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Abstract

Batterman has recently argued that fundamental theories are typically
explanatorily inadequate, in that there exist physical phenomena whose ex-
planation requires that the conceptual apparatus of a fundamental theory
be supplemented by that of a less fundamental theory. This paper is an
extended critical commentary on that argument: situating its importance,
describing its structure, and developing a line of objection to it. The ob-
jection is that in the examples Batterman considers, the mathematics of
the less fundamental theory is definable in terms of the mathematics of
the fundamental theory and that only the latter need be given a physical
interpretation—so we can view the desired explanation as drawing only
upon resources internal to the more fundamental physical theory. (The
paper also includes an appendix surveying some recent results on quantum
chaos.)

1. Introduction

Batterman’s remarkably insightful recent book, The Devil in the Details: As-
ymptotic Reasoning in Explanation, Reduction, and Emergence, develops a num-
ber of salutary themes—among them, the importance of stability results in the
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explanation of physical phenomena and the fruitfulness of simultaneous engage-
ment with issues in general philosophy of science and with details of a variety
of physical theories.!

But the most provocative theme of the book is that fundamental physi-

cal theories can be expected to be explanatorily inadequate—that there exist
phenomena that can be understood only when the conceptual apparatus of a
fundamental theory is supplemented by concepts whose natural home is in a
less fundamental theory. Batterman’s route to this claim begins with a discus-
sion of the classical philosophical accounts of explanation and reduction, leads
through considerations surrounding the asymptotic analysis of the differential
equations of optics and quantum mechanics, and ends with an argument that
attention to such considerations should transform our view of the role of less-
than-fundamental theories in our knowledge of the world.

This paper follows a similar trajectory. By way of providing a backdrop
for the Batterman’s project, I begin in §2 with a discussion of explanation and
reduction. I then consider, in §§3 and 4, the examples from optics and mechanics
upon which Batterman bases his case. Finally, in §5, I turn to Batterman’s
argument for his thesis that fundamental theories are typically explanatorily
inadequate, and suggest a line of objection to this argument.

Perhaps it will be helpful if I provide a preliminary indication here of this line
of objection. Batterman holds it to be a shortcoming of the older methodological
literature on explanation and reduction that it proceeds at a high level of ab-
straction. Batterman is one of a number of contemporary writers on these topics
who insists that adequate methodological accounts must be built upon a careful
examination of the complexities of genuine examples of scientific research. This
is one of the senses in which the devil is in the details for Batterman: only by
working through detailed examples will we learn certain important lessons that
we cannot afford to ignore.? In §§3 and 4 I am going to discuss in some detail the
examples that Batterman bases his case upon—>but I will in §5 draw a lesson dif-
ferent from his. To put the matter roughly and tendentiously: I am going to focus

!Batterman (2002). All citations of Batterman refer to this work.

2Gee especially Batterman’s p. 7. The details Batterman asks us to attend to feature asymp-
totic reasoning, which Batterman characterizes as involving “a type of abstraction—a means of
throwing away various details” (3) in order to achieve deeper understanding. This is another
sense in which the devil is in the detail—though in this second sence, the devil is something that
we ought to ignore rather than attend to. Batterman notes the irony inherent in the double
applicability of his title.



for the most part on the sort of details that figure in mathematicians’ treatments
of these examples, where Batterman tends to draw his details from physicists’
accounts; I am going to charge Batterman with following physicists in thinking
of less fundamental theories as making an ineliminable contribution to our un-
derstanding of certain phenomena when consideration of the mathematicians’
approach would show that such theories make only a heuristic and eliminable
contribution.® Of course, I will also have to fend off the counter-accusation that
I mistake bloodless formalities for genuine physical understanding.

2. Background

Let us say that one physical theory supersedes another if almost all of the phe-
nomena treated adequately by the latter are afforded a superior treatment by
the former (here the term ‘phenomena’ may cover, in addition to observable facts
and regularities, unobservable ones whose status is taken to be unproblematic
in the context at hand).

We can divide historical examples of superseded theories into two categories:
dead letters and theories emeritus. Theories in the former class remain the
subject of serious intellectual interest only among historians and antiquarians,
while those falling in the latter continue to play a role in the education and
research of mathematicians and physicists.* A plausible conjecture is that this
distinction can be grounded as follows: any superseded theory will be able to

count among its lasting achievements some degree of empirical adequacy; for
dead letters, the list will end there; but theories emeritus will also have lasting
explanatory achievements to their credit. Thus, while the value of a Ptolemaic
account of a celestial phenomenon (eclipses, say) is exhausted by the naked-
eye accuracy of the predictions of the theory, the value of a geometrical optical
account of some phenomenon (burning mirrors, say) may lie in the explanatory
power of that account, as well as in its empirical adequacy.

We can view the classical approach to reduction as an attempt to provide an
account of the logical relation between theories emeritus and their supersessors,

3Qimilar criticisms of Batterman are advanced in Redhead (2003) and Sklar (2003).

Tt is sometimes remarked that navigators and surveyors are taught algorithms rooted in
spherical astronomy (see, e.g., Reichenbach 1951, 96 or Kuhn 1996, 68 and 102). But it would
hardly be natural to say that learning these techniques involves the study of geocentric astron-
omy. So let us allow that a theory can be a dead letter even if some shadow of it lives on in
techniques of calculation.



in light of which the explanatory power—and pragmatic status—of each theory
emeritus is fully vindicated.” According to this approach, we expect that, for
good Ty and Ty, if T7 supersedes Tp then it is possible to construct within 77 a
deductive-nomological explanation of the laws of Th—that is, a derivation of the
laws of Ty from the laws of 17, supplemented where necessary by assertions of
particular fact. Now, in interesting cases, this will be impossible: the laws of Tj
involve terms alien to 7} in a manner which renders the desired deduction im-
possible. To meet this difficulty, we allow ourselves to extend 77 by adding new
laws, informally understood as correlating the alien terms of Ty with expressions
native to T;.° We then say that Ty reduces to T; if it is possible to explain, in
the desired fashion, the laws of Ty within the extended theory.”

Reductionism is sometimes associated with eliminativism—the idea being
that to show that the laws of a given theory are just consequences of the laws of
one of its supersessors is to show that the theory is in principle dispensable and
its ontology derivative. But Nagel and Hempel themselves appear to deny that
a successful reduction of, say, biology to chemistry, or of psychology to neuro-
physics, or of the framework of every day experience to fundamental physics,
would show that reality accrued only to the objects of the more fundamental
member of the pair.® On their view a successful reduction shows not that the
reduced theory need be discarded, but that it is safe to go on using it. For,
one has on the authority of the superseding theory the trustworthiness of the
predictions of the superseded theory.” And it will be safe to go on employing the
superseded theory in generating deductive-nomological explanations—since the
laws of the superseded theory are just theorems of (a pertinent extension of) the
superseding theory, explanations arising in this way will count as explanations

5The locus classicus of this approach is Nagel ([1949] 1960; 1961, Chapter 11); it can also be
found in Hempel (1966, Chapter 8).

5The status of these new laws is problematic. Are they conventional explicit definitions?
Analytic truths? Statements of synthetic identities? On this issue, see Nagel ([1949] 1960,
302-304; 1961, 354-358; [1970] 1979, 105-107), Hempel (1966, §8.2; [1969] 2001, §6), and Sklar
(1967, §4).

TOf course, if we are allowed to introduce supplemental laws hand-crafted to force through
the requisite explanations, then any theory will reduce to any other. Nagel expects us to restrict
attention to reasonable reduction schemes, in which the supplemental laws are offered in good
faith as mere bridges between the respective vocabularies of the two theories ([1949] 1960, 304
f.; 1961, 358 f.)

8See Nagel ([1949] 1960, 309 and 311; 1961, 366; [1970] 1979, 107) and Hempel (1966, 77-79).

“Note that this holds throughout the range of the superseded theory, and not, as in the case
of Ptolemaic astronomy, merely in a part of this range.



from the perspective of the superseding theory.!® When this obtains, one has
license to continue employing the concepts and laws of the superseded theory.
Thus reductions of our theories emeritus to fundamental physical theories would
explain why theories emeritus are kept on the books.

