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Abstract. This communication deals with positive model theory, a non first order
model theoretic setting which preserves compactness at the cost of giving up negation.
Positive model theory deals transparently with hyperimaginaries, and accommodates
various analytic structures which defy direct first order treatment. We describe the
development of simplicity theory in this setting, and an application to the lovely pairs
of models of simple theories without the weak non finite cover property.

1. Background

Every first order theory admitting quantifier elimination (and up to a change of
language, we may always assume that it does) is the model companion of a universal
theory (in fact, its model completion). The converse is known to be false, namely,
not every universal theory even has a first order model companion: it has one if and
only if the class of its existentially closed (e.c.) models is elementary. Nevertheless,
it was observed by more than one person that much of first order model theory can
be repeated in the class of e.c. models of a universal theory T , whether this class is
elementary or not; how much of classical model theory can be repeated may depend on
additional conditions one imposes on T . This can be viewed as studying the class of
models of the model companion of T , even though such may not exist as a first order
theory.

A universal theory has a model completion if and only if it first has a model com-
panion, and second, the model companion eliminates quantifiers. The second property
can be re-stated in a way which does not depend on the first: a universal theory having
this property is called a Robinson theory. Robinson theories were defined (with a little
more generality) and studied by Hrushovski in [Hru97]. From a model-theoretic point
of view, the class of e.c. models of a Robinson theory behaves very much like the class
of models of a first order theory with quantifier elimination, and thus the framework of
Robinson theories is just a small step outside the scope of first order theories. Simplic-
ity and stability theory extend to Robinson theories in an obvious and straightforward
manner. Robinson theories were used, among other things, to provide an example of a
simple theory where the Lascar strong type differs from that of Shelah (the existence
of a first order theory with this property is still open).

Date: October 4, 2004.
Most of the results appearing in this communication come from the first part of the author’s

doctoral thesis [Ben02b]. They also appear in separate articles. A survey containing results from the
second part of [Ben02b] appears in [BTW02].

1



2 ITAY BEN-YAACOV

In [Pil00], Pillay studies the class of e.c. model of an arbitrary universal theory (i.e.,
without assuming it is Robinson), and re-develops simplicity therein. Again, one may
view this as working with the “model companion” of an arbitrary universal theory.

Positive model theory, with which this communication is concerned, takes
Hrushovski’s approach one step farther away from first order model theory, while in
the same time generalising that of Pillay. The original motivation for its development
is the fact that first order simple theories give rise to hyperimaginary elements and
sorts which cannot be transparently adjoined as new sorts in the same manner that
imaginary sorts can. The irritating thing about them is that we have a fairly pre-
cise idea of the “logic” of hyperimaginary elements, what complete and partial types
are, and we even know that compactness holds for this logic. It’s just that a partial
type in a hyperimaginary sort is a set of formulas of a particular kind, one may call
them “positive formulas”, for whose negations compactness may fails, so considering
hyperimaginaries in a first order language would be wrong. Once one accepts the fact
that hyperimaginary elements are external to the structure, having a (compact!) logic
of their own, one may proceed and work with them more or less as one would with
ordinary imaginary elements (see [HKP00, Wag01]).

Positive model theory attempts to remedy this deficiency of first order logic by
repeating Hrushovski’s definition of a Robinson theory in a positive language, i.e., a
language without negation, resulting in the notion of a positive Robinson theory. This
provides the sought-after model theoretic framework in which hyperimaginaries are not
segregated against, while the compactness theorem still holds for positive formulas. In
addition to hyperimaginary sorts, positive model theory accommodates many classes
of analytic structures, and one can prove that in some sense it is the most general
possible framework in which compactness holds.

Finally, it is curious to note that all of these recently studied settings turn out
to be re-discoveries of settings which already appeared in some form or another in
Shelah’s 1970s paper [She75], and remained relatively dormant since. In that paper,
Shelah studies stability in various kinds of classes of structures, and in corresponding
universal domains (defined by satisfying an assumption corresponding to the kind of
the class). Thus the classes of Kind II are the e.c. models of a Robinson theory, and
a universal domain satisfying Assumption II is a universal domain for such a theory.
Similarly, Pillay’s category of e.c. structures is precisely a class of Kind III, and its
universal domains indeed satisfy Assumption III, but the class of all homogeneous
structures satisfying Assumption III is actually larger, and is equal to that of universal
domains of positive Robinson theories.

For the sake of simplicity, most of the development is done assuming a single-sorted
language. In the case of multi-sorted language, the “length” of a tuple also contains
the specific sort of each of each position in the tuple (which is why we sometimes refer
to the length of a tuple as its sort). Lowercase letters a, b, c, etc., denote possibly
infinite tuples of elements in structures, while x, y, z denote possibly infinite tuples of
variables. When a lowercase letter denotes a singleton we say so explicitly. If we want
to make the length, or index set, of a tuple explicit, we may write it as a<α or a∈I

(which are shorthand for (ai : i < α) and (ai : i ∈ I), respectively).



COMPACTNESS AND INDEPENDENCE IN NON FIRST ORDER FRAMEWORKS 3

2. Three presentations of cats

Although positive Robinson theories may be the most down-to-earth definition of
a “theory” in the context of positive model theory, there are other, fundamentally
different, ways of presenting such theories, namely compact type-space functors and
compact abstract elementary categories. From a presentation of any kind (positive
Robinson theory, compact type-space functor, or compact abstract elementary cate-
gory) we can construct corresponding ones of the other two kinds in a manner which
is unique and reversible (up to a natural equivalence). We therefore view them as
manifestations of a more fundamental notion which we call a compact abstract theory,
or cat :

(i) As we said earlier, positive Robinson theories are defined along the same lines
as Hrushovski’s Robinson theories, with the only difference being that the
set of basic formulas ∆ is only assumed to be closed under positive boolean
combinations. Thus again we work in the category of e.c. models of a universal
theory, or in a universal domain for such a category, but the precise meaning
of these notions needs to be slightly altered so as to accommodate the fact
that ∆ may no longer be closed under negations.

(ii) Alternatively, we may specify the theory by specifying its type-space functor:
this consists of specifying its type-spaces as pure topological spaces, with map-
ping between them describing restriction of types to sub-tuples etc. This is a
rather abstract approach from which syntax is entirely absent.

(iii) Finally, we may start out with a mere concrete category, and observe that
it satisfies some of the properties of the category of e.c. models of a positive
Robinson theory. If it satisfies enough of these properties, and in particular a
relatively weak instance of compactness, then in a natural sense it is equivalent
to a positive Robinson theory T : under a canonical translation, it has the same
universal domains as T and the same type spaces.

