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Abstract This paper aims to explore a potential connec-

tion between two hypotheses recently put forward in the

context of language evolution. One hypothesis argues that

some human-specific change(s) in the hominin brain

developmental program habilitated the neuronal workspace

that enabled ‘‘cognitive modernity’’ to unfold, also result-

ing in our globularized braincase. The other argues that the

cultural niche resulting from our self-domestication

favored the emergence of natural languages. In this article

we document numerous links between the genetic changes

we have claimed may have brought about globularization

and neural crest cells, which have been claimed to explain

the constellation of distinctive traits (physical, cognitive,

and behavioral) found in all domesticated mammals. If

these links turn out to be as robust as we think they are,

globularization and self-domestication may well be closely

related phenomena in the context of human evolution.

Keywords Globularization � Language-ready brain �
Modern cognition � Full-fledged languages � Neural crest
cells � Domestication syndrome

1 Introduction: Linking Two Hypotheses

This paper aims to explore a potential connection between

two hypotheses recently put forward linking the language

phenotype and genotype. Both are ultimately aimed to cast

light on how our species’ ability to develop mental rule

systems that are put to use in thought and communication

appeared. One (Boeckx 2013; Boeckx and Benı́tez-Burraco

2014a; Theofanopoulou 2015) is the idea that the globu-

larization of the braincase that characterizes our species

(Lieberman et al. 2002; Bruner 2004) is the reflex of a

genetically regulated specific brain growth pattern that

provided the neural scaffolding for ‘‘cognitive modernity’’,

most distinctively our ‘language-readiness’. This species-

specific brain growth trajectory has been well characterized

by several authors (Neubauer et al. 2010; Gunz et al.

2010, 2012; Bastir et al. 2011; Scott et al. 2014; Hublin

et al. 2015). They have highlighted the differential growth

of the parietal lobe, the cerebellum, and the frontal pole, as

well as the olfactory bulb and quite possibly the temporal

lobe. The logic of correlated growth also leads us to expect

differential growth at the level of the dorsal thalamus

(Boeckx and Benı́tez-Burraco 2014a) and the corpus cal-

losum (Theofanopoulou 2015). On the basis of this infor-

mation, Boeckx and Benı́tez-Burraco (2014a, b, 2015) and

Benı́tez-Burraco and Boeckx (2015a) have put forward a

potential candidate gene set underlying this brain and skull

growth trajectory, many of which show sign of positive

selection in anatomically modern humans (AMHs).

The other idea at the heart of this paper concerns to

(self-)domestication. As Thomas (2014) discussed exten-

sively, self-domestication in our species can prove extre-

mely valuable in understanding our cognitive behavior, and

in particular what we will call below the grammaticaliza-

tion of our mind. Interestingly, Wilkins et al. (2014) have
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recently put forth domestication usually entails a constel-

lation of distinctive traits (the ‘‘domestication syndrome’’)

many of them we believe related to the brain/cognitive

changes that we think important for the evolution of lan-

guage, and particularly, of globularity. According to

Wilkins et al., the domestication syndrome, being triggered

by different external stimuli, ultimately results from the

hypofunction of the neural crest cells (NCCs) during

embryonic development.

Our hypothesis is that the genetic changes we have

claimed led to globularization are intimately related to those

affected the NCCs, fueling (or being the main rationale for)

the emergence of the (self-)domestication syndrome in our

species, and ultimately, of full-fledged languages.

2 Domestication and the Grammaticalization
of Mind

It is now clear that a rich ‘‘Universal Grammar’’ is not

necessary (nor adequate) to capture properly and (biolog-

ically speaking) realistically all the complexity that the

grammars of the world’s languages exhibit (Boeckx 2014).

Rather, the very nature and context of cultural learning

appear to be key in capturing all this grammatical para-

phernalia (Hurford 2011; Kirby 2012; Smith and Kirby

2008; Thompson et al. 2016). But as Thomas (2014) points

out, a major problem facing any attempt to account for

language structure through a cultural mechanism is that the

processes required by such a mechanism are only possible

if we assume the existence of a range of preconditions,

which we may call the ‘‘cultural niche’’. The special social,

behavioral, and neural conditions of human culture have

been highlighted by Tomasello over a decade (see Toma-

sello 2009, 2014): we are indeed a super-social primate.

Thomas (2014) thinks that the behavioural, cognitive

and temperamental outcomes of self-domestication might

have formed the preconditions or the niche for the emer-

gence of structured language through a cultural process.

Thomas is not alone in this. Recently, Deacon (2009) and

Hare and Tomasello (2005) have appealed to the idea of

self-domestication and relaxed selective pressures to cap-

ture key aspects of our behavioral modernity, pointing out

that sensitivity to communicative intent, at the heart of our

communicative/pragmatic competence, characterize

domesticated species in general. To add to this, Okanoya

and colleagues have for several years now documented

phenotypic differences between two vocal learning birds:

the white-rumped munia and its domesticated variant, the

Bengalese finch, and argued that domestication masked

various selection pressures, particularly species recogni-

tion, thereby permitting increased variation and complexity

(specifically in the syntax of their songs), and that this

process was then reinforced by female preferences (Oka-

noya 2012; Kagawa et al. 2012, 2014; Takahasi and Oka-

noya 2010).