But here a well-known problem arises—there are, in fact very few examples
of reduction in the strict classical sense.

Consider the relation between Galileo’s law of free fall and Newton’s theory
of gravitation. Nagel offers this as an example of a successful reduction.!’ In
Newtonian mechanics, Galileo’s law of free-fall holds only for bodies subject to a
uniform gravitational force. But Galileo’s treatment is meant to hold of bodies
near the earth, where the strength of the gravitational field increases as the
surface of the earth is approached. Now, Nagel’s account of explanation of laws
(1961, 42 f.), like Hempel’s canonical deductive-nomological account, requires
the truth of the explanans. And so, strictly speaking, there is no explanation
of Galileo’s law of free-fall in Newtonian mechanics. Rather, one can either: (i)
derive the superseded law by supplementing the laws of the superseding theory
by false empirical assumptions; or (ii) derive from true empirical assumptions
together with the laws of the superseding theory a statement that, in a suitable
sense, approximates the superseded law, for a range of conditions.

Similar objections apply to the other candidates for reductions proposed by
Nagel—the relation between the kinetic theory of gases on the one hand and
the Boyle-Charles law and the second law of thermodynamics on the other.!?
Indeed, the problem is very general: a theory reduces to one of its supersessors
only if it is in fact a special case of that supersessor. Perhaps the wave theory
of light can be understood as being a special case of Maxwell’s theory in the
relevant sense. But this phenomenon is very rare—it is far more common for
a theory to be corrected by its supersessors, even within its range of empirical
adequacy. This will be the case, for instance, whenever we say that one theory
is the limit of the other—as in the relation between geometrical optics and wave
optics, classical mechanics and relativistic mechanics, classical mechanics and

0f course, nothing like this is true in the Ptolemaic example—since there the laws of the
superseded theory are false according to the superseding theory, we would have no business em-
ploying them in a deductive-nomological explanation. There is no sense in which the Ptolemaic
explanation of the bounded elongation of Venus and Mercury is vindicated within heliocentric
astronomy.

UNagel ([1949] 1960, 291; 1961, 339).

12Gee Nagel ([1949] 1960, 294 ff.; 1961, 342 f£.) and ([1949] 1960, 289 and 295; 1961, 337, 343,
360, and 362) for these examples.



quantum mechanics, or special relativity and general relativity. In each of these
cases, reduction fails because the supersessor, rather than implying the laws of
the superseded theory, offers corrections to them.!?

It is at this point that the eliminativism of Feyerabend (1962, 1965) and
Sellars (1961, 1965) gets its foot in the door. The fact that our less funda-
mental theories (including the “theory” of common sense) do not reduce to our
more fundamental theories shows that the former are, strictly speaking, false.
At present, we keep them on the books for pragmatic reasons—they simplify
calculations. But it will ultimately be desirable to strike them from the books,
and educate ourselves to think in the framework of fundamental physics—only
thus will we be able to see our way past the pseudo-problems and philosophical
dead ends that are suggested by these false conceptualizations of the world.

It is only natural to wonder whether this isn’t an over-reaction to the failure
of Nagelian reduction. Mightn’t there be a somewhat weaker relation that holds
between our theories emeritus and their more fundamental successors, which
offers us something more than pragmatic reason to keep the former on the books?
Couldn’t there still be something to the idea that theories emeritus differ from
dead letters in offering genuine explanatory insight?

Under pressure from objections to their account of reduction, Hempel and
Nagel suggested that we might want to introduce a notion of approrimative
reduction: roughly, we would say that a regularity could be approximatively
explained by a given theory when the laws of that theory allow us to deduce
a near-relative of the regularity; and that one theory approximatively reduces
to another if we the latter supports appropriate approximative explanations of
the laws of the former."* This provides the outline of a program for grounding
the status of theories emeritus. But this program remains largely unfulfilled.
Indeed, there are daunting obstacles to be faced—in addition to the problems
that bedevil the notion of explanation, one has to worry about what counts as
an acceptable approximation to a regularity of a theory to be approximatively

3This objection to Nagelian reduction was developed in the influential papers Kemeny and
Oppenheim (1956), Popper (1957), Sellars (1961), and Feyerabend (1962). Here is Hempel’s
Battermanly view of the upshot: “the construal of theoretical reduction as a strictly deductive
relation between the principles of two theories, based on general laws that connect the theoretical
terms, is indeed an untenable oversimplification which has no strict application in science and
which, moreover, conceals some highly important aspects of the relationship to be analyzed”
([1969] 2001, 206).

14This suggestion is advanced at Hempel (1965, 344 f.; 1966, Chapter 5; [1969] 2001, §7) and
Nagel ([1970] 1979, §1).



reduced. And this is likely to lead one away from the abstractions that were the
stock in trade of the logical empiricists, and towards the messy mathematical
details of the limiting relations between particular theories—undermining any
hope for a clean and general account of the status of theories emeritus.

Batterman promises to cut through this Gordian knot of difficulties. He ex-
amines the relation between geometrical optics and wave optics and the relation
between classical mechanics and quantum mechanics, and concludes that in each
case the more fundamental superseding theory is explanatorily inadequate—
that there are phenomena whose understanding requires that the conceptual
resources of the more fundamental theory be supplemented by those of the less
fundamental theory.!® The considerations that drive Batterman’s analysis turn
crucially upon the complexity of the limiting relation between the pairs of theo-
ries that he considers (and it is plausible that the argument, if successful, can be
carried over to other theories emeritus). Thus methodologist should find cause
for joy rather than grief in the failure of classical reduction in these cases. For
this failure opens up a royal road towards the establishment of the explanatory
credentials of certain superseded theories, bypassing entirely the muskeg of ap-
proximate laws and approximate truth and the strengths and weaknesses of the
variety of explanation that they support.

Batterman offers a reason for keeping geometrical optics and classical me-
chanics on the books that goes far beyond a mere pragmatic interest in calcu-
lational tractability—mamely, that these theories play an ineliminable role in
our understanding of the physical world. How does this work? In the next two
sections, I discuss the two examples that Batterman focuses upon.

3. Example: The Rainbow

Let’s begin with (the successful bits of) Descartes’s account of the rainbow in
the Eighth Discourse of his Meteors. Suppose that you find yourself in the
situation depicted in Descartes’s diagram (see Figure 1 on p. 36): you stand
wearing a velvet suit and a sword, looking towards a spherical droplet of water
suspended in the air, which is illuminated by light source behind you. We will
assume that the light is of a single wavelength. We are interested in the light
that enters the raindrop from the left, undergoes a sequence of refractions and
internal reflections, and exits the raindrop travelling towards the left. Let us call

5For this, see Batterman’s §§6.5, 7.3, 7.4, and 8.2.



such a ray primary if it exits the drop after a single internal reflection, secondary
if it exits after two internal reflections, and so on.

Descartes’s strategy is to imagine 10, 000 evenly spaced rays parallel to AB,
each considered as an initial segment of a primary ray, and, for a plausible value
of the refractive index of water, to calculate the angle between the initial and
final segments of the ray. That is, he wants to calculate angles like the angle
DEM of his diagram—that angle is, of course, the same as the angle between AB
and DE. His conclusion: “I found that after one reflection and two refractions,
very many more of them can be seen under the angle of 41° to 42° than under any
lesser one; and that none of them can be seen under a larger angle” (Olscamp
1965, 339). Similarly, Descartes considers the secondary rays and finds that
“very many more of them come toward the eye under a 51° to 52° angle, than
under any larger one; and no such rays come under a lesser.”

If we suppose now that the observer faces a cloud of spherical water droplets,
illuminated from behind by our light source, we can study the patterns of illumi-
nation which result from primary and secondary rays from each of the droplets.
Describing the position of raindrops in the cloud by the angle that a line joining
them makes to the continuation past the observer of a line from the sun to her
eye, it follows from Descartes’s analysis that many primary rays will reach the
eyes from drops along the circular band corresponding to 41° to 42°. This band
is the primary bow. Its inner side is lit by primary rays—but with the intensity
falling off rapidly as the angle decreases. Similarly, the secondary bow consists
of an illuminated band at 51° to 52°, with a lit outer side (with the intensity
falling off rapidly as the angle increases). The region from 42° to 51° is unlit by
primary and secondary rays.

