
Foundations of Physics 2013 1

Constructibility in Physics

D.J. BenDaniel
Cornell University, Ithaca, NY 14853, USA

We pursue an approach in which space-time proves to be relational and its differential proper-
ties fulfill the strict requirements of Einstein-Weyl causality. Space-time is developed from a set
theoretical foundation for a constructible mathematics. The foundation proposed is the axioms of
Zermelo-Frankel (ZF) but without the power set axiom, with the axiom schema of subsets removed
from the axioms of regularity and replacement and with an axiom of countable constructibility
added. Four arithmetic axioms, excluding induction, are also adjoined; these formulae are con-
tained in ZF and can be added here as axioms. All sets of finite natural numbers in this theory are
finite and hence definable. The real numbers are countable, as in other constructible theories. We
first show that this approach gives polynomial functions of a real variable. Eigenfunctions governing
physical fields can then be effectively obtained. Furthermore, using a null integral of the Lagrange
density of a field over a compactified space, we produce a nonlinear sigma model. The Schrödinger
equation follows from a proof in the theory of the discreteness of the space-like and time-like terms
of the model. This result suggests that quantum mechanics in this relational space-time framework
can be considered conceptually cumulative with prior physics.

We propose the following axioms. The formulae
for these axioms are given in the appendix. The

TABLE I: Axioms

Extensionality Two sets with just the same mem-
bers are equal.

Pairs For every two sets, there is a set
that contains just them.

Union For every set of sets, there is a set
with just all their members.

Infinity There are infinite ordinals ω∗ (i.e.,
sets are transitive and well-ordered
by ∈-relation).

Replacement Replacing the members of a set one-
for-one creates a set (i.e., bijective
replacement).

Regularity Every non-empty set has a minimal
member (i.e. “weak” regularity).

Arithmetic Four axioms for predecessor unique-
ness, addition and multiplication.

Constructibility The subsets of ω∗ are countably
constructible.

first six axioms are the set theory of Zermelo-Frankel
(ZF) without the power set axiom and with the axiom
schema of subsets (a.k.a., separation) deleted from the
axioms of regularity and replacement. Arithmetic is
contained in ZF but must be axiomatized here. Be-
cause of the deletion of the axiom schema of subsets,
a minimal ω∗, usually denoted by ω and called the set
of all finite natural numbers, cannot be shown to ex-
ist in this theory; instead this set theory is uniformly
dependent on ω∗ and then all the finite as well as in-
finitely many infinite natural numbers are included in
ω∗. These infinite numbers are one-to-one with ω∗;
a finite natural number is any member of ω∗ that is
not infinite. We can now adjoin to this sub-theory of

ZF an axiom asserting that the subsets of ω∗ are con-
structible. By constructible sets we mean sets that are
generated sequentially by some process, one after the
other, so that the process well-orders the sets. Gödel
has shown that an axiom asserting that all sets are
constructible can be consistently added to ZF [1], giv-
ing a theory usually called ZFC+. It is well known
that no more than countably many subsets of ω∗ can
be shown to exist in ZFC+. This result will, of course,
hold for the sub-theory ZFC+ minus the axiom schema
of subsets and the power set axiom. Thus we can now
add a new axiom which says that the subsets of ω∗ are
countably constructible. This axiom, combined with
the axiom schema of bijective replacement, creates a
set of constructible subsets of ω∗ and deletion of the
power set axiom then assures that no other subsets
of ω∗ exist in this theory. We shall refer to these ax-
ioms as T . All the sets of finite natural numbers in
T are finite. The general continuum hypothesis holds
in this theory because all sets are countable. We now
will also show that this theory is rich enough to con-
tain some functions of a real variable. We first show
T has a countable real line. Recall the definition of
“rational numbers” as the set of ratios, in ZF called
Q, of any two members of the set ω. In T , we can
likewise, using the axiom of unions, establish for ω∗

