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Abstract. We investigate cut-elimination and cut-simulation in impredicative (higher-
order) logics. We illustrate that adding simple axioms such as Leibniz equations to a
calculus for an impredicative logic — in our case a sequent calculus for classical type
theory — is like adding cut. The phenomenon equally applies to prominent axioms like
Boolean- and functional extensionality, induction, choice, and description. This calls for
the development of calculi where these principles are built-in instead of being treated
axiomatically.

1. Introduction

One of the key questions of automated reasoning is the following: “When does a set
Φ of sentences have a model?” In fact, given reasonable assumptions about calculi, most
inference problems can be reduced to determining (un)-satisfiability of a set Φ of sentences.
Since building models for Φ is hard in practice, much research in computational logic has
concentrated on finding sufficient conditions for satisfiability, e.g. whether there is a Hin-
tikka set H extending Φ.

Of course in general the answer to the satisfiability question depends on the class of
models at hand. In classical first-order logic, model classes are well-understood. In impred-
icative higher-order logic, there is a whole landscape of plausible model classes differing in
their treatment of functional and Boolean extensionality. Satisfiability then strongly de-
pends on these classes, for instance, the set Φ := {a, b, qa,¬qb} is unsatisfiable in a model
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class where the universes of Booleans are required to have at most two members (see prop-
erty b below), but satisfiable in the class without this restriction.

In [5] we have shown that certain (i.e. saturated) Hintikka sets always have models and
have derived syntactical conditions (so-called saturated abstract consistency properties) for
satisfiability from this fact. The importance of abstract consistency properties is that one
can check completeness for a calculus C by verifying proof-theoretic conditions (checking
that C-irrefutable sets of formulae have the saturated abstract consistency property) instead
of performing model-theoretic analysis (for historical background of the abstract consistency
method in first-order logic, cf. [11, 16, 17]). Unfortunately, the saturation condition (if Φ
is abstractly consistent, then for all sentences A one of Φ ∪ {A} or Φ ∪ {¬A} is as well) is
very difficult to prove for machine-oriented calculi (indeed as hard as cut elimination as we
will show).

In this paper we investigate further the relation between the lack of the subformula
property in the saturation condition (we need to “guess” whether to extend Φ by A or ¬A

on our way to a Hintikka set) and the cut rule (where we have to “guess,” i.e. “search for” in
an automated reasoning setting the cut formula A). An important result is the insight that
there exist “cut-strong” formulae which support the effective simulation of cut in calculi
for impredicative logics. Prominent examples of cut-strong formulae are Leibniz equations
and the axioms for comprehension, extensionality, induction, description and choice. The
naive addition of any of these cut-strong formulae to any calculus for an impredicative
logic is a strong threat for effective automated proof search, since these formulae in a way
introduce the cut rule through the backdoor (even if the original calculus is cut-free and thus
appears appropriate for proof automation at first sight). Cut-strong formulae thus introduce
additional sources for breaking the subformula property and therefore they should either
be avoided completely or treated with great care in calculi designed for automated proof
search.

Consider the following formula of higher-order logic representing Boolean extensionality:

∀Ao ∀Bo (A⇔ B) ⇒ A
.
=o B

For a theorem prover to make use of this formula, it must instantiate A and B with terms
of type o. In other words, the theorem prover must synthesize two arbitrary formulas.
Requiring a theorem prover to synthesize these formulas is just as hard (and unrealistic)
as requiring a theorem prover to synthesize cut formulas. An alternative to including the
formula for Boolean extensionality is to include a rule in the search procedure which allows
the theorem prover to reduce proving A

.
=o

B to the subgoal of proving A ⇔ B. Using this
rule does not require the prover to synthesize any terms. Simply adding such a rule is not
enough to obtain a complete calculus. We will explore what additional rules are required
to obtain completeness and argue that these rules are appropriate for mechanized proof
search.

In Section 2, we will fix notation and review the relevant results from [5]. We define
in Section 3 a basic sequent calculus and study the correspondence between saturation in
abstract consistency classes and cut-elimination. In Section 4 we introduce the notion of
“cut-strong” formulae and sequents and show that they support the effective simulation of
cut. In Section 5 we demonstrate that the pertinent extensionality axioms are cut-strong.
We develop alternative extensionality rules which do not suffer from this problem. Further
rules are needed to ensure Henkin completeness for this calculus with extensionality. These
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new rules correspond to the acceptability conditions we propose in Section 6 to ensure the
existence of models and the existence of saturated extensions of abstract consistency classes.

2. Higher-Order Logic

In [5] we have re-examined the semantics of classical higher-order logic with the purpose
of clarifying the role of extensionality. For this we have defined eight classes of higher-order
models with respect to various combinations of Boolean extensionality and three forms of
functional extensionality. We have also developed a methodology of abstract consistency
(by providing the necessary model existence theorems) needed for instance, to analyze
completeness of higher-order calculi with respect to these model classes. We now briefly
summarize the main notions and results of [5] as required for this paper. Our impredicative
logic of choice is Church’s classical type theory.

2.1. Syntax: Church’s Simply Typed λ-Calculus. As in [9], we formulate higher-
order logic (HOL) based on the simply typed λ-calculus. The set of simple types T is freely
generated from basic types o and ι using the function type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, X
1
β,X

2
γ . . .)

and a signature Σ of (typed) constants (denoted by cα, fα→β, . . .). We let Vα (Σα) denote
the set of variables (constants) of type α. The signature Σ of constants includes the logical
constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for each type α; all other constants in Σ are called

parameters. As in [5], we assume there is an infinite cardinal ℵs such that the cardinality of
Σα is ℵs for each type α (cf. [5](3.16)). The set of HOL-formulae (or terms) are constructed
from typed variables and constants using application and λ-abstraction. We let wffα(Σ) be
the set of all terms of type α and wff(Σ) be the set of all terms.

We use vector notation to abbreviate k-fold applications and abstractions as AUk and

λXk A, respectively. We also use Church’s dot notation so that stands for a (missing)
left bracket whose mate is as far to the right as possible (consistent with given brackets).
We use infix notation A ∨ B for ((∨A)B) and binder notation ∀XαA for (Πα(λXα Ao)).
We further use A ∧ B, A ⇒ B, A ⇔ B and ∃XαA as shorthand for formulae defined in
terms of ¬, ∨ and Πα (cf. [5]). Finally, we let (Aα

.
=α

Bα) denote the Leibniz equation
∀Pα→o (PA) ⇒ PB.

Each occurrence of a variable in a term is either bound by a λ or free. We use free(A)
to denote the set of free variables of A (i.e., variables with a free occurrence in A). We
consider two terms to be equal if the terms are the same up to the names of bound variables
(i.e., we consider α-conversion implicitly). A term A is closed if free(A) is empty. We let
cwffα(Σ) denote the set of closed terms of type α and cwff(Σ) denote the set of all closed
terms. Each term A ∈ wffo(Σ) is called a proposition and each term A ∈ cwffo(Σ) is called
a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B. Since
we consider α-conversion implicitly, we assume the bound variables of B avoid variable
capture.

Two common relations on terms are given by β-reduction and η-reduction. A β-redex
(λXA)B β-reduces to [B/X]A. An η-redex (λX CX) (where X /∈ free(C)) η-reduces to
C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can be converted to B by a series of
β-reductions and expansions. Similarly, A≡βηB means A can be converted to B using both
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β and η. For each A ∈ wff(Σ) there is a unique β-normal form (denoted A↓β) and a unique
βη-normal form (denoted A↓βη). From this fact we know A≡βB (A≡βηB) iff A↓β ≡ B↓β
(A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is of the form
[cAn] where c is a logical constant. An atomic formula is any other formula in wffo(Σ).