Aside from failing to treat chromatic phenomena, this approach gives a good
rough account of some of the most conspicuous features of naturally occurring
rainbows. ¢

The 19*" century wave-theoretic analysis of the rainbow, due to Airy and
others, predicts the following departures from the geometrical treatment.!”

e The dark band is faintly illuminated near the outside (inside) of the pri-

8One can also consider the tertiary bow, corresponding to rays undergoing three internal
reflections, and so on, Such higher-order bows can be observed under laboratory conditions, but
play no role in our story. Note, in particular, that they are distinct from the supernumerary
bows mentioned below.

17See Tricker (1970, Chapter VI). For popular accounts, see Boyer (1987, Chapter XI) or
Nussenzveig (1977).



mary (secondary) bow, although this tails off quickly away from the bow.

e The peak in intensity of the primary (secondary) bow occurs at an angle
less than (greater than) the angle predicted by the geometrical-optical
account.

e Within the illuminated region one finds, rather than the monotonic de-
crease in intensity predicted by the geometrical-optical account, a series of
minor peaks in intensity—these are known as the supernumerary bows.

e In the geometrical-optical account, the positions of the primary and sec-
ondary bows are fixed by the refractive index of water (together with
the assumption that the drops are perfectly spherical). In the wave-
theoretic account, the position of the bows depends on the size of the
water droplets.!®

Each of these is borne out by observation—indeed, except for the first each can
be verified at the level of naked-eye observation.

So far, then, we have a familiar sort of story: a good theory giving a good ac-
count of a phenomenon of interest is superseded by an even better theory giving
an even better account of that phenomenon. Batterman claims that, contrary
to appearances, the wave-theoretic account of the rainbow is explanatorily in-
adequate, and that understanding of this phenomena requires the mobilization
of resources from geometrical optics.

Why?

Well, let’s start by asking what we expect from a scientific explanation of a
phenomenon such as the rainbow. Hempel advocates the plausible view (1966,
48) that what is characteristic of scientific explanation is that “the explanatory
information adduced affords good grounds for believing that the phenomenon
to be explained did, or does, indeed occur. This condition must be met if we
are to be entitled to say: ‘That explains it—the phenomenon in question was
indeed to be expected under the circumstances!”’ By way of example:

Consider ... the physical explanation of a rainbow. It shows that the
phenomenon comes about as a result of the reflection and refraction

BWhen the light source emits white light, chromatic aspects of the bow also depend upon
drop size. For drops of moderate size (of the order of a millimeter), one sees all the colors of
the spectrum. But for very small droplets, one gets an almost entirely white primary bow, the
so-called fog bow.



of the white light of the sun in spherical droplets of water such as
those that occur in a cloud. By reference to the relevant optical
laws, this account shows that the appearance of a rainbow is to be
expected whenever a spray or mist of water droplets is illuminated
by a strong white light behind the observer.

Waiving questions of the truth of the laws of geometrical optics, does Descartes’s
account of the rainbow amount to an explanation in the desired sense? Well,
Descartes shows something like: under normal conditions, a rainbow appears
when a cloud of spherical droplets is lit by a bright light behind the observer.
So it remains to show either that the drops in a mist or spray can be expected to
be spherical, or that non-spherical drops lead to similar optical phenomena.' In
fact, falling raindrops of the size of several millimeters have shapes that depart
appreciably from the spherical (Pruppacher and Klett 1997, §10.3.2). So we are
stuck trying to show something like: any spray or mist that we come across is
likely to produce a pattern of illumination very similar to that produced by a
cloud of spherical drops.?

One way that this could be achieved would be via a structural stability result,
according to which perturbations of the shape of the drops lead to relatively
tame differences in the structure of appearances. Batterman considers (89-93)
one such strategy, under which one shows that in the limit of high frequency,
generic perturbations of the shape of the drop away from sphericity lead to a
pattern of intensities closely related to that for a spherical drop. This story
comes in several parts.

Part the First: The Basic Integrals.?! As a harmless simplification
we study the wave equation, (5—; — A) u = 0, instead of Maxwell’s equations

BDescartes adopts the first of these two strategies, arguing that water drops are normally
spherical in the Fifth Discourse of his Meteors (Olscamp 1965, 299)—while allowing in his
discussion of rainbows in the Eighth Discourse that a strong wind could deform this shape,
and thus lead to aberrant bows (ibid., 343). But the argument of the Fifth Discourse is—
unsatisfactory. Indeed, it is not easy to see how Descartes’s eely water particles could form
themselves into perfectly spherical drops.

2ONote that an argument of the desired type would not fit neatly into the categories of expla-
nation considered in Hempel (1965)—there only particular facts are to be given explanations
that render their occurrence merely likely rather than certain. But in his brief discussion of
the sense in which the kinetic theory affords explanations of the gas laws (1966, 68 f.), Hempel
implicitly liberalizes his notion of probabilistic explanations.

21For this part, see Varadarajan (1997, §1.1) and Guillemin and Sternberg (1977, Chapter 1).
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(allowing us to focus on a scalar rather than a vector quantity). If we consider
a point source located at y € R® emitting light of frequency & and amplitude
a € C, then

L eMey

ae

|z — ]
describes the radiation reaching a point z € R® (z # y) at time t. Now suppose
that we have a compact (i.e., closed and bounded) surface, S, in R® and that
each point y on S emits light of frequency k and amplitude a(y) and that these
emitters are in phase with one another. Then the radiation at z € R® (z # ¥)

at time t is given by
tk|z—yl|
, e
e’kt/ a(y)dy.
sz —yl

So we have, for certain sets of emitters on .S, an integral expression for a solution
to the wave equation everywhere off of S. Since the only dependence on t is via
the boring factor out front, we will from now on focus on the integral, calling it
I (x); |I}€($)|2 gives the intensity of light at z.

We are interested in certain qualitative aspects of the behavior of light that
can be understood by studying the behavior of I(z) in the high-frequency limit
as k — 00. Notice that as k grows large the integrand begins to oscillate wildly.
But the behavior of the integral itself can be surprisingly simple—this is the pur-
port of some 19" century results, normally grouped together under the moniker
the principle of stationary phase.

I state some of these results, for a class of integrals that includes our special

We consider integrals of the form 7j(x) = fs e**@Na(z,y, k)dy, defined for
k > 0, z in some open subset of R?, y in some open subset of R?; with ¢ real and
a complex and vanishing for y outside of some compact set, S.22 We call a the
amplitude and ¢ the phase. For each z, we have the function ¢, (y) := ¢(z,y)
defined on S. We are interested in the critical points of such ¢,(y) (i.e., points
y where the derivative along S of ¢, (y) vanishes). In the limit & — oo we find:

22We should further assume that a has a locally uniform asymptotic expansion of the form
a(@,y, k) ~ > 2 ar (@, y)k* " as k — oo; and similarly for all of its derivatives. a ~ 5> a,k*™"
means that for each N, a — 27{\]:0 a, k" is O(ENT,

Of course, there is nothing special about R? and R? for the domains of  and y—except that
fixing attention on this case has allowed me to leave out some exponents from the expressions
appearing in the bullet points below.
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o Iy(x)is O(k) for all N > 1if ¢, (y) has no critical points. Such z are
said to lie in the dark zone.

o Iy(x) is O(k™1) if v,(y) has only non-degenerate critical points. Such z
are said to lie in the light zone; for k large, such points will be illuminated
far more brightly than points in the dark zone.?

e The points, z, for which ¢,(y) has degenerate critical points are said to
form the caustic. Typically, at such points 7y (z) is O(k~%) for some d < 1—
so that for k£ large, such points will be illuminated far more brightly than
points in the light zone.

In the optical case that we are interested in, ¢,(y) = |z — y|. For fixed z, this
function has a critical point at y € S iff the geodesic joining x and y is orthogonal
to S —that is, iff there is a ray from y to z. And a critical point is degenerate
iff z is a focal point for rays from S.** So we can characterize the degree of
illumination at a point z in the high frequency limit in geometrical optical
terms—roughly dividing points into those reached by no ray, those reached by
at least one ray, and those reached by too many rays (too many because light
burns at caustics).

