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ABSTRACT 
 

I develop Special Relativity with backward-light-cone simultaneity, which I call, for 

reasons made clear in the paper, ‘Apparent Simultaneity’. In the first section I show 

some advantages of this approach. I then develop the kinematics in the second 

section. In the third section I apply the approach to the Twins Paradox: I show how it 

removes the paradox, and I explain why the paradox was a result of an artificial 

symmetry introduced to the description of the process by Einstein’s simultaneity 

definition. In the fourth section I discuss some aspects of dynamics. I conclude, in a 

fifth section, with a discussion of the nature of light, according to which transmission 

of light energy is a form of action at a distance. 
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1 Considerations Supporting Backward-Light-Cone Simultaneity 

In an earlier paper (Ben-Yami [2006]) I argued, among other things, that in Special 

Relativity we can define the events simultaneous with a given event as those on its 

backward light cone. In this paper I shall examine some implications of this definition 

for our understanding of various physical and philosophical issues. 

 I start with a brief summary of the relevant points made in my earlier paper. 

First, following, with minor modifications, Reichenbach ([1928], § 22), I maintained 
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that an effect cannot precede its cause; this was supposed to be an analytic truth 

expressing a conceptual relation between temporal and causal concepts.
1
 Next, this 

time following Malament ([1977]) and Rynasiewicz ([2000]), I examined which rules 

explicitly defining simultaneity relative to an observer are possible, given some 

minimal constraints on simultaneity, and demanding that our rule give acceptable 

results independently of the future history of the observer. If we limit ourselves to 

inertial observers, then three such relations are possible: any event in an inertial 

observer’s history can be defined as simultaneous either with all events on its 

backward light cone, or with all events on its forward light cone, or with all events 

simultaneous with it according to the standard simultaneity introduced by Einstein in 

his 1905 Relativity paper (pp. 893-4).
2
 If we admit, however, non-inertial segments to 

the history of an otherwise inertial observer, then Einstein simultaneity relative to that 

observer is no longer an acceptable simultaneity relation. By contrast, both backward 

and forward light cone simultaneity are definable not only for such observers, but for 

any non-inertial observer as well. 

 

1.1 Temporal order 

We shall first demonstrate a conceptual problem involved in Einstein simultaneity. 

Suppose A and B are inertial bodies at rest relative to each other, a distance d apart; 

an astronaut is traveling from A to B with velocity v relative to A, and upon arrival at 

B immediately turns back and returns to A with velocity -v. When the astronaut 

arrives at B, then, relative to the astronaut, a star C explodes, C being on the line 

connecting A and B, and, relative to A, AB = BC = d. 

 When did C explode relative to the astronaut? It seems that I have just said just 

that: when he arrived at B. But the answer is not that simple. The astronaut arrived at 

B at time d/v relative to A. Applying Lorenz transformation, where the primed frame 

is the astronaut’s: 

 

t’ = (t – vx/c
2
)/(1 – v

2
/c

2
)
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, 

 

we see that the explosion happened at t’ = (d/v)(1 – v
2
/c

2
)
1/2

 according to the 

astronaut’s clock. Since the explosion happened at x = 2d relative to A, then, using the 

same formula again, we see that it happened at t = (d/v)(1 + v
2
/c

2
) relative to A. 

However, on his way back, the astronaut’s time, t”, is related to A’s by the formula: 
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The constant –2dv/c
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/(1 – v

2
/c

2
)
1/2

 is the result of the fact that the origin of the 

astronaut’s present reference frame did not coincide with A’s at x = 0, t = 0. If we now 

calculate when did C explode relative to the astronaut’s present reference frame, we 

get the result: 
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1
 In the meantime I have published a paper against Dummett’s argument supporting the possibility of 

such ‘backwards’ causality (Ben-Yami, [forthcoming]). 
2
 Standard or Einstein simultaneity is that according to which the speed of light in vacuum is constant 

between any two points relative to any observer. Since the term ‘standard’ lends it some linguistic 

pride-of-place over other simultaneity schemes, I shall use the phrase ‘Einstein simultaneity’ below. 
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That is, sometime on his way back from B to A (assuming v < c/√3, otherwise the 

astronaut first arrives at A). 

 So when did C explode relative to the astronaut? It seems that according to 

Einstein simultaneity that single explosion is simultaneous with two different events 

in the astronaut’s history: first, with his arrival at B, and later with some event—α, 

say—on his way back to A. So after his arrival at B but before α, has C exploded or 

hasn’t it relative to him? Well, it both has exploded and hasn’t yet exploded. And at α, 

it is exploding although that explosion has already occurred. Similarly, things that 

happened after the explosion happened before that same explosion as well (and we 

can add more absurdities). Nothing much is left of our concepts of temporal order. 

 These are results we get if we try to standardly define simultaneity and 

temporal order relative to inertial observers with non-inertial segments in their 

history. They are a consequence of the fact that any such observer has simultaneity 

plans that are tilted relative to each other. Of course, we can still introduce this 

coordinate t and make all sorts of calculations with it—this is, in fact, what I have just 

done. But if we wished this coordinate to express what we understand by time and 

temporal order, we have to give up much of that idea, more than is usually realized. 

 By contrast, if every event in the history of an observer is defined as 

simultaneous with all events on its backward light cone, no such absurdities follow, 

and what we understand by temporal order is, in this respect, preserved. I think this is 

a conceptual advantage of backward light cone simultaneity over Einstein’s. 

 

1.2 The meaning of coordinates 

Let us linger a little longer on the meaning of coordinates. There are of course many 

ways in which coordinates can be introduced. We can, for instance, measure distances 

in the east-west direction in meters, and those in the north-south direction in feet. As a 

result, turning a table ninety degrees would usually change its coordinate length. Still, 

we would like to say that its length did not really change due to this turn—the change 

is merely nominal, so to say; in this case the coordinates no longer express length 

properly. We define length by means of rigid objects, which are those that preserve 

their relative lengths, up to the desired accuracy, when transformed in space and time; 

and our coordinates no longer express this feature. So if we wish our coordinates to 

express some physical reality, not every measurement convention that enables the 

scientifically necessary mathematical representation of facts is equally acceptable. 

 These considerations also apply to the representation of time by our 

coordinates. If all we desire is the ascription of a number to every event in history, 

then there are of course many ways of doing that. We can even have ‘time’ flowing 

backwards, if we wish. Brown, for instance, in his recent defense of the 

conventionality of distant simultaneity, notes ([2006], p. 97): ‘Let me testify, having 

flown from New Zealand to both North and South America, that arriving before you 

left is survivable!’ I hope that Brown would agree, though, that crossing the 

International Date Line eastward is not a way of becoming a day younger. Revolving 

your clock’s hands 24 hours backwards is a legitimate way of maintaining your 

coordination with society, but by doing that your clock has stopped representing 

correctly the time you have lived. 

 Suppose we chose our coordinates so that none represented what we 

understand by length or as the time that has passed on the observer whose coordinates 

they are. This is of course mathematically possible. However, it will constitute a 

deviation from what we ordinarily understand by coordinates. Moreover, since the 
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physical information captured by coordinates as ordinarily understood is significant, 

we should in that case find ways to extract that information from our coordinates. 

They would, in a sense, conceal the information. I therefore think that to the extent 

that coordinates can represent physical reality, we better have coordinates that do that. 

If we can introduce coordinates that express length, duration and the relation of 

causality to time, we should. 

 This might be impossible, or impossible globally, in some circumstances—e.g. 

curved space-time; but in this paper we consider flat space-time, with only occasional 

excursions to how curvature, or some kinds of curvature, would affect our results. 

 Let us return, then, to our discussion of coordinates in Special Relativity. Our 

t-coordinate was originally meant, in Newtonian space-time, to express what we 

understand by time. If we want to preserve as much of that as we can within the 

framework of Special Relativity, then we should not allow for an effect to precede its 

cause, or to a single instantaneous event to be simultaneous with more (or less) than 

one moment in an observer’s history. This last constraint, as I have shown above, 

makes backward-light-cone simultaneity preferable over Einstein simultaneity.
3
 

 

1.3 Dependence of simultaneity on location and relative motion 

We shall now consider another respect in which the former synchronization is 

preferable over the latter. As I noted in my [2006] paper, and as was previously noted 

by Sarkar and Stachel ([1999], abstract and p. 218), while according to Einstein 

simultaneity, simultaneity is independent of an observer’s place, according to backward-

light-cone simultaneity it is independent of the observer’s velocity. That is, if two inertial 

observers are at rest relative to each other, events that the one would consider Einstein-

simultaneous would be considered such by the other as well; while two inertial observers 

at the same place, one moving relative to the other, would not consider the same events 

Einstein-simultaneous. By contrast, two remote observers would not consider the same 

events backward-light-cone simultaneous, while two observers at the same place—

whether inertial or not—would. 

 In this respect, two remote inertial observers at rest relative to each other, form, 

according to Einstein simultaneity, a system—a reference frame, at least from a temporal 

point of view. I think this does not reflect any physical reality. These observers are 

influenced by different causes and in different order, and the information exchange 

between them may take time of several orders of magnitudes greater than intervals 

already significant for each observer. If a system is primarily understood as ‘an 

organized or connected group of objects’ (OED), then these observers do not constitute 

any. 

 On the other hand, suppose we are in the same room, doing various things 

together and frequently moving relative to each other. I think it is safe to say that by 

virtue of our interactions we constitute a system. However, due to our relative motion, 

not the same events are Einstein-simultaneous relative to each of us. If I am moving 

relative to you in velocity v, then what is happening now at x relative to you happens at 

 

–vx/c
2
/(1 – v

2
/c

2
)
1/2

 

 

relative to me. Even if v is very small relative to c, for sufficiently great distances this 

term can be made arbitrarily large. Yet this disagreement in simultaneity judgments, 

                                                 
3
 My discussion in this section was influenced by the work of Meir Buzaglo on the logic of concept 

expansion and its relation to rationality; see Buzaglo [2002]. 
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the fact that a distant explosion of a supernova that is happening now relative to you 

will happen in a day’s time relative to me, reflects no relevant difference between us. 

Einstein simultaneity creates a nominal distinction and does not reflect the fact that 

due to the instantaneous interaction between us we form a system. 

 By contrast, according to backward-light-cone simultaneity, observers in 

relative motion but in the same place judge the same events simultaneous. Since 

relative to both of them the fastest possible signal travels with the speed of light, the 

events they judge simultaneous with a certain event in their common history are those 

events that can then influence them by signals moving with the speed of light. Their 

common place in the nexus of causes is thus reflected in their common simultaneity 

judgments. On the other hand, two distant observers, whether in relative rest or 

motion, disagree in their simultaneity judgments, again reflecting the fact that events 

of different sets simultaneously influence each of them. 

 In this respect, backward-light-cone simultaneity represents the causal order 

and what we understand by a physical system better than does Einstein simultaneity. 

By contrast with the latter, it considers as frames of reference only physically real 

systems. In view of our previous discussion of coordinates, that too is an advantage it 

has over Einstein simultaneity. 

 

1.4 Appearance as Reality 

We continue with a different kind of advantage backward-light-cone simultaneity has 

over Einstein simultaneity. 

 According to our pre-scientific approach, what we are now seeing is 

happening now. This view presupposes that the speed of light from source to observer 

is infinite; and indeed, most natural philosophers from Aristotle to Descartes argued 

that that is light’s speed. 

