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Abstract

In this paper we are going to show that error coping strategies
play an essential role in linguistic pragmatics. We study the effect of
noisy speaker strategies within a framework of signalling games with
feedback loop. We distinguish between cases in which errors occur
in message selection and cases in which they occur in signal selection.
The first type of errors affects the content of an utterance, and the sec-
ond type its linguistic expression. The general communication model
is inspired by the Shannon—Weaver communication model. We test
the model by a number of benchmark examples, including examples
of relevance implicatures, quantity implicatures, and presupposition
accommodation.

1 Introduction

It is an obvious fact that speakers commit mistakes. It is less obvious that
this should have any significance for pragmatics. In this paper, we are going
to show that the speaker’s and hearer’s error coping strategies are among
the central forces in pragmatics. In particular, we argue that presupposition
accommodation and quantity implicatures are products of the speaker and
hearer’s error handling strategies. However, we will not approach this the-
sis directly. Instead, we first discuss an interpretation principle, explicitly
formulated by Prashant Parikh, but implicitly part of most game theoretic
approaches to pragmatics:!
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series on Optimality Theory and interpretation organised by the editors of this special
issue.
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“[...] if p, p' are the shared probabilities of [S]’s intention to
convey p, p’ respectively, and b, b’ are the respective marginal
benefits of not conveying p, p’ explicitly then it can be shown
that p is communicated with certainty if and only if pb > p/' b'.”
(Parikh, 2006, p. 111)

In the situations we are interested in, the marginal benefit is the differences
between the costs of uttering an unambiguous sentence expressing p and a
less costly ambiguous one. If the marginal benefits are equal, then Parikh’s
principle says that p is communicated with certainty by a statement F' which
is ambiguous between p and p’ if, and only if p is more probable than p'.
Hence, in the following example, Parikh’s principle would predict that the
utterance of F' unambiguously communicates the same as an utterance of Fy
does:

(1) [Doctor’s Appointment] Background: John is known to regularly con-
sult two different doctors, physicians A and B. He consults A more
often than B. Then S utters one of the following sentences:

a) John has a doctor’s appointment at 4pm. He requests you to pick
him up afterwards. (F)

b) John has a doctor’s appointment at A’s practice at 4pm. He
requests you to pick him up afterwards. (Fy)

c) John has a doctor’s appointment at B’s practice at 4pm. He
requests you to pick him up afterwards. (Fg)

As F4 and Fp are equally complex, the marginal benefits are identical.
Hence, as F4 is more probable than F'g, Parikh’s principle predicts that
F communicates F'4 with certainty. This is obviously not the case. Instead,
the natural reaction of the addressee is a clarification request asking for the
place where he can meet John.

Common to most game theoretic models is a communication model with-
out feedback loops from addressee to speaker. Communication happens only
one way, from the speaker to the hearer who then has to decide about the
meaning, or choose an action. Clarification requests are a kind of feedback
which allows the addressee to communicate that he did not fully understand
the utterance. Clarification requests are not for free. They need a small ef-
fort. However, in examples as (1), this additional effort is negligible in com-
parison to the discomfort caused by miscommunication. We assume that the

are ultimately reducible to applications of this principle. The principle does also hold
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Franke, 2009).



clarification request makes the speaker attentive of his mistake, and therefore
makes him restate his message in an unambiguous form. We call clarifica-
tion requests which have these properties, i.e. nominal costs and guaranteed
success, efficient clarification requests.

The addition of feedback loops in the form of efficient clarification requests
will, in itself, not change the validity of Parikh’s principle. After all, clarifi-
cation requests need effort, however minimal it is. If the speaker is known to
follow a strategy which involves ambiguous signals, then the addressee’s best
response to these signals is still to choose the most probable interpretation.
It is only after allowing the possibility of errors in the speaker’s strategy
that efficient clarification requests can take effects. Obviously, that is what
addressees do in the Doctor’s Appointment example: they assume that the
speaker made a mistake.

However convincing the Doctor’s Appointment example may be as a
counter—example to Parikh’s principle, on its own it does not provide enough
evidence for establishing an alternative principle, or let alone to prove the
contravariant principle saying that addressees always react with clarification
requests to ambiguous utterances. In the next section we discuss Parikh’s
standard example, which seems to support his principle, and a series of ex-
amples which seem to be structurally equivalent with this and the Doctor’s
Appointment example but do not lead to clarification requests. They serve
as benchmarks for the theory which we set up in the subsequent sections.

Our aim is a model of communication with noisy speaker strategies, hence,
we take as our reference point the Shannon-Weaver model of communication
(1949) which we introduce in Section 3. In the same section, the basic con-
cepts associated with the communication model are also introduced, e.g. the
notion of implicature as well as a version of signalling games with feedback.
Section 4 presents the central error models. In the remaining two sections
we test our error models with the benchmark examples from Section 2.

2 The benchmark examples

In this section we provide a series of examples which our theory is supposed
to explain. We first examine Parikh’s main example:

(2) [Parikh (2001, p. 20)] Every ten minutes a man gets mugged in New
York. (Fp)

Sentence Fp shows a scope ambiguity. Either there is one person who gets
mugged every ten minutes (¢3v), or every ten minutes there is some person



or other who gets mugged (pv3). Both states of affairs can be expressed by
the more complex but unambiguous sentences Fy and Fg:

1. Every ten minutes some man or other gets mugged in New York. (F4)
2. Every ten minutes a particular man gets mugged in New York. (F'g)

The strategic situation can be described as follows. The speaker intends to
communicate @3y or py3 and chooses one of the sentences Fp, Flyu, or Fp.
If the hearer interprets the uttered sentence as intended, then communica-
tion is successful and both receive a payoff of 1. If they miscommunicate,
they receive a payoff of 0. If the speaker chooses one of the unambiguous
sentences, then, as they are more complex, a small amount is subtracted.
In the following game tree in Figure 1, this is indicated by the minus—sign
after 1. The game tree starts with the utterance of the speaker, followed by
the hearer’s interpretation, and finally shows their joint payoff. The hearer
cannot distinguish between uttering Fp in situation ¢y3 and situation gy.
In Figure 1, this is indicated by the vertical line connecting the respective
central nodes.
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Figure 1: The game tree for Parikh’s and the Doctor’s Appointment example.

