
Bridging Theorem Proving
and Mathematical Knowledge Retrieval

Christoph Benzmüller1, Andreas Meier1, and Volker Sorge2

1 FR 6.2 Informatik, Universität des Saarlandes,
Saarbrücken, Germany

{chris,ameier}@ags.uni-sb.de
2 School of Computer Science,
University of Birmingham, UK

V.Sorge@cs.bham.ac.uk

Abstract. Accessing knowledge of a single knowledge source with dif-
ferent client applications often requires the help of mediator systems as
middleware components. In the domain of theorem proving large efforts
have been made to formalize knowledge for mathematics and verification
issues, and to structure it in databases. But these databases are either
specialized for a single client, or if the knowledge is stored in a general
database, the services this database can provide are usually limited and
hard to adjust for a particular theorem prover. Only recently there have
been initiatives to flexibly connect existing theorem proving systems into
networked environments that contain large knowledge bases. An inter-
mediate layer containing both, search and proving functionality can be
used to mediate between the two.
In this paper we motivate the need and discuss the requirements for
mediators between mathematical knowledge bases and theorem proving
systems. We also present an attempt at a concurrent mediator between
a knowledge base and a proof planning system.

1 Introduction

When sharing knowledge of one database amongst several clients or when ac-
cessing several databases by one client it is often necessary to use mediators as
middleware components to tailor the provided knowledge to the particular needs
of an application. By assigning sharable functionalities into mediator services the
high costs of adapting both knowledge servers and requesting client applications
to their mutual needs can be avoided. While this insight has become common
ground in the development of large client-server systems, only recently a similar
phenomenon can be observed in the area of theorem proving.

For being effective tools theorem provers need to be provided with a fair
amount of knowledge. In particular interactive theorem provers require large
libraries of formalized mathematics or knowledge for verification issues. Building
these libraries is a time consuming and tedious activity. In large parts it is also
duplicated effort, since many problems require similar theories of basic concepts

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 277–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 Christoph Benzmüller, Andreas Meier, and Volker Sorge

and therefore most systems require the formalization of roughly equivalent basic
knowledge. Recent initiatives try to minimize the knowledge engineering effort
by sharing knowledge between different systems. This can be done directly or via
distributed networks in which broad knowledge bases of mathematical theories
are jointly developed and employed.

The integration of a shared database with one particular client theorem
prover can naturally not be as close as in an exclusive connection, where the
knowledge base is tailored explicitly for the needs of the particular theorem
prover. While the database can provide mainly syntax-based retrieval proce-
dures like regular expression search or simple matchings and unifications, it usu-
ally cannot deal with requests that need a semantic search possibly depending
on the particular nature and proof context of the requesting client. For instance,
it should be possible to retrieve from the database all facts – theorems, lem-
mas, definitions – containing a certain concept. However, it is unlikely that the
database can be queried for a theorem inferring a particular goal in question,
since this query also depends on questions such as: What is the logic and con-
sequence relation of the requesting system? What kind of unification is suitable
for the request? etc.

One solution to bridge the gap between theorem provers and knowledge base
is to inject an intermediate layer of mediator systems whose task is (1) to trans-
mit suitable queries to a knowledge base and (2) to adequately process the re-
ceived data for the needs of a requesting prover. In this paper we shall examine
the situation how knowledge is currently handled and processed in state-of-the-
art theorem proving systems. We shall further motivate the need for mediators
between mathematical knowledge bases and theorem proving systems and dis-
cuss the particular requirements for this kind of middleware components. Finally,
we present a first prototype implementation of a concurrent mediator between
a knowledge base and a proof planning system.

2 Mediating Mathematical Knowledge

The notion of a mediator was first introduced by Wiederhold [36] in the context
of general information systems. Mediators are motivated by the emerging gap
between the information requested by an application and the information avail-
able in distributed information sources: “Knowing that information exists, and is
accessible creates expectations by end-users. Finding that it is not available in a
useful form or that it cannot be combined with other data creates confusion and
frustration.” Wiederhold distinguishes three layers: the layer of databases and
information sources, the layer of independent applications, and between them
the layer of mediators where a mediator is a “software module that exploits en-
coded knowledge about some sets or subsets of data to create information for
a higher layer of applications”. Mediators thus make applications independent
of the particular information sources. Generally they comprise heterogeneous
functionalities such as transformation and subsetting from information sources,
methods to access and merge data from multiple information sources, compu-
tations that support abstraction and generalization over underlying data, and

Bridging Theorem Proving and Mathematical Knowledge Retrieval 279

methods to deal with uncertainty and missing data because of incomplete or
mismatched sources.

Two concrete mediator approaches are Tsimmis [30] and Komet [12]. In
Tsimmis so-called wrappers first convert data from each information source into
a common model; they also provide a common query language for information
extraction. A mediator now combines, integrates, or refines data from the wrap-
pers, providing applications with a “cleaner view”. The Mediator Specification
Language (MSL) is used to specify mediators declaratively. Similar to Tsimmis,
Komet is a shell for developing dedicated mediators by means of a declarative
language. Employing an annotated logic for the latter it is capable of performing
various types of reasoning.

The mentioned approaches address the general problem of information re-
trieval in distributed information sources. We will now shed some light on math-
ematical knowledge retrieval in current theorem proving or reasoning systems.

2.1 Current Systems

Traditional Automated Theorem Prover. The first automated theorem
proving systems were mainly designed as stand-alone systems not connected
to a database of mathematical knowledge such as theorems, lemmas, and def-
initions. Many modern systems such as Otter [25], Spass [35], Protein [4],
Setheo [24], Vampire [31], Bliksem [28], and Waldmeister [20] still follow
this tradition. In order to prove hard mathematical theorems T with these sys-
tems assumptions A1, . . . , An and probably some lemmas L1, . . . , Lm have to be
carefully chosen by the user in advance. Thus, the problem processed by the
prover is: A1 ∧ . . .∧An ∧L1 ∧ . . .∧Lm ⇒ T . Dynamic retrieval of further math-
ematical facts during proof search is not addressed in the traditional theorem
proving context.