 With the advent of modern science, however, with its claim that light’s speed 

is finite, this pre-scientific view had to be given up. Our improved knowledge of the 

world (science) seemed to establish that the world is not as it appears to be. The things 

we now see are not only not happening now, but they did not even happen together at 

all: we now see the sun where and as it was eight minutes ago, but the moon where 

and as it was just over a second ago. In this way a gap opened between how the world 

appears to us and how we think it really is. The scientific image of the world became 

radically different from its manifest or apparent image.
4
 And, since in our non-

reflective moments, which constitute the great majority of our active life, we act on 

the basis of the world’s apparent image, we have to concede that our everyday attitude 

to the world involves an illusion. 

 However, if one adopts backward-light-cone simultaneity, this gap partly 

closes (yet there are others, of course). According to backward-light-cone 

simultaneity, what we now see through vacuum is what is happening now. The world 

is as it appears to be, in this respect. Science does not force us to reject our everyday 

view of the world. 

                                                 
4
 I shall use below the phrase apparent image, and not manifest image, for several reasons. First, the 

latter might imply commitment to the specific description of that image supplied by Sellars, who 

coined the phrase, and I’d rather avoid these implications. Secondly, manifest means clearly revealed or 

obvious (OED), which implies truth, an implication that would prejudge the status of that image; 

apparent, by contrast, can mean obvious, but can also be used to contrast something with what is real, 

as in ‘it is merely apparent’. No prejudging of the status of the apparent image is therefore implied. 
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 Since according to backward-light-cone simultaneity what appears to be 

happening now, that is, what we now see, is indeed happening now relative to us, this 

simultaneity can also be called Apparent Simultaneity. This is the phrase I shall use 

below. (The phrase ‘backward-light-cone’ should be rejected also because once these 

coordinates are accepted, that surface is no longer a cone but a plane.) 

 A reservation should be noted at this place. According to Apparent 

Simultaneity what we see is occurring now relative to us only if we see through 

vacuum. In case any medium in which light’s speed is slower than in vacuum is 

between observer and light source, the event seen is inside the lightcone of the event 

of seeing it, and therefore earlier, relative to the observer, than the seeing event. The 

effect of this is perhaps negligible in actual cases: taking the refractive index of air as 

1.0002926, and giving the atmosphere a generous 100 km height above the Earth’s 

surface (the speed of light in vacuum defined as 299,792,458 meters per second), light 

reaches the Earth less than 10
-7

 of a second later than it would through a vacuum. But 

such possibilities are of course of theoretical significance.  

 The fundamental idea of Apparent Simultaneity can be generalized to such 

cases as well, but I shall not do that systematically or in detail in this paper. I consider 

this paper as a first step towards a more general theory; its world is that of Special 

Relativity, with electromagnetic radiation propagating in flat and empty space-time. 

Although this is obviously an idealization, I think it is methodologically justified. 

Moreover, I believe its results are sufficiently interesting even if limited to that 

domain. I shall raise the question of the generalization of these results to full or 

curved space-time only at a few points, mainly towards the end of this paper. 

 

1.5 The Time Lag Argument 

Apparent Simultaneity has significant applications in the theory of perception as well. 

In this subsection we shall apply it to the Time Lag Argument. This argument first 

appeared in Leibniz’s New Essays on Human Understanding ([1996], Bk. II, Chap. ix, 

§ 8, p. 135), written during the first years of the 18
th

 century (but published only 

posthumously, in 1765). The argument, which relies on the hypothesis that light has a 

finite speed, was probably developed in the wake of Ole Römer’s observations, 

published in 1675, which seemed to establish that hypothesis. It reappeared in 

Russell’s The Problems of Philosophy ([1912], chap. 3, pp. 16-7), perhaps derived 

from Leibniz, with whose work Russell was well acquainted. From there it spread to 

become a commonplace of contemporary philosophy of perception (see the abundant 

references in Suchting [1969]). Here it is as it appears in Russell’s later Human 

Knowledge ([1948], p. 219): 

 

[T]hough you see the sun now, the physical object to be inferred from your 

seeing existed eight minutes ago; if, in the intervening minutes, the sun had 

gone out, you would still be seeing exactly what you are seeing. We cannot 

therefore identify the physical sun with what we see… 

 

As some would like to distinguish, unlike Russell, between what we see and the 

qualities of which we are directly aware but which we should not be said to be seeing 

(the ‘qualia’), we shall formulate this argument a little differently: 

 

1. Light reaches the seeing subject after it has left the seen object. 

2. During that time lag the seen object may have ceased to exist. 
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3. Necessarily, what we are directly aware of when we see an object, exists at 

that moment. 

4. Therefore, what we are directly aware of when we see an object is not the 

object seen. 

 

 Some have tried to criticize the Time Lag Argument by claiming that what we 

are directly aware of need not exist when we are aware of it. But I don’t find this 

plausible. When we see anything, whether near by or far away, the qualities of which 

we are directly aware are there for us to inspect and study, and we often can, if we 

wish, pay them more or less attention. It seems preposterous to claim that they may 

not be instantiated while these cognitive processes, focusing on them, are taking 

place. If the argument is unsound, its fault lies somewhere else. 

 Apparent Simultaneity suggests a different way out: according to it, the 

argument’s first premise is false. Relative to the observer, the event of seeing 

something is simultaneous with the event being seen. Accordingly, what we are 

directly aware of when we see an object may be the seen object. Direct realism is 

unharmed by the Time Lag Argument. 

 To show that the Time Lag Argument is unsound, we do not have to accept 

Apparent Simultaneity as the true simultaneity; it is enough that it is an optional 

simultaneity definition. If that is so, then the argument’s first premise in not true 

simpliciter; its truth is a matter of convention. Yet the argument assumes that its first 

premise is simply true. 

 Some might try to save the argument by claiming that even if light cannot be 

said to leave the seen object before reaching the seeing subject, it still takes the 

nervous system some time to transfer the signal from retina to brain, and during that 

time the seen object may have ceased to exist. But this response presupposes a 

Cartesian model of perception, as if the perceiving subject is a homunculus located 

somewhere deep in our brain. If, following an approach developed by Dennett [1991], 

we maintain that the time we see anything—we, the embodied human beings—cannot 

be determined more accurately than the vague interval between the activation of our 

retinas by the light and the subsequent activation of the relevant parts of our brain, 

then this line of response is no longer available. 

 Lastly, the Time Lag Argument is ineffective as regards other senses. We do 

hear people and smell flowers by means of ‘signals’ they emit, and the events of 

emitting these signals are earlier than the events of receiving them. Thus, the heard 

person and the smelled flower may have ceased to exist by the time they are heard and 

smelled. This might make the Time Lag Argument seem applicable to hearing and 

smell. However, there is a significant difference between the way we ordinarily 

assume we see things and the way we assume we hear and smell them. We do not take 

ourselves to see objects by means of seeing or perceiving the light they emit—we 

immediately see the objects themselves; but we do take ourselves to hear people by 

hearing their voices and smell flowers by smelling the scent, odor or smell they emit. 

We also say that sounds and smells reach us, while we do not say that colour—the 

corresponding primary object of sight—reaches us. That is, according to the apparent 

image, perception in the case of hearing and smell is indeed indirect. Thus, the 

applicability of the Time Lag Argument to these senses does not create any difficulty: 

it should indeed apply to them, since in their case perception is not direct. I presume 

this is the reason we do not find it applied to them in the literature. 

 My refutation of the Time Lag Argument assumed that we see things through 

vacuum. This, however, is hardly ever the case: the distant heavenly bodies of our 
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examples are always seen through the atmosphere. Although, given the calculations in 

the previous subsection, this makes practically next to no observable difference, 

possible cases in which the difference is huge can easily be imagined. And of course, 

10
-7

 seconds and 10
+7

 seconds may be the same from a theoretical point of view. So 

the general acceptability of my refutation of the argument depends on the applicability 

of these ideas to full and curved space-time. I shall return to these issues towards the 

end of my paper, where we shall see that my refutation requires a kind of 

generalization in order to be effective in the general case. I still thought it is 

worthwhile to bring it here in its more specific from, since it is generally advisable to 

commit oneself to fewer hypotheses where possible. With this caveat entered, I think 

that the acceptability of Apparent Simultaneity supplies us with a refutation of the 

Time Lag Argument. 

 

1.6 The speed of light as the greatest possible speed 

Why is the speed of light the greatest possible speed? To most natural philosophers up 

to and including Descartes, the answer was obvious, even analytic: because light’s 

speed is infinite. Greater speeds were inconceivable. With Ole Römer’s observations, 

however, light’s speed lost its special place, and since then and until 1905 physicists 

did not consider it as the greatest possible speed. Only with Einstein’s work did this 

change, when Einstein noted that ‘the speed of light physically plays in our theory the 

role of infinitely great speeds.’ ([1905], p. 903) Many found this result a kind of 

unsatisfactory brute fact, as is witnessed by the recurring discussion of the possibility 

of tachyons. 

 Apparent Simultaneity provides a different perspective on the issue. From its 

point of view, if light is emitted by A and arrives at B, then relative to B the event of 

light’s emission at A is simultaneous with the event of its arrival at B. That is, relative 

to B, light travels in an infinite speed from A to B. So relative to B, nothing could 

travel towards it with greater speed. In fact, if anything did travel from A to B with a 

greater speed, then relative to B it would arrive before it left; that is, relative to B it 

would be traveling from B to A. The explanation of light’s approaching speed being 

the ultimate speed is again analytic, and no brute fact is involved. 

 But this does not give us all we want. It is an empirical fact, the Light 

Postulate, that the time it takes light in vacuum to travel from A to B and back 

depends only on the distance D between A and B. It is 2D/c, where c is the constant 

designating light’s average speed on any such journey. Since according to Apparent 

Simultaneity, the time, relative to A, in which the light is reflected at B is the time of 

its arrival back at A (light’s speed towards A being infinite), it follows that relative to 

A light moves away from it with speed c/2. So although we have seen why according 

to Apparent Simultaneity the ultimate approaching speed is light’s, namely infinity, 

we still need an argument for why relative to any body of reference, the ultimate 

speed between any two points is light’s. Why cannot anything travel away from A, 

say, in a speed greater than c/2 relative to A? 

 Suppose that were possible, and that some thing traveled from A to B with a 

speed greater than c/2 relative to A. We shall assume that a signal S, carrying energy 

EA relative to A, is sent from A to B with v > c/2 relative to A. So relative to A, the 

energy at A after the transmission was reduced by EA, and the energy at B after the 

reception was increased by EA. Assume also that simultaneously with S, a light signal 

is sent from A to B. We saw above that relative to B, since S ‘arrives’ at B before the 

light emitted at A simultaneously with S does, S is actually traveling from B to A 
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relative to B. So relative to B, the energy at B after the event of S being at B is 

reduced by EB, and the energy at A is correspondingly increased by EB. To have 

energy preservation, we must have EB = -EA. So if, relative to A, A transferred energy 

to B by means of S, then relative to B, B increased its energy content by means of 

emitting S. We could increase the energy content of bodies by having them emit S-like 

signals. I don’t think this makes much sense. Moreover, if we think of A and B as 

agents—and there seems to be nothing in the description of the situation to make this 

impossible—then either A sent S or B did, but not both, as this scenario demands. For 

all these reasons, the idea of super-luminal signals seems to be incoherent. 