The last approach is quite useful when one wishes to get an initial grip on the model-
theoretic structure (if such exists) that a specific notion of embedding induces on a
given class of mathematical structures. It also suggests that in some sense, the cat
setting is the most general one in which compactness holds.

This section contains a relatively high concentration of definitions; it is mostly ex-
tracted from [Ben03b].

2.1. Positive Robinson theories and universal domains. In order to specify a
positive Robinson theory, one must first choose a language. Unlike the first order
setting, when one chooses a signature L and then works with the entire first order
language Lω,ω, we need to make a further choice by which we restrict the set of formulas
we consider (that is, our language) to a subset ∆ ⊆ Lω,ω. It is only for formulas in
∆ that we expect the compactness principle to hold. (One may note that this differs
from most non first order approaches in which one usually extends the set of formulas
under consideration to a proper superset of Lω,ω.)

The definitions here were motivated by the setting of Robinson theories in [Hru97],
and are almost identical with the exception that we do not require ∆ to be closed
under negations:
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Definition 2.1. Let L be a signature, and let Lω,ω be the set of all first order L-
formulas written using the connectives ¬, ∨, ∧ and the quantifier ∃.

(i) A positive fragment (in L) is a subset ∆ ⊆ Lω,ω, containing all the atomic
formulas, and closed under positive boolean combinations and for sub-formulas
(the restriction on the connectives and quantifier we may use serves to fine-
tune the notion of sub-formula; this is required for the existence of e.c. models
and the positive Morleyisation of a negative universal theory).

(ii) Given a positive fragment ∆, we define:

Σ = Σ(∆) = {∃y ϕ(x, y) : ϕ ∈ ∆}

Π = Π(∆) = {∀y ¬ϕ(x, y) : ϕ ∈ ∆} = {¬ψ : ψ ∈ Σ}

We call members of ∆ basic positive formulas ; or rather, we should: we usually
just call them formulas (that is to say that by a formula, without further
qualification, we mean a member of ∆). Members of Σ and Π are positive
existential and negative universal formulas, respectively.

(iii) If M is an L-structure and a ∈ M is a tuple, its ∆-type in M is tpM
∆ (a) =

{ϕ(x) ∈ ∆: M ² ϕ(a)}. The Σ-type of a in M is defined similarly.

We identify any two formulas in Lω,ω which are logically equivalent, which is why we
consider the two enumerations of Π above equal. This also means that Σ is a positive
fragment in its own right.

Most of the time, the signature L and the positive fragment ∆ are fixed by the
context. By a structure we always mean an L-structure.

Even though we claim to be working in the category of e.c. models of a theory T
(to be defined more precisely below), most of the time we will just be working inside a
big universal domain (just as in first order model theory, we usually work inside a big
monster model). Thus, even though we discuss e.c. models later on, the definition of
a universal domain would suffice for most practical purposes.

Definition 2.2. Let M and N be structures, A ⊆ M a subset, and f : A → N a
mapping (i.e., f : M 99K N is a partial mapping with dom(f) = A). Then of f is
a partial (∆-)homomorphism if for every tuple a ∈ A and every formula ϕ(x) ∈ ∆:
M ² ϕ(a) =⇒ N ² ϕ(f(a)) (in other words, tpM

∆ (A) ⊆ tpN
∆(f(A))).

If f is total, namely A = M , then f : M → N is a (∆-)homomorphism; if M = N
then f is a (partial) endomorphism; etc.

Definition 2.3. Let κ be a relatively big cardinal (at the very least κ > |∆|), and U
a structure. Then U is a κ-universal domain if it satisfies the following properties:

(i) κ-Homogeneity: Let f : U 99K U be a partial endomorphism of U , and assume
that | dom(f)| < κ. Then f extends to an automorphism of U .

(ii) κ-Compactness: Let Γ be a set of formulas (from ∆!), possibly in infinitely
many free variables, such that |Γ| < κ, and assume furthermore that every
finite subset of Γ is realised in U . Then Γ is realised in U . (Whether we allow
parameters from U in Γ or not is immaterial and does not affect the definition.)

Usually, however, we omit κ and simply say that U is a universal domain; set whose
cardinality is less than κ are called small. We convene that κ is so big that every set
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of parameters or formulas we might consider is indeed small: for example, one might
assume that κ is strongly inaccessible, although this is not strictly necessary.

The following are among the most often-used properties of universal domains:

Proposition 2.4. Let U be a universal domain, a ∈ U a tuple, and T = ThΠ(U) (i.e.,
the set of Π-sentences true in U). Then:

(i) Assume that U ² ¬∃y ϕ(a, y), where ϕ ∈ ∆ (so ∃y ϕ ∈ Σ). Then there is a
formula ψ(x) ∈ ∆ such that U ² ψ(a) and ∀xy ¬(ϕ(x, y) ∧ ψ(x)) ∈ T .

(ii) If b ∈ U is of the same length as a and tpU
∆(a) ⊆ tpU

∆(b), then tpU
∆(a) = tpU

∆(b),
and moreover tpU

Σ(a) = tpU
Σ(b).

(iii) A small set of formulas Γ (without parameters) is realised in U if and only if
T ∪Γ is consistent. If Γ contains parameters, let us write it as Γ(x, a), and let
p(y) = tpU

∆(a): then Γ(x, a) is realised in U if and only if T ∪ Γ(x, y)∪ p(y) is
consistent.

Thus in particular, the Π-theory of a universal domain is an important invariant:
if U and U ′ are two universal domains with the same Π-theory, then the same things
“happen” in both (formally: they realise the same types), and therefore for our pur-
poses they are essentially equivalent.

This allows us to give now the following tentative definition. A better (and more
general) one appears later on.

Definition 2.5. Let U be a universal domain, and T = ThΠ(U). Then we say that U
is a universal domain for T .

A complete positive Robinson theory is a theory of the form ThΠ(U) where U is a
universal domain.

The rest of this subsection aims for a better and more general description of positive
Robinson theories and their relations with universal domains. At this point we need
to divert somewhat from the classical notion of an e.c. model of a universal theory:

Definition 2.6. (i) Let T be a Π-theory (i.e., consisting of sentences of the
form ∀x¬ϕ(x), where ϕ ∈ ∆). An existentially closed (e.c.) model of T is
a model M ² T satisfying that whenever N ² T as well, f : M → N is
a ∆-homomorphism, a ∈ M and ϕ(x, y) ∈ ∆, if N ² ∃y ϕ(f(a), y) then
M ² ∃y ϕ(a, y).

(ii) The category of e.c. models of T is denoted by M(T ).
(iii) A mapping f : M → N between two structures M and N is a (∆-)embedding

if for all a ∈ M and ϕ ∈ ∆: M ² ϕ(a) ⇐⇒ N ² ϕ(f(a)) (i.e., tpM
∆ (a) =

tpN
∆(f(a))).