2.2. Semantics: Eight Model Classes. A model of HOL is given by four objects: a typed
collection of nonempty sets (Dα)α∈T , an application operator @: Dα→β × Dα −→ Dβ, an
evaluation function E for terms and a valuation function υ : Do −→ {T, F}. A pair (D,@)
is called a Σ-applicative structure (cf. [5](3.1)). If E is an evaluation function for (D,@)
(cf. [5](3.18)), then we call the triple (D,@, E) a Σ-evaluation. If υ satisfies appropriate
properties, then we call the tuple (D,@, E , υ) a Σ-model (cf. [5](3.40 and 3.41)).

Given an applicative structure (D,@), an assignment ϕ is a (typed) function from V to
D. An evaluation function E maps an assignment ϕ and a term Aα ∈ wffα(Σ) to an element
Eϕ(A) ∈ Dα. Evaluations E are required to satisfy four properties (cf. [5](3.18)):

(1) Eϕ
∣

∣

V
≡ ϕ.

(2) Eϕ(FA) ≡ Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ), A ∈ wffα(Σ) and types α and β.
(3) Eϕ(A) ≡ Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ and ψ coincide on

free(A).
(4) Eϕ(A) ≡ Eϕ(A↓β) for all A ∈ wffα(Σ).

If A is closed, then we can simply write E(A) since the value Eϕ(A) cannot depend on ϕ.
Given an evaluation (D,@, E), we define several properties a function υ : Do −→ {T, F}

may satisfy (cf. [5](3.40)).

prop. where holds when for all

L¬(n) n ∈ Do→o υ(n@a) ≡ T iff υ(a) ≡ F a ∈ Do

L∨(d) d ∈ Do→o→o υ(d@a@b) ≡ T iff υ(a) ≡ T or υ(b) ≡ T a, b ∈ Do

Lα
∀
(π) π ∈ D(α→o)→o υ(π@f) ≡ T iff ∀a ∈ Dα υ(f@a) ≡ T f ∈ Dα→o

Lα=(q) q ∈ Dα→α→o υ(q@a@b) ≡ T iff a ≡ b a, b ∈ Dα

A valuation υ : Do −→ {T, F} is required to satisfy L¬(E(¬)), L∨(E(∨)) and Lα
∀
(E(Πα)) for

every type α.
Given a model M := (D,@, E , υ), an assignment ϕ and a proposition A (or set of propo-

sitions Φ), we say M satisfies A (or Φ) and write M |=ϕ A (or M |=ϕ Φ) if υ(Eϕ(A)) ≡ T

(or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is closed (or every member of Φ is closed), then
we simply write M |= A (or M |= Φ) and say M is a model of A (or Φ).

In order to define model classes M∗ which correspond to different notions of extension-
ality, we define five properties of models (cf. [5](3.46, 3.21 and 3.5)). Let M := (D,@, E , υ)
be a model. We define:

q: iff for all α ∈ T there is a qα ∈ Dα→α→o with Lα=(qα).
η: iff (D,@, E) is η-functional (i.e., for each A ∈ wffα(Σ) and assignment ϕ, Eϕ(A) ≡

Eϕ(A↓βη)).
ξ: iff (D,@, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα and assignment ϕ,

Eϕ(λXα Mβ) ≡ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα).
f: iff (D,@) is functional (i.e., for each f, g ∈ Dα→β, f ≡ g whenever f@a ≡ g@a for

every a ∈ Dα).
b: iff Do has at most two elements.
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For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (the latter set will be abbreviated by �8

in the remainder) we define M∗ to be the class of all Σ-models M such that M satisfies
property q and each of the additional properties {η, ξ, f, b} indicated in the subscript ∗
(cf. [5](3.49)). We always include β in the subscript to indicate that β-equal terms are
always interpreted as identical elements. We do not include property q as an explicit
subscript; q is treated as a basic, implicit requirement for all model classes. See [5](3.52)
for a discussion on why we require property q. Since we are varying four properties, one
would expect to obtain 16 model classes. However, we showed in [5] that f is equivalent to
the conjunction of ξ and η. Hence we obtain the eight model classes depicted as a cube
in Figure 1. There are example models constructed in [5] to demonstrate that each of the
eight model classes is distinct. For instance, Example 5.6 of [5] describes how to construct
a model without η by attaching labels to functions.

Mβfb

MβηbMβξbMβf

Mβξ Mβη Mβb

Mβ

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

Figure 1: The Landscape of HOL-Semantics.

Special cases of Σ-models are Henkin models and standard models (cf. [5](3.50 and 3.51)).
A Henkin model is a model in Mβfb such that the applicative structure (D,@) is a frame,

i.e. Dα→β is a subset of the function space (Dβ)
Dα for each α, β ∈ T and @ is function

application. A standard model is a Henkin model in which Dα→β is the full function space

(Dβ)
Dα . Every model in Mβfb is isomorphic to a Henkin model (see the discussion following

[5](3.68)).

2.3. Saturated Abstract Consistency Classes and Model Existence. Finally, we
review the model existence theorems proved in [5]. There are three stages to obtaining a
model in our framework. First, we obtain an abstract consistency class ΓΣ (usually defined
as the class of irrefutable sets of sentences with respect to some calculus). Second, given
a (sufficiently pure) set of sentences Φ in the abstract consistency class ΓΣ we construct a
Hintikka set H extending Φ. Third, we construct a model of this Hintikka set (and hence a
model of Φ).

A Σ-abstract consistency class ΓΣ is a class of sets of Σ-sentences. An abstract consis-
tency class is always required to be closed under subsets (cf. [5](6.1)). Sometimes we require
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the stronger property that ΓΣ is compact, i.e. a set Φ is in ΓΣ iff every finite subset of Φ is
in ΓΣ (cf. [5](6.1,6.2)).

To describe further properties of abstract consistency classes, we use the notation S ∗ a
for S ∪ {a} as in [5]. The following is a list of properties a class ΓΣ of sets of sentences can
satisfy with respect to arbitrary Φ ∈ ΓΣ (cf. [5](6.5)):

∇c: If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬: If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇β: If A≡βB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇η: If A≡βηB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨: If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧: If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀: If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
∇∃: If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does not

occur in any sentence of Φ.
∇b: If ¬(A

.
=o

B) ∈ Φ, then Φ ∗ A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ.

∇ξ: If ¬(λXα M
.
=α→β λXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=β [w/X]N) ∈ ΓΣ for any

parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f: If ¬(G
.
=α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=β

Hw) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.
∇sat: Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

We say ΓΣ is an abstract consistency class if it is closed under subsets and satisfies ∇c,
∇¬, ∇β, ∇∨, ∇∧, ∇∀ and ∇∃. We let Accβ denote the collection of all abstract consistency
classes. For each ∗ ∈ �8 we refine Accβ to a collection Acc∗ where the additional properties
{∇η,∇ξ,∇f,∇b} indicated by ∗ are required (cf. [5](6.7)). We say an abstract consistency
class ΓΣ is saturated if ∇sat holds.