 This explanation might suspiciously look as sort of hocus-pocus: after all, 

couldn’t we introduce the analogous kind of simultaneity definition for any ultimate 

speed, and in this way turn it into ‘analytically’ ultimate? 

 The acceptability of Apparent Simultaneity depends, like that of Einstein’s, on 

the Light Postulate. And we had to rely on the latter to prove that light’s speed is the 

greatest possible speed between any two points relative to any body of reference. A 

given speed being a de facto ultimate speed would not therefore suffice to prove any 

higher speed to be incoherent. So not any ultimate speed would do. 

 Apparent Simultaneity can also explain why the speed of light is independent 

of the speed of its source: we see things when they happen, never mind whether or not 

they move relative to us. 

 Lastly, if light arrives at B, relative to B, the moment it was emitted from A, 

we can also understand why no body can be accelerated to the speed of light. If a 

body moved in a straight line from A to B in the speed of light, then it would be, 

relative to B, simultaneously in all places between A and B. But no body can be in 

more than one place at the same time. So no body can be accelerated to the speed of 

light. (But wouldn’t light itself then be in more than one place at the same time? And 

is this acceptable? We shall discuss this issue in the paper’s last section.) 

 

1.7 More on the Apparent Simultaneity approach 

The literature abounds with papers on simultaneity definitions different from 

Einstein’s. Einstein himself suggested one already in his first 1905 Relativity paper 

(p. 893), and the discussion has been flourishing ever since. The discussion in this 

paper, however, differs from previous ones in an important respect, I think. Earlier 

discussions were interested in one or more of these three things: either in showing 

why Einstein simultaneity is the only acceptable one, or in showing that other 

definitions of simultaneity are also acceptable, or in distinguishing by means of 

alternative acceptable simultaneity definitions the factual from the conventional in 

Relativity Theory. By contrast, I attempt to show here that in several respects 

Apparent Simultaneity reflects reality better than does Einstein simultaneity. In this 

way it can help us understand various issues better than does Einstein’s. These issues, 

as I have tried to demonstrate above, involve both questions belonging to physics 

proper and questions pertaining to our interpretation of nature in a wider sense. 

 An important advantage of Apparent Simultaneity over other possible 

simultaneity definitions, Einstein’s included, is that Relativity theory should include, 

whichever definition of simultaneity it uses, the description of things according to 

Apparent Simultaneity as well. The way Apparent Simultaneity describes the 

phenomena is not conventional: this is the way things really appear. Even if we use 

Einstein simultaneity, we may ask: how would things look to observers? Would 

moving rigid rods appear contracted? Would time in a moving system appear 
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dilated? The replies to these and related questions are not given by the length 

contraction and time dilation resulting from the Einstein simultaneity definition, but 

by those resulting from Apparent Simultaneity. These latter results should therefore 

be derived in any presentation of Special Relativity. All the results of Apparent 

Simultaneity in which it differs from other simultaneity definitions represent real 

facts: the way things look. No analogous different result of any other definition 

represents an analogous matter of fact. In this sense, all other simultaneity definitions 

add, to the facts of Relativity, cancelable middle terms, mediating between one 

observation and another, but representing no fact themselves. Their experiential 

predictions, by contrast, are also derivable if the theory is developed on the basis of 

Apparent Simultaneity. 

 This is true with respect of forward light cone simultaneity as well. The 

advantages mentioned above of apparent or backward light cone simultaneity over 

Einstein simultaneity with respect of temporal order and the concept of a physical 

system are shared by it and forward light cone simultaneity. The one just mentioned, 

as well as those mentioned in the subsections ‘Appearance as Reality’ and the one on 

the Time Lag Argument, are distinctive of Apparent Simultaneity. That is the reason 

this paper discusses it, and not forward light cone simultaneity. 

 The factuality of reality’s representation by means of Apparent Simultaneity, 

the non-factuality of all other representations by means of alternative simultaneity 

definitions, and the other advantages of Apparent Simultaneity discussed in previous 

subsections, support it as the preferable simultaneity definition. It is still possible, 

however, that Apparent Simultaneity would lead to a mathematically more complex 

representation of reality (and it might have some additional drawbacks, of course.) If 

that is indeed the case, then Einstein simultaneity is preferable over Apparent 

Simultaneity for pragmatic reasons. There would be a clash, then, between different 

values a representation of the theory may have. 

 In the next section I develop the kinematics of Special Relativity with 

Apparent Simultaneity. After applying the results obtained there to the Twins Paradox 

in Section 3, I continue in Section 4 to discuss and present some of the corresponding 

dynamics. For reasons explained there, further developments, which are beyond the 

scope of this paper, are necessary in order to judge the full acceptability of Relativity 

with Apparent Simultaneity. Thus, despite the elegance of the results obtained below, 

the verdict on the mathematical practicability of this approach should await further 

work. 

 But before proceeding to the next section, I shall mention here (for lack of any 

better place) another aspect in which Apparent Simultaneity is comparable to 

Einstein’s. For reasons that were never clear to me, the fact that Einstein simultaneity 

coincides with simultaneity by slow clock transport was claimed by some, mainly in 

the past, to show that Einstein simultaneity is not conventional (see summary in Janis 

[2006]). I cannot see why, if A and B are at rest relative to each other, a clock that 

moves as slowly as possible from A to B should show which event in A is ‘really’ 

simultaneous with which one at B relative to their frame (the exact claim concerns of 

course taking limits etc.). Be that as it may, one can propose an analogous method for 

Apparent Simultaneity: fast clock transport. Suppose a clock is moved from A to B; 

suppose also that the clock is synchronized so that the time it shows on arrival at B is 

the same as that shown then by a clock stationary at B; let us denote the arrival event 

earrival and its time relative to B, tB; let us also denote by eLPD (for ‘latest possible 

departure’) the event at A which is the earliest one later than which no clock can be 

transported from A and arrive at B at earrival; then the time of eLPD relative to B is tB. 
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Now I don’t think this procedure shows that Apparent Simultaneity is non-

conventional or superior to any other simultaneity definition; but it does show that a 

kind of logic, whatever its merits, that was thought by some to support Einstein 

simultaneity, can be employed in support of Apparent Simultaneity as well. (That is, 

these considerations are intended as an ad hominem against an approach some thought 

confers Einstein simultaneity with some advantage over other simultaneity 

definitions.) 

 

 

2 Length and Time Change According to Apparent Simultaneity 

2.1 Purpose and framework 

This section develops the mathematical presentation of the kinematics of Special 

Relativity with Apparent Simultaneity. Since I am mainly interested in showing how 

Apparent Simultaneity throws new light on various phenomena, I shall derive in this 

section the formulas for length and time change (not always contraction and dilation!) 

only for a rigid body moving towards or away from the observer: this would simplify 

the mathematics, suffice for our purposes here and make the paper accessible to a 

wider audience. I shall, however, supply without proof the general results at the end of 

this section. The proofs for the general case are given in an appendix. 

 The coordinates appropriate to Apparent Simultaneity are spherical, and not 

Cartesian. This is because the way an observer sees a body is dependent on the angle 

between its direction of motion and the line connecting it to the observer. For 

example, a body A moving towards an observer and an otherwise identical body B 

moving away from the observer with the same speed would not appear the same to the 

observer. By contrast, two otherwise identical bodies moving, say, towards an 

observer with the same speed but not on the same line of motion would appear the 

same.
5
 

 As was mentioned above, it is an empirical fact, the Light Postulate, that the 

time it takes light in vacuum to go from A to B and back depends only on the distance 

D between A and B. It is 2D/c, where c is light’s constant average speed on such two-

way journeys (it is also of course the speed of light in vacuum according to Einstein 

simultaneity). If we define c as light’s average speed, then it is independent of 

synchronization method, since we measure the interval between light’s departure and 

return at the same point. Since according to Apparent Simultaneity, the time, relative 

to A, in which the light is reflected at B is the time of its arrival back at A (light’s 

speed towards A being infinite), it follows that according to A light moves away from 

it with speed c/2. 

 

2.2 Description of the thought-experiment 

A rigid rod AB is lying along the straight line connecting two material points, C and 

D, at rest relative to each other, point C being to its left and point D to its right. The 

rod AB is moving leftward toward point C with velocity v relative to C. The rest 

length of rod AB is L. Since we use the same method of synchronization according to 

each point (A, B, C and D), reciprocity holds, and point C is moving rightward 

                                                 
5
 My results are also not a particular case of Winnie’s [1970] general results for any synchronization, 

since Apparent Simultaneity is not a particular case of his Reichenbachian ε-method of 

synchronization. 
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towards AB with velocity v relative to A and to B. (I am interested only in the 

velocity’s absolute value here, and I therefore do not distinguish v from –v.) See 

figure 1. 

 

 

Figure 1 

 

We shall distinguish the speed of approaching from the speed of receding: we should 

not assume a priori that they are the same. Following the German, we shall call the 

former vher and the latter vhin. The velocity in which rod AB approaches C, relative to 

C, and in which C approaches AB, relative to A and to B, is vher. The velocity in 

which AB recedes from D, relative to D, and in which D recedes from AB, relative to 

A and to B, is vhin. 

 

2.3 Coordination of inertial clocks, at rest relative to each other 

We shall start by assuming that C is inertial. Since AB and D have constant velocity 

relative to C (in D’s case, zero), they are inertial as well. However, according to 

Apparent Simultaneity, if body β is at a certain moment in its history at the same 

place as the inertial body α, what is then simultaneous with α is simultaneous with β 

as well, whether or not β is inertial. Moreover, if body β is at momentary rest relative 

to α, then even if it is accelerating, the same bodies will be at rest relative to both, 

having their rest lengths, and therefore distances relative to α will then be equal to 

distances relative to β. Length change relative to α will therefore equal that relative to 

β. Moreover, since time change relative to α will be shown to depend only on velocity 

relative to it, the same (differential) time change would then occur relative to β as 

well. Our formulas below for length and time change are therefore applicable relative 

to any body, whether inertial or not. Consequently, inertial bodies have no privileged 

place in the kinematics of Special Relativity developed below. According to the 

kinematics of Special Relativity with Apparent simultaneity, acceleration is also 

relative. We shall see in Section 3 how this result is applied to the Twins Paradox. 

 Returning to our thought-experiment, although A’s clock and B’s clock are not 

mutually synchronized, each sees the other’s clock as ticking in the same pace as its 

own. This can be shown as follows. Suppose at tA = 0, A sends a light signal to B. 

When this light signal reaches it, B sets its clock to tB = 0. A sees this zeroing event at 

tA = 2L/c, the time it takes the light signal to travel from A to B and back according to 

A. Now the event tA = 2L/c is seen at B at tB = 2L/c, the time it takes a light signal to 

travel from B to A and back relative to B. And so on. So we see that a time interval at 

A equals the same time interval at B. According to the relativity principle, the 

contrary also holds, as can be shown directly as well. And this can be generalized to 

any time interval. 

 More generally, any inertial clock sees any clock stationary relative to itself as 

ticking in the same pace as it. Moreover, since we can imagine a clock at any point in 
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space, and relying on transitivity, it follows that for any two events, if two inertial 

clocks, stationary relative to each other, see these two events as occurring at the same 

place, they will measure the same time interval between the two events. 

 

2.4 Relation of approaching to receding velocities 

Let us first determine the relation of vher to vhin. Suppose that, according to B’s clock, 

C arrives at A at tB = 0. Then C arrives at B, according to B’s clock, at t = L/vher. 

