism,	 according	 to	which	 the	 chance	 of	 a	 given	 type	 of	 event	 at	 a	world	 is	

given	by	the	long-run	frequency	of	such	events	at	that	world.	The	most	popular	form	

of	reductionism	is	some	sort	of	best-system	analysis:	in	order	to	determine	the	laws	

and	chances	at	a	world,	one	begins	with	a	complete	description	of	the	world	in	non-

nomic	 and	 non-chancy	 terms,	 then	 looks	 for	 a	 package	 of	 laws	 (probabilistic	 or	

otherwise)	that	achieves	an	optimal	combination	of	strength	(implying	as	much	as	

possible	of	 the	given	description),	 fit	 (making	the	description	as	 likely	as	possible,	

																																																								
3	For	propensity	theories	of	probability,	see,	e.g.,	[Mellor	2005:	ch.	4].	On	the	role	of	propensities	in	
the	interpretation	of	quantum	mechanics,	see,	e.g.,	[Dorato	and	Esfeld	2010]	and	[Suárez	2015].	
4	This	supervenience	thesis	does	not	entail	reductionism—one	could	be	a	realist	about	chance	of	an	
epiphenomenalist	stripe	while	holding	 that	 the	chancy	supervenes	on	 the	non-chancy.	But	because	
there	 is	 little	 to	 recommend	such	a	combination,	 in	what	 follows	 I	will	 speak	of	 the	supervenience	
thesis	in	question	as	being	the	characteristic	thesis	of	reductionism.	
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where	chance	is	relevant),	and	simplicity	(see	[Lewis	1986:	postscript	C;	1994:	sec.	

4]	and	[Loewer	2001;	2004]).	

So	it	looks	like	accepting	some	sort	of	reductionist	account	of	chance	allows	

us	to	tie	things	up	in	a	very	neat	bundle—at	least	when	the	statistical	postulate	that	

we	start	with	can	be	thought	of	as	encoding	facts	about	chance	outcomes	within	the	

relevant	class	of	worlds.5	

The	 pedantic	 may	 worry	 about	 one	 small	 awkwardness	 in	 the	 above	

presentation:	we	start	with	a	theory	that	assigns	probabilities	to	worlds;	we	aim	to	

interpret	 these	probabilities	via	a	 reductionist	 account	of	 chance;	but	 reductionist	

accounts	of	chance	aim	to	make	sense	of	claims	about	chances	at	individual	worlds,	

with	no	mention	of	theories.		

My	goal	here	is	to	show	that	the	pedantic	would	be	right	to	worry	about	this:	

to	 combine	 a	 reductionist	 account	 of	 chance	 with	 a	 theory	 consisting	 of	 a	 set	 of	

worlds	 equipped	 with	 a	 probability	 measure	 serves	 not	 (just)	 to	 interpret	 the	

probabilities	 that	appear	 in	 that	 theory	but	(also)	 to	change	them.	That	 is	a	heavy	

price	to	pay	in	order	to	uphold	reductionism.	

The	problem	we	will	focus	on	is	a	variant	of	what	David	Lewis	[1986:	124	ff.;	

1994:	 sec.	 5]	 called	 undermining.	 Lewis	 thought	 undermining	 a	 merely	 peculiar	

consequence	 of	 his	 reductionist	 account	 of	 chance.	 But	 he	 argued	 that	 it	 led	 to	 a	

disaster	once	one	tried	to	forge	a	link	between	chance	and	rational	credence—and	

this	argument	generated	the	complex	literature	on	Humean	supervenience	and	the	

Principal	Principle	 	(see	[Briggs	2009]	for	a	superb	critical	overview).	Here	I	don’t	
																																																								
5	Loewer	[2001;	2004]	argues	that	this	latter	condition	obtains	in	an	interesting	range	of	cases	that	
includes	classical	Boltzmannian	statistical	mechanics.	



	 6	

aim	to	add	anything	to	that	literature	so	much	as	to	take	some	things	away	from	it:	

my	focus	is	squarely	on	chance	in	isolation	from	credence;	my	goal	 is	to	show	just	

how	 peculiar	 a	 reductionist	 account	 of	 chance	 really	 is	 as	 an	 account	 of	 the	

probabilities	arising	in	physics.		

One	remark	about	dialectic	before	beginning.	At	their	most	careful,	advocates	

of	 best-system	 accounts	 of	 lawhood	 and	 chance	 cheerfully	 acknowledge	 that	 the	

analyses	they	provide	have	unattractive	consequences—but	claim	that	the	package	

they	 offer	 is,	 all	 things	 considered,	 the	 best	 on	 the	 market	 (see	 [Loewer	 2004;	

2012]).	At	 the	 same	 time,	 they	 claim	 that	 the	package	 they	offer	 is	 uniquely	well-

suited	to	make	sense	of	the	nature	of	probabilities	in	physical	theories	like	classical	

statistical	mechanics	(again,	see	[Loewer	2004;	2012]).	The	aim	of	the	present	paper	

is	 to	 detract	 from	 the	 plausibility	 of	 both	 of	 these	 claims,	 by	 adding	 to	 the	 list	 of	

unattractive	 consequences	 of	 best-system	 accounts	 of	 chance	 the	 fact	 that	 they	

distort	 the	 relations	 of	 probability	 that	 occur	 in	 theories	 like	 classical	 statistical	

mechanics.		