First, we should remark that if ∆ is the set of all quantifier free L-formulas then
a ∆-homomorphism is just an embedding of L-structures (and coincides with ∆-
embedding), Π is the set of all universal formulas, and the definition of an e.c. model
of a universal theory above coincides with the ordinary one. Thus the classical defini-
tions extend naturally to the positive case, where the Π-theory T serves as a restraining
agent which states what cannot happen, and an e.c. model of T is one where every
positive existential property which is not forbidden is true.
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Note that since the image of a homomorphism may satisfy more relations than the
domain, a homomorphism needs not be injective. On the other hand, if M,N ∈ M(T )
and f : M → N is a homomorphism, then it is an embedding (and in fact a Σ-
embedding), so there is no ambiguity about the notion of a morphism between two e.c.
models of T (in fact, we only need N ² T here).

The assumption that ∆ is closed for sub-formulas (and the Axiom of Choice) are
used to prove:

Proposition 2.7. Let T be a Π-theory. Then for every model M ² T there exist an
e.c. model N ∈ M(T ) and a morphism M → N .

The morphisms in the category M(T ) play the role of elementary embeddings in
first order model theory, and shares some of their properties:

Proposition 2.8. The category M(T ) has the amalgamation property and the increas-
ing chain property:

(i) Let M,M0,M1 ∈ M(T ), and fi : M → Mi be morphisms for i < 2. Then
there exist N and morphisms gi : Mi → N such that the following diagram
commutes:

M0
g0

!!

M

f0

=={{{{{{{{

f1 !!CC
CC

CC
CC

N

M1

g1

==

(ii) Let (Mi : i < α) be an increasing chain of e.c. models of a Π-theory T , where
the inclusions respect ∆. Then the union M =

⋃
i<α Mi is an e.c. models of

T , and each inclusion Mi ⊆ M respects ∆.

We can now give a more direct definition of positive Robinson theories:

Definition 2.9. A positive Robinson theory is a Π-theory T satisfying any of the
following equivalent conditions:

(i) If M,N ∈ M(T ) and a ∈ M , b ∈ N are tuples of the same length such
that tpM

∆ (a) ⊆ tpN
∆(b), then tpM

Σ (a) = tpN
Σ (b) (i.e., the ∆-type determines the

Σ-type; but notice that in the assumption, only inclusion is required).
(ii) Whenever M0,M1 ∈ M(T ) and f : M0 99K M1 is a partial ∆-homomorphism

with domain A ⊆ M0, there exists N ∈ M(T ) and morphisms gi : Mi → N
such that g1 ◦ f = g0¹A:

M0

g0

!!

A

⊆
>>}}}}}}}}

f ÃÃA
AA

AA
AA

A N

M1

g1

==



COMPACTNESS AND INDEPENDENCE IN NON FIRST ORDER FRAMEWORKS 7

(iii) If M ∈ M(T ), a ∈ M is a tuple, and M 6² ∃y ϕ(a, y) for some ϕ ∈ ∆, then
there exists ψ(x) ∈ ∆ such that M ² ψ(a) and T ` ∀xy ¬(ϕ(x, y) ∧ ψ(x)).

These equivalent properties stand in clear analogy with properties of universal do-
mains, whereby it is clear that a complete positive Robinson theory, as defined in
Definition 2.5, is indeed positive Robinson as defined here. The converse is not true,
since not every positive Robinson theory is complete:

Definition 2.10. A Π-theory T is complete if is the Π-theory of a structure (so a
complete positive Robinson theory, as defined in Definition 2.5, is indeed complete).

If T is not complete, then a completion of T is a minimal (with respect to inclusion)
complete Π-theory containing T . In this case, a universal domain of T is a univer-
sal domain for any of its completions, i.e., a universal domain whose Π-theory is a
completion of T .

Theorem 2.11. (i) The completions of a Π-theory are precisely the various the-
ories of its e.c. models.

(ii) A Π-theory is positive Robinson if and only if all its completions are.
(iii) A complete Π-theory is positive Robinson if and only if it has a universal

domain (i.e., it is the Π-theory of a universal domain). Thus the definitions
given here agree with Definition 2.5.

Since a universal domain is easily verified to be an e.c. model of its Π-theory, the
above can be re-stated as: T is positive Robinson if and only if every e.c. model of T
embeds in a universal domain which is itself an (e.c.) model of T .

Earlier approaches appear as special cases of positive Robinson theories:

(i) In case ∆ is closed under negation, positive Robinson theories coincide with
Hrushovski’s Robinson theories.

(ii) In case ∆ is the set of all existential L-formulas, we obtain the setting studied
by Pillay in [Pil00]. Since in this case ∆ = Σ, every universal theory is positive
Robinson.

(iii) Finally, if ∆ = Lω,ω, we just get the classical first order setting.

2.2. Types and type spaces. Let T be a positive Robinson theory.
By a partial ∆-type (Σ-type) we mean a set of ∆-formulas (Σ-formulas), and we

usually omit the ∆- prefix.
For simplicity of the exposition let add the assumption that for every partial Σ-type

there is a partial ∆-type which has the same realisations in every e.c. model of T . In
this case we identify the two partial types. (In [Ben03b], a theory T with this property
was called strongly positive Robinson.) This is a harmless assumption for two main
reasons:
– First, in most (if not all) of the examples we consider this is true.
– Second, replacing ∆ with Σ does not modify the notions of a Π-theory, nor does it
modify the category M(T ) or the class of universal domains of T (since T is positive
Robinson). On the other hand, it would make the notions of ∆-type and Σ-type agree,
which is what we want.

Recall that if M ∈ M(T ) and a ∈ M is a tuple, then its type tpM
∆ (a) is the set of all

∆-formulas satisfied by a in M . We will henceforth write it simply as tp(a), since M
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should be clear from the context, and embedding it in a bigger e.c. model of T would
not change the type of a. If b is any other tuple in M and p(x, y) = tp(a, b), then the
type of a over b is p(x, b) = tp(a/b).

For every index set I we define the space of complete I-types SI(T ) in the natural
way: its members are all the possible types of I-tuples in e.c. models of T , or equiv-
alently the set of all maximal partial types in an I-tuple of free variables consistent
with T . For a partial type q(x) (where x = x∈I = (xi : i ∈ I)), define:

〈q〉 = {p(x) ∈ SI(T ) : q ⊆ p}

We topologise SI(T ) by defining every set of the form 〈q〉 as closed. This is a compact
T1 topology. Similarly, if b is a tuple in an e.c. model M , then SI(b) is the set of
all maximal partial types with parameters in b which are finitely realised in M , or
equivalently all types over b of n-tuples in e.c. models extending M . We topologise it
similarly.