Using ∇c (atomic consistency) and the fact that there are infinitely many parameters
at each type, we can show every abstract consistency class satisfies non-atomic consistency.
That is, for every abstract consistency class ΓΣ, A ∈ cwffo(Σ) and Φ ∈ ΓΣ, we have either
A /∈ Φ or ¬A /∈ Φ (cf. [5](6.10)).

In [5](6.32) we show that sufficiently Σ-pure sets in saturated abstract consistency
classes extend to saturated Hintikka sets. (A set of sentences Φ is sufficiently Σ-pure if for
each type α there is a set Pα of parameters of type α with cardinality ℵs and such that
no parameter in P occurs in a sentence in Φ. A Hintikka set is a maximal element in an
abstract consistency class.)

In the Model Existence Theorem for Saturated Sets [5](6.33) we show that these sat-
urated Hintikka sets can be used to construct models M which are members of the corre-
sponding model classes M∗. Then we conclude (cf. [5](6.34)):

Model Existence Theorem for Saturated Abstract Consistency Classes: For all

∗ ∈ �8, if ΓΣ is a saturated abstract consistency class in Acc∗ and Φ ∈ ΓΣ is a sufficiently

Σ-pure set of sentences, then there exists a model M ∈ M∗ that satisfies Φ. Furthermore,

each domain of M has cardinality at most ℵs.

In [5] we apply the abstract consistency method to analyze completeness for differ-
ent natural deduction calculi. Unfortunately, the saturation condition is very difficult to
prove for machine-oriented calculi (indeed as we will see in Section 3 it is equivalent to cut
elimination), so Theorem [5](6.34) cannot be easily used for this purpose directly.
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In Section 6 we therefore motivate and present a set of extra conditions for Accβfb we
call acceptability conditions. The new conditions are sufficient to prove model existence.

3. Sequent Calculi, Cut and Saturation

We will now study cut-elimination and cut-simulation with respect to (one-sided) se-
quent calculi.

3.1. Sequent Calculi G. We consider a sequent to be a finite set ∆ of β-normal sentences
from cwffo(Σ). A sequent calculus G provides an inductive definition for when ⊢⊢G ∆ holds.
We say a sequent calculus rule

∆1 · · · ∆n
r

∆
is admissible in G if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. For any natural number
k ≥ 0, we call an admissible rule r k-admissible if any instance of r can be replaced by a
derivation with at most k additional proof steps. Given a sequent ∆, a model M, and a
class M of models, we say ∆ is valid for M (or valid for M), if M |= D for some D ∈ ∆
(or ∆ is valid for every M ∈ M). As for sets in abstract consistency classes, we use the
notation ∆∗A to denote the set ∆∪{A} (which is simply ∆ if A ∈ ∆). Figure 2 introduces
several sequent calculus rules. Some of these rules will be used to define sequent calculi,
while others will be shown admissible (or even k-admissible).

Basic Rules
A atomic (and β-normal)

G(init)
∆ ∗ A ∗ ¬A

∆ ∗A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)


y

β
C ∈ cwffα(Σ)

G(Π C
− )

∆ ∗ ¬ΠαA

∆ ∗ (Ac)


y

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ ΠαA

Inversion Rule
∆ ∗ ¬¬A

G(Inv¬)
∆ ∗ A

Weakening and Cut Rules
∆

G(weak)
∆ ∪ ∆′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆

Figure 2: Sequent Calculus Rules

Remark 3.1 (Alternative Formulations). There are many kinds of sequent calculi given in
the literature. We could have chosen to work with two sided sequents. This choice would
have allowed us to generalize many of our results to the intuitionistic case. The notion of
cut-strong formulae could still be defined and many of our examples of cut-strong formulae
would also be cut-strong in the intuitionistic case. On the other hand, assuming we only
treat the classical case, we could restrict to negation normal forms in the same way that we
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restrict to β-normal forms. This would eliminate the need to consider the rules G(¬) and
G(Inv¬). Both of these alternatives are reasonable. The choices we have made are for ease
of presentation and to make the connection with [5] as simple as possible.

3.2. Abstract Consistency Classes for Sequent Calculi. For any sequent calculus G
we can define a class ΓG

Σ of sets of sentences. Under certain assumptions, ΓG
Σ is an abstract

consistency class. First we adopt the notation ¬Φ and Φ↓β for the sets {¬A|A ∈ Φ} and
{A↓β |A ∈ Φ}, resp., where Φ ⊆ cwffo(Σ). Furthermore, we assume this use of ¬ binds
more strongly than ∪ or ∗, so that ¬Φ ∪ ∆ means (¬Φ) ∪ ∆ and ¬Φ ∗ A means (¬Φ) ∗A.

Definition 3.2. Let G be a sequent calculus. We define ΓG
Σ to be the class of all finite

Φ ⊂ cwffo(Σ) such that ⊢⊢G ¬ Φ↓β does not hold.

In a straightforward manner, one can prove the following results (see the Appendix).

Lemma 3.3. Let G be a sequent calculus such that G(Inv¬) is admissible. For any finite

sets Φ and ∆ of sentences, if Φ ∪ ¬∆ /∈ ΓG
Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.

Theorem 3.4. Let G be a sequent calculus. If the rules G(Inv¬), G(¬), G(weak), G(init),

G(∨−), G(∨+), G(Π C
− ) and G(Π c

+) are admissible in G, then ΓG
Σ ∈ Accβ.

We can furthermore show the following relationship between saturation and cut (see
the Appendix).

Theorem 3.5. Let G be a sequent calculus.

(1) If G(cut) is admissible in G, then ΓG
Σ is saturated.

(2) If G(¬) and G(Inv¬) are admissible in G and ΓG
Σ is saturated, then G(cut) is admissible

in G.

Since saturation is equivalent to admissibility of cut, we need weaker conditions than satu-
ration. A natural condition to consider is the existence of saturated extensions.

Definition 3.6 (Saturated Extension). Let ∗ ∈ �8 and ΓΣ,Γ
′

Σ ∈ Acc∗ be abstract consis-
tency classes. We say Γ′

Σ is an extension of ΓΣ if Φ ∈ Γ′
Σ for every sufficiently Σ-pure Φ ∈ ΓΣ.

We say Γ′
Σ is a saturated extension of ΓΣ if Γ′

Σ is saturated and an extension of ΓΣ.

There exist abstract consistency classes Γ in Accβfb which have no saturated extension.

Example 3.7. Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We construct an abstract
consistency class ΓΣ from Φ by first building the closure Φ′ of Φ under relation ≡β and then
taking the power set of Φ′. It is easy to check that this ΓΣ is in Accβfb. Suppose we have
a saturated extension Γ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ′
Σ since Φ is finite (hence sufficiently

Σ-pure). By saturation, Φ ∗ (a
.
=o b) ∈ Γ′

Σ or Φ ∗ ¬(a
.
=o b) ∈ Γ′

Σ. In the first case, applying
∇∀ with the constant q, ∇∨ and ∇c contradicts (qa),¬(qb) ∈ Φ. In the second case, ∇b and
∇c contradict a, b ∈ Φ.

Existence of any saturated extension of a sound sequent calculus G implies admissibility
of cut. The proof uses the model existence theorem for saturated abstract consistency classes
(cf. [5](6.34)). The proof is in the Appendix.

Theorem 3.8. Let G be a sequent calculus which is sound for M∗. If ΓG
Σ has a saturated

extension Γ′
Σ ∈ Acc∗, then G(cut) is admissible in G.
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3.3. Sequent Calculus Gβ. We now study a particular sequent calculus Gβ defined by the

rules G(init), G(¬), G(∨−), G(∨+), G(Π C
− ) and G(Π c

+) (cf. Figure 2). It is easy to show
that Gβ is sound for the eight model classes and in particular for class Mβ .