Part the Second. The Rainbow. Suppose that a point source emits
light, which then encounters a number of mirrors and lenses. A solution to the
wave equation that represents such a process may have a very complicated form.
But in the limit £ — o0, it can be replaced by a finite sum of our basic integrals,
Ti(z) = [ye**@¥a(z,y, k)dy, where £ € R® and the integral is over auxiliary
variables, y; applying the principle of stationary phase will then give us a quali-
tative characterization of the pattern of illumination in the high-frequency limit
for any such problem.? In the case of the rainbow, a good approximation for

Zn fact, there is much more to be said about the contributions of non-degenerate critical
points—see, e.g., Varadarajan (1997, 171). But we can ignore this.

24Here is how this can be made precise. Define E : § x R — R? by letting E(y, w) be the
point reached by tracing w units along the ray through y perpendicular to S. Consider = € R?
such that x = I'(y, w) for some y and w. Then y is a nondegenerate critical point of ¢, iff there
exists a neighborhood U C S of y on which F(-,w) is a diffeomorphism onto its image. This
fails, for instance, with a spherical mirror: the shape of the mirror means that for certain values
of w, arbitrarily nearby points on the mirror will have the same image under F(-, w).

%5Gee Duistermaat (1974, 1978) for proofs of this important result.
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most purposes is given by the Airy integral, [, e* W) g (y)dy.2 Via the prin-
ciple of stationary phase and numerical integration, one finds that this integral
gives the pattern described above for the illumination associated with the pri-
mary bow: a relatively large peak for a value just less than 42°, quickly tailing
off as one enters the dark zone, tailing off more gradually on the lit side, where
one also finds a series of small peaks corresponding to the supernumerary bows.
Here the extremal ray at 42° plays the role of a caustic (the illumination of the
dark zone can be thought of as the result of diffraction around its sharp edge—
see Tricker 1970, Chapter VI). As k — oo, the major peak of illumination will
creep closer and closer to 42° and the illumination of the major peak relative to
the minor supernumerary peaks will grow without bound.

Part the Third. Structural Stability of Caustics. Now—it may seem
that we haven’t gotten very far. The wave-theoretic account for spherical drops
corrects the geometrical optics account. So of what interest is the observation
that a consonance between the two accounts emerges in the high-frequency limit?

The point is this. We cannot, at this time, say very much about behavior of
light—even in its qualitative aspects—in problems closely related to the physical
problem for perfectly spherical raindrops. We do not have any overarching
theorems. It would be an analytic feat to reach an understanding of even a few
relevant solutions—and whatever we were able to say about the similarities and
differences between the behavior in a few such solutions and in the solution for
the exactly spherical case, it would be difficult to be certain that what we were
saying was generically true.

But we can do better in the high frequency limit. In particular, as we
perturb the phase function of the Airy integral, we generate models of optical
situations related to our original case of perfectly spherical drops (“in optics
this perturbation might be produced by altering the initial surface ...or the
propagation medium”; Berry and Upstill 1980, 267). As we do so, we will,
of course, change some features of the behavior of the integral, including its
asymptotic behavior in the limit k¥ — o0o. But some such features will remain
unchanged. In particular, in the case that we care about, the structure of the
caustic associated with the integral is unchanged for almost all perturbations,

26“Airy mentions that the study of this integral is at the foundation of the theory of the
rainbow, and that he has been unable to integrate it in terms of the functions known at that
time. We now know not too much more. ..” (Varadarajan 1997, 176). For a heuristic treatment
of the rainbow in terms of the Airy integral, see Tricker (1970, Chapter VI); for a discussion of
the limitations of Airy’s approach, see Nussenzveig (1977).
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in the sense that the pre- and post-perturbation caustic sets are diffeomorphic
to one another.?” This isolates a qualitative feature of the high frequency limit
that remains unchanged—albeit in a rather weak sense—as we move away from
the case of perfectly spherical drops.

Batterman suggests that it is this sort analysis that allows us to say that
we understand why rainbows occur in generic situations—and furthermore that
this understanding must be seen as involving elements of geometric optics as
well as of wave optics:

the ray theoretic caustic, with its structural stability properties, is
responsible for universal behavior in the intensity and form of various
wave patterns. Thus, in the asymptotic domain characterized by the
limit ...k — oo, elements from both theories seem to be intimately
and inextricably intertwined. (94)

While granting that there is a sense in which anything made available in an
asymptotic analysis of the wave equation must be “‘contained in”’ the wave
equation we start with, Batterman insists (§6.5) that understanding of such an
analysis requires reference to geometrical optical structures foreign to the wave
theory.

4. Example: Quantum Mechanics

Quantum mechanics stands to classical mechanics as wave optics stands to geo-
metric optics—this analogy was a guiding principle for the founders of quantum
mechanics. The semi-classical domain, in which one studies the asymptotic be-
havior of quantum mechanical structures as h — 0, corresponds to the regime
in which one studies the behavior of optical phenomena in the high-frequency
limit.

Batterman discusses semi-classical matters at length, and reaches a conclu-
sion similar to that arrived at in the optics case:

There are many aspects of the semiclassical limit of quantum me-
chanics that cannot be explained purely in quantum mechanical
terms, though they are in some sense quantum mechanical. Just

2'This is a substantial result. See, e.g., Duistermaat (1978, 26).
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as in the case of optics ...the fundamental theory is, in certain in-
stances, explanatorily deficient. For instance, there are differences in
the morphologies of semiclassical wave functions that depend essen-
tially on the nature of the “underlying” classical motion—whether
the classical motion is regular or chaotic. (109)

The explanatory deficiency of quantum mechanics consists in the fact that cer-
tain “quantum mechanical features require reference to classical properties for
their full explanation” (110).

In §7.3, Batterman mentions as an example of the sort of thing he has in mind
the striking role that classical structures play in the Gutzwiller trace formula,
which gives semi-classical information about the energy spectra of quantizations
of chaotic systems.

I’ll say a bit about how this goes, working up to Gutzwiller-style results in
stages.?® The first stage will be an appetizer: a clean example of the sort of
thing we are after—mamely, a theorem showing how to gain information about
the energy spectrum of a quantum system as h — 0 by studying facets of the
geometry of the phase space of the corresponding classical system. The second
stage consists of some remarks intended to motivate interest in trace formulae.
The third stage is a description of rigorous analogs of Gutzwiller’s trace formula.

We work in the following setting. We begin with a classical system whose
configuration space is R”, with Hamiltonian H(q, p) = %pQ +Vi(q) (here (q,p) =
(¢, ...,q" p1...,pn)is an element of the phase space, T*R™). So the correspond-
ing quantum theory has as Hilbert space the space L2(R") of square-integrable
wave functions on the classical configuration space, and quantum Hamiltonian
H = —%A + V. We suppose that V is bounded away from zero, so that the

spectrum of H is discrete for sufficiently small h.

First Stage: Weyl’s Formula. For each h > 0, we write the energy
spectrum as A1 (h) < Az(h) < .... We define N, : R — N by Nu(E) = card{j :
Aj(h) < E}, and study the behavior of this function as h — 0. In this limit, one
finds

Ni(E) o~ vol({(g.p) - H(g,p) < E}),

2rh)

22My presentation in this section omits a number of technical hypotheses, especially in the
third stage below. Please consult the references for details.
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where the volume form in question is the Liouville form, dg* A ... A dg™ A dp; A
... A\ dpy, associated with the classical phase space.?
Second Stage: Trace Formulae.’® Now consider an operator, A, on our

infinite dimensional Hilbert space, L?(R"). Suppose that A has discrete spec-
trum, with eigenbasis {¢;} and corresponding eigenvalues {A;}. Then we say
that A is of trace class with trace Tr(A) := >  \; when this sum converges ab-
solutely. There is a nice way of calculating the trace: let K4 : R" x R* — C
be given by Ka(z,y) = > Ao, (x)d;(y); then, so long as this sum converges
uniformly and absolutely, K4 is the integral kernel of A (i.e., for ¥ € L*(R"),
AW)(x) = [pn Kalz, y)¥(y)dy); and in this case Tr(A) = [, Ka(z, z)dz. A nice
feature of this formula is that the left hand side is algebraic and the right hand
side analytic-geometric.