An automated theorem prover that supports dynamic knowledge retrieval is
Tps [1], which is based on higher order mating search. Its dual instantiation
mechanism [8] dynamically requests definitions from Tps’s own library and ex-
pands them stepwise during proof search. Hence, the Tps user does not have
to decide in advance which definitions to expand (and which occurrences of a
definition to expand) since this is done by the system at runtime.

An independent library for traditional automated theorem provers is the
Tptp [33] library for first order problems. Tptp provides a common basis of
problems for the development and testing of automated theorem provers. Prob-
lems can be stored in a structured way with respect to their mathematical
domain and standard mathematical axiomatizations (e.g., equality axioms for
group theory etc.) are provided. New problems can inherit knowledge along the
existing structures. With the tptp2x utility the Tptp provides also some medi-
ator functionalities. The tptp2x utility converts Tptp problems from the Tptp

format to formats used by existing automated theorem provers (e.g., the Otter

format). However, dynamic retrieval of knowledge from Tptp during a proof
attempt has not been addressed yet in traditional automated theorem proving.

280 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Interactive Theorem Prover. Interactive theorem proving environments for
mathematics or program verification usually closely integrate proof development
and proof manipulation facilities with a proof and knowledge maintenance sys-
tem in the background. They often provide elaborate mechanisms to maintain,
manipulate, and access highly structured knowledge. The knowledge is usually
encapsulated in mathematical theories consisting of definitions, axioms, lemmas,
and theorems and can be hierarchically arranged with the help of inheritance
mechanisms. For instance, a theory of state machines may be based on a theory
for integer arithmetic and lists. Additionally proofs and further domain depen-
dent knowledge such as specialized tactics or proof methods may be maintained.

Existing interactive theorem proving environments for mathematics and ver-
ification differ concerning how close the knowledge base is integrated. For in-
stance, in the latest Nuprl release, Nuprl LPE [32] (logical programming en-
vironment), the library is the central module. It contains definitions, theorems,
inference rules, meta-level code (e.g., tactics), and structure objects that can be
used to provide a modular structure for the library’s contents. A collection of in-
dependent, cooperating processes are centered around this library. They include
inference engines, user interfaces, rewrite engines, and translators.

While some other systems, like Pvs [29], follow a similar approach, there
are also systems in which the mathematical library has a less central function
and which realize a more loose integration of proof development and knowledge
maintenance. In Ωmega [5] the mathematical library originally also was inter-
woven with other parts of the system. In a recent reorganization of the system
it became an independent module.

Cooperating Reasoning Systems. In recent years many experiments to inte-
grate reasoning systems have been carried out. For such cooperations the sharing
and exchanging of mathematical knowledge is crucial.

One approach to make two systems cooperate is to transform the theory
libraries in the format of the one system into the format of the other system.
Then knowledge of the former system can be used in the latter system. For
instance, [21, 16] describe the cooperation of Nuprl and Hol [19]. Proofs are
developed in Nuprl employing Hol libraries and a connection between Nuprl’s
and some of Hol’s packages for adding constants, axioms, and theorems. Crucial
for this cooperation is the import of Hol theories into Nuprl such that the
Nuprl user gains full access to them. The main problem is the translation of
concepts in the logic of the one system into the logic of the other system.

Other approaches of cooperating systems do not transform concepts at the
theory level but do transform proofs. For instance, [9] describes the interface
between Hol and the proof planner Clam [10] which is a system specialized
on induction. Clam is treated as a black box to which Hol passes goals to be
proved automatically. The approach avoids the modification of Clam in order
to suit the classical higher order logic used in Hol. Instead, correspondences be-
tween mathematical knowledge and structures in both systems are established
and exploited. That is, both systems maintain their own database of definitions,
lemmas, induction rules, wave rules, etc. and corresponding concepts are identi-

Bridging Theorem Proving and Mathematical Knowledge Retrieval 281

fied by their names. When Clam returns a proof plan to Hol then the mapping
of the names is used to guide the construction of a corresponding proof in Hol.
A similar approach is also used in the interface between Ωmega and Tps [6].

Currently, there are no approaches of cooperating systems that rely on a
jointly developed, shared mathematical database. However, the described coop-
erations of Nuprl and Hol as well as Hol and Clam demonstrate that recent
approaches strive in this direction. In neither approaches is the knowledge trans-
lation done by independent mediators in the sense of Wiederhold, but instead
encoded in one or the other system. However, there are already independent me-
diators for translating proofs from more machine oriented calculi of automated
theorem provers into the more human oriented formalisms of interactive reason-
ing systems. A system specialized on this type of transformation is Tramp [26],
which translates the output of several automated theorem provers (e.g., Otter,
Spass, Waldmeister) for first order logic with equality into natural deduction
proofs at the assertion level.

General Mathematical Databases. There have also been approaches for
universal mathematical knowledge bases that are not connected to a particular
system but that want to offer the infrastructure for a repository of formalized
mathematics. Most notable is probably the Mizar library [34], which is being
assembled for more then two decades now. It contains more than 2 thousand
definitions of mathematical concepts and about 20 thousand theorems. The re-
trieval of these facts is mainly text-based and thus of rather limited use for a
concrete client theorem prover. Therefore, a suitable postprocessing of Mizar’s
data is always necessary to actually apply the collected knowledge.

Around 1994, the “Qed Manifesto” [2] was put forward, which advocates
building up a mathematical knowledge base as a kind of “human genome project”
for the deduction community. Unfortunately, the vision has failed to catch on in
spite of a wave of initial interest.

Only recently the mathematical library MBase [18] emerged as a spin-off
of the Ωmega system. The outsourcing of Ωmega’s database and its separa-
tion from the inference mechanisms of the system inspired the development of a
mathematical library that wants to serve as a distributed repository of mathe-
matical knowledge for other client systems as well. Thus, MBase is independent
of a particular deduction system or a particular logic. Although MBase aims
at providing elaborate, partially semantic-based retrieval facilities, it its current
state of development – the first working prototype has been released just recently
– it is difficult to assess whether this will be general enough to suit all the needs
of a requesting client.