The reader may easily prove the following Lemma.

Lemma 3.9. Let A ∈ cwffo(Σ) be an atom, B ∈ cwffα(Σ), and ∆ be a sequent.

(1) ∆ ∗A ⇔ A := ∆ ∗ ¬(¬(¬A ∨ A) ∨ ¬(¬A ∨ A)) is derivable in 7 steps in Gβ .
(2) ∆ ∗B

.
=α

B := ∆ ∗ Πα(λPα→o ¬(PB) ∨ (PB) is derivable in 3 steps in Gβ.

The proof of the next Lemma is by induction on derivations and is given in the Appen-
dix.

Lemma 3.10. The rules G(Inv¬) and G(weak) are 0-admissible in Gβ .

Theorem 3.11. The sequent calculus Gβ is complete for the model class Mβ and the rule

G(cut) is admissible.

Proof. By Theorem 3.4 and Lemma 3.10, Γ
Gβ

Σ ∈ Accβ . Suppose ⊢⊢Gβ
∆ does not hold. Then

¬∆ ∈ Accβ by Lemma 3.3. By the model existence theorem for Accβ (cf. [6](8.1)) there
exists a model for ¬∆ in Mβ . This gives completeness of Gβ . We can use completeness to
conclude cut is admissible in Gβ .

Andrews proves admissibility of cut for a sequent calculus similar to Gβ in [1]. The
proof in [1] contains the essential ingredients for showing completeness.

While G(cut) is admissible in Gβ the next theorem shows that G(cut) is not k-admissible
in Gβ for any k ∈ N, which means Gβ is not only superficially cut-free and that by adding
G(cut) to Gβ we can achieve significantly shorter proofs.

Theorem 3.12. G(cut) is not k-admissible in Gβ for any k ∈ N.

Proof. The proof is not formally worked out here; we only sketch the argumentation: The
main idea is to show that the hyper-exponential speed-up results known for first-order logic
do transfer to (the first-order fragment of) our calculus. For this, we compare our sequent
calculus Gβ with a standard first-order variant of it which we call GFOβ (this only requires

appropriate modifications of the rules G(Π C
− ) and G(Π c

+)). Clearly, any first-order sequent

which can be derived in GFOβ can be derived in Gβ with the same number of steps (using

essentially the same derivation). More interestingly, one can show that for any derivation
D in Gβ of a first-order sequent ∆ there is a derivation D′ in GFOβ of ∆ with the same

number of rule applications. (During the induction, one collapses higher-order terms to
first-order terms in such a way that first-order terms collapse to themselves.) Thus no
speedup with respect to first-order provability can be achieved by using Gβ instead of the

cut-free first-order sequent calculus GFOβ . Finally we refer to the following results:

• Theorem 5.2.13 in [19] shows that for a classical first-order sequent calculus there is at
least an exponential speed-up of proofs with cut. Furthermore, Propositions 6.11.3 and
6.11.4 there show a related hyper-exponential speed-up result.

• An example for hyper-exponential speed-up is also given in [18, 13].
• In higher-order logic the speed-up should be faster than any primitive recursive function

according to the “curious inference” George Boolos presents in [7].
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We will now show that G(cut) actually becomes k-admissible in Gβ if certain formulae
are available in the sequent ∆ we wish to prove.

4. Cut-Simulation

4.1. Cut-Strong Formulae and Sequents. k-cut-strong formulae can be used to effec-
tively simulate cut. Effectively means that the elimination of each application of a cut-rule
introduces maximally k additional proof steps, where k is constant.

Definition 4.1. Given an arbitrary but fixed number k > 0. We call formula A ∈ cwffo(Σ)
k-cut-strong for G (or simply cut-strong) if the following cut rule variant is k-admissible in
G:1

∆ ∗ C ∆ ∗ ¬C
G(cutA)

∆ ∗ ¬A

We can alternative state the condition for A to be k-cut-strong for G as follows: For all ∆
and C, if ⊢⊢G ∆ ∗ C in n steps and ⊢⊢G ∆ ∗ ¬C in m steps, then ⊢⊢G ∆ ∗ ¬A in at most
n+m+ k steps.

Our examples below illustrate that cut-strength of a formula usually only weakly de-
pends on the calculus G: it only presumes standard ingredients such as β-normalization,
weakening, and rules for the logical connectives.

We present some simple examples of cut-strong formulae for our sequent calculus Gβ .
A corresponding phenomenon is observable in other higher-order calculi, for instance, for
the calculi presented in [1, 4, 8, 12].

Example 4.2. The Formula ∀Po P := Πo(λPo P ) is 3-cut-strong in Gβ . This is justified by

the following derivation which actually shows that rule G(cutA) for this specific choice of
A is derivable in Gβ by maximally 3 additional proof steps. The only interesting proof step

is the instantiation of P with formula D := ¬C∨C in rule G(Π D
− ). (Note that C must be

β-normal; sequents such as ∆ ∗ C by definition contain only β-normal formulae.)

∆ ∗ C
∆ ∗ ¬¬C

G(¬)
∆ ∗ ¬C

∆ ∗ ¬(¬C ∨ C)
G(∨−)

∆ ∗ ¬Πo(λPo P )
G(Π D

− )

Clearly, ∀Po P is not a very interesting cut-strong formula since it implies falsehood, i.e.
inconsistency.

Example 4.3. The formula ∀Po P ⇒ P := Πo(λPo ¬P∨P ) is 3-cut-strong in Gβ. This is an
example of a tautologous cut-strong formula. Now P is simply instantiated with D := C in
rule G(Π D

− ). Except for this first step the derivation is identical to the one for Example 4.2.

1Here, we could alternatively use (k-)derivability (see [10]) to give a stronger but less general notion of
k-cut-strongness. In fact, all axioms we discuss in this paper would remain k-cut-strong. From a proof
theoretic point of view one may argue that this alternative notion leads to a more interesting result although
it may generally apply to fewer axioms.
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Example 4.4. Leibniz equations M
.
=α

N := Πα(λP ¬PM ∨ PN) (for arbitrary formulae
M,N ∈ cwffα(Σ) and types α ∈ T ) are 3-cut-strong in Gβ. This includes the special cases

M
.
=α

M. Now P is instantiated with D := λXαC in rule G(Π D
− ). Except for this first

step the derivation is identical to the one for Example 4.2.

Example 4.5. The original formulation of higher-order logic (cf. [15]) contained com-
prehension axioms of the form C := ∃Pα1→···→αn→o∀X

n PXn ⇔ Bo where Bo ∈ wffo(Σ)
is arbitrary with P /∈ free(B). Church eliminated the need for such axioms by for-
mulating higher-order logic using typed λ-calculus. We will now show that the instance
CI := ∃Pι→o ∀Xι PX ⇔ X

.
=ι X is 16-cut-strong in Gβ (note that G(weak) is 0-admissible).

This motivates building-in comprehension principles instead of treating comprehension ax-
iomatically.