	

2.	Toy	Models	

Consider	 some	 toy	 theories.	 In	 each,	 the	 state	of	 the	world	 can	 take	either	of	 two	

values	 each	 day;	 the	 theories	 differ	 only	 as	 to	 how	many	 days	 there	 are.	 In	 one	

theory,	Tω,	 time	has	a	beginning	but	no	end.	For	each	N=1,	2,	3,	…,	we	also	have	a	

theory	TN	in	which	time	lasts	for	exactly	N	days.	In	any	of	these	theories,	the	set	of	

possible	 histories	 is	 faithfully	 modelled	 by	 the	 set	 of	 binary	 sequences	 of	 the	
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appropriate	length	(infinite	for	Tω,	of	length	N	for	TN).	We	will	continue	to	write	our	

binary	sequences	in	terms	of	H	and	T.	

A	 statistical	 postulate	 for	 such	 a	 theory	 is	 a	 measure	 that	 assigns	

probabilities	to	subsets	of	the	set	of	sequences	countenanced	by	the	theory.	We	will	

consider	 only	 some	 special	 cases:	 statistical	 postulates	 that	 tell	 you	 to	 calculate	

probabilities	of	sets	of	binary	sequences	as	if	they	were	generated	by	flipping	a	coin	

with	a	bias	of	p	 in	favour	of	heads,	for	some	number	p	(strictly)	between	zero	and	

one.	We	will	denote	the	result	of	adding	a	measure	of	this	kind	to	one	of	our	theories	

by	𝑇!
!	or	𝑇!

!.	 We	 will	 focus	 almost	 exclusively	 on	 the	 special	 case	 of	 the	 fair	 coin	

measure,	corresponding	to	p=.5.	

Our	question	is:	What	content	do	we	add	in	moving	from	TN	to	𝑇!.!or	from	Tω	

to	𝑇!.! ?	 On	 a	 straight	 reading	 of	 the	 statistical	 postulate	 (available	 to	 non-

reductionists	 about	 chance—or	 to	 anyone	 who	 just	 takes	 the	 postulate	 at	 face	

value),	we	entitle	ourselves	to	say	things	like:	the	probability	that	the	state	on	any	

given	 day	 is	 H	 is	 .5;	 and	 that	 this	 remains	 true,	 even	 if	 we	 conditionalize	 on	

information	 about	 the	 state	 on	 another	 day.	 More	 generally:	 the	 probability	 of	

getting	any	sort	of	pattern	of	H’s	and	T’s	on	any	set	of	days	is	given	in	the	obvious	

way	 by	 the	 fair-coin	 measure—and	 remains	 the	 same	 if	 we	 conditionalize	 on	

information	about	what	happens	on	some	other	set	of	days.		

So	 far	 so	 good.	 But	 what	 happens	 if	 we	 rely	 on	 a	 reductionist	 account	 of	

chance	in	explaining	what	all	of	this	means?	Below	we	will	consider	the	finite	case	

first,	 then	 the	 infinite	 case—in	 each	 case	 first	 seeing	 how	 things	 go	 wrong	 for	

frequentists,	 and	 then	 showing	 that	 the	 same	 sort	 of	 problem	 afflicts	 all	 forms	 of	
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reductionism	 in	 virtue	 of	 their	 adherence	 to	 the	 principle	 that	 the	 chancy	 should	

supervene	on	 the	non-chancy.6	Throughout,	 I	will	assume	that	on	any	reductionist	

reading	of	𝑇!.!	or	𝑇!.!,	the	chance	of	the	state	being	H	on	any	given	day	is	.5	(since	to	

deny	this	would	be	to	allow	that	 the	reductionist	account	deforms	the	relations	of	

probability	that	it	takes	as	input).	

Before	beginning,	it	is	worth	emphasizing	that	the	problems	we	come	across	

below	 can	 be	 expected	 to	 arise	 whenever	 a	 statistical	 postulate	 is	 read	 through	

reductionist	 lenses.	Despite	 their	 simplicity,	 our	 toy	 theories	are	not	worlds	apart	

from	more	complex	theories	like	statistical	mechanics.	Indeed,	it	is	not	hard	to	come	

up	with	 problems	 involving	 boxes	 of	 gas	 that	 reduce	 to	 problems	 involving	𝑇!
!	or	

𝑇!
!.7	

	