For infinite I and b we have:

SI(T ) = lim
←−

I0⊆I finite

SI0(T ) SI(b) = lim
←−

I0⊆I,b0⊆b finite

SI0(b0),

so we may restrict our attention to finite sets of indices I, or just to natural numbers.
If Sn(T ) is Hausdorff for every n < ω, then so are SI(T ) and SI(b) for arbitrary

(possibly infinite) I and b. In this case we say that T is Hausdorff.
If f : I → J is any mapping, it defines a natural mapping f ∗ : SJ(T ) → SI(T ) by:

f ∗(tp(aj : j ∈ J)) = tp(af(i) : i ∈ I).

This is a closed continuous mapping of topological spaces. All this information can be
put into one object, a contra-variant functor from (finite) sets to topological spaces,
denoted S(T ), which sends a number n to Sn(T ) and a mapping f to f ∗. We call S(T )
the type-space functor of T .

Note that applied to injective and surjective mappings, the type-space functor pro-
duces existential quantification and equality, respectively: If f : I → J is an inclusion,
then f ∗(〈ϕ(x∈I)〉) = 〈∃x∈JrI ϕ(x∈I)〉. On the other hand, let feq : 2 → 1 be the only
possibility. Then f ∗

eq(S1(T )) = 〈x0 = x1〉. Also, the completions of T are in a natural
bijections with the set S∅(T ).

Fact 2.12. The functor S(T ) has the following properties:

(i) Amalgamation: for any two sets of indices I and J , the mapping SI∪J(T ) →
SI(T ) ×SI∩J (T ) SJ(T ) is surjective. In other words, given two complete types
p(x∈I) and p′(x∈J), whose restrictions to the common variables x∈I∩J coin-
cide, there is a type p′′(x∈I∪J) whose restrictions to x∈I and x∈J are p and p′,
respectively.

(ii) Preservation of equality: let I be a set of indices, and h : 2 → I be any mapping.
Let J = I/{h(0) = h(1)}, and f : I → J the projection. Recall that feq : 2 → 1
is the unique such mapping, and let eq = f ∗(S1(T )) (so eq = 〈x0 = x1〉). Then
f ∗(SJ(T )) = (h∗)−1(eq).

The first property can be viewed as a re-statement of the fact that the type (i.e.,
∆-type) of a tuple determines its existential (i.e., Σ-) type. The second is a highly
complicated way of saying an obvious thing, namely that if p(x, y, z̄) is a complete
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type (here x and y are singletons, and z̄ a tuple), and p′(x, y) = p¹x,y, then p ` x = y
if and only if p′ ` x = y. It is nevertheless required for the following converse result:

Definition 2.13. Let S be a contra-variant functor from the category of finite sets to
that of compact T1 topological spaces, where the morphisms are the closed continuous
mappings. Assume furthermore that S satisfies the two properties of Fact 2.12. Then
S is a compact type-space functor.

Theorem 2.14. Let S be a compact type-space functor. Then there exists a positive
Robinson theory T such that S is isomorphic (i.e., homeomorphic) to S(T ).

More precisely, for every n < ω choose a basis of closed sets Bn for S(n). Let
L = {RX : n < ω,X ∈ Bn}, where for each X ∈ Bn, RX is an n-ary relations
symbol. Let ∆ be the set of all positive quantifier-free L-formulas. Then in this positive
fragment there exists a unique positive Robinson theory (up to logical equivalence) T
such that there exists an isomorphism of functors Φ: S(T ) ' S, such that in addition,
for every p ∈ Sn(T ) and X ∈ Bn: p ∈ X ⇐⇒ RX(x) ∈ p.

Finally, various special cases can be discerned directly from topological properties
of the type-spaces:

Definition 2.15. Let S be a compact type-space functor.

(i) It is open if for every n, the natural projection Sn+1 → Sn (i.e., (n ↪→ n + 1)∗)
is open. This implies that f ∗ is open for every injective f : I → J .

(ii) It is totally disconnected if Sn is totally disconnected for every n.
(iii) It has positive inequality if f ∗

eq : S1 → S2 an open mapping. This implies that
f ∗ is open for every surjective f : m → n, for finite m and n.

Theorem 2.16. Let S be a compact type-space functor.

(i) It is (homeomorphic to) the type-space functor of a Robinson theory if and
only if it is totally disconnected and has positive inequality.

(ii) It is (homeomorphic to) the type-space functor of a first order theory if and
only if it is open, totally disconnected and has positive inequality.

Remark 2.17. One conclusion could be made that the property identifying first order
logic is the “openness”. Indeed, being open and Hausdorff characterises the type-space
functors of theories in a continuously-valued variant of first order logic which is under
active study at the time of writing.

2.3. Compact abstract elementary categories. If earlier we described essential
properties of S(T ), the type-space functor of a positive Robinson theory T , here we
would like to point out the essential properties of M(T ), the category of e.c. models
of T . The goal is slightly different: rather than trying to characterise categories which
are isomorphic, in some sense, to some M(T ), we give more relaxed criteria that
characterise categories which, like M(T ), have (compact) universal domains.

We follow a development similar to that of abstract elementary classes (see, for
example, [She99]); however, since our goals are different, and for the reasons mentioned
above, our setting is more relaxed. In particular, since we want to recover a logical
structure, rather than be given one in advance, our departure point is the relatively
general notion of a concrete category:
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Definition 2.18. Let C a category equipped with a functor | · | to the category of sets.
Then C (or more precisely, (C, | · |)) is a concrete category if:

(i) Whenever A,B ∈ C, and f : |A| → |B| is a mapping, there is at most one
g ∈ HomC(A,B) such that f = |g| (in other words, | · | is a faithful functor).
In case g exists, we say that f is a morphism and identify it with g.

(ii) Whenever A ∈ C, X is a set, and f : |A| → X is a bijection, there is a unique
f(A) = B ∈ C, such that X = |B| and f ∈ HomC(A,B).

A functor of concrete categories is a functor F : C → C′, such that | · |C′ ◦ F = | · |C.

In other words, a concrete category is a category of sets with additional structure.
We now impose conditions which are analogous to those of an abstract elementary

class with amalgamation:

Definition 2.19. Let M be a concrete category. Call its objects models, and its
morphisms (M-)elementary mappings. Write M ≤M N if M ⊆ N (i.e., |M | ⊆ |N |)
and the inclusion is elementary. Then M is an abstract elementary category with
amalgamation if it satisfies the following:

Injectiveness: All morphisms are injective (on the underlying sets).
Tarski-Vaught property: Whenever M0 ⊆ M1 and M0 ≤M N , M1 ≤M N ,

then M0 ≤M M1.
Amalgamation: Whenever fi ∈ HomM(M,Mi) for i < 2, there are N ∈ M

and gi ∈ HomM(Mi, N) such that the following diagram commutes:

M0
g0

!!