Speaker and hearer can follow several strategies. Strategies are repre-
sented by functions which map the agent’s information states to actions. For
example, the speaker can choose Fp in ¢py3, and Fp in pgy. This is repre-
sented by the function S which maps the information state py3 to Fp, and
the information state @3y to Fg. The hearer’s information state can be iden-
tified with the sentence received from the speaker. Hence, it can be Fp, Fu,
or Fg. The hearer strategy maps these states to interpretations. The set of
interpretations can be identified with the set of the speaker states gy and
pv3. Parikh assumes that state ¢y3 is much more probable than state ¢sy. A
strategy pair (S, H) is a Nash equilibrium if neither player has an interest to
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choose a different strategy as long as the other player sticks to his equilibrium
strategy. Parikh’s example shows two Nash equilibria: the two strategy pairs
for which H o S is the identity map. These are the strategy pair (Sy, H) for
which the speaker chooses the ambiguous sentence Fp in the more probable
situation @y3, and the unambiguous sentence Fg for ¢y, and the strategy
pair (Sq, Hs) for which the speaker chooses the ambiguous sentence Fp in
the less probable situation @3y, and the unambiguous sentence F4 in ¢y3.2
The two Nash equilibria are not of equal status. We call a Nash equilibrium
(S, H) a Pareto Nash equilibrium if there is no other Nash equilibrium which
is preferred by both agents. In the example, both agents have an interest to
switch from (Ss, Hs) to (S1, Hy), but they have no interest to switch from
(S1, Hy) to (Ss, Hs). This follows from the assumption that ¢ys is much more
probable than ¢3y. Hence, (S7, Hy) is a Pareto Nash equilibrium, but not
(So, Hs). Parikh assumes that speaker and hearer agree on Pareto Nash equi-
libria, from which it follows that the ambiguous sentence Fp is interpreted
as every ten minutes some man or other gets mugged in New York.

Structurally, Parikh’s example is identical to the Doctor’s Appointment
example:

(3) [Doctor’s Appointment] Background: John is known to regularly con-
sult two different doctors, physicians A and B. He consults A more
often than B. Then, S says: ‘John has a doctor’s appointment at 4pm.
He requests you to pick him up afterwards.” (Fp)

After replacing Fp with Fp, and py3 with ¢4 (John waits at A’s practice),
and @3y with ¢p (John waits at B’s practice), we arrive at the same game
tree, see Figure 1. The two examples can only differ with respect to the prob-
abilities assigned to the two propositions the speaker intends to communicate.
Parikh assumes that ¢y3 is much more probable than ¢sy. For purposes of
illustration, he chooses the values P(py3) = 0.9, and P(pay) = 0.1 (2001,
p. 28). The unique Pareto Nash equilibrium of his model does not change as
long as P(pva) > P(p3v). As the game trees of the two examples are struc-
turally identical, and the equilibria only depend on one state being more
probable than the other, it follows that the predictions must be identical.
Whatever the probabilities of p4 and ¢p are, as long as P(p4) > P(pp),
Fp must be interpreted as meaning ¢ 4.

The reason for the differences found in the two examples is obviously that
in Parikh’s example the probability of one state is not simply greater than

*That means, S1(pva) = Fp, Si(ay) = Fp, Hi(Fp) = @v3, Hi(Fa) = ¢v3, and
Hi(Fg) = ¢av; and Sa(pav) = Fp, Sa(pva) = Fa, Ho(Fp) = ¢ay, Ha(Fa) = py3, and
Hy(Fp) = pay. Hence, for ¢ = pva, pav, it is (H1 0 S1)(¢) = (Hz2 0 S2)(¢) = ¢.



the probability of the other state but that one state is practically certain and
the other impossible. If the respective probabilities approach one or zero,
it is plausible that they are subjectively treated as being identical to one or
zero. However, Parikh’s principle does not depend on the probabilities being
close to one or zero, it makes the same predictions when they are 2/3 and /3.
As the Doctor’s Appointment example shows, in this case, the addressee will
not accept the ambiguity but react with a clarification request.

The question of how addressees react to ambiguities is not settled without
discussion of apparently similar examples like the Out—of-Petrol example (4),
and the Bus-Ticket example (5):

(4) [Out of Petrol, Grice] H is standing by an obviously immobilised car
and is approached by S; the following exchange takes place:
H: 1T am out of petrol.
S: There is a garage round the corner. (Fg)
+> The garage is open.

(5) [Bus Ticket] An email was sent to all employees that bus tickets for
a joint excursion have been bought and are ready to be picked up.
By mistake, no contact person was named. Hence, H asks one of the
secretaries:
H: Where can I get the bus tickets for the excursion?
S: Ms. Miiller is sitting in office 2.07. (Fiy)
+> Bus tickets are available from Ms. Miiller.

In both examples, the speaker utters a sentence which can be interpreted
in two different ways, and hence involve ambiguities which are similar to
the Doctor’s Appointment example, as shown in Figure 2. There, ¢,,, is
the situation in which the garage is open, and ¢, the situation in which
it is closed; ¢pqs is the situation in which bus tickets are available from
Ms. Miiller, and ¢_p4, the situation in which they are not. However, in none
of the examples should the addressee react with a clarification request.
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Figure 2: The Out—of-Petrol and the Bus-Ticket example.



The difference between these examples and the Doctor’s Appointment
example are obvious. Whereas in the Doctor’s Appointment and in Parikh’s
example the corresponding unambiguous alternatives guarantee communica-
tive success in both situations, this is not the case in the Out—of-Petrol and
the Bus—Ticket examples. For example, if the garage round the corner is
closed, then the unambiguous sentence ‘ There is a closed garage around the
corner’ does not solve the addressee’s problem of finding petrol for his car.
What these examples show is that ambiguity does not automatically lead to
clarification requests. Our model has to work out the precise conditions under
which they lead, and under which they don’t lead to clarification requests.

