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Abstract

Different reasoning systems have different strengths and weaknesses, and often it is useful to combine these systems to gain as
much as possible from their strengths and retain as little as possible from their weaknesses. Of particular interest is the integration
of first-order and higher-order techniques. First-order reasoning systems, on the one hand, have reached considerable strength in
some niches, but in many areas of mathematics they still cannot reliably solve relatively simple problems, for example, when
reasoning about sets, relations, or functions. Higher-order reasoning systems, on the other hand, can solve problems of this kind
automatically. But the complexity inherent in their calculi prevents them from solving a whole range of problems. However, while
many problems cannot be solved by any one system alone, they can be solved by a combination of these systems.

We present a general agent-based methodology for integrating different reasoning systems. It provides a generic integration
framework which facilitates the cooperation between diverse reasoners, but can also be refined to enable more efficient, specialist
integrations. We empirically evaluate its usefulness, effectiveness and efficiency by case studies involving the integration of first-
order and higher-order automated theorem provers, computer algebra systems, and model generators.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The last decade has seen the development of various reasoning systems which are specialised in specific problem
domains. Theorem proving contests, such as the annual CASC1 competition, have shown that these systems typically
perform well in particular niches but often do poorly in others. First-order provers, for instance, cannot be used to
prove higher-order problem formulations. Deduction systems in general are very weak in carrying out computations,
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whereas computer algebra systems are strong in algebraic computations (e.g., derivatives of functions) but weak at
finding logical arguments. Previous work, such as [24], tackled this problem by integrating specific reasoning systems,
but typically this integration has been hard-wired and also special purpose. Only rather few architectures have been
discussed so far that try to extend the application range and hence the generality of reasoning systems by a flexible
integration of different specialist systems. Some such related systems are further discussed in Section 5.

The aim of our work is to broaden the range of mechanisable mathematics by allowing a flexible cooperation
between specialist systems. Thus, we developed a framework for such integration of a variety of reasoning systems
by using an agent-oriented approach, and we present it in this paper. Some of our ideas and first implementations of
this framework were reported previously in [6,7,11]. An agent-architecture offers several benefits in developing such
a framework. From a software engineering point of view it provides a simple and flexible methodology for integrating
systems. Furthermore, it enables a flexible proof search where each single system—in form of a proactive software
agent—can focus on parts of the problem it is good at, without the need for specifying a priori a hierarchy of their
application.

In our framework we employ a centralised approach and focus on the construction of a single proof object. This
means that all agents pick up and investigate the central proof object that is given in higher-order natural deduction
style with additional facilities to abstract from the pure calculus layer [16]. If an agent determines that it is applicable
in the current proof context, then it carries out its task, for instance, by invoking a tactic or by calling the external
system it encapsulates. The agent is given a fixed amount of resources for this, and when these are consumed it comes
back and makes bids in terms of a modified proof object. Based on heuristic criteria, one bid is accepted and executed
by the central system while the remaining ones are stored for backtracking purposes. In this sense, we use our central
proof object for establishing global cooperation and communication. The benefit is that only translations into a single
proof representation language are required, which reduces the proof theoretical and logical issues to be addressed.
Furthermore, our central proof object uses a human-oriented natural deduction format which eases user interaction.
We discuss the agent-framework for generic integration of reasoning systems in more detail in Section 2.

Our current system, which implements the agent-framework just outlined, combines different reasoning compo-
nents such as specialised state-of-the-art higher-order and first-order theorem provers, model generators, and computer
algebra systems. It employs a classical natural deduction calculus and tactical theorem proving in the background to
bridge the gaps between different subproofs of the individual components, as well as to guarantee correctness of con-
structed proofs. In Section 3, we present some case studies by running examples of how theorems from a variety of
domains are tackled in our system.

While our generic framework for integrating a variety of systems is indeed very flexible and generic, a centralised
approach can lead to excessive communication between the agents. This is a weakness of our generic approach.
Hence, we studied in detail how some fine-tuning, which decentralises communication, can improve efficiency of
cooperation between the systems. In particular, in Section 4 we present this specialist integration for first-order and
higher-order theorem provers. The experiments that we carried out with this implementation show that decentralising
communication and using specialist integration for particular systems leads to a much higher overall efficiency and
power of the central system and enables it to solve problems that are still very hard for first-order automated theorem
provers.

2. Agent architecture for integrating reasoning systems

Here we describe our multi-agent framework for flexibly integrating any number of diverse reasoning systems. We
start in Section 2.1 with the generic architecture, which provides a simple mechanism for incorporating new reasoning
systems. The generality feature of the architecture is in some cases traded-off for less than optimal performance, and
we therefore present in Section 2.2 a refinement of the generic approach in order to optimise its performance.

The cooperation between the different systems of the framework is realised in the concurrent hierarchical black-
board architecture OANTS [9], in which different reasoning systems can pick up problems (or subproblems) from a
blackboard and contribute to the overall solution by solving problems or generating subproblems. OANTS was orig-
inally conceived to support interactive theorem proving but was later extended to a fully automated proving system
[10,36]. Its basic idea is to compose a central proof object by generating, in each proof situation, a ranked list of
bids of potentially applicable inference steps. In this process, all inference rules, such as calculus rules or tactics,
are uniformly viewed with respect to three sets: premises, conclusions, and additional parameters. The elements of
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these three sets are called arguments of the inference rule and they usually depend on each other. An inference rule
is applicable if at least some of its arguments can be instantiated with respect to the given proof context. The task of
the OANTS architecture is now to determine the applicability of inference rules by computing instantiations for their
arguments. These applicability checks are performed by separate processes, i.e. software agents which compute and
report bids.

2.1. A two-layered architecture

The architecture consists of two layers. On the lower layer, bids of possible instantiations of the arguments of
individual inference rules are computed. In particular, each inference rule is associated with its own blackboard and
several concurrent processes, at least one process for each argument of the inference rule. The role of every process is
to compute bids of possible instantiations for its designated argument of the inference rule, and to record these bids on
the blackboard for this rule. The computations are carried out with respect to the given proof context and by exploiting
bids already present on the rules’ blackboard, that is, argument instantiations computed by other processes working
for the same rule. On the upper layer, the bids from the lower layer that are applicable in the current proof state are
accumulated and heuristically ranked by another process. For instance, bids with closed (sub)goals are preferred over
partial results, and big steps in the search space are preferred over calculus level steps. The most promising bid on the
upper layer is then applied to the central proof object and the data on the blackboards is cleared for the next round of
computations.

OANTS employs resource-bounded reasoning to guide search.2 This enables the controlled integration (e.g., by
specifying time-outs) of full-fledged external reasoning systems such as automated theorem provers, computer algebra
systems, or model generators into the architecture. The use of the external systems is modelled by inference rules,
usually one for each system. Their corresponding computations are encapsulated in one of the independent processes
in the architecture. For example, an inference rule modelling the application of an ATP has its conclusion argument
set to be an open goal. A process can then place an open goal on the blackboard, where it is picked up by a process that
applies the prover to it. Any computed proof or partial proof from the external system is again written to the blackboard
from where it is subsequently inserted into the proof object when the inference rule is applied. The semantics of
the rules connecting to external reasoners is currently hand-coded. Further work includes to investigate whether an
ontology as suggested in [38] could be fruitfully employed.

The advantage of this setup is that it enables proof construction by a collaborative effort of diverse reasoning
systems. Moreover, the architecture provides a simple and general mechanism for integrating new reasoners in the
system. The integration is independent of all the other systems already integrated. Adding a new reasoning system to
the architecture requires only transforming the new system into an agent by wrapping a shell around it. This shell can
communicate with the blackboard by reading and writing subproblems to and from the blackboard, as well as writing
proofs back to the blackboard in a standardised format.

The disadvantage of such a generic architecture that employs centralised communication is that the cooperation
can be achieved only via the central proof object. This means that all partial results have to be translated back and
forth between the syntaxes of the integrated systems and the language of the proof object. Since there are many types
of integrated systems, the language of the proof object—a very rich higher-order language, together with a natural
deduction calculus—is expressive but also cumbersome. This leads not only to a large communication overhead, but
also means that complex proof objects have to be created (e.g., large clause sets need to be transformed into large
single formulae to represent them in the proof object; the support for this in OANTS to date is inefficient), even if the
reasoning of all systems involved is clause-based. Consequently, the cooperation between external systems is typically
rather inefficient [7]: the larger part of the proof effort may in some cases be spent on communication rather than on
proof search.

In summary, while central communication eases cooperation between any type of reasoner, certain systems could
communicate far more efficiently with each other using dedicated formalisms. To exploit this fact—and thus overcome
the communication bottleneck—we devised a new method for the cooperation between two integrated systems via a
single inference rule, which we describe in detail next.

2 OANTS also provides facilities to define and modify the processes at run-time, but we do not use these advanced features in the case studies
presented in this paper.
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2.2. Cooperation via a single inference rule

In the generic approach described above, the cooperation between systems is achieved at the upper layer of the
OANTS architecture, by modelling each system as a separate inference rule. A more refined approach, first presented
in [11], fosters cooperation by exploiting the lower layer of the OANTS blackboard architecture. This effectively
cuts out the need to communicate via the central proof object, and therefore offers the advantage of a more succinct
exchange of intermediate results between the systems involved, in a specialist language.

Direct bilateral integration of two reasoning systems is generally difficult if both systems do not share represen-
tation formalisms that are sufficiently similar. It also requires at least one of the systems involved to be open, such
that it can continuously incorporate results of another system during its own run. Finally, the effort of implementing
a dedicated inference rule for the communication of two particular types of reasoning systems is more involved than
simply integrating a system and its results into OANTS’s central architecture. It is therefore, necessary to carefully
consider if a bilateral integration actually promises a gain in reasoning power of the overall system—see Section 4 for
a detailed case study that empirically evaluates this specialist integration.

We realised the specialist approach discussed here by using a single inference rule to model the cooperation be-
tween the higher-order resolution prover LEO [8] and a first-order theorem prover in OANTS. The cooperation between
the provers is enabled by directly exchanging sets of clauses without translating them into single formulae and back.
The general idea is that LEO sends the subset of its clauses that do not contain any ‘real’ higher-order sub-terms (such
as a λ-abstraction or embedded equations) to a first-order theorem prover. We call clauses of this sort FO-like clauses.
In detail, the single inference rule needs four arguments to be applicable: (1) an open proof goal, (2) a partial LEO

proof, (3) a set of FO-like clauses in the partial proof, (4) a first-order refutation proof for the set of FO-like clauses.
Each of these arguments is computed, that is, its instantiation is found, by an independent process. The first process

finds open goals in the central proof object and posts them on the blackboard associated with the new rule. The second
process starts an instance of the LEO theorem prover for each new open goal on the blackboard. Each LEO instance
maintains its own set of FO-like clauses. The third process monitors these clauses, and as soon as it detects a change in
this set, that is, if new FO-like clauses are added by LEO, it writes the entire set of clauses to the blackboard. Once FO-
like clauses are posted, the fourth process first translates each of the clauses directly into a corresponding one in the
format of the first-order theorem prover, and then starts the first-order theorem prover on them. Note that translating
FO-like clauses directly is far more efficient than translating them first into single, fully quantified formulae in the
central higher-order proof object. As soon as either LEO or the first-order prover finds a refutation, the second process
reports LEO’s proof or partial proof to the blackboard, that is, it instantiates argument (2). Once all four arguments of
our inference rule are instantiated, the rule can be applied and the open proof goal can be closed in the central proof
object. That is, the open goal can be proved by the cooperation between LEO and a first-order theorem prover. When
computing applicability of the inference rule, the second and the fourth process concurrently spawn processes running
LEO or a first-order prover on a different set of FO-like clauses. Thus, when actually applying the inference rule, all
these instances of provers working on the same open subgoal are stopped.

The cooperation can be carried out between any first-order theorem prover and LEO instantiated with any strategy,
thus resulting in different instantiations of the inference rule discussed above. Several first-order provers are integrated
in OANTS and could be used, but in the case study that evaluates this approach (see Section 4) we used concretely
BLIKSEM [17] and VAMPIRE [32]. In most cases, more than one process running a first-order ATP was necessary.
This is because the subsets of FO-like clauses generated by LEO in its first reasoning loops are usually still consistent
and they become inconsistent only after several reasoning rounds in which new FO-like clauses are generated. Each
time the subset of FO-like clauses in LEO’s search space changes, a new process running a first-order ATP is started.
In contrast to the many processes running first-order ATPs only one process running LEO is started. Crucial to the
success of the integration was also the possibility of retrieving intermediate results from LEO that are sufficiently
informative for the first-order prover. Since LEO’s standard calculus intrinsically avoids primitive equality and instead
provides a rule that replaces occurrences of primitive equality with their corresponding Leibniz definitions, which
are higher-order, we had to forgo this optimisation and add all the clauses with primitive equality to the intermediate
results. See [11] for more details on this aspect of the integration.

Our approach to the cooperation between a higher-order and a first-order theorem prover has many advantages.
The main one is that the communication is restricted to the transmission of clauses, and thus it avoids intermediate
translation into the language of the central proof object. This significantly reduces the communication overhead and
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makes effective proving of more involved theorems feasible. In fact, many theorems that would be difficult to prove
or even not provable at all in reasonable time due to communication overhead in the generic architecture that uses a
centralised communication, are now provable with this specialist architecture that decentralises communication—see
the results of the case study in Section 4.3. A disadvantage of this approach is that we cannot easily translate and
integrate the two proof objects produced by LEO and BLIKSEM, or LEO and VAMPIRE into the central proof object
maintained by OANTS, as is possible when applying only one prover per open subgoal. The repercussions will be
discussed in more detail in Section 4.2.

In the following two sections we will demonstrate the effectiveness of both integration approaches—the generic in-
tegration of arbitrary reasoning systems on the top layer of OANTS, and the specialist integration of a higher-order and
a first-order resolution prover on the lower layer of OANTS—with example applications from diverse mathematical
domains.

3. Generic integration of reasoning systems

In this section we present several application examples of the generic integration architecture as presented in
Section 2.1. The examples demonstrate the ease of integration of systems in our architecture, the power of such
cooperative architecture, and the diversity of examples that the combined systems can tackle.