Suppose further that according to A’s clock, C arrives at A at time tA = 0. Then 

according to A, C arrives at B at t = L/vhin. Moreover, since B’s clock shows zero 

when B sees C arrive at A, A will see B’s clock showing zero at tA = 2L/c: the time it 

takes a light signal to travel from A to B and back, relative to A. Following the 

previous subsection, let our two events occurring at the same place relative to both A 

and B be B’s zeroing its clock and C’s arrival at B. As we saw in the previous 

subsection, A and B measure the same interval between these two events. B of course 

measures the interval L/vher between them. Since according to A, B zeroed its clock 

2L/c after C’s arrival at A, the time between the two events at B is the time it takes C 

to get to B minus 2L/c. Accordingly: 

 

L/vhin – 2L/c = L/vher 

 

or 

 

1  1/vhin – 1/vher = 2/c 

 

and for future use: 

 

vhin = cvher/(c + 2vher) = vher/(1 + 2vher/c) 

vher = cvhin/(c – 2vhin) = vhin/(1 – 2vhin/c) 

 

 

2.5 Relation of approaching to receding lengths 

Secondly, let us determine the relations between the length of an approaching rod and 

that of a receding one. Following our former conventions, we shall call the former Lher 

and the latter Lhin. Now D, being to the right of AB, sees its length as Lhin and its 

velocity as vhin. It therefore measures the time between A’s arrival at C (B then being 

a distance Lhin to the right of C according to D) and B’s arrival at C as Lhin/vhin. C, by 

contrast, sees the length of AB as Lher, and it sees B approaching in velocity vher. It 

will therefore measure the time Lher/vher between A’s arrival and B’s arrival. Since C 

and D are at rest relative to each other, then according to Section  2.3 they measure the 

same interval between the two events occurring at the same place relative to each of 

them. Hence: 

 

2  Lhin/vhin = Lher/vher 
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2.6 Length change as a function of velocity 

We shall now determine the relation between the observed length of a moving rod and 

its rest length as a function of its velocity, both for an approaching and for a receding 

rod. We shall do that by considering different ways of measuring the interval between 

the meeting of A and C and the meeting of B and C. 

 Relative to C, B moves towards it in velocity vher, and, from the moment A 

reaches it (C), crosses a distance Lher. So the interval C measures between the two 

events is Lher/vher. 

 Relative to B, C moves with velocity vher towards it, and the distance between 

A to itself (B) is L. So B measures the interval L/vher between the events. 

 As we saw in Section  2.4, since B zeroed its clock when it saw C reach A, A 

saw B’s clock as showing the time tB = –2L/c when C reached it (A). So at that 

moment, C being at the same place as A, C also saw B’s clock as showing the time 

tB = –2L/c. And we saw in the previous paragraph that when C and B meet, B’s clock 

shows the time L/vher. Therefore, relative to C, the time that passes on B between the 

two events is L/vher + 2L/c. 

 Accordingly, the ratio between the rate time passes on an approaching body 

and on a stationary body, relative to C, is: 

 

(L/vher + 2L/c) / Lher/vher 

 

 Now according to B, C did zeroed its clock when it arrived at A, so the time 

C’s clock shows when they meet is indeed the time that passed on C between the two 

events. Therefore, the ratio between the rate time passes on an approaching body and 

on a stationary body, relative to B, is: 

 

Lher/vher / L/vher = Lher/L 

 

 Since B and C use the same synchronization method, and since their relative 

velocities are the same, then, assuming linearity (i.e., the aforementioned ratio is 

independent of the distance crossed), the two ratios are the same: 

 

(L/vher + 2L/c) / Lher/vher = Lher/L 

 

With a little algebra we now get the formula for the length-change of an approaching 

body: 

 

3a  Lher = L (1 + 2vher/c)
1/2

 

 

And by formulas (1) and (2) and a little more algebra we get the formula for the 

length-change of a receding body: 

 

3b  Lhin = L (1 – 2vhin/c)
1/2

 

 

If we use spherical coordinates, with the approaching velocity considered negative, 

we get only one formula for length change, formula (3b), with v replacing vhin. 

 The length changes are different from each other, and from the length-

contraction according to Einstein simultaneity. Notice also that an approaching rod 

expands, while a receding one contracts. A rod approaching in a velocity approaching 
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that of approaching light—i.e., infinite velocity—will expand to infinity; one receding 

in a velocity approaching that of receding light—i.e., c/2—will contract to zero. These 

are the lengths approaching and receding rods will actually look to observers. In this 

sense they are not conventional, a sense that is not paralleled by anything 

characterizing length contraction according to Einstein simultaneity. 

 

2.7 Time change as a function of velocity 

Next, we shall determine the relation between the time that passes on a moving clock 

and that of a clock at rest, relative to the clock at rest. In Section  2.6 we saw, when 

considering B’s point of view, that the ratio between the time that passes on C 

between the two events we considered and that that passes on B is: 

 

∆ther/∆t = Lher/L 

 

And by (3a) we now get: 

 

4a  ∆ther = ∆t(1 + 2vher/c)
1/2

 

 

Time on an approaching body is seen to pass faster. 

 Similarly, according to A’s clock the time that passed between the two events 

is L/vhin, while according to A the time that passed on C between these events is the 

time its clock shows, Lher/vher, which, by (2), equals Lhin/vhin. We accordingly get: 

 

∆thin/∆t = Lhin/vhin / L/vhin 

 

And from (3b) we then get: 

 

4b  ∆thin = ∆t(1 – 2vhin/c)
1/2 

 

In a receding body the time moves slower, time dilation. These are the changes in the 

speed of clocks, and of processes generally, that observers will actually see. 

 Again, if we use spherical coordinates and consider the velocity of an 

approaching body negative, we get the same formula for time change of both 

approaching and receding bodies, namely (4b), with v replacing vhin. 

 To the second approximation, the formula for time change in a moving body 

then becomes: 

 

∆tv = ∆t(1 – v/c – v
2
/2c

2
) 

 

By contrast to Einstein synchronization, we see that according to apparent 

synchronization there is a time dilation factor of the first order. (Again, this is the time 

dilation that will actually be observed, independent of simultaneity choice.) Since 

v∆t = D, the distance traveled by the moving body relative to the observer, we get a 

time dilation factor proportional to the distance traveled; to the second approximation, 

the time dilation formula becomes: 

 

∆tv = ∆t(1 – v
2
/c

2
) – D/c 
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Over great distances, time dilation of –D/c will be observed even for non-relativistic 

velocities. This explains Ole Römer’s observations: when Jupiter traveled away from 

the Earth, a time dilation proportional to the distance traveled was observed, Jupiter’s 

moons reappearing later than expected. 

 

2.8 Length perpendicular to the direction of motion 

We shall now show that the length of a rigid rod in a direction perpendicular to that of 

its motion does not change. Suppose two observers, Alice and Bob, are moving 

towards each other with relative velocity v, each carrying a thin ring of rest radius r 

around herself or himself, perpendicular to the line of motion. Suppose length 

perpendicular to the direction of approaching motion contracts. Then, relative to 

Alice, Bob’s ring contracts, and on meeting it should pass through her ring. This could 

be empirically determined: Bob’s ring could cut a thread connecting Alice to her ring, 

while Bob’s corresponding thread would remain uncut. 

 However, given the Relativity Principle, Bob should see Alice’s ring contract, 

and relative to him it should pass through his ring: again something that could be 

empirically determined as above: Bob’s thread, and not Alice’s, will be cut. But this is 

impossible, so there is no length contraction—and for similar reasons, no length 

expansion—in a direction perpendicular to their relative motion. 

 These considerations apply only to observers moving towards each other and 

meeting, but they can be generalized as follows. Suppose Bob is moving with his ring 

a distance d from Alice, at an angle θ to the line connecting them. Now put Canis, 

their dog, at the place where Bob is, facing Bob, with a ring identical to Alice’s and 

Bob’s, and at rest relative to Alice. Canis and Bob are in the same relation to each 

other in which Alice and Bob were in the previous thought-experiment, so Bob’s ring 

does not change its radius relative to Canis. But since Canis is at rest relative to Alice, 

its ring does not change its radius relative to her. So Bob’s ring does not change its 

radius relative to Alice either. (Bob’s ring may still look contorted to Alice, its surface 

not perpendicular to Bob’s direction of motion.) 

 We thus get the general result: the length of a moving body perpendicular to 

its direction of motion remains unchanged. 

 

2.9 Generalization of the former results 

I shall now give without proof the general results for length and time change for a 

body moving relative to an observer. The proofs are supplied in an appendix. 

 Suppose a body B is moving with velocity v relative to an observer A, in an 

angle θ to the straight line AB (see Figure 2). 

 

 

Figure 2 

 

The length of the body relative to the observer is then given by: 
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3  Lv = L0(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

. 

 

 For the formula for time change, we should take into account that the angle 

between AB and v changes as the body is moving. We should therefore give the 

differential, relating dt’, the time change observed by A on B’s clock, to dt, the time 

change according to A: 

 

4  dt’ = dt(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

. 

 

For θ = 0 or π, these formulas reduce to formulas 3b and 4b, or 3a and 4a, 

respectively, for a body moving away from or approaching the observer. As 

mentioned above, these formulas are valid for non-inertial bodies as well. 

 

 

3 The Twins Paradox 

In this section I shall try to show that Apparent Simultaneity yields a better 

understanding of the Twins Paradox than does Einstein simultaneity. More 

specifically, while according to Einstein simultaneity the situation is sufficiently 

symmetrical to generate a paradox, or at least a puzzle, this symmetry does not exist 

according to Apparent Simultaneity and consequently the paradox or puzzle does not 

arise. Moreover, according to Apparent Simultaneity there is no need to assume that 

one of the twins was not inertial in any absolute sense during some part of the 

journey: acceleration is also observer relative. Initially, when describing the paradox 

according to Einstein simultaneity, I shall assume that only one system is inertial; but 

this assumption will later be eliminated. 

 

3.1 Einstein simultaneity: a paradox 

Let us begin with a description of the situation according to Einstein simultaneity. I 

describe the paradox in its simplest form. An astronaut in a spaceship travels with a 

constant velocity v relative to the Earth in a straight line from the Earth to a distant 

star, turns back, and returns in the same way with the same velocity. Let us further 

suppose that the Earth is an inertial system, and that the star is at rest relative to the 

Earth, a distance L away from it. On Earth, the time that passes between the 

astronaut’s departure and his return is 2L/v. Since relative to the Earth the astronaut 

undergoes time dilation, the time that passes according to Earth on the astronaut is 

2L/v(1 – v
2
/c

2
)
1/2

. On his return, the astronaut’s clock is retarded relative to the 

Earth’s. 

 The problem of course arises since the astronaut considers the Earth as first 

moving away from him with velocity v, and then returning with the same velocity. 

Since the astronaut considers the whole stellar system, which is at rest relative to the 

Earth, as moving with the same velocity as the Earth relative to him, the whole Earth-

star distance undergoes contraction relative to him. The Earth-star distance relative to 

the astronaut would thus be L(1 – v
2
/c

2
)
1/2

, and the journey would last relative to him 

2L/v(1 - v
2
/c

2
)
1/2

. We see that the astronaut agrees with the Earth on the time his clock 

shows at the journey’s end, and that the acceleration he has undergone when turning 

back on arrival at the star—the only moment in which he was not inertial—does not 

affect his clock. 



