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Abstract. This paper investigates simple syntactic methods for revising prioritized belief
bases, that are semantically meaningful in the frameworks of possibility theory and of
Spohn’s ordinal conditional functions. Here, revising prioritized belief bases amounts to
conditioning a distribution function on interpretations. The input information leading
to the revision of a knowledge base can be sure or uncertain. Different types of scales
for priorities are allowed: finite vs. infinite, numerical vs. ordinal. Syntactic revision is
envisaged here as a process which transforms a prioritized belief bases into a new prioritized
belief base, and thus allows a subsequent iteration.
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1. Introduction

During the last past fifteen years, the problem of belief change has become a,
major issue in Artificial Intelligence and information systems for the purpose
of managing the dynamics of knowledge bases. The revision of a database
consists of the insertion of some input information while preserving consis-
tency. This problem has been studied axiomatically (see e.g., (Géardenfors,
1988)) leading to the so-called AGM axioms; however revision is computa-
tionally expensive to implement in practice (see (Nebel, 1994)). Whether
theoretically or practically oriented, all revision tools reveal the necessity
of prioritizing belief bases or their deductive closures, belief sets. A priori-
tized belief base can be cast in the framework of possibilistic logic (Dubois
et al.,, 1994) or in Ordinal Conditional Functions (OCF for short) frame-
works (Spohn, 1988). It induces a complete pre-order on interpretations
that can be encoded by means of possibility distributions (Zadeh, 1978), or
equivalently by means of Spohn’s ordinal conditional functions. The possi-
bilistic setting does not necessarily require a numerical scale such as [0,1]
but can also be used with finite linearly ordered scales (Dubois and Prade,
1998). Spohn’s OCF's use classes of ordinals but are usually defined with
the integer scale. At the semantical level, the revision of a possibility distri-
bution or an OCF by a sure input can be achieved by conditioning (Dubois
and Prade, 1992; Spohn, 1988), and satisfies the AGM axioms (Géardenfors,
1988). More generally, the revision of a possibility distribution can be viewed
as a so-called “transmutation” (Williams, 1994) that modifies the ranking of
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interpretations so as to give priority to the input information. Clearly, this
allows the iteration of the revision process contrary to classical AGM belief
revision. In OCF framework, two basic belief revisions have been investi-
gated: Adjustment (Williams, 1994) and conditionalisation (Spohn, 1988).

Revision operations with uncertain input have been studied by Spohn
(Spohn, 1988) who has shown their close relationship with Jeffrey’s rule of
revision in probability theory. Possibilistic counterparts to the revision by
uncertain inputs have been discussed in (Dubois and Prade, 1997). At the
syntactical level such a form of revision comes down to adding a formula to
a belief base at a certain prescribed level. The problem is made difficult be-
cause the belief base must be modified so that the added formula maintains
its prescribed priority, that is, it is neither implicitly inhibited by higher pri-
ority formulas that contradict it, nor pushed to higher priority levels by for-
mulas that imply it. An efficient way for doing this is proposed in this paper.

This paper, which is a revised version of a conference paper (Benferhat
et al., 1999), pursues the study of revision with uncertain input in possi-
bility theory framework started in (Dubois and Prade, 1997) by investigat-
ing efficient syntactic implementation schemes for both belief revision and
contraction in possibilistic logic and shows their full agreement with seman-
tics. Moreover, taking advantage of the connections of OCF with possibility
theory (Dubois and Prade, 1991), we also offer syntactic couterparts for
revision methods developed in OCF frameworks and we show for instance
that the syntactic counterpart of adjustment given in this paper extends the
one proposed by Williams (1995). Possibilistic (or OCF-based) revision can
be naturally iterated, and is more generally discussed with respect to the
Darwiche and Pearl’s postulates (1997).

Sections 3 and 4 restate the necessary background on possibilistic logic
and on Spohn’s ordinal conditional functions, and recalls the connection be-
tween these two frameworks. Sections 4 and 5 discuss semantic and syntactic
iterated belief revision in the possibilistic logic framework. A comparative
study with some existing works on iterated belief revision is also provided.
Section 6 presents conditioning and adjustment for OCFs and gives their re-
lationships with possibilistic belief revision. Section 7 is devoted to semantic
and syntactic contraction for both possibilistic logic and OCFs.

2. Possibilistic representations of epistemic states

Let L be a finite propositional language. - denotes the classical consequence
relation. ( is the set of classical interpretations or worlds, and [¢] is the set
of classical models of ¢. Often epistemic states (or cognitive states), viewed
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as a set of beliefs about the real world (based on the available information),
are represented by a total pre-order either on 2, or on the set of formulas.
The latter is called an epistemic entrenchment relation (Géardenfors, 1988).
These orderings reflect the strength of the various knowledge maintained by
an agent. A priority ordering over knowledge can be encoded using different
types of scale: a finite linearly ordered scale, the integers (possibly com-
pleted by +00), the unit interval [0, 1], etc. In this section, we describe the
representation of epistemic states in possibilistic logic both at the syntactic
and semantic level, where priorities are encoded by reals in the interval [0, 1].

2.1. Semantic representation of epistemic states

At the semantic level, an epistemic state is represented by a possibility dis-
tribution 7, which is a mapping from €2 to the interval [0, 1]. 7(w) represents
the degree of compatibility of w with the available information (or beliefs)
about the real world. 7(w) = 0 means that the interpretation w is impossi-
ble, and m(w) = 1 means that nothing prevents w from being the real world.
The interpretations such that 7m(w) = 1 are considered as normal, expected.
When 7(w) > 7m(w'), w is a preferred candidate to o' for being the real
state of the world. The less m(w) the more abnormal w is. A possibility
distribution 7 is said to be normal if Jw € €, such that 7(w) = 1.

Given a possibility distribution w, we can define two different measures
on formulas of the language:

— the possibility degree II,(¢) = max{n(w) : w € [¢]} which evaluates the
extent to which ¢ is consistent with the available information expressed
by =.