In particular, we demonstrate the complementary interplay of theorem provers and model generators to decide
validity of conditional and unconditional set-equalities as well as set-inequalities (Section 3.1.1). Our previous case
studies further show the cooperation between an automated theorem prover and a computer algebra system on prob-
lems in sets over naturals (Section 3.1.2), and the collaboration of a higher-order and a first-order prover on group
theory examples (Section 3.1.3). We then consider theoretical properties such as soundness and completeness for each
case study (Section 3.2), and analyse their results (Section 3.3) to show that our novel cooperative solution achieves a
much higher reliability and coverage than the standard single reasoning system approach.

3.1. Test problems

The test problems we chose for our three case studies are diverse and demonstrate the breadth and power of our
cooperative reasoning approach. Pure set equalities have been previously investigated in [7]. Here in Section 3.1.1,
we extend the case study to set inequalities, as well as set equalities and inequalities under additional conditions.
The test problems in Section 3.1.2 on sets over naturals have in part previously appeared in [7]. The test problems in
Section 3.1.3 in group theory have in part previously appeared in [36].

3.1.1. Conditional and unconditional set-equalities and set-inequalities
The examples in this section are concerned with checking the validity or invalidity of statements about set relations.

This case study demonstrates the cooperation between higher-order ATP, first-order ATP and a model generator.
The task at hand is to construct either a proof or a counterexample. Both are handled in a similar fashion by our
system. First, simple natural deduction agents reduce the set equalities to a propositional logic statement. The resulting
statements are then picked up by a propositional logic agent employing the theorem prover VAMPIRE and a counter-
example agent using the model generator PARADOX. The logic statement is then either proved or disproved. Thus,
valid and invalid statements are tackled analogously in all but the last step.

The test problems we consider are universally quantified statements involving equality, inequality, or the sub-
set relations between sets constructed with the simple set operations ∩,∪,\ that represent intersection, union, and
set-difference, respectively. Moreover, to widen the coverage to extreme ends of the spectrum of test problems, we
consider additional conditions on the relationships between the sets involved. In particular, we explicitly express
uniqueness or disjointness of particular sets.

As concrete examples of two set equalities whose validity/invalidity is to be decided, consider the proof or refuta-
tion of the following simple, unconditional statements:

(1)∀x, y, z (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z)

(2)∀x, y, z (x ∪ y) ∩ z = (x ∪ z) ∩ (y ∪ z)
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Both problems are tackled similarly by the system. First, all the universally quantified variables are eliminated with
the appropriate natural deduction rules. In the case of (1) this yields

(a ∪ b) ∩ c = (a ∩ c) ∪ (b ∩ c)

as new open subgoal. Then set extensionality gives us

∀u u ∈ (a ∪ b) ∩ c ⇔ u ∈ ((a ∩ c) ∪ (b ∩ c))

Further elimination of universally quantified variables and subsequent definition expansions of the operations ∪,∩
and ∈, with a ∪ b := λz (z ∈ a) ∨ (z ∈ b), a ∩ b := λz (z ∈ a) ∧ (z ∈ b), and u ∈ a := a(u) reduces that goal finally to

(a(d) ∨ b(d)) ∧ c(d) = (a(d) ∧ c(d)) ∨ (b(d) ∧ c(d))

which contains no variables and which is trivial to prove for any propositional logic prover. In case (2) we analogously
derive

(a(d) ∨ b(d)) ∧ c(d) = (a(d) ∨ c(d)) ∧ (b(d) ∨ c(d))

but now there exists a counterexample of the form a(d), b(d), ¬c(d), which represents the set of all d such that d ∈ a,
d ∈ b, but d /∈ c. This counterexample can be easily constructed by a model generator.

3.1.2. Sets over naturals
The test problems in this case study consider sets over naturals, and demonstrate the cooperation between theorem

provers and computer algebra systems. The problems themselves are mathematically trivial, but require a combination
of deduction and computation to solve them. While the reasoning itself is relatively shallow, the problems can gener-
ally not be solved by a theorem prover alone as the contained functions need to be treated with symbolic or numerical
computation that is out of reach of provers. In our architecture the problems are tackled by a collaboration of the
higher-order theorem prover LEO, the first-order theorem prover OTTER, and the computer algebra system MAPLE.

A concrete example of these test problems is the following equation: {x | x > gcd(10,8) ∧ x < lcm(10,8)} = {x |
x < 40} ∩ {x | x > 2}. In order to tackle it, it is necessary to first simplify the numerical functions contained, that is
gcd and lcm, and then rewrite the set representations on either side of the equality. The first step is carried out by a
simplification agent which links the computer algebra system MAPLE to the core system. As an application condition,
this agent checks whether the current subgoal contains certain simplifiable expressions. If so, it simplifies the subgoal
by sending the simplifiable sub-terms (e.g., x > gcd(10,8)) to MAPLE and replaces them with the corresponding
simplified terms (e.g., x > 2). Hence, the new subgoal suggested by the simplification agent is, e.g.: (λx x > 2 ∧ x <

40) = (λx x < 40) ∩ (λx x > 2). Since no other agent comes up with a better alternative, this suggestion is selected
and executed. Subsequently, the LEO agent successfully attacks the new goal after expanding the definition of ∩. This
particular problem can, after MAPLE’s contribution, be proved by LEO alone. In other cases MAPLE’s contribution
may lead to a problem which can be solved only by a further collaboration between LEO and a first-order ATP.

3.1.3. Group theory and algebra
The test problems in this case study involve theorems from group theory and algebra, and are mainly about the

equivalence of definitions and uniqueness statements. This case study demonstrates the cooperation between higher-
order and first-order ATPs. Since the problems contain some rather elaborate higher-order constructions, they cannot
be tackled by a first-order theorem prover alone. Instead, they are solved by a goal directed higher-order natural
deduction proof search in cooperation with a first-order automated theorem prover.

The group theory and algebra examples that we examined are rather easy from a mathematical viewpoint, however,
can become non-trivial when painstakingly formalised. An example are proofs in which particular elements of one
mathematical structure have to be identified by their properties and transferred to their appropriate counterparts in an
enriched structure. The equivalence statement:

(∃ ◦ Group(G,◦)) ⇔ (∃ � Monoid(M,�) ∧ Inverses(M,�,Unit(M,�)))

where the unit element of the monoid has to be identified with the appropriate element of the group, is in this category.
Here, Group and Monoid refer to a definition of a group and a monoid, respectively. Inverses(M,�,Unit(M,�)) is
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a predicate stating that every element of M has an inverse element with respect to the operation � and the identity
Unit(M,�). Unit(M,�) itself is a way to refer to that unique element of M that has the identity property.

In higher-order logic this can be formalised most elegantly using the description operator ι (cf. [1] for definition in
higher-order logics), by assigning to the element in the group the unique element in the monoid that has exactly the
same properties. In the context of our examples, we employed a description that encodes concepts like the (unique)
unit element of a group by a single term that locally embodies the particular properties of the encoded concept itself.
If any property of the unit element is required in a proof, then the description operator has to be unfolded (by applying
a tactic in the system) and a uniqueness subproof has to be carried out.

The idea of the proofs is to divide the problems into smaller chunks that can be solved by automated theorem
provers, and if necessary, to deal with formulae involving description. The ND search procedure implemented in
OANTS has the task to simplify in turn the given formulae by expanding definitions and applying ND inferences.
After each proof step the provers try to solve the introduced subproblems. If they all fail within the given resources
(typically time limit), the system proceeds with the alternative ND inferences and subsequently the provers try to
tackle the new subproblems introduced by them.

When a point is reached during the proof where neither applicable rules nor solutions from the provers are available,
but the description operator still occurs in the considered problem, two theorems are applied to eliminate description.
Description in goals is eliminated with the theorem ∀Qβo ∀Pβo [[∃!xβ P (x)] ∧ [∀zβ P (z) ⇒ Q(z)]] ⇒ [QιP ]. Since
the reverse direction of the above theorem does not necessarily hold (as with QιP we cannot assume that P actually
uniquely describes an element), we use the theorem ∀Qβo ∀Pβo [QιP ] ⇒ [[∃xβ P (x) ⇒ ∀yβ P (y) ⇒ (x = y)] ⇒
[∀zβ P (z) ⇒ Q(z)]] to eliminate occurrences of description in forward reasoning direction. The results of description
elimination are generally very large formulae, which can then again be tackled with the ND rules and the theorem
provers.

3.2. Theoretical considerations

For the integration of multiple reasoning systems to construct a single, coherent proof, it is particularly crucial to
consider the soundness of such an integration. In the case of combining different theorem provers (like in the case
study in group theory examples in Section 3.1.3), this is mainly a question of compatibility and connectability of the
respective calculi. We will shed more light on soundness and completeness considerations when presenting specialist
integration of first-order and higher-order reasoners in Section 4.2. However, in the case of integrating more general
computations into the reasoning process, for instance, as in our case with a computer algebra system or a model
generator, soundness issues have to be considered case by case.

The use of a counterexample generator as presented in Section 3.1.1 is sound if and only if the full problem is given
to the counterexample generator. Note that it is not sufficient to give to the counterexample generator only some of
the axioms and not others, since this may transform an inconsistent set into a consistent one. In general the original
problem is initially transformed into an equivalent problem that is given in parallel to a first-order theorem prover
and a first-order model generator. The original problem is proved if the first-order theorem prover finds a refutation,
and falsified if the first-order model generator finds a counterexample. Since the original transformation preserves
(un-)satisfiability the approach is sound.

Soundness of the solutions for the problems in Section 3.1.2 depends crucially on soundness of the computations
by the computer algebra system. This is not guaranteed, as MAPLE, like most other computer algebra systems, is not
provably correct, and also does not provide an explicit justification for its computations. Consequently, correctness has
to be ensured explicitly by certifying the computations after the proof has been found. This is achieved by constructing
justifications on the calculus level—see [35] for details.

We cannot guarantee completeness neither in integrating a model generator nor a computer algebra system. A finite
model generator is by its very nature incomplete. Similarly, a computer algebra system only provides a limited library
of algorithms and generally has some limitations with respect to the size of its integer computations.

3.3. Results

3.3.1. Conditional and unconditional set-equalities and set-inequalities
We carried out a case study with an automatically and randomly generated test-bed of examples consisting of set

statements involving equality, inequality and subset as relations, and ∩,∪,\ as functions that combine a maximum



C. Benzmüller et al. / Journal of Applied Logic 6 (2008) 318–342 325
Table 1
Summary of the results of the experiments with set expressions

of 6 universally quantified variables up to a nesting depth of 6. For our experiments we generated 100 basic (i.e.,
unconditional) statements. All 100 statements are listed in Tables A.1 and A.2 in Appendix A. Given these 100
statements we then added conditions on the relationship between the universally quantified sets. In detail, we devised
three types of formulae that can be viewed as the extreme positions of these conditions, by taking the set statement

(1) without assumptions, or unconditional, for example:

∀x1, x2, x3 (x1 ∪ x2) = (x1 ∩ (x2 ∪ x3))

(2) under all different, that is, the uniqueness assumption, for example:

∀x1, x2, x3 [(x1 = x2) ∧ (x2 = x3) ∧ (x1 = x3)] → [(x1 ∪ x2) = (x1 ∩ (x2 ∪ x3))]
(3) under pairwise disjoint, or disjointness, assumption, for example:

∀x1, x2, x3 [(x1 ∩ x2 = ∅) ∧ (x2 ∩ x3 = ∅) ∧ (x1 ∩ x3 = ∅)] → [(x1 ∪ x2) = (x1 ∩ (x2 ∪ x3))]

Note that there are formulae in the first class, such as ∀x1, x2 (x1\x2) ∪ (x2\x1) = ∅, which are non-theorems but are
theorems in the second; or non-theorems in the first class such as ∀x1, x2 x1\x2 = x1, but theorems in the third.

Thus we carried out three sets of experiments, each with 100 problems. Each problem was then attempted to be
proved by the theorem prover VAMPIRE, the model generator PARADOX, and OANTS separately within a two minutes
time limit. If a system could not solve the problem within the given time, it was classified as a failed attempt. However,
we distinguish between two types of failure, depending on the validity of the problem: VAMPIRE fails if it cannot prove
a valid statement, whereas it is obviously not expected to solve an invalid statement. Conversely, PARADOX fails if it
cannot find a model for an invalid statement. OANTS, on the other hand, is expected to solve all problems, thus there
is only one type of failure possible.

A summary of the results is given in Table 1. It presents the number of valid and invalid set statements in each
of the three experiments, followed by the number of problems VAMPIRE, PARADOX, and OANTS could or could not
solve, respectively. Observe that for VAMPIRE and PARADOX figures for the two types of failure are given, separated
by a dashed bar, where the first figure indicates the number of problems the system was indeed expected to solve. Each
experiment is further broken down in the number of statements involving set equality, subset relation, and inequality.
The full results for all three experiments are listed in Tables A.3, A.4, and A.5 in Appendix A.

The results in Table 1 present a mixed picture. In the case of unconditional statements the results are straightfor-
ward. PARADOX easily finds models for all invalid statements and VAMPIRE proves all valid statements except for
the two involving equality. In the experiments with uniqueness condition, however, both PARADOX and VAMPIRE

have considerably more problems. VAMPIRE cannot prove any statements with equality or subset relation, and only
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proves 3 out of 6 of the inequality statements. Similarly, PARADOX fails to find models for the majority of statements
with uniqueness condition, in particular it cannot find models for any of the invalid inequality statements. For state-
ments with disjointness condition, PARADOX does better than VAMPIRE as it finds models for all invalid statements,
whereas VAMPIRE can only prove a fraction of the valid statements.

In contrast, OANTS can solve all problems, regardless of precondition, and can also decide on their validity and
invalidity, as it integrates both theorem proving and model generation. For the unconditional statements this is not
as impressive, since using both, PARADOX and VAMPIRE, without integration one after another on all problems, is
almost as powerful as OANTS. In fact, the timings in Table A.3 reveal that OANTS is slower due to communication
overheads. On the other hand, for the conditional problems, OANTS is the only reliable way of distinguishing valid and
invalid statements for all considered problems. Thus, the combined systems in OANTS have a considerably broader
coverage of the problem domain than the single reasoning systems alone.

3.3.2. Sets over naturals
We experimented with 50 problems of sets over naturals. They all involved some element of computation, which

was mainly concerned with natural number arithmetic, but also contained simple number theoretic functions such
as gcd, lcm, and absolute value function. All of the problems could successfully be solved by the combination of
first-order and higher-order reasoning and computer algebra simplification. As current automated theorem provers are
comparatively weak in integer arithmetic and the formalisation of functions like lcm or gcd is very involved, they are
likely to be outperformed by a combined system like OANTS, and hence, we did not carry out a comparison of OANTS

with any specific automated theorem proving system.