There is an important aspect with respect to which the Out—of-Petrol and
the Bus-Ticket example differ. Whereas the pure propositional contend of
the speaker’s statement in the Out—of—Petrol example will lead the addressee
to choose the intended action, this is not the case in the Bus—Ticket example.
This can be illustrated as follows: Assume that in (4) H finds a map with
all petrol stations in town and notices that (Fg) there is a garage round
the corner. This will be sufficient information to induce him to go to this
garage. Now assume that in (5) H finds a list with all the office numbers of
all employees and reads there that (Fyy) Ms. Miiller is sitting in office 2.07.
If there is no a priori link between F); and Ms. Miiller having bus tickets,
i.e., if the two events are probabilistically independent, then learning Fj; will
not induce H to go to office 2.07.

We explain the Bus—Ticket example along the following lines: the speaker
should have said that Ms. Miiller has the bus tickets; he forgot to mention
it and the addressee accommodates the missing information for making the
assertion of F; pragmatically intelligible. Hence, our model needs to include
some repair mechanism which involves accommodation. This should make it
also applicable to standard examples of accommodation:

(6) [Accommodation] Smith entered the room. She was wearing a red dress.

Here too, we can argue that the speaker committed an error when he used the
pronoun she without satisfying its presupposition. The recognition of this
error triggers a repair mechanism which involves accommodation. However,
we will argue that the source of the error is different in the accommodation
and in the Bus—Ticket example, leading to two different kinds of accommoda-
tion. Whereas in the Bus—Ticket example the speaker committed a mistake
when selecting the content of his message, the speaker in (6) only commit-
ted an error when choosing the wrong form of his utterance. He could have
said ‘Smith was wearing a red dress’ without committing a mistake or chang-
ing the content. This distinction is systematic, and we generally distinguish
between errors in message selection and errors in signal selection.
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The Bus—Ticket and the Out—of—Petrol examples involve relevance impli-
catures. We also show that error models can explain scalar implicatures:

(7) [Scalar Implicatures] Some of the boys came to the party.

The scalar expression some can be used in situations in which all of the boys
came, and in situations in which only some but not all came. Although this
is not a semantic ambiguity, but only a case of a weak expression which could
be replaced by a stronger one, it is often argued that it becomes ambiguous
in situations in which the joint goal of speaker and hearer is to communicate
the true state of affairs. We will argue that quantity implicatures can be
explained as the result of a hearer strategy coping with speakers who omit
parts of their utterances. The Bus—Ticket example and the scalar examples
are structurally closely related. The difference is again explained by the fact
that the Bus—Ticket example involves errors in message selection, whereas
quantity implicatures origin from errors in signal selection.

3 The model of communication

Current game theoretic models of communication consider one-way commu-
nication only, i.e. communication in which the speaker sends a signal without
the possibility of the hearer giving feedback to the speaker. Only if the models
allow for more than one round of interactions, it is assumed that speaker and
hearer can observe the outcome of communication and adjust their strategies
accordingly. In this sense, they allow for feedback which involves learning
about each other. In contrast, we mean by feedback the possibility to send a
message back to the speaker immediately after receiving the signal, i.e. be-
fore the outcome of the game is evaluated. We only consider a simple type of
feedback messages which signal the speaker that the addressee has detected
an error.

As we are interested in communication with errors, a natural starting
point is the communication model of Shannon & Weaver (1949). Figure 3
shows a schematic representation. It consists of five modules. First, the
information source which produces a message to be communicated to the
receiver. Second, the transmitter which generates a signal from the selected
message. Third, the channel over which the signal is transmitted. Fourth,
the receiver which reconstructs the message from the signal. Finally, fifth,
the destination, which is the person for which the message is intended.

Shannon’s theory is concerned with the question of how accurately the
signal can be transmitted in the presence of noise. That means that during
the transmission over the channel some symbols of the signal may randomly
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Figure 3: The Shannon-Weaver model of communication (Shannon and
Weaver, 1949, p. 34).

be deleted, changed, or additional ones be added. The source of the noise is
an exogenous parameter which only affects the channel of transmission.

We are concerned with the conditions under which the signal can com-
municate the message successfully in the presence of errors committed by
the speaker. Errors can occur either in the selection of the message or in the
generation of the signals. We will exclude the possibility of noisy channels,
or of mistakes committed by the addressee. Hence, signals will always be
accurately and reliably transmitted. The description of the speaker’s errors
will be the key parameter in the explanations of specific phenomena.

The modified model consists of four relevant modules, each representing a
step in the communication process at which the speaker or the hearer makes
a decision. We call the first module message selection. Here, the speaker
selects a formula which he intends to communicate. The second step is the
signal selection in which the speaker generates a linguistic form or sentence
and sends it to the addressee. The third step is the signal interpretation
in which the hearer reconstructs the message from the signal. Finally, the
fourth step is decision making in which the hearer decides about subsequent
actions. The fourth step is optional, and will only be considered in situations
in which the joint purpose of the conversation is to solve a decision problem
of the hearer. In addition, we allow for feedback messages which inform the
speaker about the detection of an error. The schema of the modified model
is shown in Figure 4.

If decision making is about real actions, its effect can only be evaluated
with reference to the real world and the preferences of speaker and hearer.
In addition, also the information states of speaker and hearer have to be
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Figure 4: The modified Shannon—Weaver model with feedback loop

defined. We represent these parameters in signalling games. They describe
the strategic situation in which interlocutors make decisions about signals
and actions. All the examples discussed in Section 2 involve a speaker who
is a domain expert. We therefore simplify our model and assume that the
speaker knows the exact state of the world. We represent messages by first
order formulae ¢. The actual world v and intended message ¢ are only known
to the speaker. They are his private knowledge. In game theory the private
knowledge of an agent is called his type. In contrast to the speaker, we assume
that the hearer has no private knowledge; this means that everything that
the hearer knows is common knowledge.

We assume that interlocutors play the following variety of signalling
games:

1. Nature chooses a world v from a set of possible worlds 2 with proba-
bility P(v). The world v is known to the speaker alone.

2. The speaker chooses a message ¢ from a set £ of first order sentences
with probability S, (|v) which depends on the world v.

3. Then he chooses a signal F from a set F of sentences of natural language
with probability Sz(F|¢). The signal is reliably transmitted to the
hearer.

4. The hearer interprets the signal by a formula ¢ € £ and chooses an
action a from a set A, or sends back a clarification request c. If he sends
a clarification request, the game starts again with message selection.