3.	The	Finite	Case:	Frequentism	

According	to	frequentism,	to	say	that	a	coin	is	fair	is	to	say	that	over	the	course	of	

history	heads	and	tails	come	up	equally	often	(and	more	generally,	that	the	chance	

of	a	type	of	outcome	is	p	if,	over	the	course	of	history,	outcomes	of	that	type	occur	at	

rate	p).8	

																																																								
6	So	if	the	argument	is	successful,	it	shows	in	particular	that	best-systems	approaches	fare	no	better	
than	frequentist	approaches	with	respect	to	the	problems	under	discussion—but	it	leaves	untouched	
any	account	that	doesn’t	imply	the	characteristic	reductionist	supervenience	thesis.	
7	Begin	with	a	box	containing	an	odd	number	of	gas	molecules	 in	 thermal	equilibrium.	At	midnight	
each	 day,	 divide	 it	 into	 two	 labelled	 compartments	 of	 equal	 volume.	 Record	 an	 H	 if	 the	 first	
compartment	 contains	 more	 molecules	 than	 the	 second	 compartment,	 otherwise	 record	 a	 T.	 The	
chance	of	H	each	day	is	.5.	
8	The	considerations	raised	in	this	section	are	versions	of	traditional	objections	to	frequentism—see,	
e.g.,	 the	 compendium	 [Hájek	 1997].	 The	 main	 point	 of	 the	 present	 paper	 is	 to	 develop	 a	 theme	
broached	 (but	 left	 largely	 undeveloped)	 by	 Hájek—namely	 that	 more	 sophisticated	 forms	 of	
reductionism	share	some	of	the	more	shocking	shortcomings	of	frequentism.	
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Under	a	straight	reading,	𝑇!.!	says	that	the	chance	of	the	state	being	H	on	any	

given	day	is	.5.	And	the	same	will	be	true	on	a	frequentist	reading	of	the	theory.	

But	of	course	𝑇!.!	says	much	more	than	that:	it	also	says	that	each	N-bit	string	

corresponds	 to	 a	possible	history	 and	 that	 each	of	 these	histories	 is	 equiprobable	

and	 that	 the	 chance	 of	 the	 state	 being	H	on	 any	 given	day	 remains	 .5	 even	 if	 you	

conditionalize	 on	 information	 about	 the	 states	 on	 other	 days.	 And	 none	 of	 these	

things	are	true	on	a	frequentist	reading	of	the	theory.		

The	problem	is	that	frequentism	on	its	own	already	tells	us	what	the	chance	

of	H	 is	at	each	world	of	TN.	 In	particular,	 frequentism	tells	us	 that	 the	chance	of	H	

each	day	is	.5	at	those	worlds	at	which	H	and	T	occur	equally	often	over	the	course	

of	history—call	those	the	fifty-fifty	worlds.	And	frequentism	says	that	the	chance	of	

H	each	day	is	not	.5	at	worlds	that	are	not	fifty-fifty.	

We	 are	 assuming	 that	 whatever	 else	 it	 says,	 our	 frequentist	 reading	 of	𝑇!.!	

says	that	the	chance	of	H	on	any	given	day	is	 .5.	And	under	frequentism,	that	rules	

out	non-fifty-fifty	sequences:	the	statistical	postulate	says	that	the	chance	of	H	each	

day	is	even;	and	under	a	frequentist	reading,	this	is	true	at	some	of	the	worlds	of	TN		

and	false	at	others.	So	under	frequentism,	the	move	from	TN	to	𝑇!.!	is	a	move	from	a	

theory	that	countenances	worlds	corresponding	to	all	binary	strings	of	length	N	to	a	

theory	 that	 countenances	 just	 the	 fifty-fifty	 sequences.	 In	 a	 sense,	 this	 is	 good—

under	 frequentism,	 imposing	 a	 statistical	 postulate	 on	 a	 theory	 like	 TN	 has	

propositional	 content	 of	 the	 most	 straightforward	 sort	 (to	 assert	 the	 statistical	

postulate	is	to	eliminate	some	worlds	as	candidates	to	be	the	actual	world).		



	 10	

But	contracting	the	space	of	worlds	 in	this	way	inevitably	distorts	relations	

of	probability.	Consider	the	case	N=10.	Under	a	straight	reading	of	𝑇!".! ,	there	are	one	

thousand	and	twenty-four	equiprobable	histories;	and	the	chance	of	H	on	Day	Six	is	

.5,	 no	 matter	 what	 the	 states	 on	 Days	 One	 through	 Five.	 Under	 the	 frequentist	

interpretation	 of	 this	 theory,	 there	 are	 only	 two	 hundred	 and	 fifty-two	 possible	

histories:	 more	 than	 three	 quarters	 of	 the	 histories	 in	 T10	 are	 excluded	 as	 being	

inconsistent	with	the	frequentist	understanding	of	claim	that	the	chance	of	H	is	even	

each	day.9	As	a	consequence	of	this	contraction	of	the	space	of	histories,	events	that	

are	 considered	 probabilistically	 independent	 on	 a	 straight	 reading	 of	 the	 theory	

come	 out	 as	 dependent	 on	 the	 frequentist	 reading—for	 example,	 according	 to	 a	

frequentist,	 the	 chance	of	 the	 state	 being	H	on	Day	 Six	 is	 zero,	 conditional	 on	 the	

state	having	been	H	on	all	preceding	days.		