— the necessity degree N,(¢) = 1 — II(—¢) which evaluates the extent to
which ¢ is entailed by the available information.

When there is no ambiguity, we simply write II(¢) (resp. N(¢)) instead
of II;(¢) (resp. N(¢)). Note that II(¢) is evaluated from the assumption
that the situation where ¢ is true is as normal as can be. The duality
equation N(¢) = 1 —II(—¢) extends the one existing in classical logic, where
a formula is entailed from a set of classical formulas if and only if its negation
is inconsistent with this set.

Lastly, given a possibility distribution 7, the semantic determination of
the belief set (corresponding to the agent’s current beliefs) denoted by BS(r),
is obtained by considering all formulas which are more plausible than their
negation, namely:

BS(r) = {¢: [I(¢) > II(-¢)}.
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Namely, BS(r) is a classical base whose models are the interpretations
having the highest degrees in m. When 7 is normalized, models of BS(r)
are interpretations which are completely possible, namely [BS(7)] = {w :
m(w) = 1}. The formula ¢ belongs to BS(7) when ¢ holds in all the most
normal situations (hence ¢ is expected, or accepted as being true).

2.2. Syntactic representation of epistemic states

An epistemic state can also be represented syntactically by means of possi-
bilistic knowledge bases which are made of a finite set of weighted formulas

Y ={(¢i,a;) :i=1,n},

where a; is understood as a lower bound of the degree of necessity N(¢;)
(namely N(¢;) > a;). Formulas with null degree are not explicitly repre-
sented in the knowledge base (only beliefs which are somewhat accepted
by the agent are explicitly represented). The higher the weight, the more
certain the formula.

DEFINITION 1. Let X be a possibilistic knowledge base, and a € [0,1]. We
call the a-cut of X' (resp. strict a-cut), denoted by %>, (resp. Xs,), the set of
classical formulas in X having a certainty degree at least equal (resp. strictly
greater than) a.

A possibilistic knowledge base X' is said to be consistent if the classical
knowledge base, obtained by forgetting the weights, is classically consistent.
Each inconsistent possibilistic base is associated with a level of inconsistency
in the following way:

DEFINITION 2. Let X' be a possibilistic knowledge base. The inconsistency
degree of X' is:

Inc(X¥) = Max{a : X5, is inconsistent},
with Max(0) = 0.

Lastly, the syntactic computation of the belief set induced by X', denoted
by BS(2), is obtained by classical deduction from the set of formulas with
certainty levels higher than Inc(Y'), namely:

BS(Y) = {¢ : Cons(X) +- ¢},

where Cons(X) = {¢; : (¢i,a;) € X and a; > Inc(X)}. Clearly, possibilistic
reasoning copes with partial inconsistency. It yields non-trivial conclusions
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by using a consistent sub-part of X', which contains formulas belonging to
the layers having sufficiently high levels of certainty. Moreover, checking if a
formula belongs to BS(X') can be done with a complexity very close to that
of classical logic.

2.3. From the syntactic to the semantic representation

Given a possibilistic belief base Y, we can generate a possibility distribution
from X' by associating to each interpretation, its level of compatibility with
agent’s beliefs, namely with Y, as explained now.

When a possibilistic belief base is only made of one formula {(¢, a)}, then
each interpretation w which satisfies ¢ gets a possibility degree m(w) = 1
(since it is completely consistent with ¢) and each interpretation w which
falsifies ¢ gets a possibility degree m(w) such that the higher a is (i.e., the
more certain ¢ is), the lower 7(w) is. In particular, if @ = 1 (i.e., ¢ is
completely certain), then 7(w) = 0, namely w is impossible if w falsifies ¢.
One way to represent this constraint is to assign to m(w) the degree 1 — a
with a numerical encoding. More generally if = takes its value on a linearly
ordered scale, 1 — (-) is to be understood as an order-reversing map of the
scale. Therefore, the possibility distribution associated to X = {(¢,a)} is:
for any w € 2,

1 if wk ¢

1 —a otherwise.

mwm@0={

When X' = {(¢;,a;) : i = 1,n} is a general possibilistic belief base then all the
interpretations satisfying all the beliefs in X' will have the highest possibility
degree, namely 1, and the other interpretations will be ranked w.r.t. the
highest belief that they falsify, namely we get (Dubois et al., 1994):

DEFINITION 3. The possibility distribution associated with a knowledge base
Y is defined by: for any w € €2,

() = 1 if V(¢s,0;) € X, w € [¢i]
A = 1 — max{a; : (¢i,a;) € ¥ and w & [¢;]} otherwise.

An equivalent relationship set in the traditional AGM framework for
infinite first order logic can be found in (Peppas and Williams, 1995).

EXAMPLE 1. Let X = {(q,.3),(¢ V r,.5)}. Then:
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w 7wy (w)
qr 1
q—r 1
—qr .7
—gr .5

The two interpretations qr and q—r are the preferred ones since they are the
only ones which are consistent with X, and —qr is preferred to —~q—r, since
the highest belief falsified by —qr (i.e. (q,.3)) is less certain than the highest
belief falsified by —g—r (i.e. (gVr,.5)).

The possibility distribution 75 is not necessarily normal. However 7y
is normalized iff X is consistent. Moreover, the following correspondences
between syntactic and semantic representations can be verified (Dubois et
al., 1994):

Inc(X) =1 — max, 75 (w), and [BS(X)] = [BS(7x)].

EXAMPLE 1 (continued). In this case: [BS(wx)| = {qr,q—r}. Syntactically,
we have Inc(X) = 0. Then: BS(X) = {q,qVr} = q. It is clear that:
[BS(2)] = [BS(rz)]-

We just see that semantic and syntactic computation of belief sets coin-
cide, however note that there exist several syntactic forms which are seman-
tically equivalent.