5. In the second round, no errors can occur, and the hearer can not send
clarification requests. Hence, the game must end.
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We distinguish between interpretation and action selection games. In an
interpretation game, the game ends after signal interpretation. If the hearer
also chooses a non-linguistic action, we call the game an action selection
game. Furthermore, we call S;(¢|v) the speaker’s message selection strat-
egy, and Sz(F'|¢) his signal selection strategy. In contrast to the strategies
considered in the previous section, these strategies are probabilistic, so—called
mized strategies. In contrast to pure strategies, which map information states
to actions, mixed strategies select the actions only with a certain probability.

In general, we will not separate the hearer’s signal interpretation and
decision making. If the hearer’s only task is to choose an interpretation
for signals, this is the case for example in models of scalar implicatures,
then we represent his strategy by a probability distribution H(¢|F) over
interpretations. If a decision about real actions follows, we represent his
strategy by a probability distribution H (a|F') over non-linguistic actions. We
will speak of actions in general to cover both cases, and simply write H (a|F’)
for the hearer’s interpretation strategy. The following graph summarises the
sequence of events involved in playing signalling games without clarification
requests:

World  Intentions Signal Action

P(v)  Sclelv)  Se(Fle)  H(alF)

At the end, the outcome of the game is evaluated with respect to a shared
utility measure u. That the utility measure u is shared by S and H means
that there is no conflict of interest between speaker and hearer, and that they
both consider the same outcomes successful. This implicitly represents the
Gricean cooperative principle.

In addition to the general game structure, we make certain assumptions
about the meaning of formulae and interpretation of sentences. We assume
that the meaning of formulae ¢ € L is described by their extension [¢] C €,
and that the semantics of sentences F' is described by a function | . | which
maps natural language sentences to non—empty sets of formulae. The set
|F'| represents the possible translations of sentence F. If |F| contains more
than one formula, F' is ambiguous. We assume that for all formulae ¢ there
is a sentence F for which |F| = {¢}. In this case, we write |F'| = . This
condition guarantees that each formula can be expressed unambiguously.

30bviously, pure strategies are a special case of mixed strategies. For Example 2 the
pure strategy S1 with S1(¢va) = Fp and S1(¢av) = Fp is equivalent to the mixed strategy
Sl with Sl(FP‘(pvg) =1 and Sl(FB|(pgv) =1.
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Finally, we have to say how costs of signals and clarification requests are
represented. If no clarification request is sent, a branch of the game has the
form (v, p, F 1, a). If the game is an interpretation game, then the only task
is to interpret the signal correctly. Hence, u has the form (¢, v) — cost(F')
with 0(p, ) = 1 iff ¢ = ¥ and §(p,¥) = 0 else. If the game is an action
selection game, we assume that the utility measure can be decomposed into
the utility of performing a in v minus the costs of F: wu(v,a) — cost(F).
This means that in an action selection game we implicitly assume that the
interpretation of the signal is always successful. Furthermore, we assume that
costs are nominal, i.e. positive but vanishingly small. In addition, we assume
that costs of clarification requests are higher than the costs of unambiguously
expressing the intended formula.

For Grice, the information communicated by an utterance divides into
two parts, the semantic meaning of the utterance and its implicated meaning.
The basic intuition about implicatures is captured by the following quote:

43

. what is implicated is what it is required that one assume a
speaker to think in order to preserve the assumption that he is
observing the Cooperative Principle (and perhaps some conver-
sational maxims as well), ...” (1989, p. 86)

We generalise Grice’s idea that implicatures arise from the additional
information that an utterance provides about the knowledge of the speaker.
More precisely, we say that an utterance of F' implicates that X holds if X
is certain given that F' has been uttered. In decision theory, the probability
of some event X given knowledge of an event Y is represented by conditional
probabilities. For X C Q let P(X|F) be the probability of X given that the
speaker uttered F', and for ¢ € L let P(¢|F') be the probability that the
speaker intended to communicate ¢ given that he uttered F.* Then, we say
that the utterance of F' implicates that the actual world is an element of
aset X, F'4+> v € X, or that it implicates that the speaker intended to
communicate ¢, F' +> ¢, iff the following conditions hold:

F4>@weX)iff P(X|F) =1, and F+> @ iff P(|F)=1.  (3.1)

This is a formal interpretation of Grice’ idea that implicatures are what the
speaker must have had in mind when making his utterance.

4These probabilities are defined as follows: Let P(v, F) := P(v) > Scelv) SE(Flp)
‘the probability that the world is v and that the speaker utters F) P(p,F) :=
> o P(v) Sc(plv) SF(Flp) ‘the probability of the speaker intending to communicate ¢ and
uttering I, and P(F) := > P(v) 32, Sc(plv) Sr(Fl) ‘the absolute probability of F
being uttered.” Then, the probability P(v|F) that the actual world is v given the speaker
uttered F, and the probability P(p|F) that the speaker intended to communicate ¢ given
that he uttered F' are P(v|F) = P(v, F)/P(F) and P(¢|F) = P(¢, F)/P(F).
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4 Error models

“The phenomenon of linguistic misunderstanding has been given
very little attention in linguistics thus far. This is hard to un-
derstand, since in all sciences having to do with systems it is
a well-known fact that if one wants to get insight into how a
system works, it is more revealing to regard instances of small
misfunctions than examples of perfect functioning.” (Zaefferer,
1977, p. 329)

The situation has not changed significantly since Dietmar Zaefferer wrote
this passage in the middle of the seventies. That error coping strategies
should play a role in communication, and especially in pragmatics, is such
an obvious idea that it makes one wonder why it has not been explored
seriously before. Speakers commit errors. These errors are expected by both
speaker and hearer, and this expectation is part of the common ground.
Error models are an attempt to model the effects of such commonly expected
errors in pragmatics. Errors may originate from multiple sources; hence, the
representation of errors in error models is as general as possible. FErrors
may occur in each step of the communication process, in one single step or in
several steps simultaneously. We only discuss situations in which errors occur
in message selection or in signal selection, but not in both. Let S, and Sz be
two error—free speaker strategies. They define sets N5 = {¢ | S;(p[v) > 0}
and N7 = {F | Sx(F|e) > 0}. Errors will change the strategies Sy and S

into noisy strategies S; and S and define sets N2 = {¢ | S£(plv) > 0}
and N = {F | Sr(F|p) > 0}. We call these sets noise sets. If there is no
noise in signal selection, then ./\/;f = Nf; , and if there is no noise in message
selection, then N = N£. In both cases, we arrive at a sequence of noise sets
(Nv,<p><v,<p>€Q><£ with

Nop =N for ¢ e NF and N, =0 for o & N (4.2)

An error model is an interpreted signalling game together with a sequences
of noise sets:

Definition 1 An error model is a pair <54, (J\/’UW)@,@)eQXd which consists of
an interpreted signalling game 4 = (Q, P, L, F, A, c,[.],].],u) and a sequence
(Noo)wpyeaxe of sets Ny, C F.