3 steps; see Lemma 3.9....
∆ ∗ ¬(pa⇒ a

.
=ι a) ∗ a

.
=ι a

∆ ∗ ¬(pa⇒ a
.
=ι a) ∗ ¬¬(a

.
=ι a)

G(¬)
D

∆ ∗ ¬(pa⇒ a
.
=ι a) ∗ ¬(¬(a

.
=ι a) ∨ pa)

G(∨−)

∆ ∗ ¬(pa⇒ a
.
=ι a) ∨ ¬(a

.
=ι a⇒ pa)

G(∨+)

∆ ∗ ¬¬(¬(pa⇒ a
.
=ι a) ∨ ¬(a

.
=ι a⇒ pa))

G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.
=ι X)

G(Π aι
− )

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι pX ⇔ X
.
=ι X))

G(Π pι→o

+ )

∆ ∗ CI
G(¬)

Derivation D is:

∆ ∗ pa ∗ ¬pa
G(init)

∆ ∗ ¬¬pa ∗ ¬pa
G(¬)

∆ ∗ C ∆ ∗ ¬C.... 3 steps; see Ex. 4.4

∆ ∗ ¬(a
.
=o a)

∆ ∗ ¬(a
.
=ι a) ∗ ¬pa

G(weak)

∆ ∗ ¬(¬pa ∨ a
.
=ι a) ∗ ¬pa

G(∨−)

As we will show later, many prominent axioms for higher-order logic also belong to the
class of cut-strong formulae.

4.2. Cut-Simulation. The cut-simulation theorem is a main result of this paper. It says
that cut-strong sequents support an effective simulation (and thus elimination) of cut in
Gβ . Effective means that the size of cut-free derivation grows only linearly for the number
of cut rule applications to be eliminated.

Definition 4.6. A sequent ∆ is called k-cut-strong (or simply cut-strong) if there exists a
k-cut-strong formula A ∈ cwffo(Σ) such that ¬A ∈ ∆. We call A the k-realizer of ∆.

We first fix the following calculi: Calculus Gcutβ extends Gβ by the rule G(cut) and

calculus Gcut
A

β extends Gβ by the rule G(cutA) for some arbitrary but fixed cut-strong
formula A.
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Theorem 4.7. Let ∆ be a k-cut-strong sequent with realizer A. For each derivation

D : ⊢⊢Gcut
β

∆ with d proof steps there is an alternative derivation D′ : ⊢⊢
GcutA

β

∆ with d

proof steps.

Proof. Note that the rules G(cut) and G(cutA) coincide whenever ¬A ∈ ∆. Intuitively, we
can replace each occurrence of G(cut) in D by G(cutA) in order to obtain a D′ of same size.
Technically, in the induction proof one must weaken to ensure ¬A stays in the sequent and
carry out a parameter renaming to make sure the eigenvariable condition is satisfied.

Theorem 4.8. Let ∆ be a k-cut-strong sequent with realizer A. For each derivation

D : ⊢⊢
GcutA

β

∆ with d proof steps and with n applications of rule G(cut) there exists an

alternative derivation D′ : ⊢⊢Gβ
∆ with maximally d+ nk proof steps.

Proof. A is k-cut-strong so by definition G(cutA) is k-admissible in Gβ . This means that

G(cutA) can be eliminated in D and each single elimination of G(cutA) introduces maximally
k new proof steps. Now the assertion can be easily obtained by a simple induction over
n.

Corollary 4.9. Let ∆ be a k-cut-strong sequent. For each derivation D : ⊢⊢Gcut
β

∆ with d

proof steps and n applications of rule G(cut) there exists an alternative cut-free derivation

D′ : ⊢⊢Gβ
∆ with maximally d+ nk proof steps.

5. The Extensionality Axioms are Cut-Strong

We have shown comprehension axioms can be cut-strong (cf. Example 4.5). Further
prominent examples of cut-strong formulae are the Boolean and functional extensionality
axioms. The Boolean extensionality axiom (abbreviated as Bo in the remainder) is

∀Ao ∀Bo (A⇔ B) ⇒ A
.
=o B

The infinitely many functional extensionality axioms (abbreviated as Fαβ) are parameterized
over α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.
=β GX) ⇒ F

.
=α→β G

These axioms usually have to be added to higher-order calculi to reach Henkin com-
pleteness, i.e. completeness with respect to model class Mβfb. For example, Huet’s con-
strained resolution approach as presented in [12] is not Henkin complete without adding
extensionality axioms. The need for adding Boolean extensionality to this calculus is ac-
tually illustrated by the set of unit literals Φ := {a, b, (qa),¬(qb)} from Example 3.7. As
the reader may easily check, this clause set Φ, which is inconsistent for Henkin semantics,
cannot be proven by Huet’s system without, e.g., adding the Boolean extensionality axiom.
By relying on results in [1], Huet essentially shows completeness with respect to model class
Mβ as opposed to Henkin semantics.

We will now investigate whether adding the extensionality axioms to a machine-oriented
calculus in order to obtain Henkin completeness is a suitable option.

Theorem 5.1. The Boolean extensionality axiom Bo is a 14-cut-strong formula in Gβ .
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Proof. The following derivation justifies this theorem (ao is a parameter).

7 steps; see Lemma 3.9....
∆ ∗ a⇔ a

∆ ∗ ¬¬(a⇔ a)
G(¬)

∆ ∗ C ∆ ∗ ¬C.... 3 steps; see Ex. 4.4

∆ ∗ ¬(a
.
=o a)

∆ ∗ ¬(¬(a⇔ a) ∨ a
.
=o a)

G(∨−)

∆ ∗ ¬Bo
2 × G(Π a

−)

Theorem 5.2. The functional extensionality axioms Fαβ are 11-cut-strong formulae in Gβ.

Proof. The following derivation justifies this theorem (fα→β is a parameter).

3 steps; see Lemma 3.9....
∆ ∗ fa

.
=β fa

∆ ∗ (∀Xα fX
.
=β fX)

G(Π aα
+ )

∆ ∗ ¬¬∀Xα fX
.
=β fX

G(¬)

∆ ∗ C ∆ ∗ ¬C.... 3 steps; see Ex. 4.4

∆ ∗ ¬(f
.
=α→β f)

∆ ∗ ¬(¬(∀Xα fX
.
=β fX) ∨ f

.
=α→β f)

G(∨−)

∆ ∗ ¬Fαβ
2 × G(Π f

−)

In [4] and [8] we have already argued that the extensionality principles should not be
treated axiomatically in machine-oriented higher-order calculi and there we have developed
resolution and sequent calculi in which these principles are built-in. Here we have now
developed a strong theoretical justification for this work: Corollary 4.9 along with Theo-
rems 5.2 and 5.1 tell us that adding the extensionality principles Bo and Fαβ as axioms to a
calculus is like adding a cut rule.

In Figure 3 we show rules that add Boolean and functional extensionality in an ax-
iomatic manner to Gβ. More precisely we add rules G(Fαβ) and G(B) allowing to introduce
the axioms for any sequent ∆; this way we address the problem of the infinitely many
possible instantiations of the type-schematic functional extensional axiom Fαβ.

∆ ∗ ¬Fαβ α→ β ∈ T
G(Fαβ)

∆

∆ ∗ ¬Bo
G(B)

∆

Figure 3: Axiomatic Extensionality Rules

Calculus Gβ enriched by the new rules G(Fαβ) and G(B) is called GEβ . Soundness of the

the new rules is easy to verify: In [5](4.3) we show that G(Fαβ) and G(B) are valid for Henkin
models.
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∆ ∗ (∀XαAX
.
=β

BX)




y

β
G(f)

∆ ∗ (A
.
=α→β

B)

∆ ∗ ¬A ∗ B ∆ ∗ ¬B ∗ A
G(b)

∆ ∗ (A
.
=o

B)

Figure 4: Proper Extensionality Rules

5.1. Replacing the Extensionality Axioms. In Figure 4 we define alternative exten-
sionality rules which correspond to those developed for resolution and sequent calculi in [4]
and [8].