Networks of Mathematical Systems. As the number of differently spe-
cialized reasoning systems is growing, the idea of cooperation between those
reasoners catches more and more on. This in turn has led to the development
of several networks that provide the necessary infrastructure to easily connect
different reasoning systems as distributed mathematical services. Examples of
system networks are Prosper [15], LogicBroker [3], and MathWeb [17].

282 Christoph Benzmüller, Andreas Meier, and Volker Sorge

The latter currently provides 22 mathematical services such as theorem provers,
Computer Algebra Systems, model generators, and also the prototype of the
MBase database.

It is predictable that in the future more and more systems will cooperate
and exchange mathematical knowledge via networks of mathematical services.
Reasoning systems will request knowledge fractions from shared databases and
probably add new or modify existing knowledge chunks. Hence mediating math-
ematical knowledge will become an increasingly important topic.

2.2 Mediating Requests for Applicable Assertions

In the rest of the paper we focus on the more concrete problem of mediating the
retrieval of applicable assertions. Assertion is a collective name for definitions,
theorems, and lemmas which we assume to be stored in a database. As part of
the mathematical theory assertions can be crucial information for the success of
a proof attempt of a theorem prover. For instance, the application of a suitable
assertion can dramatically ease and shorten the proof construction.

However, the search for applicable assertions is a non-trivial task. A database
may contain thousands of assertions, how can then the retrieval of applicable as-
sertions be efficiently realized? Somehow we have to filter and structure the
applicable assertions. Thereby, the potential filtering and structuring criteria
range from simple syntactic information to complex semantical properties. As
an example consider the proof goal |(f(x) + a)− (g(x) + a)| ≤ ε. The first infor-
mation we can use to filter assertions is the syntactic information of the occuring
defined symbols |.|, +,−, <. The symbols can be employed to identify assertions
containing at least one of these symbols where the most promising assertions
could be those who contain several of the defined symbols. Similarly, we can use
the information on the mathematical domains the investigated subgoal belongs
to. Thus in our case we would collect the assertions that belong to the domains
real or ordered fields. A stronger (i.e., more restricting) but more costly filter
criterion is to find all assertions which unify with the concrete proof goal. In
a higher order context or in case we are interested in theory unification (e.g.,
associativity, commutativity, and distributivity of ’+’), however, we then quickly
face undecidable filter criteria. Even more complex would be to identify all as-
sertions from that a goal is deducible with respect to further facts given in the
current proof.

Since filter and structuring criteria can become very complex and even un-
decidable the question is where those criteria should be applied? There are two
“extreme” scenarios:

In the Theorem Prover: The theorem prover requests once or even in each
proof step a set of potentially applicable assertions from the knowledge bases
using requests that are rely on mainly simple syntactical criteria. It then
structures the received, probably very heterogeneous data and analyses it-
self within its main theorem proving loop whether the candidate assertions
are indeed applicable. The applicable ones are then integrated as additional
hypotheses to be considered for the subproblem in the proof search.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 283

In the Knowledge Base: The knowledge bases completely handle the search
for actually applicable assertions with respect to a proof context received
from a requesting theorem prover. Then they pass only the applicable as-
sertions to the theorem prover. A task that nevertheless remains for the
theorem prover is to structure and merge (e.g., remove duplicates) the as-
sertions received this way from different knowledge bases.

We argue that these two extreme scenarios are not suitable in a network of
heterogeneous reasoning systems and mathematical knowledge sources. The in-
terleaving of assertion filtering and structuring with the main theorem proving
loop in the first scenario is a rather ineligible option for both automatic and
interactive theorem proving. For non-trivial mathematical problems the sets of
potentially applicable assertions easily become very large. Consequently the ap-
plicability checks can dramatically slow down the theorem proving process. In
case of undecidable filter criterions the theorem prover would even have to de-
cide when to interrupt the filtering process. The second scenario, in which the
database does the main filtering and structuring, presupposes practically infea-
sible, complex, and logic and context sensitive search facilities in the knowledge
bases. That is, a knowledge base would have to support the different logics and
consequence relations of all requesting theorem provers. Another problem for
the knowledge bases is that numerous, simultaneous requests from different the-
orem provers could greatly reduce the performance of the knowledge base if too
complex or even undecidable filter criteria are employed.

Although the “extreme” scenarios would probably not exist in their pure
form, they demonstrate that both theorem provers and knowledge bases should
be kept free of the respective other’s task. In particular, to avoid adjusting
the theorem prover to the abilities of the database or, conversely, tuning the
knowledge retrieval for the needs of a particular theorem prover, we suggest
an intermediate layer of mediators to interface between theorem provers and
knowledge bases.

2.3 Requirements of a Mediator

Figure 1 depicts a mediator between a theorem prover and a database. Foremost,
the mediator acts as an interface and performs translation tasks. Therefore, the
theorem prover needs no knowledge about how to access the database; it only
has to pass queries to the mediator. The mediator creates then suitable requests
for the database. Moreover, the theorem prover does not have to accept the
data from the database in its actual formalism, rather the mediator can pass
data to the theorem prover in a suitable formalism. The interface functionality
on the one hand enables a database to serve several different client theorem
provers. On the other hand a single theorem prover can also easily access several
databases: The theorem prover has still to communicate via only one mediator,
which passes the requests of the mediator to the different databases in their
respective formalisms and returns the data of different databases to the theorem
prover in a unique formalism.

284 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Theorem Prover: needs structured and adjusted data

syntactic filtering of dataDatabase:

heterogenous

data
’syntactic’ requests

uniform, adjusted
data

’semantic’ requests

Mediator: semantic filtering of data
collecting of data

structuring and unifying of data

Fig. 1. A mediator between theorem prover client and mathematical knowledge base.