The intuition that our species, steeped as it is in culture,

shares some aspects of domestication is indeed a venerable

one. As Thomas (2014) observes, already the ancient

Greeks had a single term ‘‘hemeros’’ to refer to domesti-

cated animals and civilized people (Greeks); and another

term ‘‘agrios’’ to refer to both wild animals and ‘savages’.

Darwin himself in 1871 referred to ‘‘civilized men’’ as ‘‘in

one sense highly domesticated’’. But it was the observation

that humans also share many of these typical characteristics

of domesticated species that motivated people like Boas in

1938 to suggest that humans might also be thought of as

domesticated. Even a cursory look at the fossil record

Table 1 The genes related to globularization as discussed in Boeckx

and Benı́tez-Burraco (2014a, b) and Benı́tez-Burraco and Boeckx

(2015a)

Candidate genes for globularization

ABL1 AKT1 ANAPC10 APOE ARHGAP32

ARHGEF6 ARX ASCL1 ASPM AUTS2

BAZ2A BGLAP BMP2 BMP7 CBL

CDC42 CDC42BPB CDC42EP4 CDH1 CDKN1A

CEBPB CEP192 CITED2 CKAP5 CLOCK

CNTNAP2 CREBBP CTIP2 CTNNB1

DCC DIP2A DISC1 DISP1 DLL1

DLX1 DLX2 DLX5 DLX6 DUSP1

DYRK1A DYX1C1 EGFR EGR1 ELAVL2

ELP4 EMX2 EP300 ERBB4 ETV4

EXOC6B FEZF2 FGF7 FGF8 FGFR1

FLNA FMR1 FOXA1 FOXA2 FOXG1

FOXO1 FOXP1 FOXP2 FRP GAD1

GADD45G GBX2 GLI3 GTF2I GTF3C3

HES1 HOXA2 HRAS ITGB4 KATNA1

KDM5B LHX2 MAPK1 MAPK14 MECP2

MEF2A MET NCAM1 NCOA6 NFASC

NKX2-1 NODAL NOTCH1 NOVA1 NR1H2

NRG1 NRG3 NTN1 OTX2 PAK5

PAK6 PARP1 PAX3 PAX6 PCDH11

PCM1 PCNT PDX1 PIN1 PITPNA

PLAUR POU3F2 PQBP1 PTEN PTPRB

PVALB RELN ROBO1 ROBO2 RUNX1

RUNX2 RUNX3 SATB2 SFRP2 SHH

SIRT1 SIX3 SLIT1 SLIT2 SLITRK3

SMAD9 SMURF1 SOLH SOX10 SOX2

SOX3 SOX9B SPAG5 SPC7 SPP1

SRGAP2 SRGAP3 SRPX2 TBR1 TGF

TLE2 TLE3 TP53 TSC1 USF1

USH2A VCAM1 VCAN VDR WNT5A

YAP1 ZBTB20 ZFHX1B
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highlight changes in anatomically modern humans that

closely resemble the ones attested in domesticated animals:

reduced skeletal and cranial robusticity, changes in denti-

tion, retention of juvenile characteristics, changes in tem-

perament (compared to other living primates), reduction of

sexual dimorphism, etc. All these features suggest that

domestication may have taken place as part of the emer-

gence of AMHs, although, of course, once in place, it may

have intensified in our recent history. This is how we

suggest to reinterpret evidence like the decrease in brain

size in the last 50,000 years (Bednarik 2012, 2014), or the

reduction of brow ridge projection and the shortening of

the upper facial skeleton in humans from the Middle

Pleistocene to recent times, plausibly resulting from a

reduction in androgen reactivity (Cieri et al. 2014).

As is characteristic of the literature on domestication,

Thomas focuses on selectionist considerations when it

comes to examining a number of the possible accounts of

how humans might have become self-domesticated.

Specifically, Thomas considers three, not necessarily

mutually exclusive accounts: (a) an account that links

self-domestication to a process of adaptation to the

human-made environment (an environment in which

humans have lived longer than any other species), (b) a

second account that links self-domestication to humans

having undergone selection against aggression (linked to

the idea of domestication as selection on temperament),

and (c) a process with effects analogous to artificial

selection may have also been in operation in humans; in

particular, the idea that culturally mediated constructs of

mate-choice may have resulted in humans applying

something akin to artificial selection to themselves (an

idea that others, such as Vendramini 2014, if somewhat

fancifully, have linked to the context of AMHs/Nean-

derthals interactions).

3 Domestication and Neural Crest Cells

It is a well-established fact that domesticated animals

possess a distinctive an unusual suite of heritable traits not

seen in their wild progenitors (what Wilkins et al. 2014

refer to as the ‘‘domestication syndrome’’). Remarkably,

the suite of characteristics that typifies domestication is

consistent across most species, and include depigmenta-

tion, floppy ears, reduced ears, shorter muzzles, smaller

teeth, docility, smaller brain or cranial capacity, neotenous

(juvenile) behavior, curly tails, and affect reproductive

cycles (more frequent estrous cycles). Of course, not all of

these characteristics are found in all domesticates, but

nearly all domesticated species exhibit a significant subset

of these characteristics (Price 2002). Indeed, some of the

hard tissue characteristics are actually used by

archaeologists as diagnostic of domestication having

occurred (Zeder et al. 2006).