 18

 The disagreement appears when we calculate Earth’s time relative to the 

astronaut. The Earth’s clock should slow down relative to him, and thus the Earth’s 

clock should show, when they meet: 

 

2L/v(1 – v
2
/c

2
)
1/2

·(1 – v
2
/c

2
)
1/2

 = 2L/v(1 – v
2
/c

2
) = 2L/v – 2Lv/c

2
 

 

This last term, –2Lv/c
2
, is of course redundant. However, it is agreed that the above 

result is the time that passes on Earth relative to the astronaut on his way to the star 

and back. The conclusion is that the astronaut’s moment of non-inertiality should be 

responsible for the Earth’s clock jumping relative to him 2Lv/c
2
 moments forward. 

 But this is problematic. First, why should the astronaut’s brief non-inertiality 

influence what happens to the Earth’s clock relative to him? If at all, it should 

influence his clock, which we saw it does not. Secondly, this brief non-inertiality 

period can be identical for different journeys, to stars with very different distances 

away from the Earth. And it prima facie seems that identical accelerations should 

have identical effects. But of course they do not: the effect is proportional to the 

distance from Earth, the further away the astronaut is form the Earth, the greater the 

jump of the Earth’s clock. This seems bizarre. 

 The situation can be visualized as follows. To turn the astronaut back towards 

the Earth we give him a jolt. This jolt does not affect his clock, but it affects what 

happens to the Earth’s clock relative to him, and that in proportion to the Earth’s 

distance from him. And this happens whether the jolt is given by means of 

electromagnetic forces, gravitational fields or what have you. How could that be? 

 Moreover, the astronaut need not pretend that he is being inertial during all 

that period and that some force acted on the Earth. By contrast to how the situation 

has often been presented, the astronaut can reason on the basis of the Relativity 

Principle as follows: ‘First the Earth was moving with velocity –v relative to me and 

its clock underwent dilation; than a force acted on me for a very short time (I activated 

my engines), this force having next to no effect on my clock and of course none on 

the Earth’s; and then the Earth was moving toward me with velocity v, its clock again 

undergoing dilation.’ Its seems his conclusion must be that on meeting again, the 

Earth’s clock should be retarded relative to his.
6
 

 I therefore think that if we consider the Twins Paradox from the point of view 

of Einstein simultaneity, a paradox, or at least a puzzle, still remains: the situation is 

by and large symmetrical, and it is implausible that the astronaut’s brief non-

inertiality period should have the effects it is supposed to have. As Einstein himself 

put it ([1918], p. 698; translation p. 68), the usual solutions to the puzzle leave the 

skeptic feeling ‘more convicted than really convinced’ (‘mehr überführt als 

überzeuget’). 

 

3.2 Apparent Simultaneity: symmetry and paradox removed. 

When we come to describe the Twins Paradox from the point of view of Apparent 

Simultaneity, we should remember the distinction between approaching and receding 

                                                 
6
 I am not the first one, of course, to claim that it is far from clear whether the astronaut’s non-

inertiallity can resolve the paradox. See Debs and Redhead ([1996]) and Brown ([2005], p. 105). 

Einstein himself thought that, because of the astronaut’s acceleration, the resolution of the paradox 

cannot be given by means of Special Relativity, but that considerations pertaining to General Relativity 

should be introduced: gravitational fields etc. (Einstein [1918], pp. 698-700; translation pp. 68-72). I 

shall show below how the paradox is completely resolved within Special Relativity. 
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velocities. What is the same velocity (in absolute value) according to Einstein 

simultaneity would not be such according to Apparent Simultaneity. The situation 

described in the former subsection by means of Einstein simultaneity is such that, 

from the Earth’s point of view, the apparent velocity of the spaceship on its way to the 

star is smaller than its apparent velocity on its way back. If we want to characterize 

the situation from Apparent Simultaneity’s viewpoint, we should say that the 

spaceship’s apparent velocity relative to the star on its way to the star is the same as 

its apparent velocity relative to the Earth on its way back. We shall call this velocity 

vher. 

 Formula (1) in the previous section established the following relation between 

vhin and vher : 

 

1  1/vhin – 1/vher = 2/c 

 

Accordingly, the time that the journey to the star and back takes relative to Earth is: 

 

∆tEarth relative to Earth = L/vhin + L/vher = 2L(1/vher + 1/c) 

 

However, relative to the Earth, the astronaut’s clock will slow down on the way to the 

star, while accelerating on his way back. If we use our formulas (4a) and (4b) from 

the previous section, then relative to the Earth, the time that passes on the astronaut on 

his journey is: 

 

(L/vhin)(1 – 2vhin/c)
1/2

 + (L/vher)(1 + 2vher/c)
1/2

 

 

We now use the formulas we extracted from formula (1) in the previous section: 

 

vhin = vher/(1 + 2vher/c)  ,  (1 – 2vhin/c) = vhin/vher 

 

And get: 

 

∆tAstronaut relative to Earth = (2L/vher)(1 + 2vher/c)
1/2

 

 

(By means of formula (5) of the Appendix it can be shown that the two results are 

equal to those obtained by means of Einstein simultaneity.)  

 What does the astronaut see? First, he sees the star approaching him in 

velocity vher over the expanded distance L(1 + 2vher/c)
1/2

, and then he sees the Earth 

approaching him over the same expanded distance and with the same velocity. So 

relative to himself, his journey lasts: 

 

∆tAstronaut relative to Astronaut = (2L/vher)(1 + 2vher/c)
1/2

 

 

The same result that we just got for the time that passes on him relative to the Earth. 

 How much time passes on the Earth relative to the astronaut? Notice that first 

the Earth recedes from him with velocity vhin and then approaches him with velocity 

vher. Accordingly, the distance that the Earth first travels is Lhin, and this part of its 

journey lasts Lhin/vhin; it then travels Lher, this journey lasting Lher/vher. Taking into 

account the time change as expressed by formulas (4), then substituting the formulas 

(3) for length change, and lastly expressing vhin by vher according to (1), we get: 
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∆tEarth relative to Astronaut = (Lhin/vhin)(1 – 2vhin/c)
1/2

 + (Lher/vher)(1 + 2vher/c)
1/2

 = 

L(1/vhin – 2/c) + L(1/vher + 2/c) = L(1/vhin + 1/vher) = 2L(1/vher + 1/c) 

 

Again the same result that we got above, when we calculated the time that passes on 

Earth between departure and return relative to the Earth itself. 

 (When the astronaut turns back upon his arrival at the distant star, he sees the 

distance between him and the Earth as rapidly growing, from L(1 – 2vhin/c)
1/2

 to L and 

then to L(1 + 2vher/c)
1/2

. This is because receding bodies contract, while approaching 

ones extend. Since we unrealistically assumed that the turnabout is instantaneous, we 

did not have to calculate the time that passes on Earth or on the astronaut during that 

period. This length-change is not peculiar to Apparent Simultaneity. According to 

Einstein simultaneity as well, when the astronaut slows down his distance to Earth 

increases relative to himself, and then decreases again when he starts moving back 

towards it.) 

 We see that straightforward calculations give the same results for the two 

points of view. The paradox does not arise. By contrast to Einstein’s own solution of 

the paradox, which made use of considerations pertaining to General Relativity, 

considerations pertaining to Special Relativity are sufficient from Apparent 

Simultaneity’s point of view. Moreover, when the astronaut turns back upon arrival at 

the star, there is no jump on the Earth’s clock relative to him. From his point of view, 

the process that takes place on Earth is continuous, with the Earth’s clock first going 

slower and then faster than his. 

 Notice also that we did not have to specify that the Earth, but not the astronaut, 

is inertial. It is irrelevant to the situation whether any of the two participants is 

inertial, and we do not have to assume that any of the two accelerates in any absolute 

sense. Relative to the Earth, the astronaut accelerated; relative to the astronaut, the 

Earth did: acceleration is observer-relative. In this respect the Relativity Principle is 

applicable to any observer or body, and there is no need to assume a preferred set of 

bodies, inertial bodies, that play a special role in the theory. 

 The fact that we do not need to distinguish inertial from non-inertial bodies 

enables us to maintain a relationist view of space-time within Special Relativity. No 

‘bent’ in an observer-independent space-time on the astronaut’s turning point is 

necessary in order to account for the Twins Effect. 

 Why isn’t there symmetry between the points of view? This is because the 

Earth and the astronaut see different things. The Earth sees the voyage to the star as 

lasting longer than the voyage back: the same distance, but different velocities and 

different times. The astronaut, by contrast, sees the Earth’s voyage away as lasting the 

same time as its voyage back: different distances and different velocities, but the same 

time. Remember that we proved above (formula (2)) that Lhin/vhin = Lher/vher. There is 

no apparent symmetry. 

 This apparent a-symmetry should of course be acknowledged on any 

conception of simultaneity in Special Relativity. This is the fact of the matter about 

how things look to Earth and to the astronaut.
7
 But while according to Einstein 

simultaneity this asymmetry is by-and-large merely apparent, the objective situation 

                                                 
7
 The first to have carried in any detail calculations on how things would look to the Earth and to the 

astronaut was, to the best of my knowledge, David Bohm ([1964], pp. 168-71). He did that by means of 

the formula of the Doppler shift. Bohm too, however, thought that the acceleration of the astronaut is 

the key for resolving the paradox, and that considerations pertaining to general relativity are necessary 

for doing that (ibid., pp. 166-7). 
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being more symmetrical, according to Apparent Simultaneity there is no additional 

fact over and above the observed asymmetry. Einstein simultaneity introduced into 

the description of the process an unobservable symmetrical layer, which we should 

deem a physically imaginary artifact of the simultaneity definition, and which 

generated the paradox. 

 

 

4 Dynamics 

In Section 2 we proved and formulated several formulas expressing the kinematics of 

Special Relativity with Apparent Simultaneity. I believe the reader would agree that 

these were in general not much more cumbersome than the parallel formulas of the 

Einstein simultaneity formulation. Moreover, in Sections 1 and 3 we saw several 

advantages of the Apparent Simultaneity approach to Relativity over the standard one. 

 Dynamics, however, poses a problem—perhaps solvable—to the Apparent 

Simultaneity approach. This problem can be demonstrated by the following 

observation. Suppose A is an inertial observer, and body B is moving along a straight 

line relative to A, with a constant velocity according to Einstein simultaneity. Suppose 

further that A is not on B’s line of motion. Then according to Apparent Simultaneity, 

B’s motion is not uniform. If B first approaches A and then moves away from it, B’s 

speed continuously decreases relative to A. (If A is on B’s line of motion, then B’s 

motion is uniform apart from at point A, which is a singularity point in its motion: its 

velocity changes there from vher to vhin.) 

 Accordingly, Apparent Simultaneity might force us to change the laws of 

dynamics: since the sum of forces acting on B is zero (according to the accepted way 

of defining forces), it follows that according to Apparent Simultaneity Newton’s First 

Law, the Law of Inertia, does not hold.
8
 

 With a few exceptions, previous discussions of alternative simultaneity 

definitions have concentrated on kinematics. One such recent exception is Ohanian 

[2004]. ‘The fundamental error of Reichenbach and his conventionalist followers’, 

Ohanian claimed, ‘was their neglect of dynamics.’ (p. 147) This is because 

nonstandard ‘synchronization introduces pseudoforces into the equation of motion, 

and these pseudoforces are fingerprints of the nonstandard synchronization, just as the 

centrifugal and Coriolis pseudoforces are fingerprints of a rotating reference frame.’ 