Apart from the simple translation functionality, the mediator should also
combine data retrieval mechanisms with theorem proving functionality based
on the requirements of a requesting client. The mediator processes the data re-
trieved from the databases and provides elaborate filtering functionalities that
are adjusted to the particular needs of this theorem prover. Concretely it pro-
cesses the received data to identify portions that are suitable with respect to the
current proof context of the theorem prover. Therefore, information about the
logical context of the theorem prover is part of the request. The mediator can
then choose more appropriate semantic filters with respect to this information.
Additionally, the mediator can also combine heterogeneous subprocesses such
as structuring of the retrieved data, merging of data retrieved from multiple
databases (i.e, removal of duplications), support of abstraction and generaliza-
tion, dealing with inconsistent data, etc.

Note, that the picture in Fig. 1 gives a rather high-level view on the con-
nections between mediator, theorem prover, and database. It is reasonable to
have all three as separated processes, i.e., to enable the theorem prover to pro-
ceed with proof search without having to wait for the mediator to terminate
its search for applicable assertions. However, the boundaries between theorem
prover functionalities, mediator functionalities, and database functionalities in
concrete applications may not be as clear as in this picture. In general it is the
job of the mediator to apply elaborate filters as well as to structure and unify the
data. However, concrete theorem provers or databases may already offer some
if these functionalities (e.g., it is planned to implement a unification algorithm
with associativity and commutativity in MBase). In such a case the mediator
should know this and employ such facilities.

In our concrete scenario the mediator should request assertions from the
database and pass only applicable ones to the theorem prover. To check for the

Bridging Theorem Proving and Mathematical Knowledge Retrieval 285

applicability of theorems various algorithms can be employed, for instance, first-
and higher-order matching, first- and higher-order unification, restricted forms
of unification or matching such as higher-order pattern matching, theory unifi-
cation or matching where the considered theory depends on the incoming prob-
lem, other domain or theory specific algorithms and filters consisting of simple
deductive processes adjusted to the requesting theorem provers. The mediator
should have all these algorithms at its disposal; however, for concrete requests
it should be parameterizable. That is, information of the concrete algorithms it
should employ are part of a request of the theorem prover. Since some of the
algorithms are very complex or even undecidable the mediator should be able to
employ them concurrently. Then assertions whose applicability can be quickly
determined with simple, deterministic algorithms are not blocked by assertions
whose applicability test requires non-trivial computations or deductions. This
enables also an any-time character of the mediator; that is, the more time the
mediator has to compute a response the more and probably even better suited
assertions it can suggest.

In order to meet these requirements we propose a distributed, concurrent
architecture for the mediator. In the next section we shall present a first attempt
at such a mediator in a proof planning scenario.

3 An Example Architecture and Application

In this section we present the concrete implementation of a mediator between
a theorem prover and a mathematical database and its application in a proof
planning environment. We shall firstly introduce the particularities of assertion
applications in proof planning before we explain the adaption of the Ω-Ants [7]
suggestion mechanism to a distributed, concurrent mediator system and its con-
crete application to an example from finite algebra.

3.1 Motivation: Assertion Retrieval

Huang has identified the assertion level as a well defined abstraction level for
natural deduction proofs [22, 23]. Proofs at assertion level are composed of the
direct application of assertions, like theorems, axioms, and definitions.

To clarify the notion of assertion application we pick one of Huang’s examples
as given in [23]. An assertion application is for instance the application of the
SubsetProperty

∀S1 ∀S2 S1 ⊂ S2 ≡ ∀x x ∈ S1 ⇒ x ∈ S2

in the following way:

a ∈ U U ⊂ F
a ∈ F

Assertion(SubsetProperty)

The direct application of the assertion is thus an abbreviation for a more detailed
reasoning process on the calculus level; that is, the explicit derivation of the goal

286 Christoph Benzmüller, Andreas Meier, and Volker Sorge

a ∈ F from the two premises by appropriately instantiating and splitting the
SubsetProperty assertion.

In the Ωmega system assertions are applied using a specialized Assertion
tactic. Its purpose is to derive a goal from a set of premises with respect to a
theorem or axiom. It thus enables the more abstract reasoning at the assertion
level with respect to given assumptions. We can depict the assertion tactic as a
general inference rule in the following way

Prems
Goal

Assertion(Ass)

where Prems is a list of premises, Goal is the conclusion and Ass is the assertion
that is applied.

3.2 Assertion Application in Proof Planning

Proof planning [11] considers mathematical theorem proving as planning prob-
lem where an initial partial plan is composed of the proof assumptions and the
theorem as open goal. A proof plan is then constructed with the help of abstract
planning steps, called methods, that are essentially partial specifications of tac-
tics known from tactical theorem proving. In order to ensure correctness, proof
plans have to be executed to generate a sound calculus level proof. The proof
planner generally follows a depth first or iterated deepening search strategy,
which can be guided by certain heuristics implemented in control rules. Meth-
ods are tested sequentially and if possible they are immediately applied. In case
the proof attempt gets stuck the planner backtracks.

Traditionally in proof planning assertions are applied using a generic method
which essentially corresponds to the proof rule displayed in the preceding section.
The number and types of assertions considered is usually heuristically limited by
a control rule. The method is applicable if one of the considered assertions is ap-
plicable to the given goal. In particular, assertions usually are applied backwards
in proof planning. That is, to close a goal the planner searches for an assertion
whose application to a set of premises deduces the goal; then the premises are
inserted as new subgoals. This requires that each assertion in question or at
least some part of it is matched with the current goal, which is usually done
sequentially, i.e., one by one. Assertions can be applied in different ways. For
instance, the assertion A ⇒ B can be applied backwards to reduce a goal that
matches with B to the new subgoal A or it can be applied backwards to reduce
a goal that matches with ¬A to a new subgoal ¬B when applied with respect
to its contrapositum. Thus, in order to be as complete as possible the asser-
tion method in Ωmega checks all possible directions in which assertions can be
applied where each check of a direction comprises a matching of the goal with
some parts of the assertion. Naturally, in order to keep method and thus asser-
tion application feasible, matching has to be restricted. For instance, the generic
method is equipped with a first order matching algorithm, only. However, there
can exist other, additional methods to apply theorems that are better tailored
to the needs of a specific set of assertions and hence can use more complicated,

Bridging Theorem Proving and Mathematical Knowledge Retrieval 287

albeit decisive algorithms for determining applicability. Apart from the decid-
ability problems and the lack of support for more complicated matching schemes
it is also quite infeasible to check applicability of a large number of assertions
in each step of the proof planning process: As discussed already in Sec. 2.2 the
applicability checks dramatically slow down the proof planning process.