Calculus Gβ enriched by G(f) and G(b) is called G−
βfb. Soundness of G(f) and G(b) for

Henkin semantics is again easy to show.
Our aim is to develop a machine-oriented sequent calculus for automating Henkin com-

plete proof search. We argue that for this purpose G(f) and G(b) are more suitable rules
than G(Fαβ) and G(B).

Our next step now is to show Henkin completeness for GEβ . This will be relatively easy

since we can employ cut-simulation. Then we analyze whether calculus G−
βfb has the same

deductive power as GEβ .
First we extend Theorem 3.4. The proof is given in the Appendix.

Theorem 5.3. Let G be a sequent calculus such that G(Inv¬) and G(¬) are admissible.

(1) If G(f) and G(Π c
+) are admissible, then ΓG

Σ satisfies ∇f.

(2) If G(b) is admissible, then ΓG
Σ satisfies ∇b.

Theorem 5.4. The sequent calculus GEβ is Henkin complete and the rule G(cut) is 12-
admissible.

Proof. G(cut) can be effectively simulated and hence eliminated in GEβ by combining rule

G(Fαβ) with the 11-step derivation presented in the proof of Theorem 5.2.

Let Γ
GE

β

Σ be defined as in Definition 3.2. We prove Henkin completeness of GEβ by

showing that the class Γ
GE

β

Σ is a saturated abstract consistency class in Accβfb. We here
only analyze the crucial conditions ∇b, ∇f and ∇sat. For the other conditions we refer to

Theorem 3.4. Note that 0-admissibility of G(Inv¬) and G(weak) can be shown for GEβ by a
suitable induction on derivations as in Lemma 3.10.

∇f: G(Π c
+) is a rule of GEβ and thus admissible. According to Theorem 5.3 it is thus

sufficient to ensure admissibility of rule G(f) to show ∇f. This is justified by the

following derivation where N := A
.
=α→β

B and M := (∀XαAX
.
=β

BX)


y

β
(for

β-normal A,B).

∆ ∗ (∀XαAX
.
=β

BX)




y

β

∆ ∗ N ∗ M
G(weak)

∆ ∗N ∗ ¬¬M
G(¬)

derivable....
∆ ∗ N ∗ ¬N

∆ ∗ N ∗ ¬(¬M ∨N)
G(∨−)

∆ ∗ N ∗ ¬Fαβ
G(Π A

− ),G(Π B
− )

∆ ∗ A
.
=α→β

B
G(Fαβ)
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∇b: With a similar derivation using G(B) we can show that G(b) is admissible. We
conclude ∇b by Theorem 5.3.

∇sat: Since G(cut) is admissible we get saturation by Theorem 3.5.

Does G−
βfb have the same deductive strength as GEβ ? I.e., is G−

βfb Henkin complete? We show
this is not yet the case.

Theorem 5.5. The sequent calculus G−
βfb is not complete for Henkin semantics.

We illustrate the problem by a counterexample.

Example 5.6. Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For any M ≡ (D,@, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F, υ(E(b)) ≡ F

or E(a) ≡ E(b) by property b. Hence sequent ∆ is valid for every M ∈ Mβfb. However,
⊢⊢
G
−
βfb

∆ does not hold. By inspection, ∆ cannot be the conclusion of any rule.

In order to reach Henkin completeness and to show cut-elimination we thus need to

add further rules. Our example motivates the two rules presented in Figure 5. G(Init
.
=)

introduces Leibniz equations such as qa
.
=o qb as is needed in our example and G(d) realizes

the required decomposition into a
.
=o b.

∆ ∗ (A
.
=o

B) (†)
G(Init

.
=)

∆ ∗ ¬A ∗ B

∆ ∗ (A1 .
=α1 B1) · · · ∆ ∗ (An .

=αn Bn) (‡)
G(d)

∆ ∗ (hAn .
=β hBn)

(†) A,B atomic (‡) n ≥ 1, β ∈ {o, ι}, hαn→β ∈ Σ parameter

Figure 5: Additional Rules G(Init
.
=) and G(d)

We thus extend the sequent calculus G−
βfb to Gβfb by adding the decomposition rule G(d)

and the rule G(Init
.
=) which generally checks if two atomic sentences of opposite polarity

are provably equal (as opposed to syntactically equal).
Is Gβfb complete for Henkin semantics? We will show in the next Section that this

indeed holds (cf. Theorem 6.3).
With GE and Gβfb we have thus developed two Henkin complete calculi and both calculi

are cut-free. However, as our exploration shows, “cut-freeness” is not a well-chosen crite-
rion to differentiate between their suitability for proof search automation: GE inherently
supports effective cut-simulation and thus cut-freeness is meaningless.

The next claim, which is analogous to Theorem 3.12, has not been formally proven yet.
It claims that, in contrast to GE , the cut-freeness of Gβfb is meaningful.

Claim 1. G(cut) is not k-admissible in Gβfb.

The proof idea is similar to that of Theorem 3.12, however, the two additional rules

G(Init
.
=) and G(d) do introduce additional technicalities which we have not fully worked

out yet.
The criterion we propose for the analysis of calculi in impredicative logics is “freeness

of effective cut-simulation”. The idea behind this notion is to capture also hidden sources
(such as the extensionality axioms) where the subformula property may break and where
the cut rule may creep in through the backdoor.
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5.2. Other Rules for Other Model Classes. In [6] we developed respective complete
and cut-free sequent calculi not only for Henkin semantics but for five of the eight model
classes. In particular, no additional rules are required for the β, βη and βξ case. Meanwhile,
the βf case requires additional rules allowing η-conversion. We do not present and analyze
these cases here.

6. Acceptability Conditions

We now turn our attention again to the existence of saturated extensions of abstract
consistency classes.

As illustrated by Example 3.7, we need some extra abstract consistency properties to
ensure the existence of saturated extensions. We call these extra properties acceptability

conditions. They actually closely correspond to additional rules G(Init
.
=) and G(d).

Definition 6.1 (Acceptability Conditions). Let ΓΣ be an abstract consistency class in
Accβfb. We define the following properties:

∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ Φ, then Φ ∗ ¬(A
.
=o

B) ∈ ΓΣ.

∇d If ¬(hAn .
=β hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is a

parameter, then there is an i (1 ≤ i ≤ n) such that Φ ∗ ¬(Ai .=αi

Bi) ∈ ΓΣ.

We now replace the strong saturation condition used in [5] by these acceptability conditions.

Definition 6.2 (Acceptable Classes). An abstract consistency class ΓΣ ∈ Accβfb is called
acceptable in Accβfb if it satisfies the conditions ∇m and ∇d.

One can show a model existence theorem for acceptable abstract consistency classes in
Accβfb (cf. [6](8.1)). From this model existence theorem, one can conclude Gβfb is complete
for Mβfb (hence for Henkin models) and that cut is admissible in Gβfb.

Theorem 6.3. The sequent calculus Gβfb is complete for Henkin semantics and the rule

G(cut) is admissible.

Proof. The argumentation is similar to Theorem 3.11 but here we employ the acceptability
conditions ∇m and ∇d.