These	 effects	 are	 generic.	 For	 any	 0<p<1	 and	 any	 value	 of	N,	 a	 frequentist	

reading	of	𝑇!
!	involves	contracting	TN	to	the	smaller	set	of	sequences	in	which	H	has	

frequency	p	 (with	 the	 proportion	 of	 histories	 excluded	 tending	 towards	 one	 as	N	

grows).	 This	 means	 excluding	 as	 impossible	 some	 histories	 that	 have	 positive	

probability	 under	 the	 straight	 reading	 of	 𝑇!
! 	and	 considering	 events	 to	 be	

probabilistically	 dependent	 that	 are	 probabilistically	 independent	 under	 the	

straight	reading	of	𝑇!
!.		

	

	

	
																																																								
9	Note	that	under	a	straight	reading	of	this	claim,	each	excluded	history	has	the	same	probability	as	
each	history	kept	by	the	frequentist.	
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4.	The	Finite	Case:	Reductionism	

The	foregoing	is	 just	a	special	case	of	the	phenomenon	of	undermining	that	drives	

the	 literature	 on	 the	Principal	 Principle:	 postulate	 some	 chance	 laws;	 generate	 all	

the	worlds	permitted	by	those	laws;	for	each	world	generated,	run	it	through	your	

favourite	reductionist	account	of	chance	to	see	what	the	chances	are	in	that	world;	

in	 general	 you	will	 find	 that	 your	 account	 of	 chance	 tells	 you	 that	 at	many	 of	 the	

worlds	 generated	 by	 your	 initial	 postulate,	 the	 chance	 laws	 are	 inconsistent	with	

that	postulate.		

Consider	 any	 account	 of	 chance	 that	 embodies	 the	 characteristic	 thesis	 of	

reductionism	 about	 chance,	 according	 to	 which	 at	 any	 world	 the	 chancy	 facts	

supervene	 on	 the	 non-chancy	 facts.10	Let	 us	 call	 a	 world	 falling	 under	 TN	 fair	 if	

according	 to	 this	 reductionist	 account,	 the	 chance	 of	 H	 at	 each	 instant	 is	 .5.11	We	

continue	to	suppose	that	on	a	reductionist	interpretation	of	𝑇!.!,	the	chance	of	H	each	

day	 is	 .5—so	 for	 our	 reductionist	 account,	 moving	 from	TN	 to	𝑇!.!		 entails	moving	

from	 the	 full	 set	 of	worlds	 in	TN	 to	 the	 subset	 that	 count	 as	 fair	 according	 to	 this	

account.		

Consider	 again	 the	 case	 N=10.	 There	 are	 one	 thousand	 and	 twenty-four	

histories	 represented	 by	 the	 sequences	 in	 T10.	 It	 is	 constitutive	 of	 reductionism	

about	chance	that	each	of	them	corresponds	to	at	most	one	bias	p	in	favour	of	heads	

of	 that	 a	 cosmic	 coin	might	 have.	 Now,	 either	 every	 ten-bit	 sequence	 is	 taken	 to	
																																																								
10	It	 is	 this	 supervenience	 thesis	 that	 causes	 all	 of	 the	 trouble	 here	 and	below—so	dispositionalist	
accounts	of	chance	and	the	like	are	not	subject	to	the	problem	developed	here.	
11 	In	 general,	 being	 fifty-fifty	 is	 neither	 necessary	 nor	 sufficient	 for	 being	 fair:	 plausibly,	 for	
sufficiently	 large	 N	 best-system	 accounts	 will	 count	 some	 non-fifty-fifty	 sequences	 as	 fair	 (e.g.,	
random-looking	 sequences	 in	 which	 the	 relative	 frequency	 of	 heads	 is	 some	 messy	 number	 very	
close	to	 .5)	and	some	fifty-fifty	sequences	as	unfair	(since,	e.g.,	 the	alternating	sequence	HTHT…HT	
may	be	judged	to	describe	a	world	at	which	there	are	no	chance	facts).	
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encode	a	history	in	which	the	cosmic	coin	is	fair,	or	some	are	taken	to	correspond	to	

situations	 in	which	 the	 coin	 is	 unfair.	 In	 the	 former	 case,	 it	 becomes	 a	 necessary	

truth	that	a	cosmic	coin	that	will	be	tossed	exactly	ten	times	has	an	even	chance	of	

coming	up	heads	on	each	toss—and	I	take	it	that	no	plausible	form	of	reductionism	

can	 be	 committed	 to	 that.	 So	 on	 any	 plausible	 form	 of	 reductionism,	 some	 of	 the	