M

f0

=={{{{{{{{

f1 !!CC
CC

CC
CC

N

M1

g1

==

Elementary chain property: Direct limits of chains exist in the category M
(in [Ben03b] appears a slightly more relaxed yet more complicated version of
this condition).

(Compare the amalgamation and chain condition with Proposition 2.8.)

We now proceed to define an abstract notion of type of a tuple in models of M:

Definition 2.20. Let M be an abstract elementary category with amalgamation. Let
I be a (possibly infinite) set of indices, M,N ∈ M. For two I-tuples a ∈ M and
b ∈ N , say that (M,a) ≡M (N, a) if there is P ∈ M and morphisms f : M → P and
g : N → P such that f(a) = g(b).
This is an equivalence relation (follows from amalgamation), and the equivalence class
(M,a)/≡ is called the type (in some texts Galois type) of the tuple a in the model M ,
and is denoted tpM

M(a). As usual, we may omit M and even M if they are clear from
the context.

Note that if T is a positive Robinson theory, then M(T ) is an abstract elementary
category with amalgamation, and the two notions of type coincide: tpM

∆ (a) = tpN
∆(b)

if and only if tpM
M(a) = tpN

M(b).
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The collection of all I-types (i.e., types of I-tuples) is denoted SI(M), and if f : I →
J is any mapping then f ∗ : SJ(M) → SI(M) is defined as before. The final condition
is essentially that S(M) can be rendered a type-space functor:

Definition 2.21. A compact abstract elementary category is a abstract elementary
category with amalgamation satisfying in addition the following conditions:

(i) For finite I, the collection SI(M) is a set (rather than a proper class).
(ii) For infinite I: SI(M) = lim

←−I0⊆I finite
SI0(M).

(iii) Let x∈I be a possibly infinite tuple of variables. Let Γ(x∈I) be a set of things
of the form p(xi0 , . . . , xin−1

), where n < ω, p ∈ Sn(M), and ij ∈ I for all j < n.
Say that Γ is realised in M if there are M ∈ M and a tuple a∈I ∈ M such
that tp(ai0 , . . . , ain−1

) = p whenever p(xi0 , . . . , xin−1
) ∈ Γ.

Then we require that for every such Γ, if every finite subset Γ0 ⊆ Γ is realised
in M, then so is Γ.

The first two conditions say that S(M) is a functor to the category of sets, and as
such satisfies the non-topological properties of a type-space functor: we may say is
it is a set type-space functor (rather than a compact topological one). Modulo this,
the third condition is equivalent to: S(M) admits a topology rendering it a compact
type-space functor (if there is such a topology, then there is always a weakest one, and
the compactness condition of Definition 2.21 consists of verifying that the would-be
weakest such topology is indeed compact).

This equivalent condition is sometimes easier to verify: in particular, if T is a pos-
itive Robinson theory, then S(T ) ' S(M(T )) as functors to sets, whereby M(T ) is
a compact abstract elementary category. Conversely, if M is a compact abstract ele-
mentary category, then by Theorem 2.14 there is a positive Robinson theory T such
that S(T ) ' S(M). It is not true that M(T ) ' M, but a sufficient approximation for
that does hold:

Theorem 2.22. Let M be a compact abstract elementary category, and choose a
topology rendering S(M) a compact type-space functor. Let L, ∆ and T be as in
Theorem 2.14. For every M ∈ M, make it an L-structure in the natural manner: if
a ∈ Mn, X ⊆ Sn(M) and RX ∈ L, say that M ² RX(a) if and only if tpM(a) ∈ X.
Then:

(i) If M,N ∈ M and f : M → N is a mapping of the underlying sets, then
f ∈ HomM(M,N) if and only if it is a ∆-homomorphism.

(ii) T = ThΠ(M), where M is viewed as a class of L-structures.
(iii) Every M ∈ M embeds in an N ∈ M(T ), and vice versa.

Thus, the same things “happen” in M and in M(T ), and we conclude that for our
purposes they are equivalent.

Alternatively, Theorem 2.22 implies that every M ∈ M embeds in a universal do-
main of T , and conversely, if U is a universal domain of T and A ⊆ U is any (small)
set, then there is a (small) M ∈ M such that A ⊆ M ⊆ U (this can stated more pre-
cisely, and be viewed as a downward Löwenheim-Skolem property). Thus the universal
domains of M(T ) are in a sense the universal domains of M.
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2.4. Examples. As we said above, if ∆ is either closed under negations we obtain
the framework of Robinson theories from [Hru97]; if ∆ is the set of all existential
L-formulas then we get the framework described in [Pil00]; and if ∆ = Lω,ω then a
universal domain is just a monster model, and we get classical first order model theory.

At the other extreme is the case where ∆ is minimal, i.e., the set of positive
quantifier-free L-formulas. Most of the examples we give will be of this form. Also,
every other example can be transformed into this form via positive Morleyisation:

Proposition 2.23. Let ∆ ⊆ L be any positive fragment, and T a positive Robinson
theory. Let L′ consist of L along with an n-ary predicate Rϕ for every n-ary ϕ ∈ ∆,
and let ∆′ be the minimal positive L′-fragment. For a L-structure M , let θ(M) be

the L′-expansion obtained by defining R
θ(M)
ϕ = ϕ(M) for each ϕ ∈ ∆. Let T ′ =

ThΠ′({θ(M) : M ∈ M(T )}) (where Π′ = ∀¬∆′). Then T ′ is a positive Robinson
theory (in ∆′), and θ induces a bijection between M(T ) and M(T ′).
(Thus T ′ eliminates both quantifiers and negation from T .)

The original motivation for studying positive Robinson theories was to find a way
to adjoin hyperimaginary sorts the same way that we adjoin imaginary sorts to a first
order theory:

Proposition 2.24. Let T be a positive Robinson theory in ∆ ⊆ Lω,ω (so in particular T
could be a first order theory). Let E(x̄, ȳ) be a partial type which defines an equivalence
relation on α-tuples in e.c. models of T .
For every ∆-formula ϕ(x0, . . . , xk−1, ȳ0, . . . , ȳl−1), where each xi is a singleton and ȳj

is an α-tuple (there may be infinitely many dummy variables in this way of writing ϕ),
define a new predicate symbol Rϕ(x0, . . . , xk−1, z0, . . . , zl−1) where the zj are singletons
in a new sort. Let L′ consist of L along with the new predicates, and ∆′ the minimal
positive fragment.
For every M ∈ M(T ), let θ(M) be the L′-structure obtained by adding Mα/E to M
as the new sort, and defining θ(M) ² Rϕ(a0, . . . , ak−1, c0, . . . , cl−1) if and only if each
equivalence classes ci has a representative b̄i such that M ² ϕ(a0, . . . , ak−1, b̄0, . . . , b̄l−1).
Then T ′ = ThΠ′({θ(M) : M ∈ M(T )}) is a positive Robinson theory, and θ is a
bijection between M(T ) and M(T ′).