When A has discrete spectrum but is not of trace class, we can proceed as
follows. Let ¢ : R — R be Schwartz (so that it and all its derivatives decrease
rapidly as oo is approached), and suppose that > @(A;) converges absolutely.
Then we switch our attention to the operator p(A) (i.e., that operator with
eigenbasis {¢;} with corresponding eigenvalues {¢(A;)}). This operator is of
trace class, with trace given by > ¢(\;). We can study the integrals Tr(¢(A)) =
fRn K ,4)(z, z)dz. This gives us information about the spectrum of A as we vary

©.

Often we are interested in an operator, but don’t have even the most basic
knowledge of its spectrum—Ilet alone the sort required to calculate the trace from
first principles or via the integral kernel. It turns out, though, that there are
expressions which give us semi-classical information about the trace of such op-
erators in terms of certain geometrical structures of the classical theory, without
requiring us to have prior knowledge of the eigenfunctions and eigenvalues.

Third Stage: Semi-Classical Trace Formulae. I am going to say just a
bit about such results—just enough to give you feel for what Batterman is up
to.

Here is the central result.*® Let E be a non-critical value of the classical
energy.*? Then there exists a sequence, {7,}, of distributions defined on R such
that for any Schwartz ¢ with compactly supported Fourier transform, ¢, we find

YFor this, see, e.g., Colin de Verdiére (1998, §5.1). For a finer version, see Robert (1998,
Theorem 3.11).

3Here 1 follow Uribe (2000) rather closely.

31Gee, e.g., Helffer (1997, Theorem 4.5.1) or Robert (1998, Theorem 3.8).

$1.e., we have that if H(x,£) = F then VH(x,£) # 0.
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that as h — o0

DT wh T ) = E) =)y, + O,

Ai(R)E[E—¢,E+e]

(Here ¢ is a constant that depends only upon the Hamiltonian.) This is a sort
of semi-classical trace formula—it gives us information about the sum of certain
ranges of eigenvalues, as h — 00. The crucial point for our purposes is that the
support of each of the distributions v, is contained in the set of periods of the
periodic classical trajectories lying on the classical energy surface H '(E)—in
order to calculate with this formula, we need to know about the behavior of
classical trajectories.

This trace formula is valid for a wide range of systems, regular and chaotic.
Now let us assume that the periodic trajectories of the classical flow are non-
degenerate—roughly, that within each energy surface they are isolated from
one another rather than occurring in continuous families. This condition will
obtain in chaotic classical systems. In this case, there is a semi-classical trace
formula whose left hand side is of the above form and whose right hand side
involves a number of terms with a geometrical interpretation—a term involving
the Liouville measure induced on the classical energy surface, a sum over the
classical periodic trajectories of a function of the classical action, and so on.??

5. Consequences?

The picture that emerges from these examples is described thus by Batter-
man: “wave theoretic or quantum mechanical aspects are sewn onto a skeleton
of classical trajectories and their structures in the asymptotic ...limit” (127).
How is this observation supposed to carry us through to the conclusion that
wave-theoretic optics and quantum mechanics are explanatorily inadequate—
that there are phenomena whose understanding ineliminably involves the con-
cepts of geometric optics and classical mechanics?

Let us explicitly separate two of Batterman’s theses. The first thesis is that
the successful explanation of a regularly occurring phenomenon involves two
tasks: (i) finding solutions to the equations of a given theory which possess a

33Gee Colin de Verdiére (1998, §6.3) or Uribe (2000, Theorem 2.2). For related results, see
Helffer (1998, §4.7) and Robert (1998, Corollary 3.9).
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feature corresponding to the occurrence of the phenomenon in question; and
(ii) showing (something like) that the possession of this feature is stable under
(generic) physically realistic perturbations of such solutions. This thesis seems
entirely correct to me—and I think it one of the great virtues of Batterman’s
work that it calls attention to the mathematical difficulty and philosophical
interest of task (ii).**

The second thesis, which I think we should reject, is that Batterman’s ex-
amples provide cases where a given theory contains resources adequate to the
first of these explanatory tasks but not to the second—but where both tasks can
be accomplished when the resources of the given theory are supplemented by
resources of a less fundamental theory. In the case of the rainbow, it is claimed
(90 £.) that although one can construct solutions to the equations of wave optics
corresponding to the appearance of the rainbow, one is unable to show that this
behavior is generic within the relevant range of circumstances without recourse
to ray-theoretic notions such as caustics. Similarly it is claimed (109 f.) that
there exist (rather more abstract) quantum mechanical phenomena (involving
eigenvalue statistics, etc.) that can be understood only when the resources of
quantum mechanics are supplemented by knowledge of the classical mechani-
cal trajectories in phase space. Considering the first example, Batterman asks
whether the features of the rainbow that we are interested in—the form of the
bow, the interference fringes on its lit side, etc.—can be explained within wave-
theoretic optics. His answer:

Now, if by “explanation” one has in mind one of the dominant con-
temporary conceptions—the D-N model or some causal-mechanical
model—then I think that the answer is a clear “no.” ... These emer-
gent phenomena are not derivable in any straightforward sense from

34When Batterman says things like “asymptotic explanation does, in fact, represent a distinct
form of explanation largely missed by current philosophical conceptions” (37), he intends it to be
understood that his discussion of asymptotic explanation provides a sort of competitor to D-N
explanation. I think of him, rather, as offering a friendly amendment to the D-N account. At
one point Hempel says, speaking of the D-N model, “given this notion of explaining a particular
occurrence of a solar eclipse or of a rainbow, etc., one can speak derivatively of a theoretical
explanation of solar eclipses or rainbows in general: such an explanation is then one that accounts
for any instance of an eclipse or rainbow” (1965, 423). Clearly constructing an explanation of the
rainbow in general ought not to require providing a D-N explanation for each occurrence of the
rainbow—one cannot consider infinitely many sets of possible initial and boundary conditions,
and show that each leads to a rainbow. So charity would appear to require us to read Hempel
here as (perhaps imperfectly) perceiving the necessity of something like requirement (ii) above.
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the underlying wave theory. They are not, as it were, from-first-

principle solutions to the wave equation .... They are deeply en-
coded in that equation but are apparent only through its asymptotic
analysis.

On the other hand, the “theory” of that asymptotic domain—
catastrophe optics—does provide satisfactory accounts of the phe-
nomena of interest. So the phenomena are not inexplicable or brute
tout court. One has, in a well-defined sense, an explanation that is
“grounded in” the fundamental wave theory; but this kind of asymp-
totic explanation is ...distinct from the usual types of explanation
talked about in the philosophical literature. The phenomena are not
explainable through derivation—that is, through straightforward so-
lutions to the differential equation—from the fundamental wave the-
ory alone. (118 £.)

Batterman thinks that a delicate balance must be struck in considering each of
his examples. For the phenomena he is interested in, Batterman locates some of
the resources crucial to their explanation in the limiting regime between a more
and a less fundamental theory. He thinks that while there is some sense in which
these resources are contained in the more fundamental theory, there is also a
sense in which they are unpredictable from it alone—since “the understanding
of those mathematical representations requires reference to structures foreign to

the fundamental theory” (96; cf. 109 ft.).