One can further show the Saturated Extension Theorem (cf. [6](9.3)):

Theorem 6.4. There is a saturated abstract consistency class in Accβfb that is an extension

of all acceptable ΓΣ in Accβfb.

Given Theorem 3.8, one can view the Saturated Extension Theorem as an abstract
cut-elimination result.

The proof of a model existence theorem employs Hintikka sets and in the context of
studying Hintikka sets we have identified a phenomenon related to cut-strength which we
call the Impredicativity Gap. That is, a Hintikka set H is saturated if any cut-strong formula
A (e.g. a Leibniz equation C

.
= D) is in H. Hence we can reasonably say there is a “gap”

between saturated and unsaturated Hintikka sets. Every Hintikka set is either saturated or
contains no cut-strong formulae.
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7. Conclusion

We have shown that adding cut-strong formulae to a calculus for an impredicative
logic is like adding cut. For machine-oriented automated theorem proving in impredicative
logics — such as classical type theory — it is therefore not recommendable to naively add
cut-strong axioms to the search space. In addition to the comprehension principle and
the functional and Boolean extensionality axioms as elaborated in this paper the list of
cut-strong axioms includes:

Example 7.1 (Other Forms of Defined Equality.). Formulas A
..
=α

B are 4-cut-strong in
Gβ where

..
=α is λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y ) (cf. [3]). The argument is

similar to Examples 4.2-4.5; here we the crucial step is to instantiate Q with λXα λYαC.

Example 7.2 (Axiom of Induction.). The axiom of induction for the naturals ∀Pι→o P0∧
(∀Xι PX ⇒ P (sX)) ⇒ ∀Xι PX is 18-cut-strong in Gβ. (Other well-founded ordering
axioms are analogous.) The crucial step in the proof is to instantiate P with λXι a

.
=o a

for some parameter ao.

Example 7.3 (Axiom of Choice.). ∃I(α→o)→o ∀Qα→o (∃XαQX) ⇒ Q(IQ) is 7-cut-strong
in Gβ . The crucial step is to instantiate Q with λXαC.

Example 7.4 (Axiom of Description.). ∃I(α→o)→o ∀Qα→o (∃1YαQY ) ⇒ Q(IQ), the de-

scription axiom (see [2]), where ∃1YαQY stands for ∃YαQY ∧ (∀ZαQZ ⇒ Y
.
= Z) is

25-cut-strong in Gβ. The crucial step in the proof is to instantiate Q with λXα a
.
=α X for

some parameter aα.

As we have shown in Example 4.5, comprehension axioms can be cut-strong. Church’s
formulation of type theory (cf. [9]) used typed λ-calculus to build comprehension principles
into the language. One can view Church’s formulation as a first step in the program to
eliminate the need for cut-strong axioms. For the extensionality axioms a start has been
made by the sequent calculi in this paper (and [6]), for resolution in [4] and for sequent
calculi and extensional expansion proofs in [8]. The extensional systems in [8] also provide
a complete method for using primitive equality instead of Leibniz equality. For improving
the automation of higher-order logic our exploration thus motivates the development of
higher-order calculi which directly include reasoning principles for equality, extensionality,
induction, choice, description, etc., without using cut-strong axioms.
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Appendix

Proof of Lemma 3.3.

Proof. Suppose Φ ∪ ¬∆ /∈ ΓG
Σ . By definition, ⊢⊢G ¬ Φ↓β ∪ ¬¬ ∆↓β holds. Applying G(Inv¬)

to each member of ∆↓β , we have ⊢⊢G ¬ Φ↓β ∪ ∆↓β.

Proof of Theorem 3.4:

Proof. We prove ΓG
Σ is closed under subsets and satisfies ∇c, ∇¬, ∇∨, ∇∧ and ∇β. The

remaining conditions are proven analogously.
Suppose Φ ∈ ΓG

Σ , If Φ0 ⊆ Φ and Φ0 /∈ ΓG
Σ , then ⊢⊢G ¬ Φ0↓β and so ⊢⊢G ¬ Φ↓β by

admissibility of G(weak). Hence ΓG
Σ is closed under subsets.

Suppose Φ ∈ ΓG
Σ and A,¬A ∈ Φ where A is atomic. By admissibility of G(init),

⊢⊢G ¬ Φ↓β ∗ A↓β since ¬ A↓β ∈ ¬ Φ↓β. By admissibility of G(¬), ⊢⊢G ¬ Φ↓β since ¬¬ A↓β ∈

¬ Φ↓β, contradicting Φ ∈ ΓG
Σ . Thus ∇c holds.

Suppose Φ ∈ ΓG
Σ , ¬¬A ∈ Φ and Φ ∗ A /∈ ΓG

Σ . Hence ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and so
⊢⊢G ¬ Φ↓β ∗ ¬¬¬ A↓β by admissibility of G(¬). Since ¬¬A ∈ Φ, we know ¬ Φ↓β is equal to

¬ Φ↓β ∗ ¬¬¬ A↓β. Hence ⊢⊢G ¬ Φ↓β, contradicting Φ ∈ ΓG
Σ . Thus ∇¬ holds.

Suppose Φ ∈ ΓG
Σ , (A ∨ B) ∈ Φ, Φ ∗ A /∈ ΓG

Σ and Φ ∗ B /∈ ΓG
Σ . Hence ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β

and ⊢⊢G ¬ Φ↓β ∗ ¬ B↓β. Applying G(∨−), we have ⊢⊢G ¬ Φ↓β since ¬ (A ∨ B)


y

β
∈ ¬ Φ↓β,

contradicting Φ ∈ ΓG
Σ . Thus ∇∨ holds.

By a similar argument, admissibility of G(Π C
− ) implies ∇∀.

Suppose Φ ∈ ΓG
Σ , ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B /∈ ΓG

Σ . By Lemma 3.3, ⊢⊢G

¬ Φ↓β ∗ A↓β ∗ B↓β. Applying G(∨+), we have ⊢⊢G ¬ Φ↓β ∗ (A ∨ B)


y

β
. Applying G(¬), we

have ⊢⊢G ¬ Φ↓β since ¬(A ∨ B) ∈ Φ, contradicting Φ ∈ ΓG
Σ . Thus ∇∧ holds.

By a similar argument, admissibility of G(Π c
+), G(Inv¬) and G(¬) imply ∇∃.

Suppose Φ ∈ ΓG
Σ , A ∈ Φ, A≡βB and Φ∗B /∈ ΓG

Σ . Hence ⊢⊢G ¬ Φ↓β∗¬ B↓β, contradicting

A↓β ∈ Φ↓β and Φ ∈ ΓG
Σ . Thus ∇β holds.

Proof of Theorem 3.5:

Proof. Suppose G(cut) is admissible, Φ ∈ ΓG
Σ , A ∈ cwffo(Σ), Φ ∗ A /∈ ΓG

Σ and Φ ∗ ¬A /∈ ΓG
Σ .

Hence ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and ⊢⊢G ¬ Φ↓β ∗ ¬¬ A↓β . Using G(cut), we have ⊢⊢G ¬ Φ↓β,

contradicting Φ ∈ ΓG
Σ .