the set of ratios of any two of its natural numbers,
finite or infinite. This will become an “enlargement”
of the rational numbers and we shall call this enlarge-
ment Q∗. Two members of Q∗ are called “identical”
if their ratio is 1. We now employ the symbol “≡”
for “is identical to.” Furthermore, an “infinitesimal”
is a member of Q∗ “equal” to 0, i.e., letting y signify
the member and employing the symbol “=” to signify
equality, y = 0 ↔ ∀k[y < 1/k], where k is a finite
natural number. The reciprocal of an infinitesimal is
“infinite”. A member of Q∗ that is not an infinitesi-
mal and not infinite is “finite”. The constructibility
axiom allows creation of the set of constructible sub-
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sets of ω∗ and, in addition, provides a distance mea-
sure, giving the metric space R∗. The elements of R∗

represent the binimals forming a countable real line.
In this theory R∗ is a subset of Q∗. An equality-
preserving bijective map φ(x, u) between intervals
X and U of R∗ in which x ∈ X and u ∈ U such
that ∀x1, x2, u1, u2[φ(x1, u1)∧φ(x2, u2)→ (x1− x2 =
0 ↔ u1 − u2 = 0)] creates pieces which are biunique
and homeomorphic. Note that U = 0 if and only if
X = 0, i.e., the piece is inherently relational. We can
now define “functions of a real variable in T”. u(x)
is a function of a real variable in T only if it is a
constant or a sequence in x of continuously connected
biunique pieces such that the derivative of u with re-
spect to x is also a function of a real variable in T .
These functions are thus of bounded variation and lo-
cally homeomorphic with the real line R∗. If some
derivative is a constant, they are polynomials. If no
derivative is a constant, these functions do not per se
exist in T but can, however, always be represented as
closely as required for physics by a sum of polynomi-
als of sufficiently high degree obtained by an iteration
of: ∫ b

a

[
p

(
du

dx

)2

− qu2
]
dx ≡ λ

∫ b

a

ru2dx (1)

where λ is minimized subject to:∫ b

a

ru2dx ≡ const (2)

where:

a 6= b, u

(
du

dx

)
≡ 0 (3)

at a and b; p, q, and r are functions of the real variable
x. Letting n denote the nth iteration, ∀k∃n[λn−1 −
λn < 1/k] where k is a finite natural number. So, a
polynomial such that, say, 1/k < 10−50 should be suf-
ficient for physics as it is effectively a Sturm-Liouville
“eigenfunction”. These can be decomposed, since they
are polynomials, into biunique “irreducible eigenfunc-
tion pieces” obeying the boundary conditions. As a
bridge to physics, let x1 be space and x2 be time. We
now postulate the following integral expression for a
one-dimensional string Ψ = u1(x1)u2(x2):∫ [(

∂Ψ

∂x1

)2

−
(
∂Ψ

∂x2

)2
]
dx1dx2 ≡ 0 (4)

The eigenvalues λ1m are determined by the spatial
boundary conditions. For each eigenstate m, we can
use this integral expression constrained by the indi-
cial relation λ1m ≡ λ2m to iterate the eigenfunctions
u1m and u2m. A more general string in finitely many
space-like and time-like dimensions can likewise be

produced. Let u`mi(xi) and u`mj(xj) be eigenfunc-
tions with non-negative eigenvalues λ`mi and λ`mj re-
spectively. We define a “field” as a sum of eigenstates:

Ψm =
∑
`

Ψ`mi`,Ψ`m = C
∏
i

u`mi

∏
j

u`mj (5)

with the postulate: for every eigenstate m in
a compactified space the integral of the La-
grange density is identically null . Let ds rep-
resent

∏
i ridxi and dτ represent

∏
j rjdxj . Then for

all m,∫ ∑
`i

1
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−
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2
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]
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In this integral expression the P , Q, and R can be
functions of any of the xi and xj , thus of any Ψ`m as
well. This is a nonlinear sigma model . As seen
in the case of a one-dimensional string, these Ψm can
in principle be obtained by iterations constrained by
an indicial relation,

∑
`i λ`mi ≡

∑
`j λ`mj for all m.