histories	 in	T10	 are	unfair	and	must	be	excluded	when	considering	𝑇!".! .This	means	

counting	 some	 histories	 as	 impossible	 which	 have	 positive	 probability	 under	 a	

straight	 reading	 of	 the	 theory.12	And	 that	 means	 considering	 some	 events	 to	 be	

probabilistically	 dependent	 that	 are	 independent	 on	 a	 straight	 reading	 of	 the	

theory.13	 	

And	of	course	something	similar	holds	for	other	values	of	N	and	other	(non-

extreme)	values	of	p.	Viewed	through	the	lenses	of	a	reductionist	theory	of	chance,	a	

statistical	 postulate	 for	TN	 is	 going	 to	 rule	 out	 some	 of	 the	 histories	 that	 that	 get	

positive	probability	on	a	straight	reading	of	the	theory—and	will	therefore	have	to	

distort	relations	of	conditional	probability	relative	to	a	straight	reading.		

(But	wait!	Under	best-system	analysis	of	 laws	without	chance	a	phrase	 like	

‘the	set	of	Newtonian	worlds’	is	ambiguous	between	the	set	of	worlds	at	which	f=ma	

																																																								
12	One	might	hope	to	minimize	this	problem	by	adopting	a	reductionist	account	of	chance	upon	which	
only	relatively	few	of	the	worlds	of	T10	count	as	unfair.	This	is	not	a	good	idea:	since	on	reductionist	
accounts,	each	N-bit	history	falls	under	the	statistical	postulate	of	𝑇!

!	for	at	most	one	p,	one	makes	a	
reductionist	account	 look	good	by	bulking	up	the	number	of	worlds	 it	considers	 fair	at	 the	price	of	
making	it	look	even	sillier	than	frequentism	when	it	comes	to	its	reading	of	𝑇!

!	for	some	values	of	p≠	
.5.	
13	Presumably,	 no	 plausible	 reductionist	 account	 will	 count	 the	 all-H	 sequence	 as	 fair—so	 on	 any	
such	account	there	will	be	some	number	k=0,	1,	2,…,	9	such	that	if	the	state	is	H	on	the	first	k	days,	
there	is	zero	chance	that	it	will	be	H	on	the	next	day—even	though	this	event	has	probability	.5	on	a	
straight	reading	of	𝑇!.!.	
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and	its	 ilk	are	true	and	the	set	of	worlds	at	which	they	are	laws.14	One	might	hope	

that	in	our	present	setting	the	phase	‘the	set	of	fair	coin	worlds’	might	be	similarly	

ambiguous—and	 that	 this	 ambiguity	might	 open	 up	 a	 route	 around	 the	 difficulty	

identified	above.	But	 there	 is	 a	big	difference	between	 the	best	 system	account	of	

laws	and	the	best	system	account	of	chances—a	difference	that	renders	it	doubtful	

that	 such	 a	 route	 exists.	 A	 fully	 fleshed-out	 best-system	 account	 of	 (non-chancy)	

laws	 is	a	machine	 that	determines	which	of	 the	regularities	 that	obtain	at	a	world	

deserve	the	mantle	of	 lawhood.	Best-system	accounts	of	chance	cannot	proceed	 in	

the	 same	 way:	 on	 reductionist	 accounts	 there	 are	 no	 ground-level	 truths	 about	

chance,	 so	 determining	what	 the	 laws	 of	 chance	 are	 at	 a	world	 is	 not	 a	matter	 of	

simply	promoting	some	chance-truths	to	chance-laws;	rather,	best-system	accounts	

proceed	 by	 providing	 content	 to	 claims	 about	 chance	 at	 the	 same	 time	 as	

determining	which	hold	by	law	(on	this	point,	see	[Lewis	1994:	sec.	4]	and	[Loewer	

2004:	 1119,	 1123]).	 So	 whereas	 in	 the	 non-chancy	 case	 there	 is	 a	 canonical	

procedure	for	weakening	laws—the	proposition	that	regularity	R	holds	by	law	is	of	

the	 form	⊡ 𝑅	and	stripping	the	box	off	of	such	a	proposition	 is	a	canonical	way	of	

weakening	it—it	is	far	from	obvious	that	there	is	any	such	procedure	in	the	chance	

case.)	

	

	

	

																																																								
14	Example:	a	world	containing	a	single	particle	moving	inertially	is	a	world	at	which	f=ma	and	its	ilk	
are	 true,	 but	 at	 which	 they	 are	 not	 laws	 (because	 there	 are	 yet	 simpler	 regularities	 that	 tell	 you	
everything	that	there	is	to	know	about	this	world).	
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5.	The	Infinite	Case:	Frequentism	

It	is	bad	enough	if	the	worries	developed	above	are	decisive	in	the	finite	case:	much	

of	 our	 evidence	 about	 the	 behaviour	 of	 complicated	 systems	 in	 statistical	 physics	

and	elsewhere	derives	ultimately	from	computer	simulations,	which	can	be	thought	

of	as	investigating	probability	measures	over	finite	spaces	of	possible	histories.		