3. Ordinal conditional functions and possibilistic logic

3.1. Semantics representation

Spohn (1988) has proposed a theory for the representation of epistemic states
that bears strong similarities with possibility theory and possibilistic logic,
as a tool for ordering a set of possible worlds. More precisely, the ordinal
conditional functions (OCF), introduced by Spohn for updating purposes,
are similar to possibility (and necessity) measures. An OCF is a function &
from L into the class of ordinals rather than in [0,1]. Here, for simplicity we
consider the set of natural integers N. An OCF, &, should satisfy: for all ¢,

#(¢) = min{x(w) : w € [¢]},

and k(L) = +o00. K(¢) is a degree of impossibility of ¢ (with the convention
that 0 corresponds to the minimal impossibility, i.e., maximal plausibility).
We have: k(¢ V 9) = min{x(¢),«(¢)}. Moreover, OCF are called admis-



A Practical Approach to Revising ... 111

sible by Spohn when k~1(0) # 0. Clearly, this condition is similar to the
normalisation condition used in possibilistic logic.

In OCF’s, the lower k(w) is, the more preferred w is (which is the con-
verse of possibilistic logic convention). When x(w) < k(w'), w is preferred to
w'. k(w) = 400 means that w is impossible, while k(w) = 0 means that ab-
solutely nothing prevents w from being the real world. Note that in Spohn’s
paper, the notion of impossible world is not explicitely stated, and every
interpretation is considered somewhat possible.

3.2. Syntactic representation

The syntactic representation in the OCF framework, largely developed in
(Williams, 1994; Williams, 1995), slightly differs from the one of possibilistic
logic. Williams starts with sets of integer-valued formulas K = {(¢;, k;) :
k; € N} which are (partial) epistemic entrenchment rankings, namely those
which satisfy V(¢;, k;) € K:

1. if b ¢; then k; = +o0 (tautology).
2. {¢; : kj > ki} ¥ ¢; (non redundancy).
3. if K is inconsistent, then V(¢;, k;) € min(K), k; = 0.

where min(K) contains all formulas in K having the lowest rank. Intuitively,
partial epistemic entrenchment rankings represent agent’s explicit beliefs,
where the higher the rank assigned to formulas in K the more firmly held
they are. The first condition simply means that tautologies are given the
highest rank. The second condition means that (¢;, k;) should not be entailed
by formulas of rank higher than k; and the last condition means that when
K is inconsistent the lowest rank of formulas in K should be equal to 0, the
rank of inconsistent formulas.

Given a partial epistemic entrenchment ranking K, Willams (1994; 1995)
gives a way to extend it to a full epistemic entrenchment ranking. This is
done by first defining:

Exp(K) = {¢z : (¢z,kz) € K and k; > 0} y

the set of explicit beliefs of an agent. Exp(K) is always consistent. The
full epistemic entrenchment associated with K is obtained by associating a
unique rank to each belief ¢ denoted by zx(¢), and defined in the following
way:

@ ={° if Exp(K) ¥ ¢,
2K (9) = max{k; : {¢; : (¥;,k;) € K,k; > k;} - ¢} otherwise;
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3.3. Correspondences between OCF and Possibilistic logic

It is clear that possibilistic logic and OCF’s are similar frameworks. The
basic difference is that OCF’s are defined on set of integers while possibilistic
logic measures are defined on [0,1]. The close relationship between these two
frameworks has been first pointed out in (Dubois and Prade, 1991) showing
that the set function N, defined by N.(¢) = 1 — e *(°9) is a necessity
measure, with values in a subset of the unit interval. Namely, it satisfies the
characteristic property of necessity measures. Indeed,

Ne(pA1h) =1 — e "CN™) = min(N,(¢), N (h))-

Moreover, letting Ny (¢) = 1 — e™*("9) it is easy to check that m,(w) is
equal to e *). Tndeed: mo(w) =1 — Ny(—¢p) =1 — (1 — e @) = ¢=5(®)
where ¢,, is a formula having exactly one model which is w.

At the syntactic level, it is clear that possibilistic knowledge bases are
not necessarily partial epistemic entrenchment rankings. However if we re-
move tautologies and the so-called subsumed beliefs then the resulting base
satisfies conditions i) and ii) of partial epistemic entrenchment. A formula
(¢, a) of X is said to be subsumed if Y-, classically entails ¢. It can be easily
verified that removing tautologies and subsumed formulas leads to an equiv-
alent knowledge base, namely it generates the same possibility distribution
(in the sense of Definition 3). Lastly, if ¥ is consistent then condition iii)
of partial epistemic entrenchment is also satisfied. When Y is inconsistent,
beliefs with lowest weight are not necessarily assigned 0.

The direct approach for generating a full epistemic entrenchment in the
OCF framework is basically the same as the one in possibilistic logic. How-
ever usually in possibilistic logic, given a possibilistic knowledge base, a
possibility distribution is generated instead of a necessity measure while in
the OCF framework a full epistemic entrenchment is generated rather than
a ranking on the set of interpretations. This is a matter of convenience,
since each full epistemic entrenchment (or a necessity measure) uniquely
determines a total pre-order on the set of interpretations (or a possibility
distribution) and conversely. From K one can first generate an OCF kg in
the following way: for all w,

nK(w) = max{kz : (1/),,](71) € K and w ¢ [1/),]}
with max(0) = 0.
It can be verified that the full epistemic entrenchment can be recovered
from kg, and conversely. Indeed, we have zx(¢) = kg (—d).

Table 1 summarizes the translation from the OCF framework to possi-
bilistic logic.
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OCF Possibility theory
K(w) 7 (w) = e ")
K(9) g (¢) = e *@
K | Zx ={(¢i,1 —e™): (i, ki) € K}

Table 1. From OCF to possibility theory

The converse transformation is only possible when k(w) = —In(7(w))
takes its value in the set of integers. However, with a finite language leading
to a finite set 2, it is always possible to re-encode the ordering induced
by — In(mw(w)) with integers. Clearly, the advantage of the scale [0, 1] is its
capacity to accommodate as many intermediary levels as is necessary for
expressing the ranking between beliefs.