As Wilkins et al. (2014) point out, most explanations

focus on particular traits, while neglecting others, or on the

possible selective factors involved in domestication rather

than the underlying developmental and genetic causes of

these traits. To correct this, Wilkins et al. (2014) put forth

the idea that the domestication syndrome results predomi-

nantly from mild NCCs deficits during embryonic devel-

opment. NCCs are the vertebrate-specific class of stem

cells that first appear during early embryogenesis at the

dorsal edge (hence the term ‘‘crest’’) of the neural tube and

then migrate ventrally throughout the body in both the

cranium and the trunk, giving rise to the cellular precursors

of many cell and tissue types and indirectly promoting the

development of others. As noted above, the motivation

behind Wilkins et al.’s (2014) hypothesis is that the

development of the diverse traits characteristic of the

domestication syndrome is closely linked to NCCs. This is

especially true in the case of size and function of the

adrenal glands, which play a central role in the physiology

of both fear and stress responses. Adrenal hypofunction

and reduced stress hormone levels are well documented in

domesticated species and have been induced experimen-

tally by selection for tameness during experimental

domestication of foxes and rats. Accordingly, Wilkins et al.

(2014) conjecture that initial selection for tameness leads to

reduction of neural-crest-derived tissues of behavioral rel-

evance, via multiple preexisting genetic variants that affect

NCC numbers at the final sites, and that this neural crest

hypofunction produces, as an unselected byproduct, the

morphological changes in pigmentation, jaws, teeth, ears,

etc. exhibited in the domestication syndrome.

Wilkins et al. (2014) go on to examine the underlying

genetic basis for the NCC hypofunction, and include a list

of genes that will be the center of our attention below.

Specifically, our aim in the remainder of this paper is to

show that many connections exist between the set of genes

we have highlighted in the context of globularization in our

past and ongoing research, and NCCs. We think that these

connections are well worth taking into account given the

idea that AMH is a self-domesticated species. We close

with a few promising avenues of research this paper opens

up.

4 Globularization and Neural Crest Cells

The idea we would like to explore in this section is that

genetic changes we claimed led to globularization may be

closely linked to those that affect NCCs in domestic ani-

mals, given the well-attested roles of some of the core

genes we have examined in the context of globularization
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at the level of the neural crest (as discussed in Boeckx and

Benı́tez-Burraco 2014a, b; Benı́tez-Burraco and Boeckx

2015a, b core candidates for globularization fulfil the fol-

lowing criteria: they have experienced some evolutionary

change after our split from Neanderthals/Denisovans; they

play some role in brain growth, regionalization, and/or

neural interconnection; they have been associated to con-

ditions in which language, or cognitive properties often

associated with language, are impaired, and they are can-

didates for craniosynostosis or some other similar condition

affecting skull development and sutures). To test this

possibility, we checked the literature to determine whether

(and to what extent) (some of) the ‘‘domestication syn-

drome’’ genes highlighted by Wilkins et al. (2014) are also

important for globularization and/or have changed in our

lineage compared to Neanderthals and Denisovans. We

also searched the literature via PubMed and OMIM (http://

www.ncbi.nlm.nih.gov/omim/) to know more about the

aberrant phenotypes linked to the mutation of these neural

crest genes potentially implicated in globularization. We

focused on clinical conditions and symptoms of interest for

globularization (as described in Boeckx and Benı́tez-Bur-

raco 2014a, b; Benı́tez-Burraco and Boeckx 2015a),

including ‘‘language disorder’’, ‘‘cognitive disorder’’, ‘‘in-

tellectual disability’’, ‘‘syntactic deficit’’, ‘‘semantic defi-

cit’’, ‘‘phonological deficit’’, ‘‘speech deficit’’, ‘‘dyslexia’’,

‘‘schizophrenia’’, ‘‘autism’’, ‘‘autism spectrum disorder’’,

etc. We have also proceeded the other way around: we

made extensive search of the literature to learn how many

of (and to what extent) our candidates are involved in the

development and function of the neural crest and could be

also regarded as ‘‘neural crest genes’’. We relied as well on

computer tools to learn about the robustness of the links we

posited, but also to uncover new links between the two sets

of genes. For this, we mostly relied on String 10 (http://

string-db.org/). String 10 predicts direct/physical and

indirect/functional associations between proteins that

derive from four sources: genomic context, high-through-

put experiments, conserved coexpression, and the knowl-

edge previously gained from text mining (Szklarczyk et al.

2011). As for phylogenetic changes, we determined the

ancestral or derived nature of the genes of interest (com-

pared to Neanderthals and Denisovans) and explored

potential connections with other genes selected in AMHs.

We also relied on available data on other molecular

changes that occurred after our split from Neanderthals,

including changes in promoter or enhancer activity,

human-specific conserved deletions (hCONDELs), etc.

As far as Wilkins et al.’s (2014) candidates (their

Table 2) are concerned, we found that all but one of them

are related to (a) our putative globularization network, and/

or (b) have changed recently in our species and/or (c) give

rise to cognitive deficits that affect language and our mode

of cognition when they are mutated. We will review these

links briefly (see also Fig. 1).