Let	 us	 consider	 now	 the	 infinite	 case.	 What	 happens	 when	 we	 view	𝑇!.!	

through	frequentist	 lenses?	Much	as	 in	the	finite	case,	the	move	from	Tω	to	𝑇!.!	has	

the	effect	of	cutting	down	the	set	of	sequences	modelling	worlds	from	the	complete	

set	of	infinite	binary	sequences	to	the	much	smaller	set	of	fifty-fifty	sequences.	But	

there	 is	 a	 disanalogy:	 the	 fair	 coin	measure	 assigns	 probability	 one	 to	 the	 set	 of	

infinite	 fifty-fifty	binary	sequences—so	 in	making	 this	shift	we	have	not	 flagrantly	

thrown	away	a	chunk	of	probability	as	we	did	in	the	finite	case.15	

But	things	still	go	weird.	Suppose	that	I	ask	you	what	you	think	the	chance	is	

that	 the	 state	 will	 be	 T	 on	 virtually	 every	 odd-numbered	 day	 (that	 is,	 what	 the	

chance	is	that	the	limiting	relative	frequency	of	T’s	on	odd-numbered	days	is	one).	If	

you	 think	 that	 the	histories	are	being	generated	by	a	 fair	 coin,	 then	you	would	be	

wise	 to	 say	 that	 you	 think	 that	 the	 chance	 is	 zero	 (whether	 or	 not	 you	 are	 a	

frequentist).	But	suppose	that	I	now	reveal	that	the	state	will	be	a	H	on	each	even-

numbered	 day.	 If	 you	 are	 a	 normal	 person	 convinced	 that	 the	 histories	 are	 being	

generated	 by	 a	 fair	 coin,	 then	 you	will	 be	 (very!)	 surprised—but	will	 not	 change	

your	odds	regarding	what	will	happen	on	the	odd-numbered	days.	But	if	you	are	a	

frequentist	convinced	that	the	histories	are	being	generated	by	a	fair	coin,	then	you	
																																																								
15	There	remains	a	measure-independent	sense	in	which	typical	sequences	have	been	excluded—see	
[Oxtoby	1980:	99].	
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will	 think	 that	 the	 chance	 is	 one	 that	 the	 state	 will	 be	 T	 on	 virtually	 every	 odd-

numbered	day—since	that	is	the	only	pattern	of	H’s	and	T’s	on	such	days	consistent	

with	the	frequentist	understanding	of	the	supposition	that	the	coin	is	fair.	

So	we	again	 find	 that	 a	 frequentist	 reading	of	 the	 supposition	 that	 chances	

are	given	by	the	fair	coin	measure	rules	out	many	histories	that	count	as	possible	on	

a	straight	reading	of	that	supposition;	and,	as	a	result,	that	certain	events	that	would	

be	 independent	 on	 a	 straight	 reading	 fail	 to	 be	 independent	 on	 the	 frequentist	

reading.	Here,	as	in	the	finite	case,	frequentism	distorts	the	meaning	of	the	statistical	

postulate.		

(The	 above	 argument	 involves	 conditionalizing	 on	 an	 event	 of	 zero	

probability—something	 that	 is	 mathematically	 out	 of	 bounds	 on	 the	 standard	

formalization	of	probability.	But	there	are	many	cases	 in	which	one	knows	how	to	

perform	 this	 illicit	 operation.16 	So	 I	 claim	 that	 there	 is	 good	 reason	 to	 take	

arguments	of	this	kind	as	having,	at	the	very	least,	substantial	heuristic	force.17)	

	

6.	The	Infinite	Case:	Reductionism	

Consider	 a	 reductionist	 account	 of	 chance.	 Let	 us	 again	 call	 a	 sequence	 fair	 if	 our	

account	judges	that	relative	to	this	sequence,	the	chance	of	an	H	each	day	is	.5.		

Let	σ=(x1,x2,	x3,	…)	 be	 a	 fifty-fifty	 sequence	 that	 our	 account	 considers	 fair.	

Let	us	divide	the	natural	numbers	 into	two	camps:	 let	A:={k	 :	xk=H}	and	let	B:={k	 :	

xk=T}.	 Consider	 the	 set	 of	 S	 of	 sequences	 such	 that:	 (i)	 the	 reductionist	 account	

																																																								
16	Example:	if	a	spinner	is	fair,	then	the	chance	of	the	second	spin	yielding	a	result	in	the	half	of	the	
wheel	 painted	 red	 is	 .5—and	 remains	 so	 even	 if	we	 are	 told	 the	 precise	 outcome	 of	 the	 first	 spin	
(although	that	outcome,	whatever	it	is,	is	an	event	of	chance	zero).	
17	I	have	nothing	to	add	to	the	powerful	case	made	by	Hájek	[2003].	
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under	consideration	considers	them	fair;	and	(ii)	they	agree	with	σ	in	having	H’s	in	

each	A-slot	(in	slots	indexed	by	numbers	in	A).	