A second drawback of the direct integration of assertion application into the
main proof planning process is the lack of flexibility to adjust the assertion ap-
plication to the state of the knowledge available. Usually, the proof planner has
heuristical information on what assertions it should consider when proof plan-
ning in a certain domain. This information is generally directly linked with the
knowledge base containing the assertions. Thus, the control unit of the proof
planner itself requests certain assertions regardless of the current state of the
knowledge base. While some of the requested assertions might not even be con-
tained in the knowledge base, there might be other more suitable ones that are,
however, not requested. Moreover, the extension of these heuristics is rather
cumbersome and again knowledge base dependent.

Therefore, an ideal support for the overall proof planning process is to have
a flexible mediator that adjusts itself both to the requirements of the proof
planner and the current state of the knowledge base. Moreover, the mediator
should free the proof planner from the encumbering task of constantly checking
the applicability of assertions in each single step.

3.3 Using Ω-ANTS as a Mediator

As a mediator between the proof planner and the knowledge base we employ the
hierarchical blackboard architecture Ω-Ants [7] which supports both distribu-
tion and concurrency.

Ω-Ants was originally conceived to support interactive theorem proving in
Ωmega. It provides the user with information about which inference steps are
applicable in the actual proof situation. In the Ω-Ants context, all inference
rules such as calculus rules, tactics, or planning methods are uniformly regarded
as sets of premises, conclusions, and additional parameters

Prems
Cons

I(Params).

The elements of these three sets generally have some dependencies amongst
each other. To apply an inference rule at least some of its arguments have to be
instantiated by elements of the given proof context, where the arguments that
are actually instantiated determine the direction in which the inference rule is
applied. The task of the Ω-Ants architecture is now to determine the possible
applications of inference rules by computing instantiations for their arguments.

The architecture consists of two layers of blackboards: The lower layer of the
architecture consists of a set of rule blackboards, one for each inference rule. We
view the knowledge sources of these blackboards as society of agents (i.e., we
have one society for each inference rule) since they are realized in independent,
concurrent processes. Their task is to search the current partial proof for partial

288 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Proof

Selector

and/or

User

Suggestions

Interactive

Rule 2

Rule 1

Rule 3

Rule 4

Rule 4

Rule 3

Rule 1

Partial

* *

**

Fig. 2. The original Ω-Ants architecture.

argument instantiations for the inference rule. They communicate via their rule
blackboard and can cooperate by adding further specification to a partial ar-
gument instantiation other agents have already placed on the blackboard. Each
rule blackboard is monitored by one agent that reports the heuristically prefered
partial argument instantiation to the suggestion blackboard, which comprises the
upper layer of the architecture. This blackboard accumulates a set of inference
rules that are applicable in the current proof state and which are subsequently
passed to the user.

A graphical representation of Ω-Ants architecture is given in Fig. 2. Agents
are displayed by circles, agent societies are grouped in elliptic frames, and black-
boards are displayed by boxes. In the figure the architecture is rotated; that is,
the lower layer with rule blackboards and their respective agent societies are on
the right hand side whereas the upper layer with the suggestion blackboard is
on the left hand side.

We adapt Ω-Ants to concurrently retrieve applicable assertions during proof
planning by distributing the applicability checks for sets of assertions to several
agents. Like in the original Ω-Ants architecture we want to compute, now in
particular argument instantiations for applicable assertions. Instead of a layer
of rule blackboards we provide for this a layer of assertion blackboards. Again
with each blackboard of this layer an agent society is associated. Moreover, with
each assertion blackboard a cluster of assertions is associated, which consists of
related assertions applicable to subgoals that share a certain property. The agent
society of an assertion blackboard is responsible to check the applicability of the
assertions belonging to its cluster. Thus the agents search both the current par-
tial proof and the associated assertion cluster. As in the original Ω-Ants system
they cooperate via the blackboards by exchanging partial argument instanti-
ations for assertion applications. Also similar to the original Ω-Ants system
complete argument instantiations are passed to the upper layer and then to the
proof planner.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 289

find premises

find goal

match

retrieve

match

retrieve

Theorems

Axioms

Lem
m

ata

Definitions

Suggestions

* *

Proof

Planner

Assertion 1

Closed

Assoc

Partial Proof
Assertion 2

Assertion 3

Knowledge Base

Fig. 3. The use of Ω-Ants as a mediator.

Figure 3 shows the adapted architecture. It differs essentially from the orig-
inal architecture in the point that each agent society on the lower level has one
cluster of assertions associated. These clusters are depicted below the respective
agent societies and the single assertions are represented as diamonds.

Each agent society consists of three types of agents: one filter agent, one
or several retrieval agents, and one premise agent. During the proof planning
process, first the filter agents look-up the current partial proof and search for
open subgoals that could be suitable for their respective assertion cluster. If the
filter agent succeeds for a subgoal it places a partial argument instantiation on
its blackboard containing the subgoal as only element. For such entries on the
blackboard the retrieval agents become active, look-up the associated assertion
cluster, and attempt to find actually applicable assertions, which is usually done
with some matching algorithm that is part of the specification of the retrieval
agent. If retrieval agents are successful they suggest the matching assertions as
applicable and add the theorems to the partial argument instantiations. This
triggers the premise agent, which examines each suggested assertion if its ap-
plication will lead to new open subgoals. In this case the premise agent tries
to identify whether the proof context already contains presuppositions that can
justify the premises of the assertion. Complete argument instantiations are then
passed as suggestions to the proof planner. Each individual suggestion contains
information on the investigated subgoal, an identified applicable assertion, and
presuppositions justifying the premises of the assertion.