Against this, I claim that an examination of the sense in which rays and
caustics are implicit in the apparatus of the wave theory and of the sense in
which classical phase space trajectories are implicit in the mathematical struc-
ture of quantum mechanics saps all intuitive force from Batterman’s claim that
we here have cases where the understanding of phenomena requires that the
resources of the more fundamental theories be supplemented by resources of
the less fundamental theories. In brief outline, the argument is as follows. In
Batterman’s cases, the physics of the more fundamental theory is described by
a certain partial differential equation whose independent variables parameterize
a manifold, X. Suppose that we ask some mathematicians to investigate the
asymptotic behavior of approximate solutions to this equation (or the behavior
of the spectrum of the corresponding operator) as some parameter appearing in
the equation grows large or small. One of the most powerful techniques for at-
tacking such problems involves the construction and investigation of an auxiliary
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problem definable from knowledge of the original problem. One first constructs
a new manifold, 7*X, the cotangent bundle associated with X (a point of T*X
is a pair (z, £) consisting of a point x € X and a covector £ at z). One also con-
structs a function, the principal symbol, on T*X associated with the differential
operator of the original problem. T™X carries a natural geometrical structure
which in concert with the principal symbol determines a set of curves in T*X.
The auxiliary problem consists in the study of these curves. Now: formally
speaking, our auxiliary problem is a problem in the theory of Hamiltonian sys-
tems: T*X can be thought of as the space of possible positions and momenta
for a particle living on X, and our curves are the dynamical trajectories for
such a particle if the energy of the particle in each state (z,&) is just given
by the value of the principal symbol at that state. But in order to construct
this auxiliary problem, our mathematicians need not have heard of any physical
theory (such as classical mechanics) whose mathematics is given by the theory
of Hamiltonian systems—the auxiliary problem can be constructed uniquely as
soon as the original problem is given, the structures needed to set up the aux-
iliary problem being definable in terms of those used to set up the original one.
And once they have the auxiliary problem at hand, our mathematicians can see
that the asymptotic behavior features of the original problem will turn upon
the features of the auxiliary problem—in the optics case, in the high frequency
limit, approximate solutions to the wave equation blow up near points of X
where the projection of certain dynamical trajectories from 7% X to X becomes
singular (these are the caustic points) while in the quantum mechanics case,
periodic dynamical trajectories in the auxiliary problem will play a special role
in the analysis of the spectrum of the quantum Hamiltonian in the h — 0 limit.
So there is, as far as the mathematics goes, nothing foreign to the more fun-
damental theory about the ingredients needed to prove the asymptotic results
that secure explanations of phenomena such as the rainbow—these ingredients
are implicit in the mathematics of the more fundamental theory.

Two questions remain. (1) How does all of this work? (2) When one tries to
understand all of this as physics rather than mere mathematics, does one after
all have to draw upon the conceptual resources of the less fundamental theory?
I address these two questions in turn in the following subsections. (Readers
uninterested in (1) should skip to §5.2.)
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5.1. More Details

I describe in slightly more detail the construction of the auxiliary problem asso-
ciated with a given differential equation and its role in the asymptotic investiga-
tion of that equation.?® Suppose that we are interested in the study of a linear
partial differential equation whose independent variables parameterize a mani-
fold X of dimension n. We assume that this differential equation is of order m
and depends upon a parameter 7. We suppose that in coordinates we can write
the equation in the form P(z, aa—x,T)u(x) = 0, with v € C*°(X) and P of the
form P =" aa(z,7)(T2)* with each a, of the form > 50 ba,j ()77 % Recall
that T=X is the cotangent bundle of X—the points (z, &) of this space can be
thought of as the possible positions and momenta of a particle moving in X. The
manifold 7% X possesses a natural symplectic structure, w (in virtue of being a
cotangent bundle). For present purposes, we can think of w as being, more or
less, an anti-symmetric metric on T*X.>" We introduce the principal symbol
of the operator P: this is the function Fy : T"X — R defined as Fy(x,§) =
Z ba,O Ea.38

Now, in classical mechanics, if the possible configurations of a physical system
are parameterized by a manifold @ (the configuration space), then its possible
dynamical states (positions and momenta) are parameterized by the associated
cotangent bundle T*Q (the phase space), and the dynamics are determined by
specifying a Hamiltonian function, H : 7@ — R, assigning to each dynamical
state its total energy. The Hamiltonian encodes information about the forces
acting on the system, and in concert with the natural symplectic structure on
T*Q, it determines a vector field on T*Q whose integral curves correspond to
the dynamical trajectories of the theory.?® Without invoking any physical inter-
pretation, we can employ the same mathematics to associate with our principal

%The following account is based upon Bates and Weinstein (1997, Chapters 1-4), Colin de
Verdiere (1998), Duistermaat (1974, §1), and Guillemin and Sternberg (1977, Chapter 11).

361 write out the formulae for dim X = 1. For higher dimensions, you mess around with
multi-indices in the obvious way. See Colin de Verdiére (1998, §4.3).

3w is in fact a nondegenerate closed two-form on T*X. If {2} are coordinates on X and if
at each x € X the {¢'(x)} are the elements of the cotangent space at X dual to the basis {1}
of the tangent space at x, then (z, ) is a set of coordinates for the manifold 7*X. In terms of
these coordinates, w = 3 dx’ A dé'.

33The text gives a coordinate-based characterization of Py. But the recipe leads from P to
an intrinsically defined function on T%X.

¥For f € C(T*X), the associated vector field, Zy, is defined by w(Zy, ) = df. This is just
a recasting of Hamilton’s equations in a coordinate-independent form.

21



symbol, Fy, a vector field, =p,, on T*X. The integral curves of this vector field
are called the bicharacteristic strips.

So given X and P, we construct 7*X and Fy and Zp,. The study of the
associated bicharacteristic strips is the auxiliary mathematical problem that
plays a role in the study of the asymptotic behavior of our original differential
equation, Pu = 0. The account of the role of this auxiliary problem is somewhat
involved. I focus on the construction of approximate solutions in the asymptotic
regime, and break the procedure into three steps.

First Step: find a Lagrangian manifold that solves the Hamilton-Jacobi equa-
tion. Because the symplectic form w on T* X is anti-symmetric, if (z, &) € T X
and v € Ty 0T X, then w(v,v) = 0—i.e., the symplectic product of a tangent
vector to T X with itself always vanishes. But for fixed v in the tangent space at
(z,€), there will in fact be many w in that tangent space such that w(v,w) = 0.
We look for an n dimensional submanifold L of T*X with the property that
at any point of L, any two vectors v and w in the tangent space to L at that
point satisty w(v,w) = 0 (n is the maximum possible dimension of such a sub-
manifold). Such an L is called a Lagrangian submanifold. We are looking for a
Lagrangian submanifold that satisfies the Hamilton-Jacobi equation—this just
means that P, is constant on L.*°

Second step: find a function on L invariant under the flow induced by Fp.
Suppose that we have such a submanifold, L. Our next step in constructing
our approximate solution to our equation is to look for a scalar function, a,
defined on L with the property that the Lie derivative of a in the direction Zp,
vanishes.*!

Third step: Project the structure (L,o) down to X. When all goes well, the
structure (L, a) can be projected down to X to yield a second-order approxi-
mate solution to our differential equation Pu = 0.*? Let 7 : T*X — X be the
projection map (so w(x,&) = z). We call a point of L regular if the restriction
of m to L is a diffeomorphism on some neighborhood of that point; otherwise
we call that point singular. We call the image under m of the bicharacteristic
strips the bicharacteristic curves. For any regular point of L there is a suffi-

40We require, in fact, that L lie in a level set of a regular value of Py—i.e., VP (x, &) # 0. For
convenience, we restrict attention to connected Lagrangian submanifolds.
4 fact, it is better to take a to be a half-density rather than a function, and likewise for a

(introduced below). For half-densities see, e.g., Bates and Weinstein (1997, Appendix A).
“Tndeed, given such a solution, there is a procedure for producing approximate solutions of
arbitrary order. This procedure involves solving only ordinary differential equations.
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ciently small neighborhood, U, so that the bicharacteristic curves in «(U) do
not cross; but at the image under 7 of any singular point of L the bicharac-
teristic curves will intersect one another. If U is a sufficiently small open set
of regular points of L on which 7 acts as a diffeomorphism, then we can find
a function S and a function a (actually a half-density) defined on n(U) C X
such that: (i) U = {(z,dS(x)) : x € 7(U)}; and (ii) a = (dS)*a (that is, we pull
a back to X using the one-form dS, thought of as a map from n(U) C X to
U CTrX). So we can break the regular part of L up into subsets, U;, projectible
to X, such that the structure (L, o) can be encoded in functions S; and a; living
on the 7(U;). Roughly speaking, u(z) = 3 e™q;(x) is our second-order ap-
proximate solution to Pu = 0. But we still have subtleties to worry about—the
phases of the terms in this sum need to be made to mesh, and we have to take
the singular points of L into account. The final upshot is: (i) only certain L will
be admissible—that is, embedded in T*X in such a way that the whole process
can be carried out consistently; (ii) the final form for an asymptotic solution to
Pu = 0 corresponding to (L, a) will consist of a finite sum of integrals of the

form (i)k/2 fK e™@ Wz, y, 7)dy (where K is a compact subset of R¥, and the
y are to be thought of as auxiliary variables).*

What does all this have to do with Batterman’s examples? Well, for the
differential operator of the reduced wave equation the corresponding principal
symbol is the kinetic energy deriving from the metric on X (where here X
represents physical space). In this case, the bicharacteristic strips correspond
to the geodesic flow on 7% X, and their images on X, the bicharacteristic curves,
are just the geodesics of X. These last correspond to light rays in the physical
situation described by (L, a). The images of the singular points of L under «
form the caustic corresponding to this family of rays. It follows from our recipe
for pulling back (L, a) to X and from the principle of stationary phase that our
approximate solution will have asymptotic behavior at the caustic of the sort
we are familiar with from the rainbow case.