3.3.3. Group theory and algebra
In our case study on group theory and algebra problems we have successfully experimented with 20 examples of

the described type, of which we could solve 11 automatically. A direct comparison with first-order provers alone is
superfluous, as in a purely first-order formulation quantified operations would have to be pre-instantiated appropri-
ately. This would, however, defeat the purpose of showing equivalence of definitions that define different operations
on a set.

There is still quite a number of problems which, while considered very easy for humans, cannot be solved au-
tomatically. As a simple example of a problem that could not be solved, consider proving the equivalence between
two different definitions of a group. One definition is the standard one, that is, a group is a set G with an associative
operation ◦, such that there exists a neutral element for ◦ and each element has an inverse with respect to that neutral
element. The alternative, equivalent definition axiomatises a group as a set G with an operation /, such that for all
a, b, c ∈ G we have (i) a/a = b/b, (ii) a/(b/b) = a, (iii) (a/a)/(b/c) = c/b, and (iv) (a/c)/(b/c) = a/b. The main
difficulty in the proof of this equivalence is to find the right reformulations between the two operations ◦ and /, since
they cannot be simply equated. While in most of the other examples, higher-order unification can actually find the
right equation between the operations in question, the complexity of the reformulation needed in this example would
require a primitive substitution mechanism [3] that can handle the description operator. However, this is currently
beyond automation.

3.3.4. Summary of results
Our integration approach has proved successful in different ways. Firstly, it provides a flexible means to integrate

heterogeneous systems, especially those that are designed with diverse and even opposite functionality. The integrated
system can solve tasks such as deciding the validity or invalidity of logical statements that can normally be done only
by using several separate systems, or they cannot be proved at all with a single specialist system. Secondly, OANTS’
range and coverage of solvable problems is far greater than that of any individual system alone. In particular, OANTS

can formulate problems with the expressive power of a higher-order language, and is able to simplify problems in a
goal-directed way either by using its own built-in calculus rules or by exploiting the computational power of other
integrated systems (such as computer algebra) before handing them to dedicated first-order systems. And hence,
thirdly, OANTS proves theorems in a significantly more reliable way than the individual systems.

While the approach described in this section is generic and allows to integrate several systems in a consistent and
easy way, it leads to a computational overhead which in some cases makes proof search prohibitively expensive. In
particular, experiments on integrating higher-order with first-order reasoners have shown that some problems quickly
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reach sizes that make their translation via the OANTS central formalism computationally infeasible. This suggested a
much tighter integration between component systems that cuts out overhead. In particular, it has led to the development
of the specialist integration of reasoning systems for higher-order and first-order reasoners, which we describe and
evaluate in the next section.

4. Specialist integration of reasoning systems

We now carry out a case study in which we empirically evaluate the power and efficiency of the specialist integra-
tion of reasoning systems described in Section 2.2. We are particularly interested in the higher-order/first-order ATP
cooperation. Some of the results of this case study were previously reported in [11].

Existing higher-order ATPs generally exhibit shortcomings in efficiently reasoning with first-order problems for
several reasons. Unlike in the case of first-order provers, for which sophisticated calculi and strategies, as well as
advanced implementation techniques, such as term indexing [34], have been developed, fully mechanisable higher-
order calculi are still at a comparably early stage of development. Some problems are much harder in higher-order, for
instance, unification is undecidable, strong constraining term- and literal-orderings are not available, extensionality
reasoning and set variable instantiation have to be addressed. Nevertheless, for some mathematical problem domains,
such as naive set theory, for instance, automated higher-order reasoning performs very well. Our motivation therefore
is to combine the best of the two approaches in a specialist integration.

4.1. Test problems

We motivate the need for linking higher-order and first-order ATPs with some examples from Table 2. It contains
a range of challenging problems taken from the TPTP [37], against which we will evaluate our system in Section 4.3.
The selection is inspired by the one given in [21] but contains some additional problems.3 The problems are given by
the identifiers used in the SET domain of the TPTP-v3.0.1, and are formalised in a variant of Church’s simply typed
λ-calculus with prefix polymorphism. In classical type theory, terms and all their sub-terms are typed. Polymorphism
allows the introduction of type variables such that statements can be made for all types. For instance, in problem
SET014 + 4 the universally quantified variable Xoα denotes a mapping from objects of type α to objects of type o. We
use Church’s notation oα, which stands for the functional type α → o. The reader is referred to [2] for a more detailed
introduction. In the remainder, o will denote the type of truth values, and small Greek letters will denote arbitrary
types. Thus, Xoα (resp. its η-longform λyα Xy) is actually a characteristic function denoting the set of elements
of type α, for which the predicate associated with X holds. As further notational convention, we use capital letter
variables to denote sets, functions, or relations, while lower case letters denote individuals. Types are usually only
given in the first occurrence of a variable and omitted if inferable from the context.

The test problems in Table 2 employ defined concepts that are specified in a knowledge base of hierarchical theo-
ries that LEO has access to. All concepts necessary for defining our problems in Table 2 are given in Table 3. Concepts
are defined in terms of λ-expressions and they may contain other, already specified concepts. For presentation pur-
poses, we use customary mathematical symbols ∪,∩, etc., for some concepts like union, intersection, etc., and we
also use infix notation. For instance, the definition of union on sets can be easily read in its more common mathe-
matical representation A ∪ B := {x | x ∈ A ∨ x ∈ B}. Before proving a problem, LEO always expands—recursively,
if necessary—all occurring concepts. This straightforward expansion to first principles is realised by an automated
preprocess in our current approach.

We present different example problems which demonstrate the main features of our specialist integration approach.
We first discuss example SET171 + 3 to contrast our formalisation to a standard first-order one.

SET171+3 After recursively expanding the input problem, that is, completely reducing it to first principles, LEO turns
it into a negated unit clause. Since this initial clause is not in normal form, LEO first normalises it with explicit clause
normalisation rules to reach some proper initial clauses. In our case, this normalisation process leads to the following
unit clause consisting of a (syntactically not solvable) unification constraint (here Boα,Coα,Doα are Skolem constants

3 We omitted problem SET108 + 1 used in [21] as it addresses the universal class and can therefore not be formalised in type theory in the same
concise way as the other examples.
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Table 2
Test problems from TPTP for the evaluation of OANTS

SET Problem formalisation

014 + 4 ∀Xoα,Yoα,Aoα [[X ⊆ A ∧ Y ⊆ A] ⇒ (X ∪ Y ) ⊆ A]
017 + 1 ∀xα, yα, zα [UnOrderedPair(x, y) = UnOrderedPair(x, z) ⇒ y = z]
066 + 1 ∀xα, yα [UnOrderedPair(x, y) = UnOrderedPair(y, z)]
067 + 1 ∀xα, yα [UnOrderedPair(x, x) ⊆ UnOrderedPair(x, y)]
076 + 1 ∀xα, yα ∀Zoα x ∈ Z ∧ y ∈ Z ⇒ UnOrderedPair(x, y) ⊆ Z

086 + 1 ∀xα ∃yα [y ∈ Singleton(x)]
096 + 1 ∀Xoα,yα [X ⊆ Singleton(y) ⇒ [X = ∅ ∨ X = Singleton(y)]]
143 + 3 ∀Xoα,Yoα,Zoα [(X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z)]
171 + 3 ∀Xoα,Yoα,Zoα [X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)]
580 + 3 ∀Xoα,Yoα,uα [u ∈ ExclUnion(X,Y ) ⇔ [u ∈ X ⇔ u /∈ Y ]]
601 + 3 ∀ Xoα,Yoα,Zoα[(X ∩ Y ) ∪ ((Y ∩ Z) ∪ (Z ∩ X)) = (X ∪ Y ) ∩ ((Y ∪ Z) ∩ (Z ∪ X))]
606 + 3 ∀Xoα,Yoα [X \ (X ∩ Y ) = X \ Y ]
607 + 3 ∀Xoα,Yoα [X ∪ (Y \ X) = X ∪ Y ]
609 + 3 ∀Xoα,Yoα,Zoα [X \ (Y \ Z) = (X \ Y ) ∪ (X ∩ Z)]
611 + 3 ∀Xoα,Yoα [X ∩ Y = ∅ ⇔ X \ Y = X]
612 + 3 ∀Xoα,Yoα,Zoα [X \ (Y ∪ Z) = (X \ Y ) ∩ (X \ Z)]
614 + 3 ∀Xoα,Yoα,Zoα [(X \ Y ) \ Z = X \ (Y ∪ Z)]
615 + 3 ∀Xoα,Yoα,Zoα [(X ∪ Y ) \ Z = (X \ Z) ∪ (Y \ Z)]
623 + 3 ∀Xoα,Yoα,Zoα [ExclUnion(ExclUnion(X,Y ),Z) = ExclUnion(X,ExclUnion(Y,Z))]
624 + 3 ∀Xoα,Yoα,Zoα [Meets(X, (Y ∪ Z)) ⇔ [Meets(X,Y ) ∨ Meets(X,Z)]]
630 + 3 ∀Xoα,Yoα [Misses(X ∩ Y,ExclUnion(X,Y ))]
640 + 3 ∀Roβα,Qoβα [Subrel(R,Q) ⇒ Subrel(R, (λuα �) × (λvβ �))]
646 + 3 ∀xα, yβ [Subrel(Pair(x, y), (λuα �) × (λvβ �))]
647 + 3 ∀Roβα,Xoα [(RDom(R) ⊆ X) ⇒ Subrel(R,X × RCodom(R))]
648 + 3 ∀Roβα,Yoβ [(RCodom(R) ⊆ Y ) ⇒ Subrel(R,RDom(R) × Y )]
649 + 3 ∀Roβα,Xoα,Yoβ [[RDom(R) ⊆ X ∧ RCodom(R) ⊆ Y ] ⇒ Subrel(R,X × Y )]
651 + 3 ∀Roβα [RDom(R) ⊆ Aoα ⇒ Subrel(R,A × (λuβ �))]
657 + 3 ∀Roβα [Field(R) ⊆ ((λuα �) ∪ (λvβ �))]
669 + 3 ∀Roαα [Subrel(Id(λuα �),R) ⇒ [(λuα �) ⊆ RDom(R) ∧ (λuα �) = RCodom(R)]]
670 + 3 ∀Zoα,Roβα,XoαYoβ [IsRelOn(R,X,Y ) ⇒ IsRelOn(RestrictRDom(R,Z),Z,Y )]
671 + 3 ∀Zoα,Roβα,Xoα,Yoβ [[IsRelOn(R,X,Y ) ∧ X ⊆ Z] ⇒ RestrictRDom(R,Z) = R]
672 + 3 ∀Zoβ,Roβα,XoαYoβ [IsRelOn(R,X,Y ) ⇒ IsRelOn(RestrictRCodom(R,Z),X,Z)]
673 + 3 ∀Zoβ,Roβα,Xoα,Yoβ [[IsRelOn(R,X,Y ) ∧ Y ⊆ Z] ⇒ RestrictRCodom(R,Z) = R]
680 + 3 ∀Roβα,Xoα,Yoβ [IsRelOn(R,X,Y ) ⇒ [∀uα u ∈ X ⇒ [u ∈ RDom(R) ⇔ ∃vβ v ∈ Y ∧ R(u,v)]]]
683 + 3 ∀Roβα,Xoα,Yoβ [IsRelOn(R,X,Y ) ⇒ [∀vβ v ∈ Y ⇒ [v ∈ RCodom(R) ⇒ ∃uα u ∈ X ∧ u ∈ RDom(R)]]]
684 + 3 ∀Poβα,Roγβ , xα, zγ [RelComp(P,R)xz ⇔ ∃yβ Pxy ∧ Ryz]
686 + 3 ∀Zoα,Roγβ , xα [x ∈ InverseImageR(R,Z) ⇔ ∃yα Rxy ∧ x ∈ Z]
716 + 4 ∀Fβα,Gγβ [[Inj(F ) ∧ Inj(G)] ⇒ Inj(G ◦ F)]
724 + 4 ∀Fβα,Gγβ,Hγβ [[F ◦ G = F ◦ H ∧ Surj(F )] ⇒ G = H ]
741 + 4 ∀Fβα,Gγβ,Hαγ [[Inj((F ◦ G) ◦ H) ∧ Surj((G ◦ H) ◦ F) ∧ Surj((H ◦ F) ◦ G)] ⇒ Bij(H)]
747 + 4 ∀Fβα,Gγβ,�1

oαα,�2
oββ ,�3

oγ γ [[IncreasingF(F,�1,�2) ∧ DecreasingF(G,�2,�3)] ⇒ DecreasingF(F ◦ G,�1,�3)]
752 + 4 ∀Xoα,Yoα,Fβα [ImageF(F,X ∪ Y ) = ImageF(F,X) ∪ ImageF(F,Y )]
753 + 4 ∀Xoα,Yoα,Fβα [ImageF(F,X ∩ Y ) ⊆ ImageF(F,X) ∩ ImageF(F,Y )]
764 + 4 ∀Fβα [InverseImageF(F,∅) = ∅]
770 + 4

∀Roβα,Qoβα [[EquivRel(R) ∧ EquivRel(Q)] ⇒
[EquivClasses(R) = EquivClasses(Q) ∨ Disjoint(EquivClasses(R),EquivClasses(Q))]]

and Bx is obtained from expansion of x ∈ B):

[(λxα Bx ∨ (Cx ∧ Dx)) =? (λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]
Note that negated primitive equations are generally automatically converted by LEO into unification constraints.