How should the hearer react to the possibility of noise in the speaker
strategy? It is here that the clarification requests come into play. According
to our definition of interpreted signalling game, a clarification request c leads
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to a second round in the game. We assume that clarification requests make
the speaker aware that the hearer suspects an error, and that this makes
him produce a signal which is guaranteed to be free of mistakes. Together
with the assumption that clarification requests only incur nominal costs,
these assumptions guarantee that the hearer has a cheap means to secure an
error—free answer which leads to communicative success.

It can be easily seen that the addition of efficient clarification requests in
itself has no effect on the equilibria of an interpreted signalling game. This
changes when we consider noisy communication.

Let Za(v,p) = {a € A|Vb € Au(v,p,b) < u(v,p,a)} be the set of
all actions which are optimal from the speaker’s perspective. After receiving
signal F', the hearer knows that an action a is speaker optimal if it is an
element of B4 (v, @) for all (v, @) for which the speaker can produce F. This
means that the hearer knows that an action is speaker optimal if it is an
element of the set:

BA(F) = {Balv.0) | F € Ny} (4.3)

As the speaker knows the actual world and the intended message, the speaker
optimal actions are the objectively optimal actions. Hence, if B A(F) is
not empty, then the hearer can safely choose any action from it. If it is
empty, then he better chooses a clarification request. The reason is that
B A(F) = 0 implies that for every action a there is a speaker type (v, ) for
which F' € N,,, and for which a is not optimal. This would make the choice
of any action risky. Hence, we assume that the canonical hearer strategy H
which takes into account the noise described by an error model is such that it
reacts to signals F' with clarification request c if B4(F) = ), and otherwise
chooses any of the actions in Z4(F) with equal probability.

For this new strategy, the speaker has the possibility to improve his orig-
inal strategy S by intentionally choosing signals which otherwise could only
be produced under the influence of noise. Let U be the set of all F' € F for
which Z4(F) is not empty:

U:={F € F|BsF)+0}. (4.4)

Then, the speaker can choose from N, , NU. Let U, be the minimally
complex signals from N, , NU. It N, , NU # 0, then the speaker will choose
some element from U, ,,. If M, ,NU is empty, the speaker can send any signal
in N, ,. The hearer will react to this with a clarification request, and the
next round guarantees an optimal outcome. Let S be any speaker strategy
of this sort, then there is no other strategy pair which would provide higher
payoffs except for the nominal costs of signals.
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5 Errors in message selection

In this section we consider the effects of errors which occur in message se-
lection. All examples are examples of action selection games. The Out—
of—Petrol example, the Bus—Ticket example, and the Doctor’s Appointment
example belong here.

We assume here that error—free games are solved such that the hearer
chooses actions which he expects to be optimal given the semantic meaning
of the speaker’s signal, and that the speaker chooses the least costly signal
which unambiguously expresses a formula which leads the hearer to choose
a speaker optimal action.® If the speaker utters F, we write Z4(F) for the
set of actions the hearer believes to be optimal.

We first consider the Bus-Ticket example (5). The possible worlds differ
according to the contact person and his office number. To simplify the model,
we assume that there are exactly two staff from whom bus tickets may be
available, Ms. Miiller m and Mr. Schmidt s. Furthermore, we assume that
the tickets are available from Ms. Miiller iff they are not available from Mr.
Schmidt, and that one of them is sitting in office 2.07 iff the other one is
sitting in 3.11. Hence, the model only contains four worlds and two actions.
We assume that all possibilities are equally probable. Let ¢; be the formula
stating that ¢ has the tickets, and ¢;/, the formula stating that ¢ is sitting
in office n; let F; and F;/, be the respective natural sentences which express
@; and ;. Finally, let go-to-n be the act of going to office number n.
The utilities are shown in the following table. The last column contains the
formulae which the speaker must communicate for informing the addressee
about the exact state of the world:

Q| ©m  Pmyor | go-to-2.07  go-to-3.11

vl + 1 0 ©m N Pmy2.07
Ug | T - 0 1 ©m N Pm/3.11
Us |~ + 0 1 ©s N\ Ps/3.11

va ] — - 1 0 ©s N\ Ps/2.07

We assume that the cheapest sentences expressing ¢; and ¢;/,, are respectively
F; ‘Bus tickets are available from ©" and Fj;, ‘i is sitting in office n.” First,
we show that the sentences F; A Fj/, are optimal for the noise free game,
but none of the conjuncts Fj, Fj/,. As explained above, we assume that in
the noise—free game the hearer chooses the action which he thinks to be
optimal given the semantic content of the utterance. If the speaker says F;

A full justification of this approach is beyond the scope of this paper, but see (Benz,
2006). This assumption does not affect the predictions of the noise sets, but it is necessary
for justifying the noise sets.
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or Fj/,, the hearer learns from their semantics that the actual world belongs
to [¢i] or [¢i/n] respectively. Hence, he can not decide whether go-to-2.07
or go-to-5.11 is the better choice. In contrast, if the speaker utters Fj A Fj,,
then the hearer knows that go-to-n is the best action. Hence, ZB4(F;) =
Ba(Fim) = {go-10-2.07, go-to-3.11}, and Bu(F; N Fyp) = {go-to-2.07}.
This entails that the speaker’s best choice is to communicate the formula
©i N\ @i/ which is true in the actual world, and hence to utter its respective
literal expression Fj A Fj/,. As in Section 4, let N§ denote the set of all
formulae which can be chosen by the speaker’s error—free message selection
strategy. The elements of N4 are then the formulae shown in the last column
of the previous table.