In the quantum mechanical case we are interested in the operator corre-
sponding to the time-independent Schrodinger equation—and the corresponding

$Why integrals here? To get an intuitive idea, consider the simplest case, where X = R
and T*X = RZ? A Lagrangian submanifold, L, is just a level set of Py and a point (z,£)
lying on such a set is singular iff T, -y L = {(0,17) : t € R}. To take care of such a point, we
project some neighborhood of it onto the £-axis (rather than the z-axis as we do for regular
points), carry out our procedure sketched in the text, then Fourier transform—ending up with
an integral expression for the contribution to the shadow on X of (L, a) corresponding to our
chosen neighborhood of our singular point of L.
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principal symbol is just the classical Hamiltonian. Our recipe for constructing
approximate solutions is a generalization of the WKB method, and the admis-
sible Lagrangian submanifolds lie in the level sets corresponding to the points
of the spectrum of the quantum Hamiltonian. So the auxiliary mathematical
problem coincides with a mathematical treatment of the classical limit of our
quantum problem. In this case, the bicharacteristic strips are the classical dy-
namical trajectories in T*X. So it is no longer so surprising that these play a
special role in the asymptotic analysis of the energy spectrum of our quantum
system—since they are definable from knowledge of the quantum Hamiltonian
alone, and play a key role in available techniques for constructing approximate
solutions. Indeed, the proof of the semi-classical trace formula turns upon the
ingredients introduced above: continuous superpositions of Hamilton-Jacobi-like
solutions, and application of the principle of stationary phase (see Uribe 2000,
72 ft.).

5.2. Empty Formalism?

All of this is by way of making out the sense in which the asymptotic results
that Batterman focuses on are indeed contained in the fundamental equations
he considers. A great intuitive analyst ignorant of mathematical physics could
be handed a linear partial differential equation (defined on a manifold X and
depending on a parameter) and asked to construct asymptotic approximate so-
lutions or to investigate the asymptotic properties of the spectrum of the cor-
responding operator. This analyst might well rediscover the material sketched
above—rediscovering in the process the symplectic geometry of T*X and the
mathematical theory of Hamiltonian mechanics, considered now only as props
for the study of our differential equation. Indeed, this is more or less how
symplectic geometry and Hamiltonian mechanics figure in some mathematical
treatments of the results sketched above (see, e.g., Guillemin and Sternberg
1977, Chapters I-11I).

The equation studied by our untutored genius might or might not have a
physical interpretation. Either way, our analyst will be able to prove results
about asymptotic behavior of solutions of the equation, or the spectrum of
the corresponding differential operator, in the limit where the parameter grows
large. These results will be tied up with the details of the principal symbol
on T*X, and the associated bicharacteristic strips and curves. This further
structure is definable in terms of X and our differential equation alone—and so
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is conceptually available as soon as we set out to study the equation.

Now suppose that it is the reduced wave equation that our analyst has been
set to work on. She has, unbeknownst to her, proved the results that we need
to explain the occurrence of the rainbow: handed a certain set of initial and
boundary conditions she has shown that in the high frequency limit, Airy’s in-
tegral provides a good approximation for the behavior of the quantity called
“the intensity of light” for a certain region of space; she has shown, perhaps via
numerical integration, that the pattern of “the intensity of light” matches the
curves illustrated in the textbooks for “the rainbow”; finally, she has shown that
certain qualitative aspects of this pattern of “the intensity of light” are invariant
under a certain family of perturbations of the mathematical problem that she
has been set. So far the analyst has only a mathematical understanding of the
problem. In order to transform her work into an explanation with physical con-
tent, we need: (i) to impart to her the standard sense of “the intensity of light”;
(ii) to explain why the given initial and boundary conditions correspond to a
situation in which a cloud of spherical water droplets is illuminated by white
light; and (iii) to explain why the perturbations studied correspond to changes
in the shape of the drops. None of this would appear to require reference to the
concepts of geometric optics.** A similar story can be told about quantum me-
chanical examples: the output of the semi-classical analysis is a characterization
of the energy spectrum of the system—which one does not require the concept
of a classical mechanical particle in order to understand.

Batterman claims, very plausibly, that much of our detailed understanding
of physical phenomena turns upon semi-classical considerations, in which we
consider asymptotic behavior of solutions of the equations of a given theory as
a parameter that they involve goes to infinity. Noticing that the asymptotic
behavior of solutions of wave optics is sensitive to the structure of caustics, and
that the asymptotic features of quantum mechanics are sensitive to the structure
of the set of classical periodic trajectories, Batterman concludes that our physical
understanding of the phenomena in question has one leg in the physics of the
more fundamental theory and one leg in the physics of the less fundamental

4This is entirely clear, I think, for (i) and (iii). It is perhaps less obvious in the case of
(i1). Indeed, Wilson (2003) suggests that it is just here that geometrical-optical concepts play
a crucial role. But note that if this point is correct, it would lead to a picture of the ex-
planatory importance of less-than-fundamental theories rather different from that developed by
Batterman—such theories would be needed in showing that particular solutions of the equations
of the fundamental theory represent a given phenomenon as occurring, rather than in showing
that its occurrence is robust under perturbations of such solutions.
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theory. But this is too hasty: the mathematics of the less fundamental theory
is definable in terms of that of the more fundamental theory; so the requisite
mathematical results can be proved by someone whose repertoire of interpreted
physical theories includes only the latter; and it is far from obvious that the
physical interpretation of such results requires that the mathematics of the less
fundamental theory be given a physical interpretation. Putting it another way:
in the examples considered it can be shown that given a physically interpreted
fundamental theory, one is able to prove the results required to explain the
phenomena in question without recource to less fundamental theories, except
as mathematical crutches that are in any case definable from the mathematics
of the more fundamental theories; so the less fundamental theories, as robust
interpreted physical theories, do not make an ineliminable contribution to our
understanding in these examples.

Appendix: Further Quantum Chaos Results

This appendix extends the discussion of §4, surveying a number of results from
the literature on the semi-classical limit of quantizations of chaotic classical
systems. The most recent philosophical discussions of this rapidly developing
field, Batterman’s Chapter 7 and Bokulich (2003), focus on heuristic results
drawn from the physics literature. The appendix is intendeed to complement
these accounts, by offering quick overview of some recent results from the more
mathematical literature, and of the relations between the two approaches.

A.1 Scarring/No-Scarring

Consider the classical theory of geodesic motion on the sphere. Here the Hamil-
tonian is just that given by the kinetic energy corresponding to the usual metric
on the sphere. The standard quantization of this theory is given by wave func-
tions on the sphere, with the Laplacian corresponding to the standard metric
as the quantum Hamiltonian. The spherical harmonics form an eigenbasis for
this operator (see, e.g., Ballentine 1998, 168). Now: given a geodesic on the
sphere, it is possible to construct a sequence of these eigenfunctions which con-
centrate on the geodesic as the corresponding eigenvalues go to infinity (Colin de
Verdiere 1991, 327). So we have a sequence of energy eigenfunctions of the quan-
tum theory concentrated on a periodic trajectory of the corresponding classical
theory.
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This is not so strange: the concentration of an eigenfunction on a classical
trajectory “can be thought of in the time domain as the increased probability of a
quantum wavepacket launched near an . . . orbit to overlap with itself at very long
times” (Kaplan 1999, R3). Hence we expect such eigenfunction concentration
near periodic orbits in the case of quantizations of regular classical systems in
which periodic trajectories occur in stable families. But one would not, prima
facie, expect anything like this to occur in quantizations of chaotic classical
systems, in which periodic trajectories are isolated: in such systems a classical
probability density launched near a periodic orbit quickly gets smeared over
the entire energy surface, and forgets entirely about its origin; and one would
certainly not expect a quantum wave packet to care more about a classical
periodic trajectory than does a classical probability distribution.