This is why [(λxα Bx∨(Cx∧Dx)) =? (λxα (Bx∨Cx)∧(Bx∨Dx))] is generated, and not [(λxα Bx∨(Cx∧Dx)) =
(λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]F . Observe, that we write [.]T and [.]F for positive and negative literals, respectively.
LEO then applies its goal directed functional and Boolean extensionality rules which replace this unification constraint
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Table 3
Defined concepts occurring in test problems from Table 2

Defined notions in theory typed set

_∈_ := λxα,Aoα [Ax]
∅ := [λxα ⊥]

_⊆_ := λAoα,Boα [∀xα x ∈ A ⇒ x ∈ B]
_∪_ := λAoα,Boα [λxα x ∈ A ∨ x ∈ B]
_∩_ := λAoα,Boα [λxα x ∈ A ∧ x ∈ B]

_ := λAoα [λxα x /∈ A]
_\_ := λAoα,Boα [λxα x ∈ A ∧ x /∈ B]

ExclUnion(_,_) := λAoα,Boα [(A \ B) ∪ (B \ A)]
Disjoint(_,_) := λAoα,Boα [A ∩ B = ∅]

Meets(_,_) := λAoα,Boα [∃xα x ∈ A ∧ x ∈ B]
Misses(_,_) := λAoα,Boα [¬∃xα x ∈ A ∧ x ∈ B]

Defined notions in theory relation

UnOrderedPair(_,_) := λxα, yα [λuα u = x ∨ u = y]
Singleton(_) := λxα [λuα u = x]

Pair(_,_) := λxα, yβ [λuα, vβ u = x ∧ v = y]
_×_ := λAoα,Boβ [λuα, vβ u ∈ A ∧ v ∈ B]

RDom(_) := λRoβα [λxα ∃yβ Rxy]
RCodom(_) := λRoβα [λyβ ∃xα Rxy]
Subrel(_,_) := λRoβα,Qoβα [∀xα ∀yα Rxy ⇒ Qxy]

Id(_) := λAoα [λxα, yα x ∈ A ∧ x = y]
Field(_) := λRoβα [RDom(B) ∪ RCodom(R)]

IsRelOn(_,_,_) := λRoβα,Aoα λBoβ [∀xα, yβ Rxy ⇒ (x ∈ A ∧ x ∈ B)]
RestrictRCodom(_,_) := λRoβα,Aoα [λxα, yβ x ∈ A ∧ Rxy]

RelComp(_,_) := λRoβα,Qoγβ [λxα, zγ ∃yβ Rxy ∧ Ryz]
InverseImageR(_,_) := λRoβα,Boβ [λxα ∃yβ y ∈ B ∧ Rxy]

Reflexive(_) := λRoβα [∀xα Rxx]
Symmetric(_) := λRoβα [∀xα ∀yα Rxy ⇒ Ryx]
Transitive(_) := λRoβα [∀xα ∀yα ∀zα Rxy ∧ Ryz ⇒ Rxz]
EquivRel(_) := λRoβα [Reflexive(R) ∧ Symmetric(R) ∧ Transitive(R)]

EquivClasses(_) := λRoαα [λAoα ∃uα u ∈ A ∧ ∀vα v ∈ A ⇔ Ruv]
Defined notions in theory function

Inj(_) := λFβα [∀xα, yβ F (x) = F(y) ⇒ x = y]
Surj(_) := λFβα [∀yβ ∃xα y = F(x)]
Bij(_) := λFβα Surj(F ) ∧ Inj(F )

ImageF(_,_) := λFβα,Aoα [λyβ ∃xα x ∈ A ∧ y = F(x)]
InverseImageF(_,_) := λFβα,Boβ [λxα ∃yβ y ∈ B ∧ y = F(x)]

_◦_ := λFβα,Gγβ [λxα G(F(x))]
IncreasingF(_,_,_) := λFβα,�1

oαα,�2
oββ [∀xα, yα x �1 y ⇒ F(x) �2 F(y)]

DecreasingF(_,_,_) := λFβα,�1
oαα,�2

oββ [∀xα, yα x �1 y ⇒ F(y) �2 F(x)]

by the negative literal (where x is a Skolem constant):

[(Bx ∨ (Cx ∧ Dx)) ⇔ ((Bx ∨ Cx) ∧ (Bx ∨ Dx))]F
This unit clause is again not normal; normalisation, factorisation and subsumption yield the following set of clauses:

[Bx]F [Bx]T ∨ [Cx]T [Bx]T ∨ [Dx]T [Cx]F ∨ [Dx]F
This set is essentially of propositional logic character and trivially refutable. LEO needs 0.56 seconds for solving the
problem and generates a total of 36 clauses.

Let us consider now this same example SET171 + 3 in its first-order formulation from the TPTP (see Table 4).
We can observe that the assumptions provide only a partial axiomatisation of naive set theory. On the other hand,

the specification introduces lemmas that are useful for solving the problem. In particular, assumption (7) is trivially
derivable from (3) with (6). Obviously, clausal normalisation of this first-order problem description yields a much
larger and more difficult set of clauses. It is therefore not surprising that most first-order ATPs fail to prove this
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Table 4
TPTP problem SET171 + 3—distributivity of ∪ over ∩
Assumptions: ∀B,C,x [x ∈ (B ∪ C) ⇔ x ∈ B ∨ x ∈ C] (1)

∀B,C,x [x ∈ (B ∩ C) ⇔ x ∈ B ∧ x ∈ C] (2)
∀B,C [B = C ⇔ B ⊆ C ∧ C ⊆ B] (3)
∀B,C [B ∪ C = C ∪ B] (4)
∀B,C [B ∩ C = C ∩ B] (5)
∀B,C [B ⊆ C ⇔ ∀x x ∈ B ⇒ x ∈ C] (6)
∀B,C [B = C ⇔ ∀x x ∈ B ⇔ x ∈ C] (7)

Proof Goal: ∀B,C,D [B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)] (8)

problem. Of course, the significance of the comparison is clearly limited, because different systems are optimised to
a different degree. Moreover, first-order systems often use a case tailored problem representation (e.g., by avoiding
some base axioms of the addressed theory), while the higher-order prover has a harder task of dealing with a general
(not specifically tailored) representation that does not make any assumptions about which parts of the theory are or
are not needed for the concrete problem at hand.

We use λ-abstraction as well as the extensionality treatment inherent in LEO’s calculus [5]. This enables a theo-
retically4 Henkin-complete proof system for set theory. In the above example SET171 + 3, LEO generally uses the
application of functional extensionality to push extensional unification constraints down to base type level, and then
eventually applies Boolean extensionality to generate clauses from them. These are typically much simpler and often
even propositional-like or FO-like, and are therefore suitable for treatment by a first-order ATP or even a propositional
logic decision procedure.

SET624 + 3. Sometimes, extensionality treatment is not required and the originally higher-order problem is immedi-
ately reduced to only FO-like clauses. For example, after expanding the definitions, problem SET624 + 3 yields the
following clause (where Boα,Coα,Doα are again Skolem constants):

[(∃xα (Bx ∧ (Cx ∨ Dx)) ⇔ ((∃xα Bx ∧ Cx) ∨ (∃xα Bx ∧ Dx))]F
Normalisation results in 26 FO-like clauses, which present a hard problem for LEO: it needs approx. 35 seconds (see
Section 4.3) to find a refutation, whereas first-order ATPs only need a fraction of a second.

SET646 + 3. Sometimes, problems are immediately refuted after the initial clause normalisation. For example, we
get the following clause after definition expansion in problem SET646 + 3 (where Boα,Coα, xα are again Skolem
constants):

[Ax ⇒ (∀yβ By ⇒ (∀uα ∀vβ (u = x ∧ v = y) ⇒ ((¬⊥) ∧ (¬⊥))))]F
Normalisation in LEO immediately generates a basic refutation (i.e., a clause [⊥]T ∨[⊥]T ) without even starting proof
search.

SET611 + 3. The examples discussed so far all essentially apply extensionality treatment and normalisation to the
input problem in order to immediately generate a set of inconsistent FO-like clauses. Problem SET611 + 3 is more
complicated as it requires several reasoning steps in LEO before the initially consistent set of available FO-like clauses
grows into an inconsistent one. After definition expansion, LEO is first given the input clause:

[∀Aoα,Boα (λxα (Ax ∧ Bx)) = (λxα ⊥) ⇔ (λxα (Ax ∧ ¬Bx)) = (λxα Ax)]F
which it normalises into:

(9)[(λxα (Ax ∧ Bx))=? (λxα ⊥)] ∨ [(λxα (Ax ∧ ¬Bx)) =? (λxα Ax)]
(10)[(λxα (Ax ∧ Bx)) = (λxα ⊥)]T ∨ [(λxα (Ax ∧ ¬Bx)) = (λxα Ax)]T

4 For pragmatic reasons, such as efficiency, most of LEO’s tactics are incomplete, however. LEO’s philosophy is to rely on a theoretically complete
calculus, but to practically provide a set of complementary strategies so that these cover a broad range of theorems.



C. Benzmüller et al. / Journal of Applied Logic 6 (2008) 318–342 331
As mentioned before, the unification constraint (9) corresponds to:

(11)[(λxα (Ax ∧ Bx)) = (λxα ⊥)]F ∨ [(λxα (Ax ∧ ¬Bx)) = (λxα Ax)]F
LEO has to apply to each of these clauses and to each of their literals appropriate extensionality rules. Thus, several
rounds of LEO’s set-of-support-based reasoning procedure are required, so that all necessary extensionality reasoning
steps are performed, and sufficiently many FO-like clauses are generated which can be refuted by a first-order ATP.

In summary, each of the examples discussed in this section exposes a motivation for our higher-order/first-order
cooperative approach to theorem proving. In particular, they show that:

• Higher-order formulations allow for a concise problem representation which often allows easier and faster proof
search than first-order formulations.

• Higher-order problems can often be reduced to a set of first-order clauses that can be more efficiently handled by
a first-order ATP.

• Some problems are trivially refutable after clause normalisation.
• Some problems require in-depth higher-order reasoning before a refutable first-order clause set can be extracted.

4.2. Theoretical considerations

Clearly, soundness and completeness properties depend on the corresponding properties of the systems involved,
in our case, of LEO and BLIKSEM or VAMPIRE, respectively.

Soundness: The general philosophy of OANTS is to ensure the correctness of proofs by the generation of explicit
proof objects, which can be checked independently from the proof generation. In particular, reasoning steps of ATPs
have to be translated into OANTS’s natural deduction calculus via the TRAMP proof transformation system [25] to be
machine-checkable. Because of the tight integration of LEO with the first-order ATPs, in which FO-like clauses that
are in LEO’s search space are directly picked up by the processes running first-order ATPs, some essential information
needed for TRAMP is not available. Thus the cooperative proof results of LEO-BLIKSEM or LEO-VAMPIRE cannot
yet be translated and inserted into the centralised proof object and the generation of a machine-checkable proof object
is not yet fully supported. One possible solution we propose is to translate the first-order proofs into LEO proofs and
to insert them at the right places. Then, the modified LEO proofs can be inserted into the centralised proof object, and
hence, explicit proof objects can be generated by OANTS.

While there are many advantages in guaranteeing correctness of proofs by checking them, it is worth noting that the
combination of LEO and BLIKSEM (or LEO and VAMPIRE) is sound under the assumption that the three systems are
sound. Namely, to prove a theorem it is sufficient to show that a subset of clauses generated in the proof is inconsistent.
If LEO generates an inconsistent set of clauses, then it does so correctly by assumption, be it a FO-like set or not.
Assuming that the translation from FO-like clauses to truly first-order clauses preserves consistency/inconsistency,
then a set of clauses that is given to BLIKSEM (or VAMPIRE) is inconsistent only if LEO generated an inconsistent set
of clauses in the first place. By the assumption that BLIKSEM (or VAMPIRE) is sound follows that it will only generate
the empty clause when the original clause set was inconsistent.

Thus, soundness of our cooperative approach critically relies only on the soundness of the selected transforma-
tional mapping from FO-like clauses to proper first-order clauses. We use the mapping from TRAMP, which has been
previously shown to be sound and is based on [23]. It injectively maps expressions such as P(f (a)) to expressions
such as @1

pred(P,@1
fun(f, a)), where the @ are new first-order operators describing function and predicate application

for particular types and arities. The injectivity of the mapping guarantees soundness, since it allows each proof step
to be mapped back from first-order to higher-order. Hence, our higher-order/first-order cooperative approach between
LEO and BLIKSEM (or VAMPIRE) is sound.

Completeness: Completeness (in the sense of Henkin completeness) can in principle be achieved in higher-order
systems, but practically, the strategies used are typically not complete for efficiency reasons. Let us assume that we use
a complete strategy in LEO. All that our procedure does is pass FO-like clauses to BLIKSEM (or VAMPIRE). Hence,
no proofs can be lost in this process. That is, completeness follows trivially from the completeness of LEO.

The more interesting question is whether particular cooperation strategies will be complete as well. For instance,
in LEO we may want to give higher preference to real higher-order steps which guarantee the generation of first-order
clauses.



332 C. Benzmüller et al. / Journal of Applied Logic 6 (2008) 318–342
4.3. Results

We conducted several experiments to evaluate our cooperative reasoning approach. In particular, we concentrated
on test problems given in Table 2. We investigated several LEO strategies in order to compare LEO’s individual
performance with the performance of the LEO-BLIKSEM and the LEO-VAMPIRE cooperation. Some of LEO’s results
were already published in [4,8], and some of LEO-BLIKSEM results were previously presented in [11]. We also
compare our results to those of the most successful first-order systems on these test problems as given in the TPTP
and in the literature. These were, in detail:

MUSCADET (v2.4) a natural deduction system that uses special inference rules for sets [31],
E-SETHEO (csp04) that combines a variety of first-order theorem provers and specialised decision procedures into a

single proof engine exploiting strategy parallelism [28],
VAMPIRE (v7.0) a first-order theorem prover using a binary resolution and superposition based calculus [32],
SATURATE an extension of VAMPIRE with Boolean extensionality rules that are a one-to-one correspondence to

LEO’s rules for Extensional Higher-Order Paramodulation [21].

Table 5 presents the results of our experiments. The first column contains the TPTP identifier of the problem. The
second column lists the TPTP difficulty rating of the problem, which indicates how hard the problem is for first-order
ATPs (difficulty rating 1.00 indicates that no TPTP prover can solve the problem). The third, fourth, and fifth columns
list whether SATURATE, MUSCADET and E-SETHEO, respectively, can (+) or cannot (–) solve a problem. The sixth
column lists the timing results for VAMPIRE. All timings given in the table are in seconds. Since the results for
SATURATE are taken from [21] (a ‘?’ in Table 5 indicates that the result was not listed in [21] and is thus unavailable)
and the results for MUSCADET and E-SETHEO are taken directly from the on-line version of the TPTP, a run-time
comparison would be unfair as the times are measured on different platforms. The timings for VAMPIRE, on the other
hand, are based on private communication with A. Voronkov. They were obtained on a computer with a very similar
specification to the one we used, namely a 2.4 GHz Xenon machine with 1 GB of memory. The remaining three major
columns: LEO, LEO-BLIKSEM, and LEO-VAMPIRE detail the results of our experiments. Each of these three columns
is further divided into sub-columns to allow for a detailed comparison.