Of course, we can do the same for several type-definable equivalence relations, or
even for all of them at the same time. In case T is a first order theory, the logic we
obtain for hyperimaginary sorts coincides with the logic appearing in [HKP00, Wag01].

An important class of examples consists of various analytic structures.
For example, Banach structure theories in the sense of C. Ward Henson’s logic of

positive bounded formulas and approximate satisfaction [Hen76] can be viewed as a
special case of cats. If T is such a theory in a positive bounded language L, then the
class of approximate models of T , equipped with approximate-elementary embeddings,
is a compact abstract elementary category and therefore defines a cat in an appropriate
language. To obtain the language, we follow a procedure similar to that used above: for
each positive bounded formula we create a new predicate symbol, and obtain a language
L′, a minimal positive fragment ∆′ ⊆ L′

ω,ω, and a positive Robinson theory T ′ which is
the Π′-theory of the class of approximate models of T viewed as L′-structures. (If T has
quantifier elimination, then it suffices to create predicates for quantifier-free formulas
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only.) Then T and T ′ have the same type-spaces (in the sense of the respective logics),
and therefore share the same universal domains. It is not true, though, that the Banach
spaces which are approximate models of T are precisely the e.c. models of T ′. This
deficiency of the notion of e.c. model is addressed in [Benc] in the form of complete
model, and exceeds the scope of this communication. Numerous examples of this kind
exist, and let us just mention the theories of Hilbert spaces whose hyperimaginaries
are characterised in [BB04], and Lp Banach lattices [BBH].

Probability measure algebras form an important analytic example which is not a
Banach structure:

Example 2.25. Let U be the measure algebra of [0, 1]κ, i.e., the boolean algebra of
Borel sets modulo null-measure sets, equipped with the induced measure function µ.
Consider it as a structure in the language L = {0, 1,∧,∨, ·c, “µ(·) ≤ r”, “µ(·) ≤ r”}
where r varies over Q ∩ [0, 1]. Let ∆ be the minimal positive fragment. Provided κ is
large enough, U is a κ-universal domain.
This example is the topic of [Bena].

3. Simplicity

Most of the results discussed here are presented in fuller detail in [Ben03c]. For a
general reference on first order simplicity theory, one may refer to [Wag00].

In this section we work with a cat T : tuples of elements are assumed to be taken
from a κ-universal domain of T , where κ is bigger than the cardinality of any set or
tuple we may consider (it is convenient, although not necessary, to assume that κ is
strongly inaccessible).

Let 〈ai : i < ω〉 be a sequence of tuples of the same length, and c another tuple.
We recall that the sequence 〈ai : i < ω〉 is indiscernible over c, or c-indiscernible, if for
every n < ω and i0 < i1 < . . . < in−1 < ω, tp(ai0 , . . . , ain−1

/c) depends only on n. Let
p(x, b) be a partial type with parameters in b. We say that p(x, b) divides over another
tuple c if there exists a c-indiscernible sequence 〈bi : i < ω〉, with b0 = b, such that⋃

p(x, bi) is inconsistent (with T ). In case that a, b, c are tuples such that tp(a/bc)
does not divide over c, we write this down as a |̂

c
b (read: a is independent from b

over c).
We say that T is simple if for any tuple b and any finite tuple (or equivalently,

singleton) a, there is a sub-tuple b′ ⊆ b such that |b′| ≤ |T | and a |̂
b′

b. This property
of non-dividing is called the local character. In a first order theory, one consequence of
simplicity is the extension axiom: For every type p ∈ S(c) and tuple b there is p ⊆ q ∈
S(cb) such that q does not divide over c. This is not true in cats [Ben03c, Example 4.3],
so Morley sequences do not necessarily exist, and the classical development of simplicity
breaks down.

In [Pil00] Pillay re-develops some of the theory of simplicity in the framework of
the e.c. models of arbitrary universal theories. Even though his framework is a special
case of cats, for the development of simplicity it presents the full problematic of the
general case, and in particular the one mentioned above. This led Pillay to define a
simple theory as one where both the local character and the extension axiom hold:
this patches the hole in the classical argument, and with some improvements the rest
follows through. However, there are many reasons why one may wish to drop the
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second assumption (i.e., extension): for example, [Ben03c, Example 4.3] mentioned
above is stable, so it should be simple, although the extension axiom fails there.

In order to develop simplicity in theories where extension fails, we take recourse to
the technical notion of array-dividing. Let us give a few details:

Definition 3.1. (i) A d-dimensional array is something of the form 〈aσ : σ ∈
ωd〉. It is b-indiscernible if for every k < d, the sequence 〈āk

i : i < ω〉 is
b-indiscernible, where āk

i = 〈aσ : σ ∈ ωd, σ(k) = i〉 (in other words, if the
sequence of hyperplanes in each direction is b-indiscernible).

(ii) A partial type p(x, b) array-divides over c if there exist d < ω and a c-
indiscernible array 〈bσ : σ ∈ ωd〉 such that b = b0̄ and

⋃
σ p(x, bσ) is incon-

sistent.
(iii) The notation a |a^c

b means that tp(a/bc) does not array-divide over c.

(To the best of our knowledge, indiscernible arrays were introduced in [Kim98],
where it was proved that in a simple first order theory array-dividing coincides with
dividing.)

As dividing is a special case (d = 1) of array-dividing, it is easier to array-divide
than to divide: thus, the local character of array-dividing seems a priori stronger than
that of dividing. Luckily enough, though, they turn out to be equivalent:

Proposition 3.2. In a simple cat, array-dividing satisfies the local character.

From now on, assume that T is simple.
As in the case of dividing, the local character of array-dividing is equivalent to the

finiteness of a certain class of local ranks, D(p, ϕ, ψ, d), which measure how many
times we can still add to a partial type p instances of ϕ, which array-divide over prior
parameters with a d-dimensional array in a way that is witnessed by ψ (here ψ plays the
role of k in the D(−, ϕ, k)-ranks used in the first order setting; d has no counterpart,
of course). Unlike the local D-ranks of dividing, the local D-ranks of array-dividing
allow us to prove directly:

Proposition 3.3. Let a, b, c be tuples. Then the following imply one another from top
to bottom:

(i) D(tp(a/bc), ϕ, ψ, d) = D(tp(a/c), ϕ, ψ, d) for every ϕ, ψ, d.
(ii) a |a^c

b.