To begin with, three SOX genes are highlighted by

Wilkins et al. (2014): SOX10, SOX9, and SOX2. SOX10 is

an interactor of PAX3 (another of Wilkins et al.’s 2014

candidates) and POU3F2 (Smit et al. 2000). Interestingly,

POU3F2 interacts with FOXP2, a gene that has been

consistently related to language and speech deficits

(Maricic et al. 2013). AMHs show a derived allele of the

binding site which is less efficient in activating transcrip-

tion than the Neanderthal/Denisovan allele (Maricic et al.

2013). POU3F2 regulates neuronal migration and identity

during the development of the neocortex (McEvilly et al.

2002; Sugitani et al. 2002) and has been linked to bipolar

disorder (Mühleisen et al. 2014), and to developmental and

language delays, intellectual disability, schizophrenia and

autism spectrum disorders (ASD) (Huang et al. 2005; Lin

et al. 2011; Potkin et al. 2009). Moreover, both PAX3 and

SOX10 are robust candidates for Waardenburg syndrome, a

complex condition in which sensorineural hearing loss is a

prominent symptom (developmental delay is observed as

well, but it may be subsidiary of hearing loss). Interest-

ingly, SOX10 is hypermethylated in the brain of

schizophrenics (Iwamoto et al. 2005).

We regard SOX9 of interest too because it mediates the

retinoic acid-induced HES1 expression. Retinoic acid has

proven to be important for brain plasticity (Luo et al.

2009), learning and memory (Etchamendy et al. 2003;

Jiang et al. 2012). Importantly, it closely interacts with

FOXP2 (Devanna et al. 2014) and with the genes related to

globularization (Benı́tez-Burraco and Boeckx 2014). In

turn, HES1 is a direct interactor of RUNX2, our core

candidate underlying the changes that prompted globular-

ization, because of its central role in suture ossification

(Yoshida et al. 2003; Lattanzi et al. 2012), its involvement

in the development of hippocampal GABAergic neurons

(Pleasure et al. 2000; Benes et al. 2007) and of the thala-

mus (Reale et al. 2013); its involvement in the regulation of

osteocalcin (Paredes et al. 2004) and osteopontin (Shen and

Christakos 2005), which are important for both bone for-

mation and brain organization (see Schroeter et al. 2006);

and the fact that a selective sweep in this gene occurred

after our split from Neanderthals (Green et al. 2010). The

Hes1 pathway is related to language development and

craniofacial development (reviewed in Boeckx and Benı́-

tez-Burraco 2014b). Additionally, Hes1 is involved in the

development of both GABAergic neurons (Long et al.

2013) and dopaminergic neurons (Kameda et al. 2011).

Finally, the transcriptional activation of Hes1 is a key step

in the Slit/Robo signaling pathway that we believe

important for the externalization of language (reviewed in

Boeckx and Benı́tez-Burraco 2014b). We wish note as well

that the phosphorylation of Sox9 is regulated downstream
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Fig. 1 The genes related to globularization and the genes related to

the ‘‘domestication syndrome’’. The network was generated by String

10 with the proteins discussed in Boeckx and Benı́tez-Burraco

(2014a, b) and Benı́tez-Burraco and Boeckx (2015a) (see Table 1)

and the candidate genes for domestication advanced by Wilkins et al.

(2014). The medium confidence value was .0400 (this lower value

enables to find a greater number of potential interactions among

proteins; this lower value is then compensated for by checking

whether the predicted interactions can be confirmed in the literature or

in databases provided by functional assays). In this confidence view,

stronger associations between proteins are represented by thicker

lines. The figure does not represent a fully connected graph, but

readers are asked to bear in mind that String 10 predicts associations

between proteins that derive from a limited set of databases. The

material discussed in the main text lead us to suspect connections

between the globularization genes and the domestication genes that

String does not generate (although we wish to note that just letting

String add a few interactors, not discussed in this paper, yield a fully

connected graph). It should be emphasized that the nature of String 10

is essentially predictive, and not explanatory. Although we have

confirmed all the links we discuss here in the literature, they need to

be confirmed at the brain level and in relation to language.

Additionally, the diagram only represents the potential connectivity

between the involved proteins, but this has to be mapped onto

particular biochemical networks, signaling pathways, cellular prop-

erties, aspects of neuronal function, or cell-types of interest that can

be confidently related to aspects of language development and

function
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of Bmp signaling (Li et al. 2013). Importantly for us, two of

the BMPs, namely BMP2 and BMP7, are core components

of our gene network important for globularization (re-

viewed in Boeckx and Benı́tez-Burraco 2014a). Finally, we

wish also note that sox9a expression is reduced in the

pharyngeal arches of zebrafish in which dlx2a is knocked

down (Sperber et al. 2008). DLX2, another of our core

candidates, is important for tooth and craniofacial devel-

opment (Jeong et al. 2008; Gordon et al. 2010), but also

contributes to regulate thalamic development (Jones and

Rubenstein 2004). According to McKinsey et al. (2013)

Dlx2 (and Dlx1) controls some important steps of neuronal

proliferation within the cortex via Zfhx1b, which is mutated

in Mowat–Wilson syndrome (McKinsey et al. 2013), a

condition characterized by speech delay, mental retardation,

microcephaly, delayed motor development, hypertelorism,

and cupped ears with fleshy, upturned lobules (Adam et al.