For our experiments with LEO alone in column seven in Table 5 we tested four different strategies. Mainly, they
differ in their treatment of equality and extensionality. This ranges from immediate expansion of primitive equality
with Leibniz equality and limited extensionality reasoning, STANDARD (ST), to immediate expansion of primitive
equality and moderate extensionality reasoning, EXT, to delayed expansion of primitive equality and moderate exten-
sionality reasoning, EXT-INPUT (EI), and finally to delayed expansion of primitive equality and advanced recursive
extensionality reasoning, EXT-INPUT-RECURSIVE (EIR). Column seven (LEO) in Table 5 presents the fastest strat-
egy for each problem (Strat.), the number of clauses generated by LEO (Cl.), and the total run-time (Time). While
occasionally there was more than one LEO strategy that could solve a problem, it should be noted that none of the
strategies was successful for all the problems solved by LEO. In contrast to the experiments with LEO alone, we used
only the EXT-INPUT strategy for our experiments with the LEO-BLIKSEM and LEO-VAMPIRE.5 Each of column
eight (LEO-BLIKSEM) and nine (LEO-VAMPIRE) in Table 5 presents the number of clauses generated by LEO (Cl.)
together with the time (Time), and in addition, the number of first-order clauses (FOcl) sent to, the time (FOtm) used
by, and the number of clauses generated (GnCl) by BLIKSEM and VAMPIRE, respectively.

The overall time limit of all experiments was 100 seconds for both LEO alone and the LEO-first-order cooperations.
This time also includes the time needed to write and process input and output files over the network. While LEO and
instances of BLIKSEM or VAMPIRE were running in separate threads (each run of BLIKSEM and VAMPIRE was given
50 seconds), the figures given in the ‘Time’ column reflect the overall time needed for a successful proof. That is,
they contain the time needed by all concurrent processes: LEO’s own process as well as those processes administering
the various instances of BLIKSEM or VAMPIRE. However, during I/O operations (i.e., writing input files and reading
output files of the provers) the threads were locked and could only be killed once the operation was completed. While
these operations generally only took milliseconds, for particular large files this could take longer, which accounts for

5 In a small empirical study we identified EXT-INPUT as the most successful strategy for LEO-BLIKSEM and LEO-VAMPIRE.
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Table 5
Experimental data for the benchmark test problems given in Table 2

TPTP-
Problem

Diffi-
culty

Satu-
rate

Mus
cadet

E-Se-
theo

Vamp-
ire 7

LEO LEO-BLIKSEM LEO-VAMPIRE

Strat. Cl. Time Cl. Time FOcl FOtm GnCl Cl. Time FOcl FOtm GnCl

SET014 + 4 .67 + + + .01 ST 41 .16 34 6.76 19 .01 7 11 2.6 .01 .01 16
SET017 + 1 .56 – – + .03 EXT 3906 57.52 25 8.54 16 .01 74 28 5.05 8 .01 22
SET066 + 1 1.00 ? – – – – – – 26 6.80 20 .01 56 38 3.73 17 .01 53
SET067 + 1 .56 + + + .04 ST 6 .02 13 .32 16 .01 12 9 .1 10 .01 17
SET076 + 1 .67 + – + .00 – – – 10 .47 18 .01 35 12 .97 12 .01 27
SET086 + 1 .22 + – + .04 ST 2 .01 2 .01 N/A N/A N/A 2 .01 N/A N/A N/A
SET096 + 1 .56 + – + .03 – – – 27 7.99 14 .01 25 81 7.29 71 0.02 23
SET143 + 3 .67 + + + 68.71 EIR 37 .38 33 7.93 18 .01 19 8 .31 9 .01 9
SET171 + 3 .67 + + – 108.31 EIR 36 .56 25 4.75 19 .01 20 6 .38 10 .01 9
SET580 + 3 .44 + + + 14.71 EIR 25 .19 6 2.73 8 .01 13 8 .23 12 .01 4
SET601 + 3 .22 + + + 168.40 EIR 145 2.20 55 4.96 8 .01 13 20 1.18 31 .01 17
SET606 + 3 .78 + – + 62.02 EIR 21 .33 17 10.8 15 .01 5 5 .27 5 .01 3
SET607 + 3 .67 + + + 65.57 EIR 22 .31 17 7.79 15 .01 6 5 .26 8 .01 3
SET609 + 3 .89 + + – 161.78 EIR 37 .60 26 6.50 19 .01 17 6 .49 10 .01 9
SET611 + 3 .44 + – + 60.20 EIR 996 12.69 72 32.14 38 .01 101 39 4.00 40 0.03 23
SET612 + 3 .89 + – – 113.33 EIR 41 .54 18 3.95 6 .01 7 8 .46 11 .01 9
SET614 + 3 .67 + + – 157.88 EIR 38 .46 19 4.34 16 .01 17 8 .41 9 .01 9
SET615 + 3 .67 + + – 109.01 EIR 38 .57 17 3.59 6 .01 9 6 .47 8 .01 9
SET623 + 3 1.00 ? – – – EXT 43 8.84 23 9.54 10 .01 14 9 2.27 10 .01 8
SET624 + 3 .67 + – + .04 ST 4942 34.71 54 9.61 46 .01 212 47 3.29 44 .01 71
SET630 + 3 .44 + – + 60.39 EIR 11 .07 6 .08 8 .01 4 4 .05 6 .01 10
SET640 + 3 .22 + – + 70.41 EIR 2 .01 2 .01 N/A N/A N/A 2 .01 N/A N/A N/A
SET646 + 3 .56 + – + 59.63 EIR 2 .01 2 .01 N/A N/A N/A 2 .01 N/A N/A N/A
SET647 + 3 .56 + – + 64.21 EIR 26 .15 13 .30 13 .01 15 7 .12 7 .01 11
SET648 + 3 .56 + – + 64.22 EIR 26 .15 14 .30 13 .01 16 7 .12 9 .01 3
SET649 + 3 .33 – – + 63.77 EIR 45 .30 29 5.49 12 .01 16 10 .25 13 .01 8
SET651 + 3 .44 – – + 63.88 EIR 20 .10 11 .16 10 .01 11 7 .09 8 .01 2
SET657 + 3 .67 + – + 1.44 EIR 2 .01 2 .01 N/A N/A N/A 2 .01 N/A N/A N/A
SET669 + 3 .22 – – + .34 EI 6 .19 7 .21 N/A N/A N/A 6 .2 N/A N/A N/A
SET670 + 3 1.00 ? – – – EXT 15 .17 17 .36 16 .01 6 9 .14 11 .01 14
SET671 + 3 .78 – – + 218.02 EIR 78 .64 7 2.71 10 .01 14 13 .47 11 .01 9
SET672 + 3 1.00 ? – – – EXT 27 .4 30 .70 21 .01 11 10 .23 12 .01 14
SET673 + 3 .78 – – + 47.86 EIR 78 .65 14 5.66 14 .01 16 13 .47 17 .01 6
SET680 + 3 .33 + – + .07 ST 185 .88 29 4.61 18 .01 24 30 2.38 16 .01 27
SET683 + 3 .22 + – + .06 ST 46 .20 35 8.90 18 .01 24 12 .27 15 .01 4
SET684 + 3 .78 – – + .33 ST 275 2.45 46 5.95 26 .01 47 41 3.39 35 .01 38
SET686 + 3 .56 – – + .11 ST 274 2.36 46 5.37 26 .01 46 42 3.55 37 .01 39
SET716 + 4 .89 + + – – ST 39 .45 18 3.81 18 .01 118 19 .4 24 0.02 73
SET724 + 4 .89 + + – – EXT 154 2.75 18 7.21 15 .01 23 10 1.91 14 .01 20
SET741 + 4 0.91 ? + – – – – – 21 92.76 22 .01 104 850 21 3.70 26 .01 570
SET747 + 4 .89 – + – – ST 34 .46 25 1.11 18 .01 10 11 1.18 8 .01 14
SET752 + 4 .89 ? + – – – – – 50 6.60 48 .01 4363 50 516.0 48 .01 4 145 104
SET753 + 4 .89 ? + – – – – – 15 3.07 12 .01 19 12 1.64 12 .01 47
SET764 + 4 .56 + + + .02 EI 2 .01 2 .01 N/A N/A N/A 2 .01 N/A N/A N/A
SET770 + 4 .89 + + – – – – – – – – – – – – – – –

the more than 500 s needed by LEO-VAMPIRE on problem SET752+4. Since all processes ran on a single processor,
there is potential to improve upon run times by using real multiprocessing. Note also, that the number of clauses
in LEO’s search space is typically low as subsumption is enabled. Subsumption, however, was not enabled for the
accumulation of FO-like clauses in LEO’s bag of FO-like clauses. This is why there are usually more clauses in
this bag (which is sent to BLIKSEM or VAMPIRE) than there are in LEO’s search space. Finally, observe that some
problems were refuted after LEO’s clausal normalisation, and hence BLIKSEM or VAMPIRE was not applicable (N/A).

The results in columns three through six indicate that some problems are still very hard for first-order ATPs, as
well as for the special purpose theorem prover MUSCADET. While LEO itself can solve a majority of these problems
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with some strategy, the LEO-BLIKSEM and LEO-VAMPIRE cooperations can solve more problems and, moreover,
need only a single LEO strategy. We can also observe that many problems that appear to be relatively hard for LEO

alone (e.g., SET017 + 1, SET611 + 3, SET624 + 3), are not only more quickly solved in the cooperative approach,
but are often reduced to a relatively small higher-order preprocessing step with subsequent easy first-order proofs,
as for instance, in the case of SET017 + 1. When comparing LEO-BLIKSEM and LEO-VAMPIRE one can observe
that neither is clearly better than the other. Both cooperations solve the respective sub-problems very quickly, and it
depends on the problem as to which one finds a solution earlier in the proof search. Moreover, the number of clauses
produced during proof search for BLIKSEM and VAMPIRE can vary significantly. This suggests that in general, it is
advantageous to integrate more than one first-order prover into the cooperative multi-agent architecture.

From a mathematical viewpoint the investigated problems are easy and, hence, they should ideally be reliably
and very efficiently solvable within a proof assistant. This has been achieved for the examples in Table 5 (except
for SET770 + 4) by our cooperative approach. While some of the proof attempts now require slightly more time
than when using LEO alone with a specialised strategy, they are, in most cases, still faster than when proving with a
first-order system.

5. Related work

There exist several systems that are related to ours from the point of view of integrating a number of reasoners
in a cooperative environment. The main difference is that none of these integrate such a variety of diverse reasoning
systems in a common cooperative and distributed framework. Here we outline commonalities and differences of some
such systems with our work.

The integration of reasoners and reasoning strategies was pioneered in the TEAMWORK system [19], which realises
the cooperation of different reasoning strategies, and the TECHS system [18], which realises a cooperation between
a set of heterogeneous first-order theorem provers. Similar to our approach, partial results in TECHS are exchanged
between the different theorem provers in form of clauses. The main difference to the work of Denzinger et al. (and
other related architectures like [20]) is that our system bridges not only between first-order theorem provers, but also
between first-order ATPs, higher-order ATPs, computer algebra systems and model generators. Also, unlike in TECHS,
we provide a declarative specification framework for modelling external systems as cooperating, concurrent processes
that can be (re-)configured at run-time. Related is also the work of Hurd [22] which realises a generic interface
between HOL and first-order theorem provers. It is similar to the solution previously achieved by TRAMP [25] in
OMEGA, which serves as a basis for the sound integration of ATPs into OANTS. Both approaches pass essentially
first-order clauses to first-order theorem provers and then translate their results back into HOL resp. OMEGA. Some
further related work on the cooperation of ISABELLE and first-order ATPs is presented in [26,27]. The main difference
of our work to the related systems is that while our system calls first-order provers from within automatic higher-order
proof search, this is not the case for [22,25–27].

More generally, our cooperative, distributed and multi-agent framework is related to work on parallelism of deduc-
tion and other multi-agent architectures. The notion of parallelism in deduction has been categorised into three types
[13]: parallelism on term level, on clause level and on search level. Our architecture models all three types. Parallelism
on term level is clearly realised since our agents can access sub-terms in parallel during their search (for details of the
OANTS suggestion mechanism, see [10]). Parallelism on clause level is mainly concerned with term rewriting steps,
which corresponds loosely to the application of tactics in our system, and this is already realised in our underlying
OMEGA system. Parallelism on search level is one of the key criteria of our system, since in each step the search
for the next applicable proof step, which is either a single tactic or the computations of an integrated reasoner, is
parallelised.

Multi-agent aspects of our framework can be compared with respect to the characterisation of agents as autonomous
and flexible computational entities that exhibit, to a varying degree, reactive, pro-active and social abilities [39,40]. Our
agents are clearly autonomous from a software engineering point of view, since they are implemented in concurrent
threads. They are pro-active (i.e., they are not scheduled), reactive (i.e., their internal state is used to react to changes
in the overall system) and robust. They cooperate, but do not exhibit any real social abilities, that is, they are not
aware of other agents and individually cannot decide autonomously whom to cooperate with. They also have no real
planning capabilities. From these points of view, our system is more closely related to distributed problem solving
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systems like HASP [30] and POLIGON [33], rather than advanced layered agent architectures like INTERRAP [29] and
the one by Bond and Gasser [14].

6. Conclusion

We presented a general agent-based architecture that enables easy integration and cooperation of diverse and very
heterogeneous systems like higher-order, first-order automated theorem provers, computer algebra systems and model
generators. We showed how the integration of different reasoning systems can lead to a combined system which goes
significantly beyond the capabilities of each individual system. For this we experimented with different forms of
integration which can be achieved relatively easily in the OANTS-framework. OANTS provides a framework which
enables a generic integration of a variety of systems, and is based on the construction of a common proof object. The
results of our case studies in Section 3 demonstrate a stronger reliability and coverage of our system in comparison to
other single specialist systems.

In the case of some specialist reasoning systems it pays off to integrate the different systems more tightly so that
they can communicate more efficiently in a specialist language. The results of this case study in Section 4 provide
evidence and support this, in particular they show the effectiveness of a specialist integration between a higher-order
and first-order resolution theorem prover. Our non-optimised system outperforms state-of-the-art first-order theorem
provers and their ad hoc extensions such as SATURATE [21] on 45 mathematical problems chosen from the TPTP
SET category. Among them are four problems which cannot be solved by any TPTP system to date. In contrast to
the first-order situation, these problems can in fact be proved in our approach reliably from first principles, that is,
without avoiding relevant base axioms of the underlying set theory, and moreover, without the need to provide relevant
lemmas and definitions by hand.