(Abstract) Accordingly, ‘when we adopt an inertial reference frame, the requirement 

of absence of pseudoforces determines the synchronization uniquely, and no further 

synchronization convention can be imposed.’ (p. 147) 

 But I think Ohanian is mistaken. As Macdonald [2005] argued, ‘Ohanian has 

only shown that if Newton’s laws must take their standard form, then nonstandard 

synchronizations are ruled out. But he has given no reason that the laws must take 

their standard form.’ (p. 455) That is, instead of introducing pseudoforces we can 

change the laws of dynamics, and in this way admit nonstandard synchronizations. In 

his reply to Macdonald, Ohanian has indeed retreated to simplicity arguments in 

favour of standard simultaneity ([2005], third paragraph). So in this way one can still 

admit nonstandard synchronizations. 

 However, especially in light of our previous discussion of the meaning of 

coordinates (Section  1.2), this response seems insufficient. If Newton’s First Law 

articulates an important fact about interactions in nature, then modified coordinates 

                                                 
8
 The essentials of this problem were already noted by Torretti ([1999], p. 70). 
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might stop expressing this fact; they would in effect conceal it, and we would have to 

extract it from them by various mathematical manipulations. We could still use them, 

of course, but at the cost of part of what we expect of coordinates. So this response 

leaves us with a strong—albeit not conclusive—argument against the representation 

of nature by means of Apparent Simultaneity. 

 I think the way out of this difficulty is different, and it does enable us to 

preserve what is physically essential, in a sense, in Newton’s First Law. This law, in 

its common formulation, is the only conservation law in which the conserved kinetic 

or dynamic magnitude is velocity. In all the other related conservation laws—namely, 

in those in which bodies collide with each other, or interact in any other fashion—the 

conserved magnitudes are momentum and energy. To achieve greater generality, we 

should therefore reformulate Newton’s First Law with respect to momentum, energy, 

or both. In fact, Newton’s First Law can be considered a limiting case of laws of 

conservation applying to collisions and other interactions between bodies: it describes 

the situation in which a body is involved in a ‘zero’ interaction, that is, the case in 

which a given body does not interact with any other body or physical entity (field, 

say). In such a case, a particular case of the general conservation law, the body’s 

momentum and energy do not change with time. This should be the general 

formulation of Newton’s First Law. And we have justified this general formulation 

without recourse to any specific idea of Apparent Simultaneity. 

 Since according to Newtonian mechanics, as well as according to Relativity 

Theory with Einstein simultaneity, a body’s momentum and kinetic energy do not 

change if and only if its velocity does not, we can derive Newton’s First Law in its 

ordinary formulation from the law’s general formulation. But the general formulation 

is the one of more fundamental theoretical significance. And this general law can still 

be valid according to Special Relativity with Apparent Simultaneity. The only 

difference would be that this time, the conservation of momentum and energy would 

not entail the conservation of velocity. 

 In order to have this conservation law, as well as the general conservation law 

of momentum and energy, all we have to do is to define momentum and energy 

according to Apparent Simultaneity as equal in value to their corresponding 

magnitudes according to Einstein simultaneity, which we know are conserved. I 

derive the resulting formulas in the Appendix. Here I shall simply state the results. 

 Suppose body B with rest mass m is moving with velocity v relative to body 

A, in an angle θ to the straight-line AB. B’s momentum and energy relative to A are: 

 

P = mv/(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

 

E = mc
2
(1 – vcosθ/c)/(1 – 2vcosθ/c – v

2
sin

2θ/c2
)
1/2

 

 

We may consider the relativistic mass of a body as dependent on its velocity, this time 

according to the following formula: 

 

mv = m/(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

. 

 

We then get the simplified results: 

 

P = mvv 

E = mvc
2
(1 – vcosθ/c). 
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As on Einstein simultaneity, the energy of a body at rest equals E = mc
2
, m being its 

rest mass. Again, since P and E according to Einstein simultaneity are conserved, and 

since we have defined P and E according to Apparent Simultaneity as equal in value 

to their corresponding Einstein magnitudes, both momentum and Energy are 

conserved according to Apparent Simultaneity as well. In particular, Newton’s First 

Law in its general formulation still holds: if a body does not interact with any other 

body or physical entity, then its momentum and energy do not change with time. 

 Although I have just shown how Newton’s First Law can be maintained in 

Special Relativity with Apparent Simultaneity, I shall now digress to express some 

doubts concerning that very law. We opened this section by describing a situation in 

which body B is moving along a straight line relative to an inertial observer A, with 

constant velocity according to Einstein simultaneity. Could A and B in our example 

be the only bodies in the universe? The answer is negative: if they were, then, on 

Einstein simultaneity as well, body B would not be moving with a uniform speed and 

along a straight line relative to A: due to their gravitational interaction, they would 

accelerate towards each other. And adding bodies to this universe would not improve 

things: we will get more forces, and in general no body would be moving with 

constant speed along a straight light relative to any other body. Some arrangements in 

which some body would move for some time in a constant speed along a straight line 

are possible, but it is doubtful whether these represent any significant physical 

generalization. And this problem cannot be avoided by making A or other bodies 

gradually lighter, in order to see what B’s acceleration would be at the limit: 

according to Newtonian mechanics, A’s acceleration towards B is independent of A’s 

mass; so B’s relative acceleration towards A, the relative acceleration A would ascribe 

to B, would not approach zero as A’s mass approaches zero. 

 So perhaps, if we wish to articulate the idea behind Newton’s First Law, we 

should abstract, per impossibile, from gravitational interactions, and also assume that 

some of our bodies have no charge, no magnetic moment, no higher magnetic 

multipole moments, no intrinsic angular momentum, and ‘furthermore (nearly) any 

other physical property imaginable, or for which experimentalists have invented a 

measuring device, should also be zero’? This is the approach Pfister thought necessary 

in his careful examination of Newton’s First Law in order even to adequately 

formulate it ([2004], p. 54). If we follow Plato (Sophist 247d-e) in taking the ability to 

act or to be acted upon as a criterion for being, it seems Pfister ended up with 

nonentities. 

 One might think that the problem could be resolved if we made our body B the 

only body in the universe. We could then ascribe to B any physical properties 

whatsoever: any mass, charge, magnetic moment, and so on. B would not be involved 

in any interaction, and it would still be moving in a straight line with constant velocity 

or momentum relative to inertial reference frames. But of course, in such a universe, 

the only physically real point of view is that of body B itself; there isn’t any other 

thing to which we can relate B’s motion. And relative to itself, any body is always in 

the same place, irrespective of the interactions in which it is involved. On the other 

hand, for any moving body we can always introduce arbitrary reference frames 

relative to which it is in uniform motion along a straight line. For Newton’s First Law 

to have any real content, it seems we need to describe motion relative to a physically 

realized point of view. That is, we need to introduce additional bodies and view B’s 

motion relative to them. But then, as we saw above, it is doubtful whether we can 

describe physically significant configurations in which B’s motion is indeed uniform. 
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Our conflict here is reminiscent of Kant’s dove ([1787], B8, Kemp Smith’s 

translation): 

 

The light dove, cleaving the air in her free flight, and feeling its resistance, 

might imagine that its flight would be still easier in empty space. 

 

 The bottom line of this sketch is that Newton’s First Law is conceptually 

problematic (although perhaps not irreparably so). And of course I am not the first to 

air such misgivings; here is Einstein on the Law of Inertia ([1920], p. 1010; 

translation taken from Pfister [2004], p. 56): 

 

It reads in detailed formulation necessarily as follows: Matter points that are 

sufficiently separated from each other move uniformly in a straight line—

provided that the motion is related to a suitably moving coordinate system and 

that the time is suitably defined. Who does not feel the painfulness of such a 

formulation? But omitting the postscript would imply dishonesty. 

 

So although Newton’s first Law, in its general formulation, holds in Special Relativity 

with Apparent Simultaneity as well, I am not sure what status this Law should have in 

physics. 

 I end this section with a few additional formulas of dynamics. Since we have 

defined momentum and energy according to Apparent Simultaneity as equal in value 

to their corresponding magnitudes on Einstein simultaneity, it follows that the 

following equation still holds: 

 

E
2
 – P

2
c

2
 = m

2
c

4
 

 

This result can of course be verified by direct calculation as well. 

 If we take the partial derivative relative to time of this equation we get: 

 

2E ∂E/∂t – 2Pc
2
 ∂P/∂t = 0, 

 

or 

 

E ∂E/∂t = Pc
2
 ∂P/∂t. 

 

After inserting the expressions for energy and momentum, and a little algebra, we get 

the basic dynamical law: 

 

(1 – vcosθ/c) ∂E/∂t = v ∂P/∂t. 

 

This expression differs from the parallel expression for Einstein simultaneity by the 

factor (1 – vcosθ/c) on the left. 

 This concludes my discussion of dynamics. We haven’t seen, I think, any 

conceptual disadvantage of Apparent Simultaneity compared with Einstein 

simultaneity as far as dynamic considerations were involved, and the formulas we 

derived were not much more complex than Einstein’s. Still, to assess the acceptability 

of this formulation of the theory, we should also see how it represents electromagnetic 

phenomena. It would also be interesting to try and see how it adapts to circumstances 

involving gravity. This is, however, beyond the scope of this paper. 
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5 Of Light 

The Apparent Simultaneity approach suggests a new interpretation of the nature of 

light or of electromagnetic radiation. This interpretation and some of its implications 

will be developed in this last section. 

 The idea that light is a kind of wave propagating in space, or that it is a stream 

of minute particles—photons—moving from one place to another, suggests itself if 

we think that its propagation speed is finite. It is then most natural to construct models 

of its nature assuming resemblance with other things that move from one place to 

another with finite speed. This analogy breaks down, however, if we think of light as 

propagating with infinite speed. Indeed, Aristotle and Descartes (among others), who 

thought its speed is infinite, developed different accounts of the way light energy is 

transmitted from source to absorber. (Although it is anachronistic to talk of energy in 

its modern sense when describing their theories, the relevant aspects of the concept 

can easily be adapted to the appropriate factors there.) 

 While it would be inaccurate to say that light’s speed is infinite according to 

Apparent Simultaneity, it is correct to say that according to it, if light is transmitted in 

vacuum from B to A, then relative to A its speed is infinite. Assuming that nothing 

can be in more than one place at the same time, particles or waves cannot constitute 

the transmitted light. 

 Aristotle and Descartes, who also thought that light propagates with infinite 

speed, thought that what light transmits is transmitted by means of the transparent 

medium between source and absorber. For Descartes, for instance, light was a kind of 

pressure exerted by the light source on the absorber by means of the rigid bodies 

filling the space between them (Le Monde, Chap. 13). However, if we maintain that 

light can propagate in vacuum as well, this approach is not open to us: light 

transmission can occur in the absence of any medium. 

 The option that then suggests itself is that the electromagnetic interaction 

between source and absorber is immediate. Electromagnetic transmission of energy is 

an immediate interaction at a distance between source and absorber. 