4. Iterated semantic revision in possibilistic logic

Belief revision results from the effect of accepting a new piece of information
called the input information. In this paper, it is assumed that the current
epistemic state (represented by a possibility distribution), and the input
information, do not play the same role. The input must be incorporated in
the epistemic state. In other words, it takes priority over information in the
epistemic state. This assymmetry is expressed by the way the belief change
problem is stated, namely the new information alters the epistemic state and
not conversely. This assymmetry will appear clearly at the level of belief
change operations. This situation is different from the one of information
fusion from several sources, where no epistemic state dominates. In this
context, the use of symmetrical rules is natural especially when the sources
are equally reliable (Cholvy, 1998; Benferhat et al., 1999).

The choice of a revision method partially depends on the status of the
input information. Here, we first consider revising with a totally reliable
input, then we discuss the revision with an uncertain input. In the case of
uncertain information, the input is.of the form (¢, a) which means that the
classical formula ¢ should be believed to a degree of certainty a exactly.

4.1. Revision with a totally reliable input

In the case of revision with a totally reliable (or certain, sure) input p, it is
assumed that all interpretations that falsify p are declared impossible. This
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is performed by means of a conditioning device which transforms a possibil-
ity distribution 7 and a new and totally reliable information p into a new
possibility distribution denoted by n' = 7(.|p). We assume that p is not a
contradiction and that 7 is positive. Natural properties for 7’ are:

A, 7' should be normalized,

A, Vw & [p] then: 7'(w) =0,

Aj Vw,w' € [p] then: m(w) > m(w') iff ' (w) > 7' ('),
Ay if N(p) > 0 then Yw € [p] : 7(w) = 7’

Aj if 7(w) = 0 then 7 (w) = 0.

A means that the new epistemic state is consistent. Ao confirms that p
is a sure piece information. Ag means that the new possibility distribution
should not alter the previous relative order between models of p. A4 means
that when N(p) > 0 (p is a priori accepted) then revision does not affect .
A5 stipulates that impossible worlds remain impossible after conditioning.
Then it can be verified that any revision of the belief set BS(7) by p, leading
to BS(w(. | p)) with 7(. | p) obeying A1—Asj, satisfies all AGM postulates.

The previous properties A;—Ajs do not guarantee a unique definition of
conditioning. Moreover, the effect of the axiom Ay may result in a sub-
normalized possibility distribution. Restoring the normalisation, so as to

satisfy Aj, can be done using two different types of conditioning (Dubois
and Prade, 1998) (when II(p) > 0):

— In an ordinal setting, we assign maximal possibility to the best models
of p, then we get:

Il

1 if m(w) =1I(p) and wE p
(W |m p) = m(w) if 7(w) <I(p) and w F p
0 if w & [p].
This is the definition of minimum-based conditioning.
— In a numerical setting, we proportionally rescale all models of p upwards:
)ity
_{oe "¢TP
m(w =
wl.p) {0 otherwise.
This is the definition of product-based conditioning.
These two revision methods satisfy an equation of the form for all w:
m(w) = m(w | p) * I(p)

which is similar to Bayesian conditioning, * is min and the product respec-
tively. The rule based on the product is much closer to genuine Bayesian
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conditioning than the qualitative conditioning defined from the minimum
which is purely based on comparing levels; product-based conditioning re-
quires more of the structure of the unit interval. Besides, when II(p) =
0, 7(w |m p) = m(w |. p) = 1, Vw, by convention.

EXAMPLE 2. Let us revise the possibility distribution mx given in Ezam-
ple 1 by the information that q is certaintly false. If we use minimum-based
conditioning we get:

w | 72w |m —q)
-qr 1
—g-r 5
qr 0
q—r 0

However, if we use the product-based conditioning, we get:

w | me(w] —q)
-qr 1
—g-r 5/7
qr 0
q—r 0

4.2. Revision with an uncertain input

We shall consider the revision of 7 by some uncertain input information of
the form (p, a) into a new epistemic state denoted by 7’ = m(w | (p,a)). The
input (p, a) is interpreted as a constraint which forces 7’ to satisfy:

N'(p) = a (i.e., [I'(p) = 1 and I'(-p) = 1 — a).

Clearly, properties defined for revision are all suitable for revising with un-
certain input except Ag which is no longer appropriate since IT'(=p) # 0 for
a < 1. As is replaced by the following two axioms:

A, () =1,II(-p)=1-a.

Al Vw,w' ¢ [p] if 7(w) > 7(w') then 7' (w) > 7'(w').
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Al preserves the relative order between countermodels of p, but in a weaker
sense than in axiom Ag for the models of p. Note that there is no further
constraints which relate models of p and countermodels of p in the new
epistemic state.

Ag and AY suggest that revising with uncertain input can be achieved
using two parallel changes with a sure input: first, a conditioning on p
and one on —p. Then, in order to satisfy A%, the distribution n(- | —p)
is denormalized, so as to satisfy II'(-p) = 1 — a. Therefore, revising with
uncertain information can be achieved using the following definition:

B m(w | p) if wEp,
m(w| (p,a)) = {(1 —a)*m(w | -p) otherwise.

where #* is either min or the product, depending on whether conditioning
is based on the product or the minimum operator. When *=product (resp.
min) the possibilistic revision is called product-based (resp. minimum-based)
conditioning with an uncertain input, denoted n(w |. (p,a)), (resp. m(w |m
(p,a))). Table 2 displays the expression of m(w | (p,a)) depending if w is a
model or a countermodel of p. From this table, it is clear that the new rank-
ing on models of p is simply obtained using conditioning with a sure input.

wEp wkE -p
1 if m(w) =T1(p) 1-—a if 7(w)=T1(-p) or 7(w)>1—a
W |m (p,2) {'n’(w) otherwise. {'n(w) otherwise.
m(w |. (p,a)) m(w)/TI(p) (1 —a) - m(w)/T(=p)

Table 2. Definition of w(w | (p,a))

The new ranking of countermodels of p depends on the relative position
of the a priori certainty of p, and the prescribed posterior certainty of p:

— If N(p) < a and when * = min, all interpretations that were originally
more plausible than 1 — a, are forced to level 1 — a, which means that
some strict ordering between countermodels of p may be lost. When
* = product, all plausibility levels are proportionally shifted down (to the
level 1 — a).