Nonetheless, there is considerable evidence from numerical experiments that
concentration of eigenfunctions near classical periodic trajectories occurs in
quantizations of chaotic classical systems. Physicists call this scarring—“A
quantum eigenstate of a classically chaotic system has a scar of a periodic or-
bit if its density on the classical invariant manifolds near the periodic orbit
differs significantly from the statistically expected density” (Heller 1991, 636).
The production of numerical evidence for scarring and the attempt at analytic
understanding of the phenomenon are central to the study of quantum chaos
among physicists.®

Mathematicians have pursued a somewhat different route. Consider the dy-
namics of a free particle on a compact manifold X (possibly with boundary),
equipped with a Riemannian metric, g. ¢ The classical state space is just T*X,
the cotangent bundle of X; (except at the boundary, if any) the Hamiltonian
governing the classical dynamics is just given by kinetic energy associated with
g; and the dynamical trajectories project down to (piecewise) geodesic curves
on X. The quantum state space is L?(X,dz) where dz is the measure on X
associated with ¢g; and the Hamiltonian governing the quantum evolution is just
the Laplacian, /A, associated with g (subject to Dirichlet conditions, say, at any
boundary).

Any quantum state ¢ € L3(X, dx) is associated with a measure on X, d¢ =
|6|> dz. We are interested in the question which measures on X arise as (weak*)
limits of measures associated with eigenfunctions of A.

A sequence of energy eigenfunctions is an infinite sequence, {9,}, of pairwise

#Gee Kaplan (1999) for a review of the literature on scarring.
46The point of allowing X to be a manifold with boundary is to include billiards models.
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orthonormal eigenvectors of /\; to any such sequence corresponds a sequence
{Aj} of eigenvalues (possibly with repetitions); we assume that the ¢; are ordered
so that j < k implies A\; < Ax. We say that a measure, du, on X is the quantum
limit of a sequence of energy eigenfunctions, {¢;}, it dp; — dp as j — oo in the
sense that [ fdé, — [ fdu for each f € C™(X).

Let us say that the system is quantum ergodic if dz (the measure associated
with the metric on X)) is itself a quantum limit of a sequence of energy eigen-
functions, {¢;}, whose associated sequence of eigenvalues is of density one in the
spectrum of A. Let us say that the system is quantum unique ergodic if every
sequence of energy eigenfunctions has dx as its quantum limit. Finally, let us
say that the system strongly scars if there is a sequence of energy eigenfunctions
whose quantum limit is a measure on X that assigns positive measure to a closed
geodesic of X. Strong scarring is consistent with quantum ergodicity but not
with quantum unique ergodicity.

The best understood case is when X is two dimensional and without bound-
ary. In this case, Schnirelman’s theorem tells us that if the classical geodesic
flow is ergodic then the corresponding quantum dynamics is quantum ergodic
(see, e.g., Colin de Verdiere 1991, §7.3). But the converse is not true—the quan-
tum theory of geodesic motion on the sphere is quantum ergodic in the present
sense, although the corresponding classical flow is as regular as possible.*’

At the opposite extreme from the sphere stand surfaces with everywhere
negative curvature—these are known to be highly chaotic (indeed, Bernoulli).
Rudnick and Sarnak (1994, 196) conjecture that the quantum theory of the geo-
desic flow on a compact surface of negative curvature always exhibits quantum
unique ergodicity. This conjecture remains open.*® But for certain special sur-
faces of constant negative curvature, one can show (given a further technical
condition) that strong scarring cannot occur.*’

47See Zelditch (1992). Let us say that a system is strongly quantum ergodic if for each sequence
of orthonormal eigenvectors spanning the system’s Hilbert space, there is a subsequence whose
eigenvalues are of density one, and whose quantum limit is dz. The sphere is not strongly quan-
tum ergodic in this sense—such a subsequence of spherical harmonics cannot be constructed,
although other eigenbases of the Laplacian on the sphere do contain such subsequences. The
quantization of an ergodic geodesic flow on a compact surface is strongly quantum ergodic.

“8Indeed, Zelditch writes (2003a, 1) “At this time [January 27, 2003], no A have been proved
to be QUE and none have been proved to be non-QUE,” although he mentions some examples
that are expected to fall into the latter category.

4“Rudnick and Sarnak (1994, Theorem 1.1). Several points. (i) For reports on further progress
towards the proof of the conjecture, see Lindenstrauss (2003) and Sarnak (2003). (ii) It is
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A.2. Characteristic Timescales

For any quantum system, it is possible to characterize the timescale on which the
semi-classical approximation holds to a reasonable degree of accuracy. One way
of making this precise is to ask for what times the quantum dynamics of a wave
packet initially peaked about given values of position and momentum tends to
mimic the classical evolution with the same position and momentum taken as
the initial data—where the criterion of mimicry is that the expectation values for
quantum observables at each time should match the values of the corresponding
classical observables at those times, and one demands that mimicry be achieved
as h — 0. For a wide range of systems, it appears that the characteristic

1

timescale on which the semi-classical approximation holds is of order - for

quantum systems that are quantizations of chaotic classical systems, and of
order % for systems that are quantizations of regular classical systems.”® Note

unclear whether the examples Lindenstrauss, Rudnick, and Sarnak discuss are typical even of
negatively curved manifolds—one doubt along these lines is raised by Colin de Verdiére (1998,
48). (iii) There is some question whether the absence of strong scarring is consistent with scarring
in the physicists’ sense; on this point, cf. Kaplan (1999, R4) and Sarnak (2003, 458). (iv)
Corresponding definitions can be introduced, and corresponding questions raised, for discrete-
time automorphisms of the torus (these, along with the geodesic flow on manifolds of constant
negative curvature, provide the closest thing that mathematicians have to rigorous examples
of chaotic behavior that are both physically interesting and mathematically tractable). For an
introduction to these systems, and a proof that here too classical ergodicity implies quantum
ergodicity for a range of systems, see De Bievre (2001). Marklof and Rudnick (2000) establish
quantum unique ergodicity for a quantization of a merely ergodic classical map—but the example
requires an exceptionally liberal notion of quantization (see Zelditch 20035). Rudnick (2001) and
Degli Esposti (2001) discuss results stronger than quantum ergodicity that have been obtained
for quantizations of highly chaotic classical maps. But it is known that the most important
such maps, the so-called quantum cat maps, admit strong scarring, and hence are not quantum
unique ergodic—see Faure et al. (2003). Note that these results would appear to undermine
any hope that quantum unique ergodicity is the quantum counterpart of classical chaos.

30Gee, e.g., Casati and Chirikov (1995) for a discussion of such results, supported by numerical
experiments and heuristic arguments. See, e.g., Bonechi and de Biévre (2000) and Bouzouina
and Robert (2002) for recent mathematical results along these lines.

The paper by Bonechi and de Biévre treats one of the most interesting cases: quantum cat
maps. These have the strange feature that their dynamics is periodic, although the corre-
sponding classical dynamics is chaotic. Bonechi and de Biévre show that, as h — 0, one finds
that on a timescale of order ﬁ the measures corresponding to coherent quantum states ap-
proach the singular measures concentrated on the corresponding classical trajectory, while for
times (roughly) between ﬁ and ﬁ the measures corresponding to coherent states approach
uniform distribution.
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that in either case, the timescale on which the semi-classical approximation
approaches infinity as h — 0, but that this approach is much more rapid in the
regular case than in the chaotic case.”
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FIGURE 1. Descartes' s diagram, from the Eighth Discourse of his Meteors. Here ray
ABCDE is primary and ray FGHIKE is secondary.
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