The following definition of noise sets captures the intuition that the sec-
retary in the Bus—Ticket example simply forgot to name a conjunct of the
optimal message. The noise sets only depend on the actual world v. We set:

Ny ={wlvel] A3p e Ny ¥ <p}. (5.5)

Here 1 < ¢ is a transitive relation which says that ¢ = ¢, or ¢ is a conjunct
of p; ie. p <, and ¢, <o A1. Hence, we arrive at the noise sets NX
which are the union of the formulae shown in the last two colums:

Q| om  Pmy2.07 N2 NE\NE

v |+ + Om N Pm/2.07  Pms Pm/2.07
vy |+ - Om AN Pm/311 Pms Pm/3.11
Vs | — + Vs NPs/311 Ps, Ps/3.11
Ug | — - ©s N Psj2.01 Psy Ps/2.07

We can read off the implicatures ¢ of Fy, 207 ‘Ms. Miller is sitting in of-
fice 2.07" from the rows which contain ¢,,/207. If there is an act which is
optimal in all rows containing ¢y, /207, then B A(Fmy2.07) is not empty, and
F./2.07 1s not answered by a clarification request. Furthermore, if 1 is true in
all worlds belonging to a row containing ¢y, 207, then F,, s o7 implicates 1.
This graphical solution can be justified as follows. As the rows represent the
possible branches of the underlying signalling game, the fact that the actual
world v is an element of [¢] for all branches in which £}, /207 can be uttered
immediately implies that P([¢]|F./2.0r) = 1. By definition (3.1), this is
equivalent to Fy, 207 +> v € [¢]. As the speaker’s signal selection strategy
is free of errors and follows the semantic convention, F,, /2 o7 can only be cho-
sen as verbalisation of ¢,,/207. The formula ¢,,/207 in turn can only occur
as element of V2. As v; = ¢y, holds, it follows that P([¢m]|Fmy2.0r) = 1,
and hence that F,, 07 implicates that ¢, ‘Ms. Miller has the bus tick-

ets’. P(vi|Fpn/207) = 1 also implies that BA(Fpjaor) = {go-to-2.07} is not
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empty, and therefore that the hearer will not react with a clarification re-
quest but choose the intended action. In contrast, if the secretary had said
E,, ‘Ms. Miiller has the bust tickets’, the model would predict a clarification
request. This follows from %4 (F,,) = 0, which in turn follows from the fact
that F}, can occur in both v; and wve, and the fact that there is no action
which is optimal in both worlds.

We next compare the Bus-Ticket with the Out—of-Petrol example (4).
We distinguish four equi-probable worlds {v;,vs,v3,v4} and two actions:
go-to-d, where d is the place of the garage, and a random search r. Let
wc = |Fg| be the formula which states that d is a petrol station, and @,
that the place is open. The worlds and utilities are defined as follows:

Q| o Yopn | go-to-d
vy | + + 1 €
vy | + — 0 €
Vs — + 0 £
Uy — — 0 £

The answering expert knows that he is in v;. We assume that ¢ is such that
after learning ¢ the hearer prefers go-to-d over the random search. This
means that B4(Fg) = {go-to-d}, and therefore that ¢ € N5 . This marks
the difference between the Out—of—Petrol and the Bus—Ticket example. The
consideration of error sets is not necessary for calculating the implicature.
Although the trees shown in Figure 2 seem to be structurally identical, the
situation is quite different. In the Out—of-Petrol example no accommodation
is necessary. This is in agreement with the intuition that the interpretation
of the answer in the Bus—Ticket example needs more effort than in the Out—
of-Petrol example. 6

Finally, we consider the Doctor’s Appointment example. We consider a
model with two worlds, a world v; in which John is waiting at A’s practice,
and a world vy in which he is waiting at B’s practice. Let us assume that
P(vy) = 2/3, and P(vy) = 1/3. The speaker said Fp: ‘John has a doctor’s ap-
pointment at 4pm. He requests you to pick him up afterwards.” His assertion
would have been unmistakable if he had said (F4) ‘John has a doctor’s ap-
pointment at A’s practice at 4pm. He requests you to pick him up afterwards’
if John waits at A’s practice, or (Fg) ‘John has a doctor’s appointment at
B’s practice at 4pm. He requests you to pick him up afterwards’ if he waits

6The difference does not depend on the fact that we considered only one alternative
in the Out—of-Petrol but two in the Bus-Ticket example. In (Benz, 2011) the type of
models used for the Out—of-Petrol example were called normal optimal answer models.
This paper also provides a procedure for their construction and a detailed justification.
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at B’s practice. Let |Fa| = ¢a, |Fg| = ¢p, and |Fp| = ¢p. As @4 is
more probable than g, we find that B4(F4) = Ba(Fp) = {go-to-A}, and
PBA(Fp) = {go-to-B}. Taking complexity into account, it follows that in the
error—free game the speaker should say Fp in v; and Fg in vy. This explains
the following table:

Q| pa pp | go-to-A go-to-B | N5 NE

v |+ = 1 0 ©D ©D
vy | —  + 0 1 YB  ¥B, YD

Hence, for noise—free communication, we arrive at the same prediction as
Prashant Parikh: the speaker should use the ambiguous but less complex
signal Fp in the frequent situation, and the complex but unambiguous signal
Fp in the less frequent situation. This changes when we take errors into
account. @p is a conjunct of ¢4 and . Hence, assuming the same noise set

as in (5.5), pp € NE NNE, and therefore Fp € N, o, NNy . It follows
that Z4(Fp) = 0, and our model predicts that the hearer reacts with a
clarification request. This example shows that taking errors into account is

essential to pragmatics.

6 Errors in signal selection

In this section, we consider the effects of errors occurring in signal selection.
This means, the speaker has chosen an appropriate message but misses the
conventionally correct signal. In this section, all games are interpretation
games. We show how to apply error models to quantity implicatures and
presupposition accommodation.