Filter agent and retrieval agents enable a separation of simple and difficult
tests. The filter agent usually performs only simple checks, for instance, whether
a goal contains a certain concept such that the assertions in the cluster deal with
this concept. The retrieval agents employ more expensive applicability checks
such as first order matching, higher order matching, or even full higher order
theorem proving. This separation of pre-selection of goals by the filter agent and
the main check by the retrieval agents prevents the application of complicated

290 Christoph Benzmüller, Andreas Meier, and Volker Sorge

matchings and unifications to check the applicability of assertions to goals which
obviously will fail. Moreover, a society can have more then one retrieval agent,
which can employ different algorithms and are possibly considering different
subsets of assertions. This is sketched in Fig. 3 by the two subclusters that
comprise the upper assertion cluster. Different retrieval agents allow for further
separation of simpler and more complicated checks. Since all agents are separate
processes simple checks are not blocked by complicated checks that get stocked.

The retrieval agents comprise a further functionality, they establish the in-
terface to the database and form the associated clusters of assertions dynam-
ically at runtime. Technically, this is realized as follows: Each retrieval agent
is equipped with specifications about the type of assertions it can process. At
runtime the retrieval agent sends a request to the knowledge base to receive a
set of assertions that comply with the specification. This request can be adapted
to the format and abilities of the respective contacted database. Furthermore,
selecting the assertions via specifications enables a more refined selection of as-
sertions and makes this selection independent of explicit references to assertions
or a particular database. The database queries are periodically repeated so when
new assertions become available they are automatically fitted into the existing
clusters.

The adapted Ω-Ants architecture as mediator combines both theorem prov-
ing and database functionality. On the one hand the filter and premise agents
search in the given partial proof on the theorem prover side. On the other hand
the retrieval agents request assertions from the knowledge base and model ad-
vanced, theorem prover dependent retrieval functionality. However, while the
formation of theorem clusters is already a dynamic process the agents them-
selves have to be explicitly specified.

3.4 A Concrete Application

The example we present is taken from a case study on the proofs of properties
of residue classes. In this case study we apply Ωmega’s proof planner to classify
residue class sets over the integers together with given binary operations in terms
of their basic algebraic properties. The case study is described in detail in [27].
We concentrate here on how Ω-Ants determines the applicability of assertions
in this context. We consider the first step in the proof of the theorem

Conc. � Closed(ZZ5, λx λy (x∗̄y)+̄3̄5).
It states that the given residue class set ZZ5 is closed with respect to the operation
λx λy (x∗̄y)+̄3̄5. Here ZZ5 is the set of all congruence classes modulo 5, i.e.,
{0̄5, 1̄5, 2̄5, 3̄5, 4̄5}. ∗̄ and +̄ are the multiplication and addition on residue classes.

Among the theorems we have for the domain of residue classes there are some
that are concerned with statements on the closure property. In particular, we
have the following six theorems:

ClosedConst : ∀n:ZZ ∀c:ZZn Closed(ZZn, λx λy c)
ClosedFV : ∀n:ZZ Closed(ZZn, λx λy x)
ClosedSV : ∀n:ZZ Closed(ZZn, λx λy y)

Bridging Theorem Proving and Mathematical Knowledge Retrieval 291

ClComp+̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)+̄(x op2 y))

ClComp−̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)−̄(x op2 y))

ClComp∗̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)∗̄(x op2 y))

The theorems ClosedConst, ClosedFV , and ClosedSV talk about residue
class sets with simple operations whereas ClComp+̄, ClComp−̄, and ClComp∗̄
are concerned with combinations of complex operations. The difference between
the groups of theorems is that the applicability of the former can be checked with
slightly adapted first order matching whereas for the latter we need higher order
matching. For example, when applying the theorem ClComp+̄ to our problem
at hand the required instantiations are op1 ← λx λy x∗̄y and op2 ← λx λy 3̄5,
which cannot be found by first order matching. However, since we are concerned
only with a distinct set of binary operations and their combinations, we can
keep things decidable by using a special, decidable algorithm, which matches the
statements of the theorems ClComp+̄, ClComp−̄, and ClComp∗̄ with nested
operations on congruence classes.

In Ω-Ants we have the agent society as depicted in Figure 4 for the cluster
comprising the theorems given above. The filter agent F searches for possible
conclusions that contain an occurrence of the Closed predicate. F writes respec-
tive suggestions of goals to the blackboard. We then have two retrieval agents,
R1 and R2, that try to match the theorems. R1 tries to match the theorems
ClosedConst, ClosedFV , and ClosedSV to the formulas suggested by F us-
ing first order matching. R2 uses the special algorithm instead of matching the
theorems ClComp+̄, ClComp−̄, and ClComp∗̄ conventionally. R1 and R2 have
additional acquisition predicates specifying that the agents can acquire theorems
whose conclusions have Closed as the outermost predicate. R1 furthermore re-
quires that the theorem conclusion contains a simple, constant operation while
R2 expects a complex operation. The acquisition predicate serves to retrieve
appropriate theorems from the knowledge base initially and dynamically at run-
time if new theorems are added. R1 and R2 place new extended suggestions on
the blackboard for each applicable theorem they detect. The last agent is the

F = { Goal: Goal contains the Closed predicate}
R1 = { Thm: Conclusion matches Goal with first order matching}{

Acquisition: Conclusion contains Closed as outermost
predicate and a constant operation

}

R2 = { Thm: Conclusion matches Goal with special algorithm}{
Acquisition: Conclusion contains Closed as outermost

predicate and a binary operation

}

P = { Prem: The nodes matching the premises of Thm}

Fig. 4. Agent society for the Closed theorem cluster.

292 Christoph Benzmüller, Andreas Meier, and Volker Sorge

premise agent P, which has an algorithm to extract the necessary premises from
a theorem suggested by R1 or R2, if there are any. For instance, if the ClComp+̄
theorem has been successfully matched the agent would extract the succedent
of the implication (i.e., Closed(ZZn, op1)∧Closed(ZZn, op2)) as well as the single
conjuncts comprising the succedent. The agent P then tries to find appropriate
lines in the current proof containing these premises.