2006). Importantly, neural crest-specific removal of Zfhx1b

in mouse gives rise to a wide range of neurocristopathies

resembling Mowat-Wilson syndrome (Van de Putte et al.

2007). Moreover, the lack of Zfhx1b gives rise as well to

multiple NCC defects causing Hirschsprung disease–mental

retardation syndrome (Van de Putte et al. 2003). Interest-

ingly, an hCODEL (not shared with Neanderthals) exists

upstream SOX9 (McLean et al. 2011).

Lastly, SOX2 is one of the transcription factors that are

differentially expressed in several postmitotic thalamic

nuclei (Vue et al. 2007). SOX2 is one of the components of

the SHH-GLI signaling pathway that we feel has played a

significant role in the anatomical and physiological events

leading to globularization (Boeckx and Benı́tez-Burraco

2015, Boeckx et al., manuscript), but also in NCC fate

(more on SHH below). Specifically, Sox2 input and dif-

ferential Gli-binding affinity have been shown to provide

context and positional information in Shh-directed neural

patterning. In the neural tube, GLI-bound cis-regulatory

modules (CRMs) are enriched for SOX binding motifs, and

SOX2 (among other SOX factors) acts as neural-specific

GLI co-factors (Oosterveen et al. 2012, 2013; Peterson

et al. 2012). Moreover, SOX2 regulates PQBP1, a gene

linked to developmental delay, intellectual disability and

microcephaly (Li et al. 2013), which also interacts with

POU3F2 (Li et al. 2013). According to the Human Brain

Transcriptome Atlas PQBP1 is expressed highly in several

key regions of the brain in the context of globularization

(cerebellum, hippocampus, and olfactory bulb). Interest-

ingly, SOX2 is involved as well in the enhancer effect of

human endogenous retroviruses (HERVs) on brain genes

related to schizophrenia, specifically PRODH (Suntsova

et al. 2013). And similarly to the other two SOX genes

reviewed above, SOX2 is also regulated by RUNX2, some

of the DLXs genes, and some of the BMPs. Hence, the

transcriptional activity of Sox2 is downregulated by Runx2

and Dlx5 in response to interleukin-6 in bone marrow-

derived mesenchymal multipotent cells (Yoon et al. 2014).

In addition, SOX2 interacts with BMP signalling. For

example, Li et al. (2015) have recently found that a BMP-

Smad4-SHH-Gli1 signalling network provides a niche

supporting transient Sox2? dental epithelial stem cells in

mouse molars. Importantly for our hypothesis, SOX2 is

predicted (according to String 10) to interact specifically

with BMP7 via NOG, an inhibitor of BMP signalling and a

protein important for dopamine neuron production (Chiba

et al. 2008). As we noted above, BMP7 is closely related to

some of our core candidates (BMP2, RUNX2, DLX1, and

DLX2 among others) and plays a pivotal main role in

osteogenesis (Cheng et al. 2003) and skull and brain

development (Yuge et al. 2011; Segklia et al. 2012).

Mutations of BMP7 cause eye anomalies, deafness,

developmental delay, and learning disabilities (Wyatt et al.

2010). Finally, together with OTX2 and PAX6, SOX2 plays

a key role in controlling eye development, potentially

affecting orbit size, a feature known to have changed in our

species, compared to other extinct hominin species.

Among Wilkins et al.’s (2014) candidates we have

found other genes that interact (according to Kulhwilm

et al. 2013) with RUNX2, our key candidate for globu-

larization. One of them isMTIF. Interestingly, an hCODEL

(although shared with Neanderthals) exists upstream MTIF

in AMHs (McLean et al. 2011). Also GDNF is differen-

tially expressed after RUNX2 transfection. This gene is

predominantly expressed in the pulvinar neostriatal

interneuronal ensemble (Hidalgo-Figueroa et al. 2012), but

also in the visual cortex (Pochon et al. 1997). GDNF is

involved in dopaminergic differentiation (Christophersen

et al. 2007) and also promotes formation of neuronal

synapses by ligand-induced cell adhesion (Ledda et al.

2007). Interestingly for our hypothesis, GDNF is predicted

(according to String 10) to interact with NCAM1, the

carrier of polysialic acid (one of the neural crest stem

markers) and a protein related to schizophrenia, bipolar

disorder and Alzheimer’s disease (Atz et al. 2007), and to

working memory performance (Bisaz et al. 2013). In turn,

NCAM1 interacts with VCAM1, known to bear a fixed

change (D414G) in AMHs compared to Neanderthals/

Denisovans (Pääbo 2014, his table S1). NCAM1 is a

potential target of RUNX2 too (Kuhlwilm et al. 2013), but

also of FOXP2 (Konopka et al. 2009).