Suppose	that	I	tell	you	that	a	sequence	falling	under	𝑇!.!	has	H’s	in	each	of	its	

A-slots.	 And	 then	 I	 ask	 you	 what	 the	 chance	 is	 that	 it	 is	 fair.	 If	 you	 employ	 the	

reductionist	 account	 of	 chance	 under	 consideration	 to	 interpret	𝑇!.!,	 then	 you	 of	

course	 think	 that	 this	 event	 has	 chance	 one	 (since	 by	 your	 lights,	 the	 statistical	

postulate	of	𝑇!.!	tells	you	that	all	sequences	permitted	by	the	theory	are	fair).	

So	we	will	end	up	in	the	same	sort	of	problem	we	ran	into	in	the	preceding	

section—unless,	that	is,	it	turns	out	that	if	we	calculate	probabilities	naively	via	the	

fair	coin	measure	we	also	find	out	that	a	sequence	with	H’s	in	each	of	its	A	slots	has	

probability	one	of	being	fair.	What	would	our	reductionist	theory	of	chance	have	to	

be	like	in	order	for	that	to	be	true?	Take	all	the	sequences	in	S	and	cross	out	the	H’s	

that	 appear	 in	 their	A	 slots.	This	gives	us	a	new	set	of	 sequences	S*.	What	 sort	of	

sequences	 are	 in	 S*	 depends	 on	 what	 the	 reductionist	 account	 of	 chance	 we	 are	

working	with	looks	like.	Our	question	is:	What	would	this	account	have	to	look	like	

in	order	for	S*	to	have	probability	one	according	to	the	fair	coin	measure?	Well—in	

order	for	any	set	to	have	positive	probability	according	to	the	fair	coin	measure,	it	

has	 to	 contain	 some	 fifty-fifty	 sequences	 (since	 the	 fair	 coin	 measure	 assigns	

probability	zero	to	the	set	of	non-fifty-fifty	sequences).	It	follows	that	the	only	way	

that	 a	 reductionist	 account	 of	 chance	 can	 avoid	 counting	 certain	 events	 as	

probabilistically	dependent	that	the	fair	coin	measure	counts	as	independent	is	if	it	

counts	some	infinite	sequences	as	fair	in	which	the	relative	frequency	of	H’s	is	.75.	I	
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am	not	ashamed	to	stipulate	that	no	plausible	reductionist	account	of	chance	can	do	

that.18	

	

7.	Conclusion	

In	a	recent	discussion	of	the	foundations	of	statistical	mechanics,	David	Albert	 lets	

God	 do	 the	 talking.	 The	 setting:	 you	 have	 asked	 for	 a	 very	 brief	 but	 highly	

illuminating	description	of	the	universe—so	that	what	you	can	expect	to	hear	from	

God	 is	 a	 list	 of	 the	 best-system	 laws	 of	 our	 universe.	 God	 first	 sketches	 the	

Newtonian	 microphysical	 laws,	 then	 something	 like	 the	 statistical	 postulate	 of	

Boltzmannian	statistical	mechanics.		

The	 best	 I	 can	 do	 by	 way	 of	 a	 simple	 and	 informative	 description	 of	 [the	

initial]	condition	is	to	tell	you	that	 it	was	one	of	those	which	is	typical	with	

respect	to	a	certain	particular	probability	distribution—the	Boltzmann–Gibbs	

distribution	 ….	 The	 best	 I	 can	 do	 by	 way	 of	 a	 simple	 and	 informative	

description	of	that	initial	condition	is	to	tell	you	that	it	was	precisely	the	sort	

of	 condition	 that	you	would	expect,	 that	 it	 is	precisely	 the	sort	of	 condition	

that	 you	would	 have	 been	 rational	 to	 bet	on,	 if	 the	 initial	 condition	 of	 the	

world	had	in	fact	been	selected	by	means	of	a	genuinely	dynamically	chancy	

procedure	where	 the	probability	of	 this	or	 that	particular	condition’s	being	

																																																								
18	Again,	it	is	the	supervenience	thesis	characteristic	of	reductionism	about	chance	that	is	causing	the	
trouble.	On	non-reductionist	accounts	of	chance,	it	is	possible	for	a	fair	cosmic	coin	to	generate	any	
sequence	of	H’s	and	T’s.	The	only	way	that	a	reductionist	account	can	achieve	the	same	thing	 is	by	
maintaining	that	all	worlds	in	Tω		are	fair—thus	making	it	a	necessary	truth	that	a	cosmic	coin	tossed	
an	infinite	number	of	times	must	be	unbiased.	
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selected	 is	 precisely	 the	 one	 given	 in	 the	 probability	 distribution	 of	

Boltzmann	and	Gibbs.	[Albert	2015:	25	f.]		