We see that the postulate asserts a fundamental iden-
tity of the magnitudes of the two components of the
Lagrangian. A sui generis proof in T that these com-
ponents have only discrete values will now be shown.
Let expressions (7) and (8) both be represented by α,
since they are identical:∑

`mi

∫
1
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2
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]
dsdτ (7)

∑
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−Q`mjΨ
2
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]
dsdτ (8)

I. α(Ψ) is positive and closed to addition and to
the absolute value of subtraction, so it is either
continuous or discrete.

II. α(Ψ) ≡ 0↔ Ψ ≡ 0; otherwise, as Ψ is a function
of real variables, the range Ψ 6= 0 and α(Ψ) 6= 0,
thus α(Ψ) is not continuous.

III. Therefore α is discrete; α ≡ nκ, where n is any fi-
nite natural number and κ is some finite positive
unit. κ must, of course, be determined empiri-
cally.

With this result and without any additional physical
postulates, we can now obtain the Schrödinger equa-
tion from the nonlinear sigma model in one time-like
dimension and finitely many space-like dimensions.
Let ` = 1, 2, rt = P1mt = P2mt = 1, Q1mt = Q2mt =
0, τ = ωmt and we normalize Ψ as follows:

Ψm =
√

(C/2π)
∏
i

uim(xi)[u1m(τ) + i · u2m(τ)] (9)
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where i =
√
−1 with∫ ∑

m

∏
i

u2imds(u
2
1m + u22m) ≡ 1 (10)

then:

du1m
dτ

= −u2m and
du2m
dτ

= u1m (11)

or

du1m
dτ

= u2m and
du2m
dτ

= −u1m (12)

For the minimal non-vanishing field, α has its least
finite value κ. Thus,

(C/2π)
∑
m

∮ ∫ [(
du1m
dτ

)2

+

(
du2m
dτ

)2
]

∏
i

u2im(xi)dsdτ ≡ C ≡ κ (13)

Substituting the Planck constant h for κ, this can now
be put into the familiar Lagrangian form for the time
term in the Schrödinger equation,

h

2i

∑
m

∮ ∫ [
Ψ∗m

(
∂Ψm

∂t

)
−
(
∂Ψ∗m
∂t

)
Ψm

]
dsdt

(14)
Since the Schrödinger equation is well confirmed by
experiment, this can be considered an empirical de-
termination of κ. Also note that α ≡ nκ is actually
the Heisenberg Uncertainty Principle. Returning to

the statement that, for Ψ 6= 0, α(Ψ) 6= 0, we rec-
ognize that we have assumed that space-time exists,
i.e., that the upper and lower limits of at least one of
the integrals over the space-time dimensions are not
equal. Otherwise, if space-time does not exist, then,
for any Ψ, α(Ψ) = 0; accordingly, the theory provides
us with a necessary and sufficient condition: space-
time exists if and only if there exists a Ψ such that
α(Ψ) 6= 0. Space-time is therefore relational. More-
over, in this theory space-time is countable and fields
are locally homeomorphic with the real line R∗. This
is sufficient for its differential structure to fulfill the
strict requirements of Einstein-Weyl causality [3]. We
have also shown that:

• The Schrödinger equation is obtained in a con-
structible theory without reference to the statis-
tical interpretation of the wave function, which,
it can be argued, may be inferred from the equa-
tion itself and a requirement that quantum me-
chanics will reduce to its classical limit. [4].

• This suggests that quantum mechanics in
this relational space-time framework could be
considered conceptually cumulative with prior
physics. If so, it would resolve a long-standing
controversy.

In addition, though we do not have the opportunity
to discuss these points, we note that:

• There are inherently no singularities in the phys-
ical fields obtained in this theory.

• The solution to the QED divergence problem
posed by Dyson [5] is provided, since the actual
convergence or divergence of the essential per-
turbation series is undecidable in this theory.

• Wigner’s metaphysical question regarding the
apparent unreasonable effectiveness of mathe-
matics in physics [6] is directly answered, since
the foundations of mathematics and physics are
now linked.