 Although the idea of action at a distance is not an integral part of modern 

physics, it has surfaced time and again, from Newton on. Today it is discussed mainly 

in the context of EPR and related phenomena. So it is not foreign to contemporary 

physics thought. Einstein objected to it, but his only argument against it with which I 

am familiar is, I think, invalid. He claimed that if we allowed for action at a distance, 

then ‘the idea of the existence of (quasi-) closed systems would be made impossible, 

and with it the specification [Aufstellung] of empirically verifiable laws in the 

ordinary sense’ ([1948], p. 322; my translation). But I cannot see why that should be 

so: why cannot we isolate a system from distant influences, and not only from 

proximate ones? Moreover, this objection, even if it were valid, would only show that 

action at a distance poses difficulties to the researcher, and not that it is incoherent. 

And I am not familiar with any other good argument against action at a distance. 

(Notice that we are not contemplating the problematic idea of influence that 

propagates faster than light.) So I cannot see why action at a distance should in 

principle be rejected. In fact, it seems the idea has always had the appeal of a taboo of 

which no one knows why exactly it is there. 

 If the idea that transmission of light energy is an interaction at a distance 

between source and absorber seems outlandish to us, this is only because we are used 
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to judge ideas by means of our theoretical frameworks. This idea is, in fact, in 

agreement with how things appear. When we look at the moon, say, it seems that we 

directly observe that distant object, and that we are aware of it not by virtue of being 

aware of or being affected by any other thing. The interaction we call sight between 

observer and object seen appears to be interaction at a distance. Thus, the 

interpretation of the nature of light suggested by Apparent Simultaneity again narrows 

the gap between the apparent image of the world and its scientific image, between 

appearance and reality. 

 If transmission of light energy is done as action at a distance, we can explain 

why the rest mass of the photon had to turn out equal to zero (what a strange 

particle!). Since light energy is transmitted directly from source to absorber, there is 

no energy to be lost to an alleged mediator carrying the transmitted energy—

otherwise the system’s energy would not be conserved. So if we introduce such a 

mediator into our models, it has to carry exactly the energy it transmits. It therefore 

cannot have any energy, and accordingly no mass, of its own. 

 The direct interaction theory may perhaps help us understand some quantum 

phenomena as well. (What follows is a sketchy, tentative, attempt.) Let us reconsider 

the Double-slit Experiment with photons. Assume the light source’s intensity is low 

enough so that there is at any moment, according to the photon model of light, a 

single photon at most between the source and the screen. We of course still get an 

interference pattern on the screen. Yet although each photon is supposed to pass 

through a single slit, so that the presence or absence of the other slit should not 

influence it, if we close any slit the interference pattern is gone. This is notoriously 

hard to explain on the particle model. 

 How may we interpret what is happening in this experiment on the direct 

interaction approach? We should think of the interaction between source and absorber 

(i.e., points on the screen) as determined by all spatial relations between them and 

other bodies. This determination is perhaps best expressed by Feynman’s path integral 

approach (Feynman and Hibbs [1965]). By contrast to Feynman, however, we should 

not think of each path between source and screen as representing a possible history. I 

provide a brief description of the calculation method, to give those unfamiliar with it 

some idea of how it works.
9
 Let us consider only those paths from the source to points 

on the screen that contain no other body along the way, i.e., paths through vacuum. 

Every such possible path contributes a vector of the form ρe
iS/� to the probability that 

the source transmit a light-energy quantum to that point on the screen, where S is a 

function of the path, the action, and �=h/2π, where h is Planck’s constant. In our case, 

if the energy quantum transmitted is E, then S = -(E/c)x and is thus proportional to the 

path’s length. For each point we sum all these vectors, and the square of the length of 

the final vector is then proportional to the probability of transmission of a light-energy 

quantum to that point. In the Double-slit Experiment, with both slits open, each point 

on the screen is on two paths leading from the light source to it (actually, due to the 

finite width of each slit, on two families of neighboring paths). The probability that a 

light quantum be transmitted to it is therefore determined by adding two different 

vectors, and an interference pattern results. But if one slit is closed, each screen-point 

is on a single path, and the interference pattern is gone.
10

 

                                                 
9
 My own knowledge of the mathematics involved is also incomplete. 

10
 More generally, we should also consider paths that contain additional bodies on them; in that case we 

should add the contribution of the other bodies to the probability of interaction. This does not require 

any modification to the ideas considered in this paper, but is rather a natural consequence of them. 
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 But doesn’t this talk of paths make sense only if we assume that something 

travels along the paths, in which case the suggested model of direct interaction at a 

distance is inapplicable? This is not how we should think of the process. Rather, we 

should think of the spatial relations between bodies as determining the bodies’ 

possibilities of interactions. The interaction between source and screen is direct, but it 

is determined by the distribution of all bodies in space. There is therefore no sense in 

asking, through which slit did the photon pass, since there is no photon. In this way, if 

we adopt the direct interaction approach to the transmission of light energy, we may 

perhaps get a beginning of an intelligible interpretation of some quantum puzzles. 

(But there are additional puzzles, of course; primarily those related to the origin of the 

uncertainty principle, the collapse of the wave-packet and to entanglement.) 

 The interpretation of the Double-slit Experiment by means of the direct 

interaction approach to light suggests the application of this interpretation to similar 

experiments with electrons and other dual wave-particle phenomena. However, two 

difficulties with this further application immediately suggest themselves. First, since 

in such cases the particle carrying the energy is supposed to travel slower than light, 

its emission from the source should be in the past relative to its detection, and not 

simultaneous with it as in the case of light. It therefore seems that the application of 

this interpretation to such cases would commit us to direct interaction with the past. 

Secondly, by contrast to photons, we should not deny the reality of electrons, not to 

mention heavier particles that display similar behavior in the Double-slit Experiment. 

Consequently, it seems that between the emission of such particles from the source 

and their later arrival at the screen they must be somewhere, and more specifically, it 

seems they must follow a definite path. But the logic that was supposed to resolve the 

puzzle for photons involved assuming that nothing is moving through any specific 

path. It thus seems that this approach to the Double-slit Experiment cannot apply to 

particles. I shall conclude this paper with a discussion of these difficulties. 

 I start with the second issue: I think we have good independent conceptual 

reasons for maintaining that the position of the electron, in the Double-slit 

Experiment, between emission and arrival at the screen, is indeterminate; that it 

follows no path. The electron does not interact with anything along the way between 

its emission and its arrival at the screen: its energy does not change, and it does not 

affect the state of any other body.
11

 What could it mean, then, to claim that it passed 

in a certain place at a certain moment between its emission and arrival at the screen? 

When a ball travels through the air, it interacts with the air all along its way; when the 

Earth travels through space, it continuously absorbs radiation from other sources, 

affects the trajectory of other celestial bodies, and much more; the electron does 

nothing of the sort. If we do not wish to imagine it rubbing its shoulders with the 

celebrated absolute points of absolute space-time, then we cannot ascribe any 

meaning to the claim that it has been in any definite place between its emission and 

arrival at the screen. The place of a thing is determined only by its interaction with 

other things; the electron did not interact with anything between emission and arrival 

at the screen, so its place was indeterminate then. Accordingly, the facts of the 

Double-slit Experiment, independently of my attempt at interpreting the process, force 

us not to ascribe any definite position to the electron between its emission and arrival 

                                                 
11

 My description applies to the basic form of the experiment. Other, more elaborate forms allow for 

some kinds of interaction along the way that affect but do not cancel the interference pattern (see 

Feynman and Hibbs [1965], pp. 7-9). With appropriate elaborations, the considerations developed here 

apply to these experiments as well. As I have said, what I intend to supply in these paragraphs is only a 

first sketch. 
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at the screen. The logic developed above for the experiment with light is therefore 

also applicable to the experiment with electrons and other particles. (On the other 

hand, these considerations make it applicable to light even if one does adopt its 

photon model. Additionally, these considerations can be applied to entanglement 

phenomena as well.) 

 Let us turn to the admissibility of direct interaction with the past. It can now 

be seen that the Double-slit Experiment with electrons (and other particles) does not 

commit us to this possibility: the screen directly interacts with the electron, and not 

with the source. However, as was several times implied in previous sections, the 

possibility of direct interaction with the past might be suggested by some other 

phenomena. If interaction between light source and absorber is direct when light 

propagates through vacuum, it seems it must also be direct when light propagates 

through some transparent medium. But light’s propagation speed through a medium is 

slower than its speed in vacuum. It follows that the event of light emission occurs 

earlier than it should have, had it had to get to the absorber at the same time from the 

same place but through vacuum. But according to Apparent Simultaneity, that later 

event is simultaneous with the event of light reception, relative to the absorber. So the 

actual event of light emission is earlier, relative to the absorber, than the event of its 

reception. Accordingly, the absorber directly interacts with something which is in its 

past. Is this result acceptable, or even coherent? 

 I think it is both. Notice first that no problematic backward causation is 

involved: the absorber, which receives light energy from the source, cannot by that 

means influence the source prior to the emission event in any way, or similarly 

transfer information to the source. So no causal-loop paradoxes can be generated. 

 Secondly, accepting the idea of direct interaction with the past brings with it 

some modification of our ideas of the relation between temporal order and what is 

real, relative to an observer or, more generally, relative to a physical body. (What is 

real is always relative to a physical body or entity: physics allows of no external 

viewpoint that would give us what is ‘absolutely’ real; the only viewpoints it allows 

are physically realized ones.) What is now real relative to an observer—‘now’ 

signifying a certain moment in the observer’s history—is not only whatever occurs 

simultaneously, relative to the observer, anywhere in the universe, but also everything 

with which the observer directly interacts at that moment, although these things might 

belong to the observer’s past. Relative to any moment t in an observer’s history, the 

present signifies, for any object, the latest moment in its history in which it could 

directly influence the observer at t. 

 In practice, that latest moment is usually, to all intents and purposes, the only 

moment in which the object can directly influence the observer at t; the past can 

usually influence us only by means of traces left in the present. But in some cases, 

direct influence of the past is possible. One such case is transmission of light energy 

through thick transparent medium. Another could occur in curved space-time, where 

due to gravitational lenses, for instance, light energy can be transmitted from source to 

absorber along more than a single path, different paths being of different lengths. And 

cases of other kinds can also be found. 

 It might have been nicer had this conceptual change not been a necessary 

consequence of the direct interaction theory of light. However, if we are to avoid ad 

hoc stipulations, it does seem to me unavoidable. Moreover, if we think of temporal 

relations as determined by the causal nexus between bodies, it is difficult to see why it 

should not be possible for two non-simultaneous stages in one body’s history to 

influence directly another body at the same stage of its history (as long as causal loops 
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are impossible). Distant simultaneity would then just indicate the latest moment in the 

remote body’s history of such possible direct influence. So I think this conceptual 

change does not constitute a strong objection to the direct interaction theory of light. 

(Of course this conceptual change is far more modest than the extravagance standard 

common in widely held related physical and philosophical theories: many-worlds and 

many-minds interpretations, block universes and others.) Moreover, and more 

significantly, it again agrees with the world’s apparent image: turning back to issues 

discussed in the subsection on the Time Lag Argument, when we observe a star 

through the atmosphere it does appear to us to be real, existing there in the sky; and 

the direct interaction theory of light allows us in this case as well to save the 

phenomena. 

 

The ideas developed in this last section obviously require elaboration, both within 

physics and within a more general theory of perception. Some possible threads were 

indicated in the course of this paper; others were passed over in silence. But I hope 

enough has been said to make the interest in Apparent Simultaneity’s view of the 

world evident.
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6 Appendix: Some Derivations 

In this appendix we develop the general formulas for length and time change in a 

moving body. In doing that we shall rely on the results of Section 2. We shall also 

generalize the empirical Light Postulate formulated there. In its general form it reads: 

 

Light Postulate: The time it takes light to travel along a closed path in vacuum 

is a function of the path’s length alone. 