Suppose ΓG
Σ is saturated, ⊢⊢G ∆∗C and ⊢⊢G ∆∗¬C hold but ⊢⊢G ∆ does not. Applying

G(¬) to every member of ∆ and to C we have ⊢⊢G ¬¬∆ ∗ ¬¬C and ⊢⊢G ¬¬∆ ∗ ¬C. By

Lemma 3.3, we know ¬∆ ∈ ΓG
Σ . By saturation, we must have ¬∆∗C ∈ ΓG

Σ or ¬∆∗¬C ∈ ΓG
Σ .

The first case contradicts ⊢⊢G ¬¬∆∗¬C while the second case contradicts ⊢⊢G ¬¬∆∗¬¬C.
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Proof of Lemma 3.8:

Proof. Suppose Γ′
Σ ∈ Acc∗ is a saturated extension of ΓG

Σ . Assume ⊢⊢G ∆∗C and ⊢⊢G ∆∗¬C

hold and ⊢⊢G ∆ does not. By Lemma 3.3, we know ¬∆ ∈ ΓG
Σ . Since ¬∆ is finite (hence

sufficiently Σ-pure), ¬∆ ∈ Γ′
Σ. By the model existence theorem for saturated abstract

consistency classes (cf. Theorem [5](6.34)), there is a model M ∈ M∗ such that M |= ¬∆.

By soundness of ΓG
Σ , we know both ∆∗C and ∆∗¬C must be valid in M. Since M |= ¬∆,

we must have M |= C and M |= ¬C, a contradiction.

Proof of Lemma 3.10:

Proof. We can argue 0-admissibility of G(Inv¬) and G(weak) by induction on derivations.
We use the notation ⊢⊢nGβ

∆ to indicate there is a derivation with size at most n of ∆. For

negation inversion, we need to show ⊢⊢nGβ
∆ ∗ A whenever ⊢⊢nGβ

∆ ∗ ¬¬A. First assume

¬¬A is a principal formula of the last rule applied. This is only possible if the last rule is
G(¬). Examining G(¬), we have either ⊢⊢n−1

Gβ
∆ ∗ A or ⊢⊢n−1

Gβ
∆ ∗ ¬¬A ∗ A. In the first

case, we are done. Otherwise, we apply the induction hypothesis to ⊢⊢n−1
Gβ

∆ ∗ ¬¬A ∗ A

and obtain ⊢⊢n−1
Gβ

∆ ∗ A as desired. Next assume ¬¬A is not a principal formula of the

last rule. In this case, the application of rule r concludes ⊢⊢nGβ
(∆′ ∗ ¬¬A) ∪ ∆0 from

⊢⊢n
i

Gβ
(∆′ ∗ ¬¬A) ∪ ∆i (with 1 ≤ i ≤ m) where ∆0 contains the principal formulae of the

rule application (a singleton unless the rule is G(init)) and n1 + · · ·+nm ≤ n− 1. Applying

the inductive hypothesis, we have ⊢⊢n
i

Gβ
(∆′ ∗ A) ∪ ∆i for 1 ≤ i ≤ m. Applying rule r we

have ⊢⊢nGβ
(∆′ ∗ A) ∪ ∆0. (For the case where r is G(Π c

+) we use the fact that the same

parameters occur in A and ¬¬A.)
To prove 0-admissibility of weakening, we generalize the statement to include a param-

eter renaming (to handle the G(Π c
+) rule). A parameter renaming θ is a well-typed map

from parameters to parameters extended to operate on arbitrary terms. Note that if A is
β-normal, then θ(A) is also β-normal. Also, if A is atomic, then θ(A) is atomic. We prove
for any n, ∆, ∆′ and parameter renaming θ, if ⊢⊢nGβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆, then

⊢⊢nGβ
∆′. Applying this with the identity parameter renaming θ, we have 0-admissibility of

G(weak).
Suppose ⊢⊢nGβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆. First, assume the last rule application

is G(Π c
+) with principal formula (ΠαG) ∈ ∆. In this case we know ⊢⊢n−1

Gβ
∆0 ∗ (Gcα)



y

β

where ∆0 ∗ (ΠG) is ∆ and c does not occur in any sentence in ∆. Choose a parameter dα
such that d does not occur in any sentence in ∆′. Let θ′ be the parameter renaming given
by θ′(c) := d and θ′(w) := θ(w) for parameters w other than c. Let ∆′′ be ∆′ ∗ (θ(G)d)



y

β
.

For each A ∈ ∆0 ⊆ ∆, we know θ′(A) ≡ θ(A) ∈ ∆′ ⊆ ∆′′ (since c does not occur in any
sentence in ∆). Also, since c does not occur in G, θ′((Gc)



y

β
) ≡ (θ(G)d)



y

β
∈ ∆′′. Hence

we can apply the induction hypothesis with n − 1, ∆0 ∗ (Gc)


y

β
, ∆′′ and θ′ to conclude

⊢⊢n−1
Gβ

∆′ ∗ (θ(G)dα)


y

β
. Since d does not occur in ∆′ and θ(ΠG) ∈ ∆′, we can apply G(Π d

+)

to conclude ⊢⊢nGβ
∆′.

Next, assume the last rule applied is G(Π C
− ). Hence ⊢⊢n−1

Gβ
∆0 ∗ ¬ (GC)



y

β
where ∆0 ∗

¬(ΠG) is ∆. We apply the induction hypothesis with n−1, ∆0∗ (GC)


y

β
, ∆′∗¬ (θ(GC))



y

β
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and θ to conclude ⊢⊢n−1
Gβ

∆′∗¬ (θ(GC))


y

β
. Applying the rule G(Π

θ(C)
− ), we obtain ⊢⊢n−1

Gβ
∆′

as desired. (Note that θ(¬ΠG) ∈ ∆′.)
Finally, assume the last rule application is not G(Π c

+) and not G(Π C
− ). Let r be the last

rule applied. The rule r concludes ⊢⊢nGβ
∆ from ⊢⊢n

i

Gβ
∆0∪∆i where ∆0 ⊆ ∆, 1 ≤ i ≤ m and

n1 + · · ·+ nm ≤ n− 1. For each i, we can apply the induction hypothesis with ni, ∆0 ∪∆i,

∆′ ∪ {θ(A)|A ∈ ∆i} and θ to conclude ⊢⊢n
i

Gβ
∆′ ∪ {θ(A)|A ∈ ∆i}. Applying the same rule

r we conclude ⊢⊢nGβ
∆′.

Proof of Theorem 5.3:

Proof. Assume the rules G(f) and G(Π c
+) are admissible. If ¬(G

.
=α→β

H) ∈ Φ and ⊢⊢G

¬ Φ↓β ∗ (Gw
.
=β

Hw)




y

β
(with wα new) holds, then we can show ⊢⊢G ¬ Φ↓β holds using

G(Π w
+ ) and G(f).

Assume the rule G(b) is admissible. Suppose Φ ∈ ΓG
Σ , ¬(A

.
=o

B) ∈ Φ, Φ∗A∗¬B /∈ ΓG
Σ

and Φ∗¬A∗B /∈ ΓG
Σ . By Lemma 3.3, ⊢⊢G ¬ Φ↓β ∗¬ A↓β ∗ B↓β and ⊢⊢G ¬ Φ↓β ∗ A↓β ∗¬ B↓β.

Applying G(b), ⊢⊢G ¬ Φ↓β ∗ (A
.
=o

B)


y

β
. Applying G(¬), ⊢⊢G ¬ Φ↓β since ¬(A

.
=o

B) ∈ Φ,

contradicting Φ ∈ ΓG
Σ . Thus ∇b holds.
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