By definition of an interpretation game, the objectively best action for
the hearer in a situation in which the speaker intends to communicate a
formula ¢ is to choose ¢. When taking errors into account, choosing ¢ as
interpretation of F' is the best response if ¢ is the unique element of:

BuF) = ({{e}|Tv: FeN,}. (6.6)

It 2 A(F") is empty, then the hearer cannot be sure how to interpret F'. Hence,
a clarification request is the best response. We will use (6.6) for explaining
quantity implicatures and presupposition accommodation.

6.1 Quantity implicatures

Implicatures of complex sentences have been intensively discussed over the
last years. Omne of the most important contributions to this discussion is
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(Sauerland, 2004) who considers, among others, examples of the following
type:

(8) a) Kai had some of the broccoli.
+> Kai didn’t have all of the broccoli.

b) Some of the people ate some of their broccoli.
+> Some but not all of the people ate some but not all of their
broccoli.

In this section we show how error models can be applied to these examples.
We assume that the relevant set of signals F are sentences of the form: ‘Kaz
had the broccoli,” ‘ Kai had some of the broccoli,’ * Kai had all of the broccoli,’
and connections built from these sentences with the help of ‘and,” ‘or,’ ‘it
is mot the case that...’. In addition, we may consider sentences of the form
‘Some of the people had some of the broccoli, “All of the people had some of
the broccoli,” etc.

We first consider Example (8a). We use suggestive notation and write
e.g. Fy for ‘Kai had all of the broccoli,” Fs-y for ‘Kai had some but not all
of the broceoli,’ F_5 for ‘Kai had none of the broccoli,” etc. Accordingly, we
denote the corresponding logical formulae by ¢y, ¢3-v, ©-3, etc. About the
costs we only need to assume that cost(F,) < cost(F),) iff F, is intuitively
more complex than F).

We explain quantity implicatures as the effect of the speaker’s tendency
to omit parts of the sentence which would literally expresses the intended
message. More specifically, we assume that the speaker may only omit some
conjunct of the optimal signal. Let F' <1 G hold, iff F' results from G by
(possibly) omitting some conjunct of G. The following relations hold:

5 Fy, F5y < F5—y, and F5, F.y, F5 A\ F.y < F5 A\ F_y. (67)

The definition implies that if ' expresses ¢, and G expresses @, then F' <G
implies @ — 1. We assume that the errors only depend on the formula
which the speaker intends to communicate but not on the state of the world.
Therefore, we can leave the actual state of the world out of consideration most
of the time. The only restriction imposed by v is that the intended message
¢ must be true in v. Let Lit(¢) be the set of the cheapest signals literally
expressing formula ¢. Then, the speaker’s tendency to omit conjuncts of the
literal expressions produces the following noise set:

N, = {F|3G € Lit(p) F < G}. (6.8)

For (8a) we can assume that the speaker may only have the intention to
express -3, Y-y, or wy. A speaker following the literal strategy can only
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choose signals F.3, F5.y, or Fy. Itis N, = {F 3}, V., = {F5-v, F5, F.y},
and N, = {F,}. In Section 4, we introduced U, as the set of all minimally
complex F' € N, for which Bu(F) # 0. Using a table as before, we arrive
at the following situation:

formula ¢ Lit(p) N, U,
-3 F3 F_3 F_3
P3-v F3v  Fiw, F3,Fy F3
Py Fy Fy Fy

The table immediately shows that P(p3-y|F5) = 1, i.e. that it is certain that
the speaker intended to communicate o3y given that he uttered F5. By
Definition 3.1, this means that F5 4> ¢©3_y.

Next, we consider Example (8b) ‘Some of the people ate some of their
broccoli’ (F5p3). We write 3 short for some but not all, and § for none. We
find the following formulae and signals:

0 el W 0 3 v
Q Lo Loz Lo Q Fyo  Fpz  Fow (6.9)
I e3e P332 Py 3| Fapy Fag oy
Viove ©va Py V| Fp Fyz Fov

We assume that the quantifier 3' is the conjunction ‘some but not all’, i.e.
dA V. Due to the possessive pronoun, the first quantifier always takes scope
over the second quantifier. Hence, [F53| = @33, |[Fav| = @av, [Fay| = 03y,
etc. As the second quantifier appears in the scope of the first quantifier, we
have to adjust the definition of sub—signal < such that it is guaranteed that
the respective sub—formula is implied by the original formula. Hence, we say
that Fpg < Fpg iff P’ is identical to or a conjunct of P and @' is identical
to or a conjunct of @) such that ¢pg — @pg. This means for example:

F@W A FVE’ FWV’ FVE < Fq)‘v A FVE" FH!B!’ FHE!’ F3|;| < FH!B!. (6.10)

However, F5i3 AF5 3, and Fyg AFyz. The noise sets remain unchanged,
ie. N, ={F|3G € Lit(¢) F < G}.

We consider the situation in which it is common knowledge that the
speaker does not intend to fully characterise the state of the world but chooses
a messages of the form vy, py 3, ©vp, P33, etc. In particular, we assume
that the speaker does not intend to communicate stronger messages as e.g.
“Tom had half of his broccoli, and Mary had two spoons of hers.’

The first column of Table 1 shows all possibilities. The second column
shows the noise sets, and the third the speaker optimal signal as predicted by
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formula ¢ N, U,

©yly Fyy Fyy
Py|3! Fyz, Fy3 Fy3
O Fyjg Fyjp
= Faw, Fay Fay
o Fopy Foyy
P33 F33, F33, F53 F33
©p)3 IE IAE
£ Fz9, F3p VED)
©o)0 Fop Fyjp

Table 1: Some of the people had some of their broccoli.

the error model. We can see from the sixth line that F53 ‘Some of the people
had some of their broccoli’ implicates that some but not all of the people
had some but not all of their broccoli (¢zz). F5z is excluded because U,
collects signals of minimal complexity only; otherwise we would also get the
implicature F53 +> o33 We also see that Fy3 “All of the people had some
of their broccoli’ implicates that all of the people had some but not all of
their broccoli (py3!).