The results of our case study motivate further research in the automation of higher-order theorem proving and the
experimentation with different higher-order to first-order transformation mappings (such as the ones used by [22,26,
27]) that support our hybrid reasoning approach.6 They also provide further evidence for the usefulness of the OANTS

approach as described in [7,10] for flexibly modelling the cooperation of reasoning systems. The results also indicate
the need for a higher-order extension of the TPTP library in which alternative higher-order problem formalisations
are linked with their first-order counterparts so that first-order theorem provers can be evaluated against higher-order
systems (and vice versa)—such an extension of the TPTP library to higher-order logic is currently under way.

Future work is to investigate how far our approach scales up to more complex problems and more advanced math-
ematical theories. In less trivial settings, as discussed in this paper, we will face the problem of selecting and adding
relevant lemmas to avoid immediate reduction to first principles and to appropriately instantiate set variables. Relevant
related work for this setting is Bishop’s approach to selectively expand definitions as presented in [12] and Brown’s
PhD thesis on set comprehension in Church’s type theory [15].

Appendix A. Testing the generic integration

The following tables contain the data relevant to the experiments on set statements described in Section 3. Ta-
bles A.1 and A.2 contain the problem formulations of the unconditional statements. Tables A.3, A.4 and A.5 contain
the detailed results of the experiments with VAMPIRE, PARADOX, and OANTS applied to the statements without con-
ditions, with uniqueness condition and with disjointness condition, respectively. All experiments were run on a PC
with four 2.4 GHz Xeon CPU and 4 GB of memory running Linux.

In Tables A.3–A.5 all timings are given in seconds, where t/o means time out after 120 seconds and < .1 means
that the time was below the measurability of the operating system. For problems that the system was not expected to
solve, that is, invalid problems for VAMPIRE or valid problems for PARADOX, the table will always have a t/o entry
although the systems occasionally detected the invalidity or validity, respectively. The VAMPIRE column contains the
number of clauses generated during proof search. The PARADOX column contains the minimal size of model needed
to refute a conjecture. Finally, the OANTS column gives first the nature of the result, that is, proof or counterexample

6 Indeed, we are currently investigating in a new project LEO-II a cooperation between a re-implementation of the LEO prover and tightly
integrated first-order theorem provers.
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Table A.1
Automatically generated set equality test problems for the evaluation of OANTS

# Formalisation

1 ∀a,b,c,d,e,f ((((e \ d) \ e) ∩ ((f ∪ c) ∪ (d ∪ f ))) ∩ (((d ∩ b) \ (f \ b)) \ (c \ d))) ⊆ (c ∩ (((d ∩ a) ∩ c) ∪ ((f ∩ d) ∪ (d ∪ a))))

2 ∀a,b,c,d,e,f ((((e ∪ f ) ∩ (d \ e)) ∪ (d ∩ a)) \ ((f ∪ (d ∪ b)) \ ((f ∩ a) \ c))) = e

3 ∀a,b,c,d,e,f (b ∩ (((f ∩ d) \ (b ∩ f )) ∩ b)) = (f \ (c \ ((a ∪ e) ∪ (c \ b))))

4 ∀a,b,d,e,f ((((f \ d) ∩ (b ∩ d)) \ d) ∪ a) = ((((a ∪ f ) ∩ (b ∩ e)) ∪ b) ∩ (((d ∩ a) \ (b \ d)) ∪ a))

5 ∀a,b,c,d,e,f ((((d ∩ a) ∩ a) ∩ a) ∩ (d ∩ ((c \ b) \ (c ∪ e)))) ⊆ ((((b ∪ d) \ (f ∩ e)) ∩ ((f ∩ b) ∩ (a ∪ b))) ∩ c)

6 ∀a,b,c,d,e,f a = ((((e ∩ a) ∩ c) ∩ ((b ∪ a) ∩ f )) \ (((e ∪ c) ∩ (c ∩ d)) \ ((a ∩ d) ∩ b)))

7 ∀a,b,c,d,e,f ((((d ∩ c) ∪ (a ∩ c)) ∪ e) ∩ f ) = (b ∩ d)

8 ∀a,b,c,d,e ((((e ∩ c) ∪ (c \ d)) ∪ (a \ (c \ b))) \ ((b ∪ (d ∪ a)) \ c)) = (((d ∩ (e ∪ b)) ∩ ((d \ c) \ (d ∩ b))) \ (e ∪ b))

9 ∀b,c,d,e,f (e \ (f ∪ ((d ∪ f ) ∪ b))) ⊆ (((e ∩ (e ∪ f )) \ (c ∩ (e ∩ f ))) \ d)

10 ∀a,b,c,d,e,f (((c ∪ e) ∪ ((d \ b) ∩ f )) ∪ (((d \ b) \ (a ∪ f )) \ ((a ∩ f ) \ (d ∩ f )))) = b

11 ∀a,b,d,e,f ((b \ (f ∪ (b \ e))) ∪ d) ⊆ a

12 ∀a,b,c,d,e,f ((((c \ d) ∪ (d ∩ f )) ∩ ((c ∩ a) \ d)) ∪ (((d ∪ a) \ (d \ e)) \ a)) ⊆
((f \ ((e ∩ c) ∩ (f ∪ b))) ∩ (((e ∩ b) ∩ a) \ ((a \ b) ∪ (b ∪ f ))))

13 ∀a,c,d,e,f (((f \ (e \ a)) ∩ (c \ (e \ d))) ∩ (((c \ d) ∩ a) ∩ e)) = ((a \ (c ∩ (d \ e))) ∩ f )

14 ∀a,b,c,d,e,f ((b ∩ e) \ (((e ∪ d) ∪ e) ∪ a)) = ((((e \ a) ∩ f ) ∩ ((d \ b) ∩ (b ∩ d))) \ (((f ∪ a) ∪ (c ∪ b)) ∩ ((c \ f ) ∩ (e ∪ d))))

15 ∀a,b,c,d,f c ⊆ ((((a \ b) \ d) \ ((a ∪ c) \ (f ∩ b))) ∪ (d \ ((b ∩ c) \ (d \ f ))))

16 ∀b,c,d,e,f (d ∪ (e ∩ (f \ (e ∪ d)))) = (((d ∪ (f \ c)) \ b) \ ((f ∪ (f \ b)) ∪ ((b ∪ c) ∪ (b ∪ f ))))

17 ∀b,c,d,e,f b ⊆ ((((f \ b) ∪ (f ∩ d)) ∪ c) ∪ (((b \ e) ∪ (e ∪ b)) \ b))

18 ∀a,b,c,d,e,f ((((f \ a) ∩ f ) \ e) ∩ (((a \ d) ∪ (c \ a)) ∩ ((f \ c) ∩ (b \ d)))) ⊆ ((((f ∪ d) ∩ (a ∩ e)) ∩ (d ∪ (d ∪ b))) ∩ f )

19 ∀a,b,c,d (a ∪ ((c ∪ (b ∩ c)) ∩ ((d \ b) ∩ (c ∩ d)))) = c

20 ∀a,b,c,d,e,f (f \ (((a \ d) ∩ (e \ a)) \ c)) ⊆ ((((b \ a) ∪ (b \ e)) ∪ a) ∪ b)

21 ∀a,b,c,e,f (f ∩ (((c ∪ f ) ∩ a) ∩ ((b ∪ e) ∩ (c ∪ e)))) ⊆ c

22 ∀a,b,c,d,e,f a = ((((e ∩ a) ∩ c) ∩ ((b ∪ a) ∩ f )) \ (((e ∪ c) ∩ (c ∩ d)) \ ((a ∩ d) ∩ b)))

23 ∀a,b ((a \ b) ∪ (b \ a)) = ∅
24 ∀a,b,c,d,e,f ((((a ∩ c) ∩ (d ∪ c)) ∪ ((e ∪ a) ∪ d)) ∩ (((f ∩ e) \ (e \ b)) ∪ ((a ∩ f ) ∪ d))) =

((b ∪ (c \ (e \ c))) \ (((a \ f ) ∪ c) ∪ ((a ∪ b) ∩ e)))

25 ∀a,b,c,d,e,f ((a ∩ (e ∪ (f ∩ b))) ∪ (((b ∩ e) \ b) ∩ ((f ∩ b) \ d))) ⊆ (d ∩ ((a ∩ (c ∩ e)) \ ((a ∪ e) \ d)))

26 ∀a,b,c,d,e,f (c ∪ (((b \ c) ∪ (b \ d)) ∩ c)) = (b ∩ (((c \ a) ∩ (f ∪ e)) ∩ d))

27 ∀a,c,d,e e ⊆ ((((e ∪ a) \ (c \ a)) ∪ c) ∩ (a \ d))

28 ∀a,b,c,d,e,f ((((a ∪ f ) \ f ) ∪ ((a ∩ e) ∩ (a \ f ))) \ (d ∪ b)) =
((((b ∪ d) \ (a ∪ d)) ∪ ((a ∪ d) \ f )) ∩ ((c \ (d \ f )) ∩ ((e ∩ d) ∩ (f \ d))))

29 ∀a,b,c,d,e,f (((f ∩ c) ∩ ((c ∩ a) ∩ (a \ c))) ∩ e) ⊆ (((b ∪ (b \ d)) \ ((f ∪ e) \ e)) ∪ (d \ e))

30 ∀a,b,c,d,e,f (((e ∪ (e ∪ d)) \ ((b \ e) ∩ a)) ∩ (a ∩ f )) ⊆ ((e \ c) \ (((e ∪ d) \ b) ∪ ((e \ a) ∩ (d ∩ a))))

31 ∀a,b,c,d,e,f ((((d ∩ c) ∪ (a ∩ c)) ∪ e) ∩ f ) = (b ∩ d)

32 ∀a,b,c,d,e,f (((a \ b) ∪ (b \ c)) ∪ (((c \ d) ∪ (d \ e)) ∪ ((f \ a) ∪ (e \ f )))) = ∅
33 ∀b,c,d,e,f ((((f ∪ b) ∩ (e ∪ c)) ∪ ((f \ d) \ c)) ∪ ((e ∩ (c ∩ f )) ∪ ((d ∩ b) ∪ e))) ⊆ ((((b \ e) ∩ e) ∩ ((b \ c) \ (f \ b))) ∪ c)

34 ∀a,b,c,d,e,f (d ∪ (((b ∩ f ) \ (e ∩ b)) ∪ (d \ f ))) = (b \ (((e ∩ c) ∩ (d ∩ f )) \ ((f ∩ b) \ (a ∪ f ))))

35 ∀a,b,d,e,f ((((b ∪ a) ∩ e) ∩ ((f ∪ d) ∩ (f \ b))) ∪ d) = a

36 ∀a,b,c,d,e,f ((((f \ a) ∩ f ) ∩ (f \ (d \ e))) ∩ (((f ∪ b) \ (e \ f )) ∪ ((c ∩ b) \ (b ∪ c)))) ⊆
((a ∪ (e \ a)) ∩ (((e ∪ b) \ (c \ f )) \ (f \ c)))

37 ∀a,c,d,e,f ((((d ∪ c) \ (c ∩ a)) ∪ ((f ∪ ∅) ∩ (a \ e))) ∩ c) = a

38 ∀a,b,c,d,e,f f = ((((d \ e) \ (b \ c)) ∪ ((f \ c) ∩ (d \ c))) \ a)

39 ∀a,b,c,d,e,f ((((b ∩ e) \ (c ∩ a)) ∪ b) ∩ (((c ∩ a) \ (d ∩ f )) ∪ ((a ∩ f ) ∪ (a \ c)))) ⊆
((((f ∪ a) ∪ (d ∩ e)) \ (a ∪ (f ∩ e))) \ (((d ∪ e) ∪ (f ∪ d)) ∩ ((a ∪ d) \ (f ∩ e))))

40 ∀a,b,c,d,e,f (a \ (((f \ d) ∩ (b \ d)) \ c)) ⊆ ((((b ∩ d) ∪ (c ∩ d)) \ ((e ∩ c) ∪ (a ∩ d))) \ (((d ∩ e) \ (f ∩ d)) ∪ (d ∩ (e ∪ b))))

41 ∀a,b,c,d,e,f (e ∩ (((e \ a) \ (f ∩ c)) \ ((a ∩ e) \ (c \ a)))) = (c ∪ (((c ∩ f ) ∩ (a \ b)) \ ((b ∩ d) ∪ (c ∪ a))))

42 ∀a,b,c,d,e,f (((((a \ b) ∪ c) \ a) \ c) \ f ) = (((a \ b) ∪ (b \ c)) ∪ ((c \ d) ∪ ((d \ e) ∪ ((f \ a) ∪ ((e \ f ) ∪ (f \ c))))))

43 ∀a,b,c,d,e,f ((((e ∩ b) ∪ e) ∩ (f ∩ (a ∩ c))) ∪ (((d ∪ e) ∩ (d \ c)) ∪ d)) =
((((b ∩ a) ∩ (f ∪ d)) \ b) \ (((b \ e) ∪ (e ∪ a)) \ ((e \ b) ∪ (e \ f ))))

44 ∀a,b,c,d,e,f (b \ e) = ((((e \ d) \ (d ∩ a)) \ ((e ∪ c) ∪ (f ∪ d))) ∪ ((f \ (e ∪ c)) ∪ ((a ∩ e) ∪ (b ∪ e))))

45 ∀a,b,c,d,e,f ((((c ∪ a) ∩ (f ∪ e)) ∪ (e ∩ (f ∪ b))) ∩ (((b ∩ e) ∪ b) \ ((a ∩ b) \ (d \ a)))) =
((b \ c) \ (((d ∪ e) \ (f \ c)) ∩ ((d ∩ a) ∪ (e ∩ f ))))

46 ∀a,b,c,d,e (e ∩ b) = ((((c ∪ a) ∩ (b \ a)) \ e) ∩ ((a \ c) ∩ ((d \ e) ∩ e)))

47 ∀a,b,c,d,e ((((d ∩ a) ∪ (d ∪ b)) \ e) ∪ (a ∩ ((e \ b) \ (e \ c)))) =
((((d ∪ a) \ (d ∩ c)) ∪ ((e ∪ d) ∩ (b \ c))) ∪ (((a ∩ b) \ b) \ (a ∪ (a ∪ c))))

48 ∀a,b,c,d,e,f (d \ (((a ∩ d) ∪ f ) ∩ f )) ⊆ (((d ∩ (c \ d)) ∪ (b ∩ (b \ c))) \ (f ∩ ((e \ b) \ (b ∪ c))))