This	 dictum	 is	 only	 something	 like	 the	 usual	 statistical	 postulate	 of	 Boltzmannian	

statistical	 mechanics.	 For	 one	 thing,	 whereas	 the	 usual	 postulate	 tells	 you	 to	

calculate	chances	via	the	Boltzmann–Gibbs	distribution,	the	version	at	hand	says	to	

do	that	and	to	understand	chances	in	terms	of	a	best-system	account.	19	And	like	any	

reductionist	 account	of	 chance,	 a	best-system	account	will	deform	 the	 relations	of	

probability	that	are	fed	into	it—for	instance,	some	events	that	are	probabilistically	

independent	 according	 to	 the	 Boltzmann–Gibbs	 measure	 will	 be	 come	 out	 as	

dependent	on	a	best-system	reading	of	the	statistical	postulate.	

The	 role	 that	 the	 notion	 of	 typicality	 plays	 in	 the	 passage	 quoted	 above	 is	

perhaps	a	tipoff	that	Albert	has	more	in	mind	than	imposing	a	certain	measure	on	a	

certain	state	space.	Consider	T100	equipped	with	the	fair	coin	measure.	On	its	own,	

this	measure	doesn’t	sort	histories	into	the	typical	and	the	atypical.	Each	history	is	

assigned	the	same	probability,	and	each	belongs	to	some	sets	of	large	measure	and	

to	 some	 sets	 of	 small	 measure.	 More	 than	 ninety	 percent	 of	 one-hundred-bit	

sequences	 have	 between	 forty	 and	 sixty	 H’s.	 More	 than	 ninety	 percent	 of	 one-

hundred-bit	 sequences	 are	 not	 fifty-fifty.	 Is	 a	 nice,	 random-looking	 fifty-fifty	

sequence	typical	or	atypical	according	to	𝑇!"".! ?		

Reductionist	 theories	of	 chance	can	be	 thought	of	as	solving	 this	 ‘problem’:	

each	 of	 them	 can	 be	 thought	 of	 as	 embodying	 a	 substantive	 view	 about	 which	

																																																								
19	For	 another,	 although	 Albert	 himself	 considers	 the	 fact	 that	 the	 initial	 state	 condition	 of	 the	
universe	had	low	entropy	to	be	a	best-system	law,	his	God	never	gets	around	to	mentioning	said	fact.	
Perhaps	He	simply	runs	out	of	time—His	prolix	style	is	not	exactly	ideally	suited	to	the	task	at	hand.	
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histories	 are	 typical	 according	 to	 a	 probability	measure	 on	 a	 state	 space—and	 as	

decreeing	that	the	histories	that	it	considers	atypical	are	not	merely	improbable	but	

impossible	(relative	to	a	given	statistical	postulate).	This	is	easily	seen	in	the	case	of	

frequentist	accounts:	in	the	case	of	T100,	for	instance,	adding	the	fair	coin	measure	as	

a	 statistical	postulate	understood	in	frequentist	 terms	means	discarding	more	 than	

ninety	 percent	 of	 the	 sequences	 falling	 under	T100—and	 so	 it	 is	 unsurprising	 that	

there	are	many	respects	in	which	the	resulting	theory	departs	in	its	judgements	of	

probability	 and	 conditional	 probability	 from	 those	 that	 arise	 under	 a	 straight	

reading	of	the	dictates	of	the	fair	coin	measure.		

The	 burden	 of	 this	 paper	 has	 been	 to	 argue	 that	 subtler	 forms	 of	

reductionism	 face	 the	 same	 sort	 of	 problem.	 Setting	 aside	 degenerate	 cases:	 on	 a	

reductionist	 account	 of	 chance,	when	 a	 statistical	 postulate	 is	 imposed	 on	 a	 state	

space,	 some	 histories	 antecedently	 considered	 possible	 are	 ruled	 out	 as	 being	

inconsistent	with	the	statistical	postulate.	The	surviving	histories	will	all	share	some	

feature	 that	 from	 the	 perspective	 of	 the	 probability	 measure	 involved	 in	 the	

statistical	postulate	 is	no	more	or	 less	 important	 than	any	other	 feature	we	could	

have	latched	on	to	in	constructing	a	reductionist	theory	of	chance.	Within	the	newly	

contracted	space	of	possibilities,	relations	of	probability	will	differ	from	those	that	

arise	on	a	straight	reading	of	the	statistical	postulate,	available	on	any	non-reductive	

reading.	

Perhaps	settling	for	this	is	the	best	we	can	do.	But	perhaps	we	should	instead	

revisit	 non-reductive	 accounts	 of	 chance	 and	 accounts	 on	 which	 physics	 directly	

legislates	credences—or	follow	Maudlin	[2007]	in	exploring	accounts	of	the	role	of	
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probabilities	 in	 statistical	 physics	 that	 do	 not	 involve	 statistical	 postulates	 of	 the	

sort	we	have	been	concerned	with	here.	
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