 

Light’s average speed along the path is denoted c. 

 Let us now proceed with the derivations. Suppose A, B and C are inertial 

material points, at rest relative to each other. Let us designate the distances AB = r, 

BC = d. The angle between AB and BC is θ. A body of rest length L0 is moving from 

B to C with a constant velocity vher relative to C. See figure 3. 

 

 

Figure 3 

 

Since we cannot assume that the body’s speed is constant relative to A (in fact it is 

not), we shall designate its average speed, relative to A, v. 

                                                 
12

 I am indebted to Meir Buzaglo and Barry Loewer for comments on earlier versions of some parts of 

this paper. 
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 Now the experiment is arranged as follows. At time tA = 0, A sends a light 

signal to B. When the signal reaches B, B sets its clock to tB = 0, and at that moment 

the body is at B on its journey towards C. C sets its clock to tC = 0 when it sees the 

body at B. 

 Since the time it takes light to travel along a closed path of length D is D/c, A 

sees C zeroing its clock at tA = (r + d + AC)/c. For the same reason, A sees the body at 

B at tA = 2r/c. The body reaches C when C’s clock shows tC = d/vher, which is also the 

time A sees on C’s clock when the body reaches C. So the time it took the body to get 

from B to C relative to A, which is d/v, also equals: 

 

d/v = d/vher + (r + d + AC)/c – 2r/c. 

 

According to the Cosine Law, AC
2
 = r

2
 + d

2
 + 2rdcosθ. We thus get: 

 

(r
2
 + d

2
 + 2rdcosθ)1/2

/c = d/v – d/vher + r/c – d/c. 

 

Square the two sides and cancel identical terms: 

 

2rdcosθ/c2
 = d

2
/v

2
 + d

2
/vher

2
 – 2d

2
/vvher + 2rd/cv – 2d

2
/cv – 2rd/cvher + 2d

2
/cvher – 2rd/c

2
 

 

We divide by d: 

 

2rcosθ/c2
 = d/v

2
 + d/vher

2
 – 2d/vvher + 2r/cv – 2d/cv – 2r/cvher + 2d/cvher – 2r/c

2
 

 

Let now d approach zero, the limit in which v is the momentary speed of the body at B 

relative to A: 

 

2rcosθ/c2
 = 2r/cv – 2r/cvher – 2r/c

2
 

 

Multiplying by c/2r, and a little more manipulation: 

 

1  1/vher = 1/v – (1 + cosθ)/c. 

 

This is a generalization of formula (1) of Section 2. 

 Let us now derive the time change in a moving body. Since the body sees BC 

moving towards it, it will see BC expand to length d(1 + 2vher/c)
1/2

 (see formula (3a)). 

The time it will take the body to get to C is therefore ∆t’ = d(1 + 2vher/c)
1/2

/vher. On the 

other hand, the time it takes the body to get to C relative to A is ∆t = d/v. 

Accordingly: 

 

∆t’/∆t = (d(1 + 2vher/c)
1/2

/vher)/(d/v) = (v/vher)(1 + 2vher/c)
1/2

 

 

And in the limit: 

 

dt’ = dt(v/vher)(1 + 2vher/c)
1/2

 

 

We can now use the relation of vher to v, as expressed in formula (1). With a little 

algebra we eventually get: 

 

4  dt’ = dt(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

. 
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 Lastly, according to A and C, it takes body L the same time to cross B, since 

they are measuring the interval between two events occurring at the same place (see 

Section 2.3). Accordingly: 

 

2  Lher/vher = Lv/v. 

 

This is a generalization of formula (2) in Section 2.5. Accordingly: 

 

Lv = Lher(v/vher) = L(v/vher)(1 + 2vher/c)
1/2

, 

 

3  Lv = L0(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

. 

 

This concludes the derivation of the general formulas for length and time change, 

given in Section 2.9. 

 We move on to the derivation of the formulas for momentum and energy of a 

moving body of rest mass m, moving with velocity v relative to an observer, in an 

angle θ to the straight-line connecting it with the observer (see previous figure). These 

results are most simply obtained if we translate their Einstein expressions to the 

Apparent Simultaneity ones. To do this, we have to find the functional relation 

between the Einstein velocity of a body and its apparent velocity. 

 Suppose a body is moving from the material and inertial point A to the 

material point B, at rest relative to A and a distance d from it, with velocity vES 

according to Einstein simultaneity, and velocity vher relative to B according to 

Apparent Simultaneity. Suppose further tA = 0 when the body is at A, and that tB = 0 

according to Einstein simultaneity when the body is at A. Since a light signal sent 

from A to B at that moment will reach B at tB = d/c, the body was at A relative to B 

and according to Apparent Simultaneity at tB = d/c. According to Einstein 

simultaneity, B’s clock should show tB = d/vES when the body reached B. According 

to apparent simultaneity, B’s clock should show then tB = d/vher + d/c. We thus get: 

 

d/vES = d/vher + d/c 

1/vES = 1/vher + 1/c 

 

Let us recall equation (1): 

 

1  1/vher = 1/v – (1 + cosθ)/c. 

 

Where v is the velocity according to Apparent Simultaneity. We accordingly get: 

 

5  1/vES = 1/v – cosθ/c 

 

All we now have to do is substitute these results in the Einstein expressions for 

momentum and energy: 

 

P = mv/(1 – v
2
/c

2
)
1/2

, 

E = mc
2
/(1 – v

2
/c

2
)
1/2

. 
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v in these formulas being the velocity according to Einstein simultaneity, vES. After 

the substitution we get the results stated in Section 4, with v now designating 

Apparent velocity: 

 

P = mv/(1 – 2vcosθ/c – v
2
sin

2θ/c2
)
1/2

 

E = mc
2
(1 – vcosθ/c)/(1 – 2vcosθ/c – v

2
sin

2θ/c2
)
1/2

 

 

 

Philosophy Department 

Central European University 

Nádor u. 9 

1051 Budapest, Hungary 



References 

 

 

 

 

Ben-Yami, Hanoch [2006]: ‘Causality and Temporal Order in Special Relativity’, The 

British Journal for the Philosophy of Science, 57, pp. 459-79. 

Ben-Yami, Hanoch [forthcoming]: ‘The Impossibility of Backwards Causation’, 

Philosophical Quarterly. 

Bohm, David [1965]: The Special Theory of Relativity, 1996 edition, London and New 

York: Routledge. 

Brown, Harvey [2006]: Physical Relativity, Oxford: Clarendon Press. 

Buzaglo, Meir [2002]: The Logic of Concept Expansion, Cambridge University Press. 

Debs, Talal A. and Redhead, Michael L. G. [1996]: ‘The Twin “Paradox” and the 

Conventionality of Simultaneity”, American Journal of Physics, 64, pp. 384-92. 

Dennett, Daniel C. [1991]: Consciousness Explained, Penguin Press. 

Descartes, René [1664]: Le Monde de Mr. Descartes ou le Traité de la Lumière, Paris. 

Einstein, Albert [1905]: ‘Zur Elektrodynamik bewegter Körper’, Annalen der Physik, 17, 

pp. 891-921. 

Einstein, Albert [1918]: ‘Dialog über Einwände gegen die Relativitätstheorie’, Die 

Naturwissenschaften, 6, pp. 697-702; translated in his [2002], The Collected 

Papers of Albert Einstein, Volume 7: The Berlin Years: Writings, 1918-1921, 

translated by A. Engel, Princeton: Princeton University Press, pp. 66-75. 

Einstein, Albert [1920]: ‘Antwort auf die Betrachtung Ernst Reichenbächers 

“Inwiefern läβt sich die moderne Gravitationstheorie ohne die Relativität 

begründen”’, Die Naturwissenscaften, 8, pp. 1008-11. 

Einstein, Albert [1948]: ‘Quanten-Mechanik und Wirklichkeit’, Dialectica, 2, 

pp. 320-24. 

Feynman, R. P. and Hibbs, A. R. [1965]: Quantum Mechanics and Path Integrals, 

New York: McGraw-Hill. 

Janis, Allen [2006]: ‘Conventionality of Simultaneity’, The Stanford Encyclopedia of 

Philosophy (Fall 2006 Edition), Edward N. Zalta (ed.), forthcoming, 

http://plato.stanford.edu/archives/fall2006/entries/spacetime-convensimul/. 

Kant, Immanuel [1787]: Kritik der reinen Vernunft, second edition, Riga: Johann 

Friedrich Hartknoch. 

Leibniz, Gottfried Wilhelm [1996]: New Essays on Human Understanding, translated 

and edited by Peter Remnant and Jonathan Bennett, Cambridge University 

Press. 

Macdonald, Alan [2005]: Comment on ‘The Role of Dynamics in the Synchronization 

Problem’ by Hans C. Ohanian, American Journal of Physics 73, pp. 454-5. 

Malament, David [1977]: ‘Causal Theories of Time and the Conventionality of 

Simultaneity’, Noûs, 11, pp. 293-308. 

Ohanian, Hans C. [2004]: ‘The Role of Dynamics in the Synchronization Problem’, 

American Journal of Physics 72, pp. 141-8. 

Ohanian, Hans C. [2005]: Reply to Comments on ‘The Role of Dynamics in the 

Synchronization Problem’ by A. Macdonald and A. A. Martínez, American 

Journal of Physics 73, pp. 456-7. 

Pfister, Herbert [2004]: ‘Newton’s First Law Revisited’, Foundations of Physics Letters 

17, pp. 49-64. 

Plato [publication date unspecified]: Sophist, Athens: Academy Manuscripts. 



 34

Reichenbach, Hans [1928]: Philosophie der Raum-Zeit-Lehre, translated as The 

Philosophy of Space & Time, by M. Reichenbach and J. Freund, New York: 

Dover, 1958. 

Russell, Bertrand [1912]: The Problems of Philosophy, reprinted by the Oxford 

University Press, 1971. 

Russell, Bertrand [1948]: Human Knowledge: Its Scope and Limits, Allen and Unwin, 

London. 

Rynasiewicz, Robert [2000]: ‘Definition, Convention, and Simultaneity: Malament’s 

Result and Its Alleged Refutation by Sarkar and Stachel’, talk presented at the 

Seventeenth Biennial Meeting of the Philosophy of Science Association, 

Vancouver, November 2-5, 2000; available online at URL: 

http://hypatia.ss.uci.edu/lps/psa2k/definition-convention.pdf. 

Sarkar, Sahotra and Stachel, John [1999]: ‘Did Malament Prove the Non-

Conventionality of Simultaneity in the Special Theory of Relativity?’, 

Philosophy of Science, 66, pp. 208-20. 

Suchting, W. A. [1969]: ‘Perception and the Time-Gap Argument’, Philosophical 

Quarterly, 19, pp. 46-56. 

Torretti, Roberto [1999]: ‘On Relativity, Time Reckoning and the Topology of Time 

Series’, in Butterfield, J. (ed.): The Arguments of Time, Oxford University 

Press, pp. 65-82. 

Winnie, John A. [1970]: ‘Special Relativity without One-Way Velocity 

Assumptions’, Philosophy of Science, 37, pp. 81-90 & 223-38. 