(iii) D(tp(b/ac), ϕ, ψ, d) = D(tp(b/c), ϕ, ψ, d) for every ϕ, ψ, d.

In the classical development the analogue of the implication (ii) =⇒ (iii) is inevitably
proved at a much later stage using transitivity and symmetry of non-dividing [KP97,
Section 6]. Here we turn things around, and symmetry and transitivity are its (imme-
diate) consequences:

Corollary 3.4. By symmetry, the conditions of Proposition 3.3 are equivalent. Fur-
thermore:

(i) a |a^c
b ⇐⇒ b |a^c

a.

(ii) a |a^c
bd ⇐⇒ a |a^c

b ∧ a |a^bc
d.

A somewhat less immediate consequence is:
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Proposition 3.5. Dividing and array dividing define the same notion of independence:
a |a^c

b ⇐⇒ a |̂
c
b for every a, b, c.

This ends the “detour”, and from now on we forget array-dividing and only mention
dividing. The next natural step is the amalgamation (or independence) theorem for
Lascar strong types. Compared with the proofs in [KP97, Pil00], there are the added
complications due to the fact that not all types have non-dividing extensions:

Definition 3.6. (i) A type p ∈ S(c) is extendible if for every b there is p ⊆ q ∈
S(cb) which does no divide over c.

(ii) Let a, b be two tuples of the same length, and c any tuple. We say that a
and b have the same Lascar strong type over c, in symbols a ≡Ls

c b, if they are
equivalent according to every c-invariant equivalence relation with a bounded
(“small”) set of equivalence class.

We can then prove the amalgamation theorem for extendible Lascar strong types
(see below for precise statement). For this to be interesting, extendible types must
exist:

Proposition 3.7. A type p is extendible if and only if all (one) of its non-dividing
extensions are. Every type over a sufficiently saturated sub-model of the universal
domain is extendible.

Thus, there is a relatively large class of tuples every type over which is extendible. We
formalise this notion by saying that the class of enumerations of sufficiently saturated
models is co-final:

Definition 3.8. A co-final class of tuples A is one which is invariant under permu-
tations of the tuples and automorphisms of the universal domain, and such that for
every tuple a there is a tuple b ∈ A extending a.

We can now sum it all up in:

Theorem 3.9. Let T be simple, and let A be the a co-final class of enumerations of
sufficiently saturated models. Then:

(i) Invariance: a |̂
c
b depends only on tp(a, b, c), and is invariant under permu-

tations of each tuple.
(ii) Symmetry: a |̂

c
b ⇐⇒ b |̂

c
a.

(iii) Transitivity: a |̂
c
bd ⇐⇒ a |̂

c
b ∧ a |̂

bc
d.

(iv) Finite character: a |̂
c
b if and only if a′ |̂

c
b for every finite a′ ⊆ a.

(v) Existence: a |̂
c
c.

(vi) Local character: For every two tuples a and b there exists b′ ⊆ b such that
|b′| ≤ |T | + |a| and a |̂

b′
b.

(vii) A-Extension: If a |̂
c
b and c ∈ A, then for every d there exists a′ such that

tp(a′/bc) = tp(a/bc) and a′ |̂
c
bd.

(viii) A-Amalgamation: Assume that c ∈ A, a0 |̂
c
a1, b0 ≡Ls

c b1, and for i < 2 we

have bi |̂
c
ai. Then there exists b such that b |̂

c
a0a1 and bi ≡

Ls
cai

bi for i < 2.

Conversely, for any cat T , if there exist a co-final class A and a notion of independence
|′^ satisfying the axioms above, then T is simple and |′^ coincides with |̂ .
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(The converse part for first order theories appears in [KP97].)
In fact, the amalgamation theorem is slightly stronger than A-amalgamation as

stated above: instead of assuming that c ∈ A, it suffices to assume that tp(bi/c) is
extendible. It follows that restricted to a single extendible type over c, the relation
≡Ls

c is type-definable.

Definition 3.10. A type p ∈ S(c) is called an amalgamation base if it is an extendible
Lascar strong type (i.e., a, b ² p =⇒ a ≡Ls

c b).

An amalgamation base satisfies the amalgamation theorem: whenever a0 |̂
c
a1, and

p ⊆ pi ∈ S(cai) do not divide over c for i < 2, then there is p0 ∪ p1 ⊆ q ∈ S(ca0a1)
which does not divide over c.

Types over sufficiently saturated sub-models of U are amalgamation bases, and every
extendible type has a non-dividing extension which is. In fact, if we allow hyperimag-
inary elements, then every extension of an extendible type p ∈ S(c) to bdd(c) is (non-
dividing and) an amalgamation base. (The adjunction of hyperimaginary sorts does
not alter in the least the simplicity of T , or the notion of non-dividing, so everything we
said above extends to them smoothly). In [HKP00], hyperimaginary canonical bases
for amalgamation bases (or parallelism classes) were constructed in first order simple
theories. Although the proof there cannot be translated to the positive setting, its
underlying spirit still holds and yields the same result:

Definition 3.11. Let p ∈ S(a) be an amalgamation base. A (possibly hyperimaginary)
element c ∈ dcl(a) is a canonical base for p, denoted c = Cb(p), if the following hold:

(i) p does not divide over c.
(ii) p¹c is an amalgamation base.
(iii) If b ∈ dcl(a) and p does not divide over b, then c ∈ bdd(b); if in addition p¹b

is an amalgamation base, then c ∈ dcl(b).

Note that this does entirely characterise the canonical base of p, but rather charac-
terises it up to interdefinability.

Theorem 3.12. Let p ∈ S(a) be an amalgamation base. Then there exists a type-
definable equivalent relation ∼ on the sort of a such that a∼ = Cb(p), where a∼ is the
class of a modulo ∼, viewed as a hyperimaginary.

There is very little question on what the correct definition of stability should be:
counting types, definability of types, finiteness of local R-ranks and no ordered indis-
cernible sequence all agree (for matters of stability in several non first order contexts
one may refer to [She75]). Since we define simplicity without requiring that every type
be extendible, it is (as one would expect) a generalisation of stability:

Theorem 3.13. A cat T is stable if and only if it is simple, and every amalgamation
base is stationary (i.e., has a unique non dividing extension to every superset of its
domain).

4. Thickness

Simplicity in cats, as described in the previous section, is not entirely satisfactory.
For example, the following are some extensively used properties of simple first order
theories which could fail in simple cats:
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Fact 4.1. Let T be a simple first order theory. Then:

(i) Every complete type is extendible.
(ii) For every complete type p(x) ∈ S(c) and tuple y there exists a partial type

q(x, y, c) such that a, b ² q if and only if a ² p, and b |̂
c
a (in the terminology

of [Ben02a], we would say that complete types have definable independence).
(iii) Equality of Lascar strong types (over a tuple c) is type-definable (with param-

eters in c).
(iv) Every type-definable (or even hyperdefinable [Wag01]) groups have generic el-

ements (and various other properties of such groups hold).