6.2 Accommodation

Accommodation arguably also involves a violation of the rule of proper usage
of language. If the pre in presupposition is interpreted as meaning that the
presupposed information must be satisfied in the common ground before the
presupposing expression is used, then presupposition accommodation is a
repair strategy which the speaker can intentionally exploit to shorten his
utterances. The following example shows three cases involving a pronoun:

(9) a) Maria entered the room. She was in a hurry.
b) Smith entered the room. She was in a hurry.
c) Maria entered the room and Magdalena left it. She was in a hurry.
The pronoun she presupposes that the common ground contains a unique
female referent. In (9a), this presupposition is satisfied. In (9b) it is not
satisfied but the situation can be repaired by accommodation of Smith is

female. In (9¢), there are two female persons in the common ground, and
hence the interpretation of the pronoun becomes ambiguous.
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We explain (9b) and (9¢) by errors occurring in signal selection, i.e. the
speaker chose an admissible message but did not choose the appropriate lin-
guistic form. For example, the speaker could have replaced the pronoun she
by the proper names of the intended person in (9b) and (9c). As a conse-
quence, we assume that presuppositions are carried by linguistic expressions
and not by the logical forms themselves.” We write F':¢ if signal I presup-
poses ¢. For simplicity, we represent the common ground by a DRS (Kamp
and Reyle, 1993) and make it part of the actual world. This means, we model
worlds as pairs of DRSes (D, C') in which C represents the common ground,
and D contains all the knowledge of the speaker. A DRS is a pair (U, Cond)
consisting of a set U of variables, and a set Cond of first order formulae
for which all free variables are elements of U. The elements of U are called
discourse referents. If (D, C) is a world, then we assume that U C UP and
Cond® C Cond®. ‘Maria entered the room’ can be represented by the DRS
({z,y},{Maria(x), room(y), entered(z,y)}). As Maria is a female name, we
assume that female(x) is automatically added. For example (9) this leads to
the following representations of the common ground:

o C, = {{x,y}, {Maria(zx), female(x), room(y), entered(z,y)});
o Cy = ({z,y},{Smith(x), room(y), entered(zx,y)});

o C.= ({z,y, 2}, {Maria(zx), female(x), room(y), entered(z,y),
Magdalena(z), female(z2), left(z,y)});

We represent the fact that the pronoun she presupposes a female antecedent
by she: female(x). For our example, it suffices to assume that the speaker’s
private DRS specifies for each discourse referent whether the person the ref-
erent refers to is male or female. This means that the speaker’s DRS D,
is constructed by adding the conditions female(r) or male(r) to C,. We
arrive at: CondP = Cond®, Cond® = Cond® U {male(x)}, Cond”? =
Cond® U {female(z)}, Cond”* = Cond®. With these preliminaries, we can
formulate the noise set for accommodation:

Ny ={F:||F|=¢ and ¢ € Cond”}. (6.11)

This means that the speaker may use a signal F' which presupposes ¥ in a
situation in which he intends to communicate ¢ if he privately knows that 1
is satisfied.

If r is the discourse referent the speaker intendeds to refer to, then the
intended message is ¢, = was-in-hurry(r). For proper names we assume

"This is a digression from common representations, see e.g. the overview in (Beaver,
1997).
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that they don’t carry presuppositions. The second column of the following
table shows the forms which the speaker could have used without violating
presuppositions, and the third column the respective noise sets. For the
last column, it is assumed that pronouns are preferred over proper names.
Discourse referent x refers to Maria in the first and fourth row, and to Smith
in the second and third. In the fifth row, discourse referent z refers to
Magdalena. This leads to:

v={(D,C) ¢ Lit(v,p) Ny Uy
(Dg, Cy) ¢, Maria, she Maria, she she
(D}, Cy) @, Smith Smith, he he
(D%, Cy) ¢, Smith Smith, she she
(D, C.) ¢, Maria Maria, she Maria

(D, C.) ©. Magdalena Magdalena, she Magdalena

For example (9a), only the first row is relevant. As there is only one possible
world, and only one possible intention, it trivially follows that the hearer will
choose Maria as referent for she. For example (9b), the second and third row
are relevant. As there can only be one intended referent, the hearer can infer
that the actual world is (D?, (), which means that Smith is female and the
referent of she. For example (9¢), the fourth and the fifth row are relevant.
Here we find two possible intended referents. As the hearer cannot decide
which interpretation is correct, he should react with a clarification request.
This explains the differences between (9a), (9b), and (9c).

As in the case of quantity implicatures, we can only provide an impression
of how to use error models for modelling presupposition accommodation.
This closes our discussion of errors in signal selection.

7 Conclusions

Our aim was to show that error coping strategies play an essential role in lin-
guistic pragmatics. For this, we tested our model by a number of benchmark
examples, including examples of relevance implicatures, quantity implica-
tures, and presupposition accommodation. Important inspiration came from
the Shannon—Weaver model of communication.

We want to highlight some of the differences between error models pre-
sented here and previous formal accounts. Of course, the most obvious dif-
ference is the role of errors. In addition, we may mention:

1. Error models are based on a communication model with feedback. This
rules out Parikh’s principle, but it also marks a difference to other ap-
proaches as e.g. the optimal answer approach (Benz and van Rooij,
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2007), iterated best response models (Franke, 2009; Jager and Ebert,
2009), and online interpretations of many variants of optimality theo-
retic pragmatics (Blutner, 2000).

2. Costs of signals are assumed to be nominal. This entails that the
speaker cannot prefer imprecise signals over precise signals simply on
the grounds that the latter are more costly. This rules out blocking
due to high signalling costs.

3. There are no scales. The set of alternatives from which the speaker
could have chosen is the set of all signals with a similar level of pre-
cision. This marks a difference to Neo—Gricean approaches, and in
particular to (Franke, 2009; Sauerland, 2004).

4. Error models provide a uniform framework in which relevance and
quantity implicatures can be explained, as well as presupposition ac-
commodation.

As we could treat the most basic cases of relevance implicatures, scalar im-
plicatures and accommodation only, these claims are in need of further justi-
fication which can only be provided by more detailed studies. These studies
will also necessitate a number of extensions of the models. For example, a
possibility to handle implicature cancellation, a cognitively plausible model
of message and signal selection, as well as a combination of errors in both
selection processes. But, in spite of many open issues, we are convinced that
error models have a promising future.
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