Additionally, we have found that four of Wilkins et al.’s

(2014) candidates (Magoh, Fgf8, piebald (l), and Ret) are

targets of FOXP2 (according to Spiteri et al. 2007; Vernes

et al. 2011). We regard this an interesting link, provided

that FOXP2 (together with ROBO1) is a core component of

the machinery responsible for the two neural components

often presented as critical for vocal learning: the direct

cortico-laryngeal connection and the cortico-thalamo-basal
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ganglia pathway. As we review in Boeckx and Benı́tez-

Burraco (2014b) FOXP2 and its interactome show strong

links with our set of genes related to globularization and

language-readiness. Magoh is involved in RNA splicing

and its loss leads to a disorganized, microcephalic brain

with fewer neurons (Silver et al. 2010). Interestingly, the

splicing of MAGOH has a AMH-specific pattern (Lin et al.

2010). FGF8 encodes a protein involved in the regional-

ization of brain tissues in mammals (Fukuchi-Shimogori

and Grove 2001). FGF8 interacts with RUNX2 via FGFR1,

a candidate for craniosynostosis and Pfeiffer syndrome

(Rossi et al. 2003), but also with DLX2 (according to

String 10). The expression of FGF8 is also under the

control of the SHH-GLI signaling pathway that we high-

lighted above as important for globularization (see Boeckx

et al. manuscript for details). Specifically, both SHH and

GLI3 modulates the FGF8/WNT signaling source in the

forebrain (Kobayashi et al. 2010; Rash and Grove 2011).

Interestingly, &98 % of Altaic Neanderthals and Deniso-

vans gained a non-synonymous change in GLI3 that

appears to be mildly disruptive (Castellano et al. 2014).

FGF8 is a candidate for holoprosencephaly, a condition

characterized by forebrain malformations, severe neu-

rocognitive impairment, and midline facial anomalies

(Sarnat and Flores-Sarnat 2001; Solomon et al. 2012).

Concerning piebald (l) (also known as EDNRB), it is a

candidate for Waardenburg syndrome (Read and Newton

1997), a condition involving sensorineural hearing loss and

(subsidiary) developmental delay. Finally, RET is also

found to be differentially expressed after RUNX2 trans-

fection in neuroblastomic cells (Kuhlwilm et al. 2013). The

RET regulatory function is conserved from human to

zebrafish without sequence similarity (Fisher et al. 2006).

With regard to Tcof1, another of Wilkins et al.’s (2014)

candidate, it contains a LIS1 motif (Emes and Ponting

2001). LIS1 (also known as PAFAH1B1) regulates neu-

ronal migration and axonal growth (Smith et al. 2000;

Toyo-oka et al. 2003; Shu et al. 2004). Mutations in LIS1

reduces brain size and give rise to different types of lis-

sencephalies (Reiner et al. 1993; Lo Nigro et al. 1997) with

different degrees of impact on linguistic abilities (Leventer

et al. 2001). Individuals with LIS1 duplications had subtle

brain defects, including microcephaly and dysgenesis of

the corpus callosum. Importantly for our hypothesis,

TCOF1 is also bound by RUNX2 based on ChIP analyses

(Young et al. 2007). Tcof1 also acts as a modifier of Pax3

during enteric nervous system development (derived from

vagal NCC) (Barlow et al. 2013). TCOF1 is a candidate for

Treacher Collins syndrome, an autosomal-dominant con-

dition involving mandibulofacial dysostosis. Heterozygous

knockout of Tcof1 in mice causes severe craniofacial

malformation (Dixon and Dixon 2004; Shows and Shiang

2008).

Additionally, we have found signs of positive selection

in other genes highlighted by Wilkins et al. (2014) Hence,

FoxD3, a transcriptional regulator essential for neural crest

development, depends on Nodal (one of our candidates) for

regulating zebrafish dorsal mesoderm development (Chang

and Kessler 2010). FOXD3 is one of the enriched tran-

scription factors in present-day human-specific differen-

tially methylated regions (DMRs) (Gokhman et al. 2014).

Similarly, a human-specific conserved deletion (hCON-

DEL) (although shared with Neanderthals) exists upstream

CDH7 (McLean et al. 2011). Finally, the last two genes in

Wilkins et al.’s (2014) list are also of interest for us. WSTF

(also known as BAZ1B) plays a key role in chromatin

remodeling and nucleosome repositioning (Kitagawa et al.

2003). BAZ1B belongs to the core 1.5 Mb region com-

monly deleted in Willliams syndrome (Somerville et al.

2005). Finally, piebald (s) (also known as EDN3) is sig-

nificantly dysregulated in autistic children (Glatt et al.

2011). Like SOX10, EDN3 is also a candidate for Waar-

denburg syndrome type 4, a rare neural crest disorder

combining sensorineural hearing loss and pigmentation

defects (as in Waardenburg syndrome) and aganglionosis

(as in Hirschsprung disease).

As we pointed our above, we made as well an extensive

survey of the PubMed literature to know whether our

candidates can be regarded as ‘‘neural crest genes’’. The

whole list of them, as resulting from our research on the

molecular underpinnings of globularization and language-

readiness (reviewed in Boeckx and Benı́tez-Burraco

2014a, b; Boeckx and Benı́tez-Burraco 2015a), currently

encompasses 152 genes (see Table 1) Interestingly, we

discovered that nearly 60 % of them play a role related to

the neural crest. In the first part of this section we have

focused on the genes that also belong to Wilkins et al.’s

(2014) list. Below we provide an overview of the most

promising connection between the neural crest and our set

of genes (our selection was based on the volume of refer-

ences currently available and degree of confidence in

databases and computer tools like String 10.) (see Fig. 1).