— If N(p) > a the best countermodels of p are raised to level 1 — a. More-
over, when * = product, the plausibility levels of other countermodels are
proportionally shifted up (to level 1 — a).

Note that in Table 2 when @ = 1, we recover conditioning by a totally
reliable input.
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When * = product, a stronger version of A% holds whereby the order of
countermodels of p is fully preserved, hence it satisfies:

Ag Vwi,wy ¢ [p], m(w1) < m(we) iff 7' (w1) < 7' (w2).

Moreover if N(p) < a, we can check that the following two postulates are
also satisfied:

Ay Tfw Fpand we F —p then m(w;) < m(we) only if 7' (w1) < 7' (w2).
Ag Ifw; Fpand wy F —p then m(w;) < m(wse) only if 7' (w1) < 7' (ws).
EXAMPLE 3. Let us again consider the possibility distribution wx of Exam-
ple 1. Let (g V r,.2) be the uncertain input. Note that N, (¢ V r) = .5,

and hence taking into account the input should decrease our belief in the
information q V r. Using minimum-based conditioning, we get:

w |7y(w|m(gVr,.2)
qr 1

q-r 1

—qr .7

—g-r 8

In this example, the product-based conditioning leads to the same result. Note
that the main difference with conditioning with sure input is that counter-
models of p are no longer impossible.

In the above view, the uncertain input is viewed as a constraint which is
enforced. However, another view exists (Dubois and Prade, 1997) where the
input is taken into account only if it leads to a strengthening of the certainty
of m; it corresponds to the following definition:

ECIN) ifwkp
m(w | (p,a)) = {min(l —a,m(w)) otherwise.

With this definition, in Example 3, no revision would take place.

4.3. Related works

Clearly possibilistic revision operators also deal with iterated belief revision,
since the underlying ordering (here a possibility distribution) used in a be-
lief revision process is not lost after a revision step. Several authors have



118 S. Benferhat, D. Dubois, H. Prade, M.-A. Williams

proposed postulates for iterated belief revision which are added to the AGM
postulates. Here, we briefly recall the ones proposed by Darwiche and Pearl
(1997), which are devoted to iterated belief revision operators which trans-
form a given ordering on interpretations, denoted by <, in presence of the
new information p, into a new ordering, denoted by <’. These postulates are:

CR; If w1 F p and ws E p then wy < wy iff w; <" wo.

CR; If w1 F —p and ws FE —p then w; < ws iff wy < wy.
CRg3 If w1 F p and wy F —p then w; < ws only if w; <" ws.
CR4 If w; F p and wy F —p then w; < ws only if w; <" ws.

CR; (resp. CR2) simply says that the relative ordering between models
(resp. countermodels) of p should be preserved after the revision process.
CR3 and CRy4 say that if some model of p is preferred to some countermodel
of p, this preference should be also preserved.

When revising with a completely sure input, none of the two possibilistic
revision operators satisfies Darwiche and Pearl’s postulates. This is basi-
cally due to Ag which contradicts the axiom CRa. Ag stipulates that all
countermodels of p should be impossible (in a qualitative setting, this can
be done by pushing all countermodels of p in a new lowest rank). Thus, the
Darwiche and Pearl’s postulates are appropriate in case of uncertain inputs.
In case of sure input, the revision process can be iterated, in a non-trivial
way, only if the succesive inputs are coherent with the totally sure part of
the successive bases (this requires that the inputs are together coherent).

Possibilistic revision with uncertain input is more in the spirit of the
Darwiche and Pearl postulates, except that in possibilistic revision there is
no limitation on the input (p,a) leading to a revision. In particular, it may
happen that in the current agent beliefs, the certainty of p is higher than a,
namely N(p) > a. In this case, the uncertain input would require that the
agent believes in p less. In such a case, possibilistic revision can reverse a
preference between some models of p and some countermodels of p. But this
is clearly forbidden by CR3 and CR4. However, decreasing the rank of p is
close to the idea of contraction rather than to the idea of revision.

Now, when N(p) < a, then we can easily check that the product-based
possibilistic conditioning, satisfies all Darwiche and Pearl postulates. Indeed,
Ag, Ag, Ay, Ag respectively corresponds to CR;, CR2, CR3 and CRy4.

Natural belief revision (Boutilier, 1993), also hinted by Spohn (1988),
can also be viewed as a minimum-based conditioning, with uncertain input
(Dubois and Prade, 1997). A natural revision by input p only comes down to
assigning to the most plausible interpretations in [p] a degree of possibility
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higher than those of any other interpretations. This is enough to ensure
that N'(p) > 0, where N’ is a necessity measure obtained after taking into
account p. This also retains the same ordering of interpretations as before
revision takes place, including the case of the interpretations outside of [p].
It implies that, after revision, some interpretations where [p] is not true may
remain more plausible than interpretations where [p] is true. Let a be such
that 1 > @ > max{n(w) : m(w) # 1}. Then the natural belief revision of a
possibility distribution = by an input p, denoted by 7 (w) can be encoded
in the following way:

n(w) = {w(w) if I(p) > I(-p),

sk )
(W |m (p,1 —a)) otherwise.

Lastly, in Darwiche and Pearl postulates, there are only weak constraints
which relate models of p and countermodels of p. Papini (Papini, 2001), has
considered a stronger constraint (also hinted by Spohn (1988)) by impos-
ing that each model of p should be strictly preferred to each countermodel
of —p, and moreover the relative ordering between models (resp. counter-
models) of p should be preserved. This revision operator can be captured
by product-based conditioning when possibility distributions are positive.
A possibility distribution 7 is said to be positive if Vw,7(w) > 0. Let
A'(p) = min{7n'(w) : w E p}, and a such that 1 —a < A’(p). Then we
can check that revising a possibility distribution 7 with an uncertain input
(p, a) using product-based possibilistic conditioning leads to Papini’s revi-
sion operator. Indeed, product-based revision shifts down all countermodels
of p below 1 — a (which represents a degree smaller than the one of the
worst model of p). The positiveness condition is necessary, since A'(p) > 0
allows to put countermodels of p at levels less than A’(p), which would not
be possible otherwise.