For an example of a definable group without generic elements in a cat, see [Ben03d,
Proposition 1.22] and the discussion which precedes it.

Surprisingly (or not), the possible failure of each of the items of Fact 4.1 can be
traced to a single pathology, namely the failure of thickness. Thick cats are discussed
in [Ben03d]:

Definition 4.2. Let a, b be two tuples of the same length. Say that d(a, b) ≤ 1 if a, b
are the first two tuples in an infinite indiscernible sequence.
Say that T is thick if for every tuple length, the property d(x, y) ≤ 1 is type-definable.

The terminology comes from the notion of a thick formula, originally defined by
Ziegler [CLPZ01]. A formula ϕ(x, y) (where x and y are of the same length) is thick
(thin) if whenever 〈ai : i < ω〉 is an indiscernible sequence then ² ϕ(a0, a1) ( 6² ϕ(a0, a1)).
It follows that d(a, b) ≤ 1 if and only if 6² ϕ(a0, a1) for every thin ϕ. In first order,
a formula ϕ is thick if and only if ¬ϕ is thin, so d(x, y) ≤ 1 is defined by the partial
type consisting of all thick formulas in x, y. A thick cat is thus one in which there are
“sufficiently many” thick formulas, so that the same holds:

Proposition 4.3. For a cat T the following are equivalent:

(i) T is thick (i.e., d(x, y) ≤ 1 is type-definable).
(ii) For every thin formula ϕ(x, y) there is a thick formula ψ(x, y) contradicting

it.
(iii) For every tuple of variables x there is a partial type π(x<ω) (where each xi

is of the same length as x) such that a<ω ² π if and only if 〈ai : i < ω〉 is
indiscernible (in other words: indiscernibility is type-definable).

Theorem 4.4. In a thick simple cat, the conclusions of Fact 4.1 hold.

Conversely, if equality Lascar strong types over ∅ is type-definable (a special case
of Fact 4.1(iii)), then T is thick: a sequence 〈ai : i < ω〉 is indiscernible if and only if,
for every n and i0 < · · · < in−1, the Lascar strong type of ai0 . . . ain−1

(over ∅) depends
only on n.

Almost all the examples for cats are thick (and the ones which aren’t were con-
structed specifically for this purpose). Moreover, every Hausdorff cat is thick, and
more generally, if equality of types is a type-definable relation in T then T is thick.
Thus thickness is a very mild assumption which one may feel free to use.

Moreover, many unrelated results which were proved in the context of first order
theories can be seen, upon careful reading, to use only thickness assumption, and
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therefore hold in any thick simple cat. One example for this are the series of articles
on group constructions in simple theories [Ben02a, BTW, Ben03a, Benb]. Another is
the theory of lovely pairs discussed below.

5. An application: lovely pairs

The notion of a lovely pair of models of a simple first order theory was defined in
[BPV03]:

Definition 5.1. A pair is something of the form (A,P ) where A is a subset of a
universal domain of T , and P a unary predicate on A, defining an acl-closed (or bdd-
closed, in the case of cats) subset.
A pair (M,P ) is κ-lovely if for every A ⊆ M , |A| < κ and p ∈ Sn(A):

(i) There exists a ² p in M such that a |̂
A

P (M).

(ii) If p does not divide over P (A), then there exists a ² p in P (M).

It follows that both M and P (M) are κ-saturated models of T .

This generalises (almost) the notion of a beautiful pair of stable structures from
[Poi83], and that of a generic pairs of models of an SU-rank 1 theory from [Vas02].

If T is complete then all the lovely pairs are elementarily equivalent as LP -structures,
where LP = L∪ {P}. The common theory TP could, or not, be a means for the study
of lovely pairs:

Definition 5.2. Let (A,P ) ⊆ (B,P ) be an extension of pairs. It is free if
A |̂

P (A)
P (B).

Fact 5.3. The following conditions are equivalent (for a first order simple theory T ):

(i) The κ-saturated models of TP are precisely the κ-lovely pairs for every κ > |T |.
(ii) There is a |T |+-saturated model of TP which is a lovely pair.
(iii) The notion of elementary extension of models of TP coincides with that of a

free extension.
(iv) Every model of TP embeds elementarily in a lovely pair.

If either condition is true, we say that T has the weak non finite cover property (wnfcp).

If T has the wnfcp then the first order theory TP “captures” the lovely pairs of T
and can be used to study them; in the contrary case first order model theory is simply
not equipped for the study of the lovely pairs of T .

A more general approach is proposed in [Ben04]. From Fact 5.3(iii) we conclude that
we need a “theory” for whose models an “elementary extension” is a free extension.
This information is captured by letting P be the category whose objects are the pairs,
and whose morphisms are the free embeddings. It is a (long but) straightforward
process to verify that P is a compact abstract elementary category (Definition 2.21),
during which we also learn the correct notion of types of tuples in lovely pairs. In
fact, the assumption that T is a first order theory is nowhere used, and all we need to
assume is that T is a thick cat. We then apply Theorem 2.22 to conclude:

Theorem 5.4. Let T be any simple thick cat. Then:

(i) P is a compact abstract elementary category.
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(ii) As a matter of notation, if (A,P ) ∈ P and a ∈ A, then ac = Cb(a/P (A)) (ac

is preserved by free embeddings). Then tpP(a) determines and is determined
by tpT (a, ac).

(iii) There is a natural language ∆P ⊆ LP
ω,ω, extending ∆∪{P}, which corresponds

to a natural compact topology on S(P). Let TP = ThΠP (P). Then TP is a
thick positive Robinson theory, S(TP) ' S(P), and for κ > |T | the κ-saturated
models of TP are precisely the κ-lovely pairs of T .

The same independence-theoretic results proved for TP when T is a first order theory
with wnfcp can be proved for TP without any assumptions beyond T being thick and
simple:

Theorem 5.5. We still assume that T is a thick and simple cat.

(i) TP is also (thick and) simple.
(ii) Independence is characterised as follows: if UP is a universal domain for TP

and a, b, c ∈ UP, then a |P^c
b (independent in the sense of TP) if and only if

a |̂
cP (U)

b and (ac)c |̂
cc

(ab)c (here in the sense of T ). (If the reader is worried

about P (U) not being a “small” set, the first condition can be equivalently be
stated as a |̂

c,(abc)c
b.)

(iii) If T is stable, supersimple, or one-based, then so is TP.

The characterisation of independence can be understood as: a is independent from
b over c in the sense of TP if and only if, in the sense of T , they are independent both
over P and inside P .
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