49 ∀a,c,d,e,f f = ((((e \ c) ∪ (f \ a)) ∪ ((d ∩ e) ∩ (a ∪ c))) \ f )
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Table A.2
Automatically generated set equalities continued

# Formalisation

50 ∀a,b,c,d,e,f ((d ∩ (c ∪ (d \ f ))) ∪ b) ⊆ ((((f \ e) ∩ (e \ a)) ∪ ((e \ f ) ∪ e)) ∪ d)

51 ∀a,b,c,d,e,f (b ∩ e) = (a ∪ (((e ∪ f ) ∩ (c \ d)) ∪ ((d \ e) ∪ d)))

52 ∀a,b,c,d,e,f ((((b \ d) \ (a ∪ c)) ∪ ((e ∩ a) ∩ (a ∩ c))) ∪ (f ∩ ((d ∪ c) ∩ e))) = ((e ∪ ((e ∩ f ) ∩ (c ∩ e))) ∪ (b ∩ (d \ (e ∪ f ))))

53 ∀a,b,c,d,e,f ((f ∩ ((a \ e) \ (f \ b))) ∩ (((b \ d) \ d) ∪ ((d ∪ a) ∩ (c ∩ b)))) ⊆ (d ∪ (c ∪ (d ∩ f )))

54 ∀a,b,c,d,e,f ((((d ∩ e) ∩ (d \ f )) ∪ (d ∩ (a ∪ e))) \ (((e \ b) ∩ e) \ ((b \ f ) ∩ (b \ e)))) ⊆ ((a ∪ b) \ (b ∩ ((c ∪ b) \ (a \ c))))

55 ∀a,b,c,d,e ((((e ∩ c) ∪ (c \ d)) ∪ (a \ (c \ b))) \ ((b ∪ (d ∪ a)) \ c)) = (((d ∩ (e ∪ b)) ∩ ((d \ c) \ (d ∩ b))) \ (e ∪ b))

56 ∀a,b,d,e,f ((((a \ e) ∩ (d \ e)) ∩ ((e \ a) ∪ (a ∩ b))) \ b) ⊆ (d ∪ ((f \ d) ∪ (a \ (d ∪ a))))

57 ∀a,b,c,d,e,f b ⊆ ((((e ∩ c) ∪ (d \ e)) ∩ ((b \ a) \ d)) \ (((f ∪ c) \ (c \ b)) ∩ ((f \ e) ∪ (d ∪ c))))

58 ∀b,c,d,e,f (e \ (f ∪ ((d ∪ f ) ∪ b))) = (((e ∩ (e ∪ f )) \ (c ∩ (e ∩ f ))) \ d)

59 ∀a,b,c,d,e,f ((b ∪ ((a ∪ f ) \ (a ∩ d))) \ (e \ b)) ⊆ ((b \ ((f ∩ d) ∩ (d ∪ f ))) \ (c \ ((d ∪ f ) ∩ (b \ f ))))

60 ∀b,c,d,e (b ∩ (c ∩ ((d ∪ e) \ (d \ c)))) = c

61 ∀a,b,d,e (((e ∪ (e \ b)) ∪ e) \ ((e ∩ (b ∩ e)) ∪ ((d ∪ a) ∪ d))) = d

62 ∀a,b,c,f a = (b \ (((c \ f ) ∩ (b ∪ c)) ∪ a))

63 ∀a,b,c,e,f (e ∩ ((a ∩ (f ∩ a)) ∪ ((a ∩ e) \ (c ∪ b)))) ⊆ (a ∪ (e ∩ b))

64 ∀a,b,c,d,e,f ((((b ∩ f ) ∩ (e ∪ a)) ∪ ((a \ f ) ∪ (d ∩ e))) ∩ (((a ∩ f ) \ (a ∪ f )) ∩ ((f ∪ d) \ (a ∪ e)))) =
((((c ∪ f ) ∪ (c ∩ e)) ∪ ((b ∪ c) ∩ (b ∪ d))) ∩ (((c \ e) ∩ b) ∩ e))

65 ∀a,b,c (((a \ b) ∪ (b \ c)) ∪ (c \ a)) = ∅
66 ∀a,b,d,f ((((a \ d) ∪ (b ∩ a)) ∪ (d \ (a ∩ b))) \ (((d ∩ b) ∪ a) ∪ a)) = f

67 ∀a,b,c,e,f c ⊆ (b \ (((c \ f ) ∩ (c ∪ a)) \ e))

68 ∀a,b,c,d,e,f (((c ∪ e) ∪ ((d \ b) ∩ f )) ∪ (((d \ b) \ (a ∪ f )) \ ((a ∩ f ) \ (d ∩ f )))) = b

69 ∀a,b,c,e,f ((((e ∩ c) \ (b \ a)) ∪ b) ∩ (((c \ a) ∪ b) \ ((a ∪ f ) ∩ b))) ⊆ (((e ∩ (b ∪ c)) \ ((f ∩ e) ∪ (e ∪ c))) \ (f ∪ a))

70 ∀a,b,c,d,e,f ((((e \ f ) \ (d ∪ c)) \ (a \ (d ∪ a))) ∪ b) ⊆ (d ∩ (a ∩ (a ∪ (a \ c))))

71 ∀a,b,c,d,e,f ((((f ∩ e) ∪ b) \ ((d \ f ) ∩ (a ∩ f ))) \ ((b ∩ (∅ ∩ d)) ∩ (∅ ∩ (a ∪ e)))) = ((((f \ d) \ (d ∩ c)) ∩ c) ∩ (((c ∪ e) ∪ c) ∩ e))

72 ∀a,c,d,e,f (((c \ (a ∩ d)) ∪ ((c \ e) \ (c \ d))) \ ((c \ (d \ c)) ∪ ((d \ a) \ c))) = f

73 ∀a,b,c,d,e,f c = (((c ∪ (a ∪ e)) ∪ c) ∪ ((d ∪ (a ∪ f )) \ ((b ∪ c) \ a)))

74 ∀c,d,e,f ((f ∩ ((f \ e) \ e)) ∩ ((e ∩ c) ∪ ((c ∪ e) ∪ (e ∩ c)))) = (d \ (f ∩ ((c ∪ e) \ (e ∪ f ))))

75 ∀b,c,d,e,f (c ∪ (((f ∩ c) ∩ (c \ f )) ∩ d)) = (f ∪ (e ∪ (b \ (d \ c))))

76 ∀a,b,c,d,e,f (a ∩ (((e ∪ b) \ (a ∪ d)) ∩ ((f ∩ a) ∩ c))) ⊆ (((e \ (a \ e)) ∩ ((d ∩ a) ∪ (c ∩ f ))) ∩ (((c \ d) ∩ (d ∩ e)) \ b))

77 ∀a,b,c,d,e,f (((c ∩ (a ∪ d)) ∩ ((f ∪ a) \ (a \ d))) ∪ (f ∩ ((b \ d) ∪ (a ∪ c)))) = ((a \ ((c ∪ f ) ∩ (a ∪ d))) ∪ (e ∩ ((d \ e) \ (f ∪ c))))

78 ∀a,b,c,d,e,f ((a \ ((b ∪ f ) \ (c ∩ f ))) ∪ a) = ((e ∩ ((f \ e) ∪ (d ∪ b))) ∪ e)

79 ∀a,b,c,d,e,f d ⊆ ((((f \ a) \ (e ∩ a)) \ d) ∩ ((f \ (c \ b)) ∩ ((d ∩ b) ∪ (f ∩ e))))

80 ∀a,b,c,d,e,f c ⊆ (((a ∩ e) \ (c ∩ d)) ∩ (((f \ d) ∪ (d ∩ c)) ∩ ((c ∩ d) \ (a \ b))))

81 ∀a,b,c,d,e,f (((e \ (a ∪ e)) \ b) ∪ (c \ d)) ⊆ ((((a ∩ d) ∪ (c ∪ a)) ∪ ((f \ a) \ (c \ d))) ∪ (((b ∪ f ) \ (d \ c)) \ ((c \ b) \ (d ∩ b))))

82 ∀a,b,d,e (e \ (((b ∩ a) ∩ (∅ ∪ e)) ∪ d)) = ((((e ∩ d) ∩ (a \ ∅)) \ ∅) ∩ a)

83 ∀a,b,c,d,e,f ((e \ (a ∩ (f ∪ ∅))) ∩ ((∅ \ (a ∪ d)) \ d)) = (a \ (((f \ c) ∪ (∅ \ b)) ∪ c))

84 ∀a,b,c,d,f (d ∩ (((c ∪ f ) ∪ (b ∪ a)) \ ((c ∪ d) \ f ))) = c

85 ∀a,b,c,d,e,f ((((b ∩ c) ∩ d) ∩ ((b ∪ e) ∩ f )) ∪ (((b \ f ) ∩ (c ∩ a)) ∪ (f ∪ (d ∩ b)))) ⊆
((((d \ e) \ (a \ d)) ∪ ((f ∪ a) ∩ (c \ e))) \ (d \ f ))

86 ∀a,b,c,d,e ((((e ∪ b) \ (a \ b)) ∩ ((a \ b) \ (c ∪ b))) ∩ (e \ ((b ∩ c) \ (a ∩ d)))) = d

87 ∀a,b,c,d,e,f ((((e \ c) \ (b ∩ c)) ∪ ((b ∪ f ) ∩ (a \ d))) ∩ (((d \ e) \ (e \ b)) ∩ ((d \ a) \ (e \ f )))) =
((e ∩ d) ∪ (((b ∩ c) \ (f \ e)) \ d))

88 ∀a,b,c,d,e,f ((((c ∩ a) ∩ (b ∪ a)) \ (b \ (e \ f ))) ∩ (((c \ a) \ (b ∪ e)) \ ((c ∪ b) ∪ (d \ f )))) ⊆ a

89 ∀a,b,c,d,e,f ((c ∩ ((b ∪ e) \ e)) ∩ a) ⊆ (((b ∩ e) \ ((f \ c) \ (c ∪ b))) ∩ ((d ∪ (a \ b)) ∩ d))

90 ∀a,b,c,d,e,f (b \ (((f ∩ c) ∩ (c \ d)) ∩ ((f \ b) ∩ (c \ e)))) ⊆ ((((a ∩ d) \ (d \ e)) ∪ a) ∪ (((c ∩ a) ∩ (d \ f )) ∩ a))

91 ∀a,b,c,d,e,f ((a \ ((b ∪ c) ∪ (f ∩ c))) \ (((f ∪ e) ∩ (f ∪ b)) \ ((d \ b) ∩ e))) ⊆ ((f ∪ e) \ (c ∪ ((d \ b) ∪ a)))

92 ∀a,b,c,d,e ((c ∩ ((a ∩ b) ∪ (c ∩ e))) ∪ ((d \ e) \ d)) ⊆ e

93 ∀a,b,c,d,e,f (((a \ b) ∪ (b \ c)) ∪ (((c \ d) ∪ (d \ e)) ∪ ((f \ a) ∪ (e \ f )))) = ((((a \ b) ∪ c) \ a) \ c)

94 ∀a,b,c,d,e,f ((c \ ((f \ b) ∪ (f ∩ a))) ∩ ((f ∩ (f \ b)) ∪ (e ∪ (d ∪ a)))) ⊆ e

95 ∀a,b,c,d,e,f ((e ∪ ((a ∪ f ) \ c)) ∩ (a ∩ ((e ∩ c) ∩ (e ∩ b)))) ⊆ ((e ∪ ((c ∪ d) \ (f \ d))) ∪ ((a ∩ (c ∪ e)) ∩ ((a \ b) ∪ (c \ a))))

96 ∀a,b,d,e,f f ⊆ ((((a ∪ b) ∩ (e ∪ f )) ∪ d) ∪ b)

97 ∀a,b,c,d,e,f ((((b ∩ c) ∪ (c ∪ e)) ∪ ((d ∩ f ) \ c)) ∪ (((d \ e) \ (d ∩ b)) \ ((d ∩ e) ∪ (f ∩ b)))) ⊆
((c ∩ ((e ∪ f ) \ (b ∪ a))) ∩ (((c \ e) \ e) \ ((a ∩ e) ∪ (f ∪ b))))

98 ∀a,d,e (((a ∩ d) ∪ ((e ∪ d) \ a)) ∪ a) = ∅
99 ∀a,b,c,d,e,f ((((a ∪ d) ∩ (b ∩ d)) \ (c \ (a ∩ e))) ∩ ((b ∪ (e ∪ a)) \ ((a \ c) ∪ b))) ⊆ ((((f ∪ d) ∪ (a \ b)) ∪ b) ∩ b)

100 ∀a,b,c,d,ef ((b \ ((d ∩ a) ∪ (c ∩ d))) \ (((b \ a) \ (c ∩ f )) \ ((c \ e) ∩ (f ∩ a)))) ⊆
((b ∩ ((e ∩ a) \ (a ∪ f ))) ∩ (b ∩ ((f ∪ c) ∪ (b \ e))))



338
C

.B
enzm

üller
etal./JournalofA

pplied
L

ogic
6

(2008)
318–342

mpire Paradox Oants

Clauses Time Model Result Time Steps

— < .1 2 Ctrex. 9 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 20 2
— < .1 2 Ctrex. 71 2
— < .1 2 Ctrex. 14 2
— < .1 2 Ctrex. 9 1
45 t/o — Proof 8 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 11 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 8 1
53 t/o — Proof 8 1
— < .1 1 Ctrex. 8 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
39 t/o — Proof 10 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 8 1
— < .1 2 Ctrex. 9 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 9 1
45 t/o — Proof 10 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 8 1
— < .1 1 Ctrex. 8 1
45 t/o — Proof 8 1
— < .1 2 Ctrex. 9 1
Table A.3
Results for set equalities under no assumptions, i.e., unconditional

Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb Va

Time Clauses Time Model Result Time Steps Time Clauses Time Model Result Time Steps Time

1 < .1 52 t/o — Proof 8 1 34 t/o — < .1 2 Ctrex. 22 2 67 t/o
2 t/o — < .1 2 Ctrex. 26 2 35 t/o — < .1 2 Ctrex. 13 1 68 t/o
3 t/o — < .1 2 Ctrex. 28 2 36 t/o — < .1 2 Ctrex. 8 1 69 t/o
4 t/o — < .1 2 Ctrex. 8 1 37 t/o — < .1 1 Ctrex. 8 1 70 t/o
5 < .1 47 t/o — Proof 9 1 38 t/o — < .1 2 Ctrex. 33 2 71 t/o
6 t/o — < .1 2 Ctrex. 8 1 39 t/o — < .1 2 Ctrex. 8 1 72 t/o
7 t/o — < .1 2 Ctrex. 8 2 40 t/o — < .1 2 Ctrex. 8 1 73 t/o
8 t/o — < .1 2 Ctrex. 8 1 41 t/o — < .1 2 Ctrex. 29 2 74 t/o
9 < .1 44 t/o — Proof 30 2 42 t/o — < .1 1 Ctrex. 8 1 75 t/o