5. Syntactic iterated belief revision in possibilistic logic

5.1. Case of totally reliable inputs

A syntactic counterpart of revising with totally reliable information consists
of constructing from a possibilistic base X' and the new information p, a new
possibilistic base %’ such that:

Yw, 5 (w) = 75 (w|p),

where | can be either the minimum-based conditioning or the product-based
conditioning. The construction of X’ can be performed as follows:
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— add the input p to the belief base with highest possible priority (namely 1);

— compute the level of inconsistency z = Inc(X U {(p,1)}) of the resulting
possibly inconsistent belief base (when z = 1 the revision simply acknowl-
edges the input formula {(p,1)});

— drop all formulas with priority less than or equal to this level of inconsis-
tency.

This guarantees that the remaining beliefs are consistent with p. Concerning
the weights of remaining beliefs, |,,, leaves them unchanged, however | leads
to discounting them by decreasing their weight.

The following proposition gives the formal expression of X’ for the two
possible definitions of conditioning.

PROPOSITION 1. Let X be a possibilistic base and 7y be the possibility dis-
tribution associated with X (in the sense of Definition 3). Let p be new sure
information and z = Inc(X¥ U {(p,1)}). Then:

— the possiblistic base associated with 75 (w|mp) is:
' ={($,b) : ($,b) € X and b>z} U{(p,1)};
— the possiblistic base associated with wx(w|p) is:
2" ={(¢,f(b)) : ($,b) € ¥ and b >z} U{(p,1)}
with f(b):%’;:—;%.

PROOF. First observe that: II(p) = 1 —z. Now it is clear, in both cases, we
have for a given interpretation w which falsifies p that 7y (w) = 7gn(w) = 0.
Now let w be such that it satisfies p.

If 75(w) = I(p) = 1 — = then this means by definition that w satisfies
all formulas with a weight greater than 1 — z, hence w satisfies all formulas
of X', therefore my(w) = 1. Now assume that 7y(w) < 1 — z, then by
definition:

Ty = min{l —b;: (gbz,bz) € X and wkF (f)z}
= Min{{min{1 — b; : (¢,b;) € ¥ and w ¥ ¢; and b; > z},
min{l — b; : (¢i,b;) € X and w ¥ ¢; and b; < z}}
=min{l — b; : (¢;,b;) € ¥ and w ¥ ¢; and b; > z} (since 7x(w) < 1—1z)

= ng(w).

myn(w) = min{l — f(b;) : (¢i,b;) € X and w ¥ ¢; and b; > z}
= min{l — %"_"—;” : (di,b;) € X and wF ¢; and b; > z}
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= min{1=b% : (¢;,b;) € ¥ and w ¥ ¢; and b; > z}
= min{h—_(z—; : (¢i,b;) € X and w ¥ ¢; and b; > z}
_ mz(w) ) ™

Note that the computation of the resulting base is efficient. Its com-
plexity is the same as the one of computing the inconsistency level of a
possibilistic base. This can be done in logam satisfiability tests, where m
is the number of layers in Y. Moreover, the size of the resulting base is at
most equal to | X'| 4+ 1 which is reached when the input is consistent with the
possibilistic base.

EXAMPLE 4. Let us consider Examples 1 and 2 again, where ¥ = {(q,.3),
(gVvr,.5)}, and —q be the sure input.

It can be verified that z = Inc(X U {(—q,1)}) = .3. Using the above
proposition, the revision with minimum-based conditioning leads to:

»= {(_'qa l)a (q v, 5)}

It can be verified that: Yw, 75 (w) = 75 (w |m —q), where w5 (w |m —q) is the
possibility distribution computed in Example 2.
Similarly, if we consider the product-based conditioning we get:

X' ={(=q,1),(q Vv r,2/7)}.

And again, we can easily check that: Vw, 5 (w) = 75 (w |, —q).

5.2. Case of uncertain inputs

Syntactic revision methods can be provided for efficiently inserting a for-
mula at some prescribed level in a prioritized belief base in accordance with
semantic principles given in Section 4.2. Let

z = Inc(X U{(p,1)}), y =Inc(Z U {(-p,1)}),
= wd  g) =Y.

First, let us start with the case when z = y = 0, namely when X' is
consistent with p and -p, we get X' = ¥ U {(p,a)} (simple addition of
{(p,a)} in the case min-based conditioning. However, with product-based
conditioning,

2'=2XU{(p,a)} U{(¢Vp,a+b—ab):(¢,b) € T}

which leads to a more informative belief base.
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Then the two following propositions give the syntactic counterpart of
the two forms of conditioning with uncertain inputs when either p or —p is
inconsistent with X'

PROPOSITION 2. Let nx(w |m (p,a)) be the possibility distribution obtained
by revising Ty with (p,a) using minimum-based conditioning. Let X' be
defined in the following way:

— if X is inconsistent with —p then

' ={(p,a)} U{(¢,b) : (¢,b) € X and b >y}
U{(¢V-p,b):(¢,0) € X and b < y};

— if X is inconsistent with p then

2 ={(p,a)} U{(¢,b) : ($,b) € ¥ and b > z}
U{(¢Vp,b):(¢,b) € X and a <b<z}.

Then w5 = 3 (w |m (p,a)).

PrROOF. We only give the proof of the first part of the proposition, the
other case has a similar proof. Let us then condider the case where X' is
inconsistent with —p. This means that: II(p) =1 and II(-p) =1 —y.