To begin with, BMP7 differentiates cortical neural stem

cells into a variety of neural crest lineages (Gajavelli et al.

2004). Similarly, BMP2 (also mentioned above) is required

for regulating the migration of NCCs (Correia et al. 2007)

and also recruits multipotent neural crest progenitors

(Glejzer et al. 2011). Also CDC42 controls neural crest

stem cell proliferation (Fuchs et al. 2009). Inactivation of

Cdc42 in NCCs causes craniofacial and cardiovascular

morphogenesis defects (Liu et al. 2013). Concerning

CITED2, this is an important neural crest gene (Yin et al.

2002). According to Bamforth et al. 2001 mice lacking

Cited2 exhibit adrenal agenesis, neural crest defects and

exencephaly. Moreover, CITED2 has been implicated in a

new disease pathway involved in Hirschsprung’s disease
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(Tang et al. 2015). Regarding its phylogenetic relevance,

we wish note that Prüfer et al. (2014) highlight a highly

disruptive intergenic change near CITED2 that is 99 %

derived in AMHs and ancestral in both Altai Neanderthals

and Denisovans. Moreover, CITED show strong links with

genes important for language and globularization. To begin

with, it is a regulatory target of FOXP2 (Nelson et al.

2013). Additionally, it interacts, via LHX2 (another of our

candidates for globularization), with ROBO1 (Marcos-

Mondéjar et al. 2012), one of the best-known candidate

genes for dyslexia (Hannula-Jouppi et al. 2005), and cru-

cially involved in the neural establishment of vocal learn-

ing abilities (Wang et al. 2015). Regarding CTNNB1, this

gene temporally controls, as part of the Wnt/b-catenin
signalling pathway, multiple steps of neural crest devel-

opment, from neural crest induction, lineage decisions, to

differentiation (Hari et al. 2012). Dlx1 and Dlx2 are robust

neural crest markers too (Ishii et al. 2012) and are involved

in patterning and morphogenetic processes in the neural

crest-derived mesenchyme (Mallo 2001). Both Dlx5 and

Dlx6 are crucial for aspects of neural crest development

(Ruest et al. 2003). Specifically, DLX5 positions the neural

crest at the border of the neural plate (McLarren et al.

2003). FGF genes (FGF7 and FGF8) are known to act in

combination with BMP genes to generate the cranial neural

crest (Endo et al. 2012). In turn, NCCs regulate the amount

of Fgf8 produced by the anterior neural ridge (ANR) and

the isthmus (the two brain organizers) via the secretion of

anti-BMP signalling molecules (Le Douarin and Dupin

2012). Also FGFR1 (together with MAPK signalling) is

responsible for neural crest induction (Stuhlmiller and

Garcı́a-Castro 2012). Moreover, Fgfr1 patterns the pha-

ryngeal region to create a permissive environment for

neural crest cell migration (Trokovic et al. 2003). Con-

cerning Pax3, it is among the earliest genes activated in

neural crest progenitors and cooperates in neural crest

patterning (Maczkowiak et al. 2010; Bae et al. 2014;

Plouhinec et al. 2014). In turn, Pax6 is involved in regu-

lating the migration of NCCs from the anterior midbrain

(Matsuo et al. 1993). SLITs and ROBOs (as part of the Slit/

Robo signalling) are necessary to confine early NCCs to

the ventral migratory pathway in the trunk (Jia et al. 2005).

Moreover, Slits affect the timely migration of NCCs via the

Robo receptor (Giovannone et al. 2012). Concerning SHH,

we have already pointed out the important role played by

the SHH signalling pathway in NCC fate. Specifically, Shh

promotes the survival of NCCs (Delloye-Bourgeois et al.

2015) and the development of multipotent neural crest

progenitors (endowed with both mesenchymal and neural

potentials) (Calloni et al. 2007). Importantly, Shh sig-

nalling is required for cranial neural crest morphogenesis

and chondrogenesis (Wada et al. 2005). Moreover, NCCs

receive both Bmp and Shh signalling to induce Satb2

expression, which is another of our candidates (Sheehan-

Rooney et al. 2013). Interestingly as well, a neural crest

deficit in Down syndrome mice is associated with deficient

mitotic response to Shh (Roper et al. 2009). Finally, we

wish highlight VCAN, which encodes versican-1, a protein

that guide migratory NCCs (Dutt et al. 2006) and which

shows a fixed N3042D change in AMHs (Pääbo 2014;

table S1).