For our concrete example theorem the information that accumulates on the
command blackboard for the Closed theorem cluster is as follows:

Closed Closed

(Goal:Conc)

Closed

(Goal:Conc)
(Goal:Conc, Thm:ClComp+̄)

First F detects an occurrence of the Closed predicate in the given goal Conc
and adds an entry suggesting it as instantiation for Goal to the blackboard.
With this entry, R1 and R2 start matching their respective theorems to Conc.
R2 is successful with the ClComp+̄ theorem and adds the matched theorem as
suggestion. Then P starts its search; for our example it is looking for premises
of the form Closed(ZZ5, λx λy 3̄5) and Closed(ZZ5, λx λy x∗̄y).

4 Outlook

This paper discussed the possible role of mediators between theorem provers
and mathematical knowledge bases. Mediators should provide all kinds of func-
tionalities that neither can be provided by general, shared databases nor should
be integrated in the main proving process of client theorem provers. As a first
attempt at a concrete mediator system we have presented an adaptation of the
Ω-Ants blackboard architecture to retrieve applicable assertions for Ωmega’s
proof planner. The architecture combines both theorem proving and database
functionality. Moreover, it enables concurrent computations and supports any-
time character in the way that applicable assertions are immediatly reported
to the theorem prover before all computations are finished. However, the ar-
chitecture is only partly parametrizable and flexible. In particular, agents have
to be specified and arranged explictly. The developer of the Ω-Ants mediator
has to specify which matching and unification algorithms are applied via agents
to which assertions (that are collected also via the agents). That is, the agents
can not arrange flexibly to new societies. Thus the Ω-Ants mediator can not
process new assertions that do not fit into the existing societies. One way to
overcome this, is to develop more general specifications how to identify applica-
ble assertions and to parameterize these, for instance, with respect to a given
mathematical theory.

Related to our assertion retrieval scenario is the work of Dahn et al. [14]. They
apply the Ilf system [13] to equip the Computer Algebra System Mathematica

[37] with the possibility to retrieve theorems from a part of the mathematical
library of Mizar. The approach is motivated by the observation that an ordinary

Bridging Theorem Proving and Mathematical Knowledge Retrieval 293

search for text strings is an unsatisfactoring retrieval approach since the theorem
might be stated slightly different in the database (e.g., different variable names)
or it might merely be inferable from other theorems and simple properties. Dahn
et al. therefore employ Ilf as a mediator that performs a semantical search for
suitable theorems supported by the first order provers connected to it. For this,
first a set of candidate theorems is selected based on the signature of the request
using conventional database techniques. The candidates are then extended by
some auxiliary axioms and several provers are started competetively to prove
that the requested theorem follows from the extended set. If a proof is found it
is inspected to determine the library theorems actually used in it.

While the work has a different direction with respect to the actual use of the
retrieved mathematical knowledge it nevertheless complys with our desiderata
for mediator systems. The motivation is to remedy the shortcomings of current
mathematical knowledge bases and the standard database retrieval is indeed
enhanced using more elaborate, in particular theorem proving, techniques.

Apart from the context of theorem proving, mediators can also be used to
make mathematical knowledge available to a wide range of other applications
such as Computer Algebra Systems, tutor systems, electronic publishing, web
browsers, or even human mathematicians. Mathematical knowledge management
and its application is a field that is just emerging and we believe that the design
and implementation of mediator systems will play an important role in this field.

Acknowledgements

We would like to thank Thomas Hillenbrand and Andrew Adams who provided
us with insights into the working of some of the cited systems.

References

1. Peter B. Andrews, Matthew Bishop, and Chad E. Brown. TPS: A theorem proving
system for type theory. In D. McAllester, editor, Proceedings of the 17th Interna-
tional Conference on Automated Deduction, number 1831 in LNAI, pages 164–169,
Pittsburgh, 2000. Springer.

2. Anonymous. The qed manifesto. In A. Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction, number 814 in LNAI, pages
238–251, Nancy, 1994. Springer.

3. Alessandro Armando and Daniele Zini. Towards interoperable mechanized reason-
ing systems: the logic broker architecture. In A. Poggi, editor, Proceedings of the
AI*IA-TABOO Joint Workshop ‘From Objects to Agents: Evolutionary Trends of
Software Systems’, Parma, Italy, 2000.

4. P. Baumgartner and U. Furbach. PROTEIN: A prover with a theory extension
interface. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, number 814 in LNAI, pages 769–773, Nancy, 1994. Springer.

5. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann,
and V. Sorge. ΩMega: Towards a Mathematical Assistant. In W. McCune, editor,
Proceedings of the 14th International Conference on Automated Deduction, volume
1249 of LNAI, pages 252–255. Springer, 1997.

294 Christoph Benzmüller, Andreas Meier, and Volker Sorge

6. Christoph Benzmüller, Matthew Bishop, and Volker Sorge. Integrating tps and
Ωmega. Journal of Universal Computer Science, 5(3):188–207, March 1999. Spe-
cial issue on Integration of Deduction System.

7. Christoph Benzmüller and Volker Sorge. Critical Agents Supporting Interactive
Theorem Proving. In P. Barahona and J. J. Alferes, editors, Progress in Artifi-
cial Intelligence, Proc. of the 9th Portuguese Conference on Artificial Intelligence
(EPIA-99), volume 1695 of LNAI, pages 208–221, Évora, Portugal, 21–24, Septem-
ber 1999. Springer.

8. Matthew Bishop and Peter Andrews. Selectively instantiating definitions. In
C. Kirchner and H. Kirchner, editors, Proceedings of the 15th International Con-
ference on Automated Deduction, volume 1421 of LNAI, pages 365–380. Springer,
1999.