Let w F p, then by definition:

7y (w) = Min{min{1 — b; : (¢;,b;) € X and ,w ¥ ¢; and b; > y}

min{l — b; : (¢i,b;) € ¥ and w ¥ ¢; V —p and b; < y}}

= Min{min{1 — b; : (¢;,b;) € ¥ and w ¥ ¢; and b; > y},
min{l — b; : (¢, b;) € X and w ¥ ¢; and b; < y}}

= min{l — b; : (¢s,b;) € ¥ and w ¥ ¢;}

=Ty (w) .

Let w ¥ p, then by definition:
g (w) = Min{l — a, min{l — b; : (¢5,b;) € ¥ and w ¥ ¢; and b; > y}}.
We distinguish two cases,

e either 7y (w) = II(—p) = 1 —y, this means that w satisfies all the formulas
of X' having a weight strictly greater than y, then:

min{l — b; : (¢i,b;) € X and w ¥ ¢; and b; > y} = 1.

Therefore: 75/(w) =1 — a.
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e or 7y(w) < 1—y, then:
7s(w) = Min{l — a, min{1 — b; : (¢;,b;) € ¥ and w ¥ ¢; and b; > y}}
= Min{l — @, min{1 — b; : (¢3,b;) € X and w ¥ ¢; and b; > y},
min{l — b; : (¢,b;) € X and w ¥ ¢; and b; < y}}
(since mx(w) < 1 —1y)
= Min{l —a, 75 (w)}. ]

This proposition improves the syntactic revision hinted in (Dubois and
Prade, 1997) by guaranteing the consistency with the semantics. Similarly,

PROPOSITION 3. Let s (w |. (p,a)) be the possibility distribution obtained by
revising wy with (p,a) using product-based conditioning. Let X' be defined
in the following way:

— if X is inconsistent with —p then
' ={(p,a)} U{(¢Vp,9(b) +a—a.g(d):(¢,b) € L and b >y}
U{(¢V-p,b):(¢,b) € X}
— and, if X is inconsistent with p then
2 = {(p, @)} U{(¢ f(%)) : ($,b) € & and b > z}
U{(¢Vp,a+b—ab): (9,b) € I}
Then wyr = mx(w |, (p,a)).

The size of the revised base is at most 2 - | Y|, and its computation can
be done efficiently since it needs at most 2 - log, m satisfiability tests (m is
the number of different layers in X').

EXAMPLE 5. Let X = {(q,.3),(¢ V r,.5)}, and let the input be (q V r,.2).
It can be verified that y = .5, then the syntactic revision using min-based
conditioning leads to

5= {(qgvr,.2),(qV(~gA-r),3),((gVr)V(~gA-r),.5)}

= {(qVvr.2),(qgV-r.3)} (after removing tautologies).

Note that X' still implies q but with a weight .2. So, this revision is respectful
of the original belief base. It can be easily verified that:

ms(w) = mx(w|(gVr,.2))

where wx(w|(qVT,.2)) is the possibility distribution computed in Ezample 3.
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As a corollary of Proposition 2, we can provide a syntactic counterpart
of natural belief revision, since we have shown that it corresponds to a
particular case of revision with minimum-based conditioning. Let a be such
that @ >0 and e < min{b; : (¢;,b;) € X¥'}. Then, the natural belief revision
of X, denoted by X, with (p,a) is described as follows:

— X remains unchanged if X' entails p already;

— otherwise if X' is consistent with p, we simply add p to X' into a new layer
with a priority equal to a,

— and in case of inconsistency with p, natural revision yields {(p,a)} U
{((ﬁz, bi) tb; > .’L‘} U {(¢z V p, bi) b < m}

In all cases, natural belief revision can be computed at the syntactic level in
an efficient way. Moreover, it can be easily verified that:

Tyn(w) = 7" (w).

6. Syntactic adjustment and conditionalization

6.1. adjustment

Williams (1994; 1995) has defined a general form of belief change she calls
“transmutations”. Given an uncertain input (p,3),i € N U {+oo} taken as
a constraint and an OCF k describing the agent’s a priori epistemic state, a
transmutation of k by (p, i) produces a new OCF &’ such that «'(-p) = 7 and
k'(p) = 0, i.e., the degree of acceptance of p is enforced to level ;. Williams
(1994) has introduced a qualitative transmutation called an adjustment. An
adjustment of k by (p, 1), is defined as follows:

Ky ifi=0
Ky = § (Kp )Gy 10 < <k(-p)
nfp’i) otherwise
where
k() = 0 ifwk -jnp and k(w) = k(—p)
k(w) otherwise

0 if wF p and k(w) = k(p)
k(o (W) = § k(w) if either w F p and k(w) # K(p) or w F —p and k(w) > i

1 otherwise.
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Kk, is a contraction. Dubois and Prade (1997) have shown that for i > 0 the
expression of Williams’ adjustment can be simplified as follows:

pr,i)(w) = min(k(w | p), max (i, £(w | =p)))

where
+oo ifwk-p
Kw|p) = {klw) if K(w) > K(p)
0 if K(w) = k(p)
which is the counterpart of the min-based conditioning with uncertain input
given in Section 4.2.

6.2. conditionalization

Spohn (1988) also introduces conditioning concepts, which transforms an
ordinal conditional function (or kappa function), into a new one. First, he
introduces the notion of p-part of x:

e the p-part of k is the conditioning by a formula p defined by

Yw € Q, k(w | p) = k(w) — k(p).

e the (p,7)-conditionalization of x, say k(w | (p,%)) is a conditioning opera-
tion by an uncertain input «'(p) = 4, defined by

K(w i) = K(w | p) fwkp
(@ [ (p,9)) {H,ﬁ(whp) if w F —p.

Darwiche and Pearl (1997) have proposed an iterated belief revision op-
erator, which satisfies AGM postulates and CR;-CRy, based on a dynamic
version of Spohn conditionalization. They choose 7 = k(p) + 1. This choice
is made in order to guarantee that the degree of belief on p will increase
after the revision step.