Appendix: ZF - Subsets - Power Set +
Constructibility + Arithmetic

Extensionality. Two sets with just the same members
are equal. ∀x∀y (∀z (z ∈ x↔ z ∈ y)→ x = y) Pairs.

For every two sets, there is a set that contains just
them. ∀x∀y∃z(∀ww ∈ z ↔ w = x∨w = y) Union. For

every set of sets, there is a set with just all their mem-
bers. ∀x∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x)) Infinity.

There are infinite ordinals ω∗ (i.e., sets are transitive
and well-ordered by ∈-relation). ∃ω∗(O ∈ ω∗∧∀x(x ∈
ω∗ → x ∪ {x} ∈ ω∗)) Replacement. Replacing mem-

bers of a set one-for-one creates a set (i.e., “bijective”
replacement). Let φ(x, y) a formula in which x and y
are free,
∀z∀x ∈ z∀y(φ(x, y) ∧ ∀u ∈ z∀v(φ(u, v) → u =
x ↔ y = v)) → ∃r∀t(t ∈ r ↔ ∃s ∈ zφ(s, t))
Regularity. Every non-empty set has a minimal mem-

ber (i.e. “weak” regularity). ∀x(∃yy ∈ x → ∃y(y ∈
x∧∀z¬(z ∈ x∧ z ∈ y))) Constructibility. The subsets

of ω∗ are countably constructible. ∀ω∗∃S([ω∗, O] ∈
S ∧ ∀y∀z([y, z] ∈ S ∧ ∃my(my ∈ y ∧ ∀v¬(v ∈ y ∧ v ∈
my)) ↔ ∃ty∀u(u ∈ ty ↔ u ∈ y ∧ u 6= my) ∧ [ty ∪
my, z ∪ {z}] ∈ S)). The four formulae (a) to (d) be-

low are contained in ZF but must be adjoined to T as
axioms. Let x′ = xU{x}

(a) ∀x ∈ ω∗(x 6= O ↔ ∃y ∈ ω∗(y′ = x))

(b) ∀x∀y(x′ = y′ → x = y)

Let x and y be members of ω∗ and [x, y] and [[x, y], z]
represent ordered pairs.

(c) ∃A∀x ∈ ω∗∀y ∈ ω∗E!z ∈ ω∗([[O,O], O] ∈ A ∧
[[x, y], z] ∈ A → [[x, y′], z′] ∈ A ∧ [[x′, y], z′] ∈ A);
addition: x+ y = z

(d) ∃M∀x ∈ ω∗∀y ∈ ω∗E!z ∈ ω∗([[O,O], O] ∈ M ∧
[[x, y], z] ∈ M → [[x, y′], z + x] ∈ M ∧ [[x′, y], z +
y] ∈M); multiplication: x · y = z
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Define [a, b]r such that [a1, b]r + [a2, b]r ≡ [a1 +
a2, b]r and [a1, b1]r ≡ [a2, b2]r ↔ a1 · b2 ≡ a2 · b1. The
extended set of rationals Q∗ is the set of such pairs
for all a and b in ω∗.

Theorems

Using the axioms (a), (b) and axioms of regularity,
unions and bijective replacement one can show that
ω∗ is a set which contains the predecessor of every
member of itself, except for the null set. From ax-
iom (c), there is, for x fixed, a one-to-one relation be-

tween all y ∈ ω∗ and some z. A set gx(z) can thus be
created by the axiom of bijective replacement. Then
z /∈ gx(z) Y (z = x Y (z ∈ gx(z) ∧ z 6= x)). This is a
“trichotomy”. These theorems allow the members of
ω∗ to be considered natural numbers. Therefore, the
axioms of arithmetic are directly applicable. From
the axiom of constructibility, the set Z∗ such that
[O,Z∗] ∈ S maps to the real line R∗. Since Z∗ ∈ ω∗
by the axiom of infinity, the arithmetic axioms and
theorems are directly applicable to R∗ as well. The
metric between members y1 and y2 of the real line
(0, 1) is given by [|z1 − z2|, Z∗]r where [y, z] ∈ S.
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