9. Richard Boulton, Konrad Slind, Alan Bundy, and Mike Gordon. An interface
between CLAM and HOL. In J. Grundy and M. Newey, editors, Proceedings of
the 11th International Conference on Theorem Proving in Higher Order Logics,
number 1479 in LNCS, pages 87–104, Canberra, 1998. Springer.

10. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303–324, 1991.

11. Alan Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the 9th International Conference on
Automated Deduction (CADE–9), volume 310 of LNCS, pages 111–120, Argonne,
Illinois, USA, 1988. Springer Verlag, Berlin, Germany.

12. J. Calmet, S. Jekutsch, P. Kullmann, and J. Schü. KOMET: A system for the
integration of heterogenous information sources. In Proceedings of the 10th Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS), 1997.

13. B. I. Dahn, J. Gehne, Th. Honigmann, and A. Wolf. Integration of automated and
interactive theorem proving in ilf. In W. McCune, editor, Proceedings of the 14th
International Conference on Automated Deduction, volume 1249 of LNAI, pages
57–60. Springer, 1997.

14. Ingo Dahn, Andreas Haida, Thomas Honigmann, and Christoph Wernhard. Using
mathematica and automated theorem provers to access a mathematical library. In
Proceedings of the CADE-15 Workshop on Integration of Deductive Systems, 1998.

15. Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad
Slind, Graham Robinson, Mike Gordon, and Tom Melham. The prosper toolkit.
In Proceedings of the Sixth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS-2000, LNCS, Berlin, Germany,
2000. Springer Verlag.

16. Amy Felty and Douglas Howe. Hybrid interactive theorem proving using Nuprl
and HOL. In W. McCune, editor, Proceedings of the 14th International Conference
on Automated Deduction, number 1249 in LNAI, pages 351–365, Townsville, 1997.
Springer.

17. A. Franke and M. Kohlhase. MATHWEB, an agentbased communication layer for
distributed automated theorem proving. In Harald Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction, volume 1631 of
LNAI, pages 217–221, Trento, 1999. Springer.

18. A. Franke and M. Kohlhase. MBase: representing mathematical knowledge in a
relational data base. In D. McAllester, editor, Proceedings of the 17th Interna-
tional Conference on Automated Deduction, volume 1831 of LNAI, pages 455–459,
Pittsburgh, 2000. Springer.

19. Mike J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, Cambridge, United Kingdom, 1993.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 295

20. Thomas Hillenbrand, Andreas Jaeger, and Bernd Loechner. WALDMEISTER:
Improvements in performance and ease of use. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction, number 1632 in
LNAI, pages 232–236, Trento, 1999. Springer.

21. Douglas J. Howe. Importing mathematics from HOL in Nuprl. In J. von Wright,
J.Grundy, and J. Harrison, editors, Proceedings of Theorem Proving in Higher
Order Logics, number 1125 in LNCS, pages 267–282. Springer, 1996.

22. X. Huang. Human Oriented Proof Presentation: A Reconstructive Approach. PhD
thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany,
1994.

23. X. Huang. Reconstructing Proofs at the Assertion Level. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, number
814 in LNAI, pages 738–752, Nancy, 1994. Springer.

24. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high performance
theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

25. William McCune. OTTER 2.0. In M. Stickel, editor, Proceedings of the 10th
International Conference on Automated Deduction, number 449 in LNAI, pages
663–664, Kaiserslautern, 1990. Springer.

26. Andreas Meier. TRAMP: Transformation of Machine-Found Proofs into Natural
Deduction Proofs at the Assertion Level. In D. McAllester, editor, Proceedings of
the 17th International Conference on Automated Deduction, volume 1831 of LNAI,
pages 460–464, Pittsburgh, USA, 2000. Springer, Germany.

27. Andreas Meier, Martin Pollet, and Volker Sorge. Classifying Isomorphic Residue
Classes. In R. Moreno-Diaz, B. Buchberger, and J.-L. Freire, editors, A Selection of
Papers from the 8th International Workshop on Computer Aided Systems Theory
(EuroCAST 2001), volume 2178 of LNCS, pages 494 – 508, Las Palmas, Spain,
2001. Springer.

28. H. De Nivelle. Bliksem 1.10 User Manual. MPI Saarbruecken, 1999.
29. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In

D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, number 607 in LNAI, pages 748–752, Saratoga Springs, 1992. Springer.

30. Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediation
system based on declarative specifications. In Proceedings of the 12th International
Conference on Data Engineering, pages 132–141. IEEE Computer Society, 1996.

31. Alexandre Riazanov and Andrei Voronkov. VAMPIRE. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction, number
1632 in LNAI, pages 292–296, Trento, 1999. Springer.

32. S.Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The nuprl open logical
environment. In D. McAllester, editor, Proceedings of the 17th International Con-
ference on Automated Deduction, volume 1831 of LNAI, pages 170–176, Pittsburgh,
2000. Springer.

33. Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The TPTP problem
library. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, number 814 in LNAI, pages 252–266, Nancy, 1994. Springer.

34. Andrzej Trybulec and Howard Blair. Computer Assisted Reasoning with MIZAR.
In Aravind Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence (IJCAI), pages 26–28, Los Angeles, CA, USA, August 18–23
1985. Morgan Kaufmann, San Mateo, CA, USA.

296 Christoph Benzmüller, Andreas Meier, and Volker Sorge

35. Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Engel
Thorsten, Enno Keen, Christian Theobalt, and Dalibor Topic. SPASS version
1.0.0. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction, number 1632 in LNAI, pages 378–382, Trento, 1999.
Springer.

36. Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

37. Stephen Wolfram. The Mathematica Book. Cambridge University Press, fourth
edition edition, 1999.

	1 Introduction
	2 Mediating Mathematical Knowledge
	2.1 Current Systems
	2.2 Mediating Requests for Applicable Assertions
	2.3 Requirements of a Mediator

	3 An Example Architecture and Application
	3.1 Motivation: Assertion Retrieval
	3.2 Assertion Application in Proof Planning
	3.3 Using Omega-ANTS as a Mediator
	3.4 A Concrete Application

	4 Outlook
	References