6.3. relationships with possibilistic conditioning

The following proposition relates the two forms of revision in OCF framework
with the two definitions of conditioning with uncertain input in possibilistic
logic setting. This is done with the help of Table 1.
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PROPOSITION 4. Let k be an OCF, (p,i) be the input information and kK1,
ko be the revision of k using adjustment and conditionalization. Let m = e™*
(resp. m1 = e "1, w9 = e "2) be the possibility distributions associated with
K, k1, ko using Table 1. Then:

® Vwaﬂ'l(w) = 7!'((4) lm (pa 1- e_i))7 and
o Yuw,m(w) =m(w | (p,1—e?)).

The above proposition means that adjustment in OCF corresponds to
possibilistic minimum-based conditioning with uncertain input, and condi-
tionalization in OCF corresponds to possibilistic product-based conditioning
with uncertain input.

As a corollary of this proposition, it is possible to provide a syntactic
counterpart of adjustment and conditionalization. Let K be a partial epis-
temic entrenchment, and kKx be its associated OCF. Then it is possible to
directly construct K’ such that:

KK = K?p,i) (resp. kg = K(w | (p,1)))-
where n’("p 0 (resp. k(w | (p,7))) is the result of applying adjustment (resp.

conditionalization) on k.
Table 3 summarizes the structure of K.

1. K is inconsistent with —p

Adjustment {(,))}U{(¢,5):5 >n}U{(¢V -p,j):j <n}
Conditionalization | {(p,))}U{(¢Vp,j—n+i):j>n}tU{(¢V p,j)}

2. K is inconsistent with p

Adjustment {(p,1)} U{(¢,5) : 5 >m}U{(¢Vp,j):i<j<m}
Conditionalization | {(p,))}U{(¢,5 —m):j>m}U{(dVp,j+1i):i<j<m}

where
m =min{i : {¢ : (¢p) > i} is consistent with p},
n=min{i : {¢ : k(¢)) > i} is consistent with —p}.

Table 3. Syntactic counterpart of Adjustment and Conditionalization

Besides, from this table we can immediately give the syntactic counter-
part of the Darwiche and Pearl (1997) proposal, where they set semantically
i = kg (p) + 1 (which is equivalent syntactically to setting i = n+1), we get:
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e if K is inconsistent with —p then:

K' ={(p,)}U{(¢Vp,j+1):(¢,5) € K and j > n}
U{(¢V-p,7):(d5) €EK};

e if K is inconsistent with p then:

K' = {(p,i)} U{(¢,5 —m) : (¢,j) € K and j > m}
U{(¢Vp,j+i):(47) €K}

7. Semantic and syntactic possibilistic contraction

Contraction is the process of forgetting some old beliefs. Hence, one may
define a contraction as a particular case of revising with uncertain input
(p,a) with @ = 0. Clearly, using this interpretation, contracting p also leads
to contract —p. Indeed, when a = 0, the definition of 7(. | (p,a)) (where | can
be either minimum-based or product-based conditioning) from Section 4.2
yields a result which is symmetric with respect to p and —p:

_Jrw|p) ifwEp
( |(p,0))—{7r(wlﬂp) .

such that II(p) = II(-p) = 1. This is stronger than the definition of contrac-
tion used in (Gérdenfors, 1988) since when —p is believed, then contracting
with p does not modify 7. In this section, we propose to see how contraction
in the sense of Gardenfors can be handled in the possibility theory frame-
work.

The contraction of a possibility distribution with respect to p corresponds
to forgetting that p is believed if p was previously in the belief set (i.e., if
p € BS(m)). In such a case, the result m, of the contraction must lead
to a possibility measure II; such that II; (p) = I, (-p) = 1, i.e. complete
ignorance about p. Intuitively if II(p) = II(-p) = 1 already exists, then we
should have m,” = . Besides if p € BS(mr) then we should have 7, (w) = 1 for
some w F —p, and especially for those w such that II(-p) = 7(w). IfII(—p) =
1 > II(p), i.e. —p represents an accepted belief, m should be unchanged. It
leads to (Dubois and Prade, 1992):

_ 1 if m(w) =TII(—-p) and w F —p
Ty (W) = :
m(w) otherwise.
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This contraction rule will be called minimum-based contraction.
If II(-p) = 0, what is obtained is the fullmeet contraction (Gardenfors,
1988). By construction, 7, again corresponds to the idea of minimally
changing 7 so as to forget p, when there is a unique w F —p such that 1 >
II(-p) = m(w). When there are several elements in {w F —p, 7(w) = [I(-p)},
minimal change contractions correspond to letting 7, (w) = 1 for any selec-
tion of such situation, and 7, corresponds to considering the envelope of the
minimal change solutions. This contraction coincides exactly with a natural
contraction in the sense of Boutilier and Goldzsmidt (1993).

An alternative contraction rule, called product-based contraction is:

@), ifwk-p
(w) =

1I(=p)
m(w) otherwise,

Tp

that is the companion to the numerical product-based possibilistic revision
rule. Table 4 gives the syntactic counterpart of contraction for both defini-
tions of contraction.

Z/
min-based contraction {(¢,0) : 6>y} U{(dV —p,b):b<y}
product-based contraction {(¢,9(b)) :b>y}U{(pV —p,b)}

where y = Inc(X U {(-p,1)}) and g(b) = 8—}:%

Table 4. Syntactic contraction

8. Conclusion

This paper has presented a simple generic tool for modifying prioritized belief
bases. A large class of elementary changes in a prioritized belief base can be
captured in terms of conditioning, and/or rescaling step. These operations
can be easily implemented in practice at the syntactic level, in agreement
with the semantics. Revision operators can be efficiently computed, e.g., for
instance if the prioritized belief base is composed of Horn clauses, revising it
(with totally reliable or uncertain input) is polynomial. Similar results have
been provided for the contraction process.

Revision and contraction operations are not only useful in the handling
of knowledge bases describing what is known or believed about the state
of the world at some certainty degrees. It should be also of interest for
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modifying bases representing preference profiles under the form of a set of
goals to be reached with different levels of priority, when new requirements
are introduced. This second type of problem may lead to still more fruitful
applications.
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