Finally, we wish note that the recent epigenomic profiling

of human and chimpanzee NCCs (Prescott et al. 2015) has

revealed significant divergence across species in craniofacial

cis-regulatory landscapes, resulting in expression differ-

ences of crucial NCC regulators and ultimately, in human

facial variation. Some of these enhancers with a species-bias

overlap with human accelerated regions (HARs). Among the

genes that are flanked by species-biased enhancers and that

show species-biased expression profile one finds some of our

candidates (e.g. PAX3). Moreover, these human-biased

enhancers have been found to be clustered in super-en-

hancers. Interestingly, among the genes potentially regulated

by these super-enhancers we have found some of our can-

didates too (e.g. SRGAP2, and MECP2). Importantly,

although Prescott and colleagues found that Denisovans and

Neanderthals primarily share the human-like variants of

some key regulatory motifs, they found as well a small set of

changes that are unique tomodern humans compared to these

extinct hominins. Interestingly, this divergence largely

results from cis-sequence changes rather than changes in the

trans regulatory environment, and to some extent from the

activity of retroelements (many of them belonging to ERV1,

ERVL-MaLR, and ERVK subclasses), which have been

hypothesised to have played a key role in the genomic

changes that brought about modern language (Benitez-Bur-

raco and Uriagereka 2016).

5 Discussion

In all fairness we are still not in a position to prove the

functional connections we have sought to highlight in this

paper. Because most genes involved in development are

pleiotropic, playing a role in different tissues and at dif-

ferent times, the connections found in silico or inferred

from the literature need to be validated in vitro and in vivo

in tissues of interest to achieve a more satisfactory level of

certainty. In particular, we still do not understand our

globularization network well enough to be able to

demonstrate that changes in the expression of (some of) the

genes we have examined reduce the input to the neural

crest, giving rise to the sort of hyporegulation that Wilkins

et al. (2014) highlight in their work. But we would like to

list two promising lines of research that we think could

reinforce the connection we have tried to establish here.
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Firstly, we find it particularly interesting that Wilkins

et al. (2014) characterize the reduced neural crest input at

the heart of the ‘‘domestication syndrome’’ as an instance

of ‘‘mild neurocristopathy’’. Interestingly, mutations in

some of our candidates for language-readiness result in

neurocristopathy (plausibly via the interaction with the

neural crest genes). In this context, Hirschsprung disease

strikes us again as a good starting point for future explo-

ration, considering that the list of genes related to the

disease includes many of our candidates, like ASCL1,

DLX1, MAPT, NRG1, ROBO1, SLIT2, SOX2, SOX10, and

ZFHX1B (Jiang et al. 2011; Tang et al. 2015). Additionally,

there appears to exist comorbidity of neurocristopathy and

skull/brain/face anomalies (Sjamsudin et al. 2001; Jian

et al. 1995; Parry et al. 2013). Interestingly, in the case of

Parry et al. (2013), the gene they focus on, GSC, interacts

with some of our core candidates, including DLX genes

and MEF2 genes (Miller et al. 2007; Fossat et al. 2012).

Exploring this comorbidity should help validate some of

the links we posited above.

The constellation of symptoms observed in ASD could

lend support to the view that the link between globular-

ization and neural crest function (and between language-

readiness and language change via domestication) is a

robust one, and particularly, that the changes in the glob-

ularization network and the NCC-derived network of the

sort we have highlighted in this paper resulted in a dis-

tinctive modification of the cognitive phenotype of ancient

hominins. Accordingly, ASD entails anomalies in the skull

and the brain, cognitive and language deficits, and an

abnormal presentation of the ‘‘domestication syndrome’’

(see Benı́tez-Burraco et al. 2016; Theofanopoulou and

Boeckx 2016 for reviews from different angles). Although

the involvement of the neural crest in the aetiopathogenesis

of ASD has not been documented in detail, we wish note

that neurocristopathies commonly involve autistic features

(Fernell et al. 1999). Interestingly too, ASD candidates are

overrepresented among the genes known to be involved in

the ‘‘domestication syndrome’’ and the set of genes

important for language-readiness and many of these genes

show altered expression profiles in the brain of autists

(Benı́tez-Burraco and Murphy 2016; Benı́tez-Burraco et al.

2016).

6 Conclusion

The globularization of the brain and braincase seems to be

related to emergence of other traits that we believe

important for modern language, including the refinement of

the neural substrates for ‘externalization’ (via the ROBO/

SLIT/FOXP2 interactomes) (see Boeckx and Benı́tez-

Burraco 2014b for details) or new inter- and intrahemi-

spheric connections underlying modern cognition (via the

SHH-GLI pathway, the AUTS2 interactome, etc.) (see

Benı́tez-Burraco and Boeckx 2015a, b; Boeckx et al.

manuscript for details). The evidence we have reviewed in

this paper suggests to us that a globularized brain and brain

case may also be linked to the developmental/genetic

context for a domestic phenotype, which could then have

been selected for the reasons Thomas (2014) discussed (see

Fig. 2). Put another way, globularization may be part of

Deacon’s (2009) discussion of ‘relaxation of selection’,

leading to a niche favoring cultural selection.

This is not to say that globularization and self-domes-

tication are one and the same. It is well established that

globularization led to a critical change at the level of the

parietal lobe and associated parietal bone (Bruner

2004, 2010; Bruner et al. 2015). Crucially, though, cal-

varial bones arise from two embryonic tissues, namely, the

neural crest and the mesoderm. Unlike the frontal bone,

which is neural crest-derived, the parietal bone is paraxial

mesodermal-derived (Quarto et al. 2010). If posterior

braincase changes were driving globularization, as Bruner

contends, these changes cannot be entirely reduced to

NCC-related (i.e. domestication-related) changes.
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