10 t/o — < .1 2 Ctrex. 14 2 43 t/o — < .1 2 Ctrex. 11 1 76 < .1
11 t/o — < .1 2 Ctrex. 10 1 44 t/o — < .1 2 Ctrex. 12 1 77 t/o
12 t/o — < .1 2 Ctrex. 9 1 45 t/o — < .1 2 Ctrex. 11 1 78 t/o
13 t/o — < .1 2 Ctrex. 10 1 46 t/o — < .1 2 Ctrex. 39 1 79 t/o
14 t/o — t/o — Proof 17 2 47 t/o — < .1 2 Ctrex. 9 1 80 t/o
15 t/o — < .1 2 Ctrex. 8 1 48 t/o — < .1 2 Ctrex. 8 1 81 < .1
16 t/o — < .1 2 Ctrex. 106 2 49 t/o — < .1 2 Ctrex. 9 1 82 t/o
17 t/o — < .1 2 Ctrex. 9 1 50 t/o — < .1 2 Ctrex. 8 1 83 t/o
18 < .1 54 t/o — Proof 11 1 51 t/o — < .1 2 Ctrex. 9 1 84 t/o
19 t/o — < .1 2 Ctrex. 26 2 52 t/o — < .1 2 Ctrex. 9 1 85 t/o
20 t/o — < .1 2 Ctrex. 19 2 53 t/o — < .1 2 Ctrex. 8 1 86 t/o
21 t/o — < .1 2 Ctrex. 8 1 54 t/o — < .1 2 Ctrex. 8 1 87 t/o
22 t/o — < .1 1 Ctrex. 8 1 55 t/o — < .1 1 Ctrex. 8 1 88 < .1
23 t/o — < .1 1 Ctrex. 8 1 56 < .1 44 t/o — Proof 10 1 89 t/o
24 t/o — < .1 2 Ctrex. 10 1 57 t/o — < .1 2 Ctrex. 9 1 90 t/o
25 t/o — < .1 2 Ctrex. 8 1 58 t/o — < .1 1 Ctrex. 8 1 91 t/o
26 t/o — < .1 2 Ctrex. 22 2 59 t/o — < .1 2 Ctrex. 8 1 92 t/o
27 t/o — < .1 2 Ctrex. 8 1 60 t/o — < .1 2 Ctrex. 9 1 93 t/o
28 t/o — < .1 2 Ctrex. 9 1 61 t/o — < .1 2 Ctrex. 9 1 94 t/o
29 < .1 46 t/o — Proof 8 1 62 t/o — < .1 2 Ctrex. 10 1 95 < .1
30 t/o — < .1 2 Ctrex. 34 2 63 < .1 39 t/o — Proof 11 1 96 t/o
31 t/o — < .1 1 Ctrex. 8 1 64 t/o — t/o — Proof 67 2 97 t/o
32 t/o — < .1 1 Ctrex. 8 1 65 t/o — < .1 1 Ctrex. 8 1 98 t/o
33 t/o — < .1 2 Ctrex. 9 1 66 t/o — < .1 2 Ctrex. 10 1 99 < .1

100 t/o
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mpire Paradox Oants

Clauses Time Model Result Time Steps

— t/o — Ctrex. 30 3
— t/o — Ctrex. 48 3
— t/o — Ctrex. 72 3
— t/o — Ctrex. 27 3
— t/o — Ctrex. 61 3
— t/o — Ctrex. 27 3
— t/o — Ctrex. 28 3
— .1 4 Ctrex. 8 1
— t/o — Ctrex. 24 3
— t/o — Proof 17 2
— t/o — Ctrex. 33 3
— t/o — Ctrex. 39 3
— t/o — Ctrex. 29 3
— t/o — Ctrex. 27 3
— t/o — Proof 16 2
— t/o — Ctrex. 28 3
— t/o — Ctrex. 37 3
— t/o — Ctrex. 24 3
— t/o — Ctrex. 30 3
— t/o — Ctrex. 27 3
— t/o — Ctrex. 45 3
— t/o — Proof 15 2
— t/o — Ctrex. 27 3
— t/o — Ctrex. 29 3
— t/o — Ctrex. 31 3
— t/o — Ctrex. 23 3
— t/o — Proof 66 2
— t/o — Ctrex. 39 3
— t/o — Proof 15 2
— .2 5 Ctrex. 8 1
— t/o — Ctrex. 39 3
— < .1 4 Ctrex. 8 1
— t/o — Proof 14 2
— t/o — Ctrex. 29 3
Table A.4
Results for set equalities under uniqueness assumption

Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb V

Time Clauses Time Model Result Time Steps Time Clauses Time Model Result Time Steps Tim

1 t/o — t/o — Proof 15 2 34 t/o — t/o — Ctrex. 30 3 67 t/o
2 t/o — t/o — Ctrex. 35 3 35 t/o — t/o — Ctrex. 22 3 68 t/o
3 t/o — t/o — Ctrex. 29 3 36 t/o — t/o — Ctrex. 31 3 69 t/o
4 t/o — t/o — Ctrex. 27 3 37 t/o — t/o — Proof 40 2 70 t/o
5 t/o — t/o — Proof 15 2 38 t/o — t/o — Ctrex. 32 3 71 t/o
6 t/o — t/o — Ctrex. 34 3 39 t/o — t/o — Ctrex. 31 3 72 t/o
7 t/o — .3 6 Ctrex. 8 1 40 t/o — t/o — Ctrex. 31 3 73 t/o
8 t/o — t/o — Ctrex. 26 3 41 t/o — t/o — Ctrex. 31 3 74 t/o
9 t/o — t/o — Proof 14 2 42 t/o — t/o — Proof 17 2 75 t/o

10 t/o — t/o — Ctrex. 33 3 43 t/o — t/o — Ctrex. 36 3 76 t/o
11 t/o — t/o — Ctrex. 23 3 44 t/o — t/o — Ctrex. 33 3 77 t/o
12 t/o — t/o — Ctrex. 30 3 45 t/o — t/o — Ctrex. 35 3 78 t/o
13 t/o — 1.3 5 Ctrex. 8 1 46 t/o — t/o — Ctrex. 23 3 79 t/o
14 t/o — t/o — Proof 16 2 47 t/o — t/o — Ctrex. 28 3 80 t/o
15 t/o — t/o — Ctrex. 25 3 48 t/o — t/o — Ctrex. 32 3 81 t/o
16 t/o — t/o — Ctrex. 25 3 49 t/o — t/o — Ctrex. 26 3 82 t/o
17 t/o — t/o — Ctrex. 23 3 50 t/o — t/o — Ctrex. 82 3 83 t/o
18 t/o — t/o — Proof 16 2 51 t/o — t/o — Ctrex. 40 3 84 t/o
19 t/o — .1 4 Ctrex. 8 1 52 t/o — t/o — Ctrex. 51 3 85 t/o
20 t/o — t/o — Ctrex. 30 3 53 t/o — t/o — Ctrex. 108 3 86 t/o
21 t/o — .3 5 Ctrex. 8 1 54 t/o — t/o — Ctrex. 49 3 87 t/o
22 t/o — t/o — Ctrex. 55 3 55 t/o — t/o — Ctrex. 29 3 88 t/o
23 0.3 3529 t/o — Proof 9 1 56 t/o — t/o — Proof 44 2 89 t/o
24 t/o — t/o — Ctrex. 39 3 57 t/o — t/o — Ctrex. 55 3 90 t/o
25 t/o — t/o — Ctrex. 28 3 58 t/o — t/o — Ctrex. 55 3 91 t/o
26 t/o — t/o — Ctrex. 33 3 59 t/o — t/o — Ctrex. 56 3 92 t/o
27 t/o — .3 4 Ctrex. 11 1 60 t/o — < .1 4 Ctrex. 9 1 93 t/o
28 t/o — t/o — Ctrex. 53 3 61 t/o — < .1 4 Ctrex. 9 1 94 t/o
29 t/o — t/o — Proof 15 2 62 t/o — < .1 4 Ctrex. 9 1 95 t/o
30 t/o — t/o — Ctrex. 30 3 63 t/o — t/o — Proof 91 2 96 t/o
31 t/o — .2 6 Ctrex. 9 1 64 t/o — t/o — Proof 41 2 97 t/o
32 33.5 54 920 t/o — Proof 48 2 65 0.5 5421 t/o — Proof 10 1 98 t/o
33 t/o — t/o — Ctrex. 25 3 66 t/o — .1 4 Ctrex. 8 1 99 t/o

100 t/o
a

e
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mpire Paradox Oants

Clauses Time Model Result Time Steps

— < .1 2 Ctrex. 9 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 10 1
— < .1 2 Ctrex. 9 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— t/o — Proof 25 2
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— < .1 2 Ctrex. 9 1
— t/o — Proof 65 2
— < .1 1 Ctrex. 8 1
— < .1 1 Ctrex. 8 1
— < .1 2 Ctrex. 56 2
— < .1 2 Ctrex. 25 1
— < .1 2 Ctrex. 9 1
— t/o — Proof 18 2
— t/o — Proof 18 2
170 631 t/o — Proof 15 2
— < .1 2 Ctrex. 8 1
— < .1 2 Ctrex. 8 1
— t/o — Proof 14 2
— < .1 1 Ctrex. 8 1
— t/o — Proof 45 2
— t/o — Proof 48 2
— < .1 2 Ctrex. 48 2
— .1 2 Ctrex. 38 1
— < .1 1 Ctrex. 8 1
— t/o — Proof 17 2
— t/o — Proof 60 2
Table A.5
Results for set equalities under disjoint assumption

Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb Va

Time Clauses Time Model Result Time Steps Time Clauses Time Model Result Time Steps Time

1 t/o — t/o — Proof 55 3 34 t/o — < .1 2 Ctrex. 10 1 67 t/o
2 t/o — < .1 2 Ctrex. 10 1 35 t/o — < .1 2 Ctrex. 10 1 68 t/o
3 t/o — < .1 2 Ctrex. 10 1 36 t/o — < .1 2 Ctrex. 11 1 69 t/o
4 t/o — < .1 2 Ctrex. 9 1 37 t/o — < .1 1 Ctrex. 8 1 70 t/o
5 65.4 495 784 t/o — Proof 14 2 38 t/o — < .1 2 Ctrex. 10 1 71 t/o
6 t/o — < .1 2 Ctrex. 10 1 39 t/o — t/o — Proof 48 2 72 t/o
7 t/o — t/o — Proof 43 2 40 t/o — < .1 2 Ctrex. 10 1 73 t/o
8 t/o — < .1 2 Ctrex. 10 1 41 t/o — < .1 2 Ctrex. 10 1 74 t/o
9 t/o — t/o — Proof 92 2 42 t/o — < .1 1 Ctrex. 9 1 75 t/o

10 t/o — < .1 2 Ctrex. 10 1 43 t/o — < .1 2 Ctrex. 13 2 76 t/o
11 t/o — < .1 2 Ctrex. 10 1 44 t/o — < .1 2 Ctrex. 8 1 77 t/o
12 t/o — t/o — Proof 52 2 45 t/o — .1 2 Ctrex. 10 1 78 t/o
13 6.3 62 426 t/o — Proof 17 2 46 t/o — t/o — Proof 15 2 79 t/o
14 t/o — t/o — Proof 48 2 47 t/o — < .1 2 Ctrex. 11 1 80 t/o
15 t/o — < .1 2 Ctrex. 8 1 48 t/o — < .1 2 Ctrex. 10 1 81 t/o
16 t/o — t/o — Proof 16 2 49 t/o — < .1 2 Ctrex. 10 1 82 t/o
17 t/o — < .1 2 Ctrex. 10 1 50 t/o — < .1 2 Ctrex. 10 1 83 t/o
18 t/o — t/o — Proof 17 2 51 t/o — < .1 2 Ctrex. 9 1 84 t/o
19 t/o — < .1 2 Ctrex. 10 1 52 t/o — .1 2 Ctrex. 9 1 85 t/o
20 t/o — < .1 2 Ctrex. 11 1 53 t/o — t/o — Proof 49 2 86 t/o
21 31.3 168 393 t/o — Proof 14 2 54 t/o — t/o — Proof 91 2 87 t/o
22 t/o — < .1 1 Ctrex. 8 1 55 t/o — < .1 1 Ctrex. 8 1 88 t/o
23 t/o — < .1 1 Ctrex. 8 1 56 t/o — t/o — Proof 41 2 89 17.6
24 t/o — .1 2 Ctrex. 10 1 57 t/o — < .1 2 Ctrex. 9 1 90 t/o
25 t/o — t/o — Proof 53 2 58 t/o — < .1 1 Ctrex. 8 1 91 t/o
26 t/o — < .1 2 Ctrex. 10 1 59 t/o — < .1 2 Ctrex. 9 1 92 t/o
27 t/o — < .1 2 Ctrex. 12 1 60 t/o — < .1 2 Ctrex. 9 1 93 t/o
28 t/o — .1 2 Ctrex. 10 1 61 t/o — < .1 2 Ctrex. 9 1 94 t/o
29 t/o — t/o — Proof 16 2 62 t/o — < .1 2 Ctrex. 9 1 95 t/o
30 34.7 276 481 t/o — Proof 21 2 63 t/o — t/o — Proof 17 2 96 t/o
31 t/o — < .1 1 Ctrex. 8 1 64 t/o — — — Proof 20 2 97 t/o
32 t/o — < .1 1 Ctrex. 8 1 65 0.1 4040 t/o — Proof 9 1 98 t/o
33 t/o — < .1 2 Ctrex. 10 1 66 t/o — < .1 2 Ctrex. 8 1 99 t/o

100 t/o
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(Ctrex.), depending on the validity of the statement, the time OANTS needed, and the number of reasoning steps
OANTS had to perform before either VAMPIRE or PARADOX could discharge the problem. Observe that in some
cases, OANTS needs two steps, despite PARADOX or VAMPIRE being able to solve the initial problem in insignificant
time. This is due to possible communication delays via the networked file system, and a second run might yield a
slightly different result.
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