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1 Introduction

The automation of simple type theory, also referred to as classical higher-order
logic (HOL), has significantly progressed recently. This paper provides an al-
lowedly slightly biased survey on these developments.

A distinguishing characteristic of HOL is its support for higher-order quan-
tification, that is quantification over predicate and/or function variables. Higher-
order quantification was developed first by Frege in his Begriffsschrift [61] and
then by Russell in his ramified theory of types [90], which was later simplified
by others, including Chwistek and Ramsey [89; 54], Carnap, and finally Church
in his simple theory of types [53].

In addition to higher-order quantification, HOL gains expressivity by permit-
ting formulas and logical connectives to occur within terms, which is prohibited
in first-order logic. This intertwining of terms and formulas is achieved by using
the special primitive type o to denote those simply typed terms that are the
formulas of the logic. Additionally, λ-abstractions over formulas allow the ex-
plicit naming of sets and predicates, something that is achieved in set theory via
the comprehension axioms. Mixing λ-terms and logic as is done in HOL permits
capturing many aspects of set theory without direct reference to axioms of set
theory. Moreover, the complex rules for quantifier instantiation at higher-types
is completely explained via the rules of λ-conversion (the so-called rules of α-,
β-, and η-conversion) which were proposed earlier by Church [51; 52].

Church first introduced elementary type theory (ETT), an extension of first-
order logic with quantification at all simple types and with the term structure
upgraded to be all simply typed λ-terms. He extended this logic into his simple
type theory by adding further axioms, including the axioms for extensionality,
description, choice, and infinity. Functional extensionality expresses that two
functions are equal if and only if they are point-wise equal. Boolean extension-
ality says that two formulas are equal if and only if they are equivalent (or,
alternatively, that there are not more than two truth values). The choice oper-
ator selects a member from a non-empty set and description selects a member
from a set only if this set is a singleton set. Infinity asserts that a set with
infinitely many objects exists.

Initially much of the work on the automation of higher-order logic strongly
focused on the automation of elementary type theory. Recently, however, signifi-
cant progress has also been made for the automation of extensional type theory,



which is elementary type theory extended with functional and Boolean exten-
sionality (and possibly choice or description). In the remainder we use the term
HOL synonymous to extensional type theory; in [24] the abbreviation ExTT is
used.

Interactive and automated theorem provers for HOL have been employed in
a wide range of applications, for example, in mathematics and in hardware and
software verification. Moreover, due to its expressivity, HOL is well suited as a
meta-logic, and a range of (propositional and quantified) non-classical logics can
be elegantly embedded in it. Exploiting this fact, automated theorem provers
for HOL have recently been employed to automate reasoning within and about
various non-classical logics.

There are several recommended sources providing more details on HOL and
its applications [24; 6; 5; 7; 58; 73; 59]; the text presented here is partly based
on [24].

1.1 Syntax of HOL

The set T of simple types in HOL is usually freely generated from a set of basic
types {o, i} using the function type constructor �. o denotes the type of Booleans
and i some non-empty domain of individuals. Further base types may be added.

Let α, β, o ∈ T . The terms of HOL are defined by the grammar (cα denotes
typed constants and Xα typed variables distinct from cα):

s, t ::= cα | Xα | (λXαsβ)α�β | (sα�β tα)β |
(¬o�o so)o | (so ∨o�o�o to)o | (Π(α�o)�o sα�o)o

Complex typed HOL terms are thus constructed via abstraction and appli-
cation, and HOL terms of type o are called formulas.

The primitive logical connectives (chosen here) are ¬o�o,∨o�o�o andΠ(α�o)�o
(for each type α), and, additionally, choice operators ε(α�o)�α (for each type α)
or primitive equality =α�α�α (for each type α), abbreviated as =α, may be
added. From the selected set of primitive connectives, other logical connectives
can be introduced as abbreviations: for example, ϕ ∧ ψ, ϕ → ψ, and ϕ ←→ ψ
abbreviate ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ, and (ϕ→ ψ) ∧ (ψ → ϕ) , respectively.

Binder notation ∀Xα so is used as an abbreviation for Π(α�o)�oλXαso. Type
information as well as brackets may be omitted if obvious from the context.

Equality can be defined by exploiting Leibniz’ principle, expressing that two
objects are equal if they share the same properties. Leibniz equality

.
=
α

at type
α is thus defined as sα

.
=
α
tα := ∀Pα�o(¬Ps ∨ Pt).

Each occurrence of a variable in a term is either bound by a λ or free. We
use free(s) to denote the set of free variables of s (i.e., variables with a free
occurrence in s). We consider two terms to be equal if the terms are the same
up to the names of bound variables (i.e., we consider α-conversion implicitly).
A term s is closed if free(s) is empty.

Substitution of a term sα for a variable Xα in a term tβ is denoted by [s/X]t,
where it is assumed that the bound variables of t avoid variable capture.



Well known operations and relations on HOL terms include βη-normalization
and βη-equality, denoted by s =βη t, β-reduction and η-reduction. A β-redex
(λXs)t β-reduces to [t/X]s. An η-redex λX(sX) where variable X is not free in
s, η-reduces to s. We write s =β t to mean s can be converted to t by a series
of β-reductions and expansions. Similarly, s =βη t means s can be converted to
t using both β and η.

For each simply typed λ-term s there is a unique β-normal form (denoted
s↓β) and a unique βη-normal form (denoted s↓βη). From this fact we know s ≡β t
(s ≡βη t) if and only if s↓β ≡ t↓β (s↓βη ≡ t↓βη).

Remember, that formulas are defined as terms of type o. A non-atomic for-
mula is any formula whose β-normal form is of the form [cAn] where c is a logical
constant. An atomic formula is any other formula.

1.2 Semantics of HOL

The following sketch of HOL semantics closely follows [7]; for a more detailed
introduction see [18] and the references therein.

A frame is a collection {Dα}α∈T of nonempty sets called domains such that
Do = {T, F} where T represents truth and F falsehood, Di 6= ∅ is chosen
arbitrary, and Dα�β are collections of total functions mapping Dα into Dβ .

An interpretation is a tuple 〈{Dα}α∈T , I〉 where {Dα}α∈T is a frame and
function I maps each typed constant symbol cα to an appropriate element of
Dα, which is called the denotation of cα. The denotations of ¬,∨ and Π(α�o)�o
(and ε(α�o)�α and =α�α�o) are always chosen as usual. A variable assignment
σ maps variables Xα to elements in Dα.

An interpretation is a Henkin model (general model) if and only if there is a
binary valuation function V such that V (σ, sα) ∈ Dα for each variable assign-
ment σ and term sα, and the following conditions are satisfied for all σ, variables
Xα, constants cα, and terms lα�β , rα, sβ (for α, β ∈ T ): V (σ,Xα) = σ(Xα),
V (σ, cα) = I(cα), V (σ, lα�β rα) = (V (σ, lα�β)V (σ, rα)), and V (σ, λXαsβ) rep-
resents the function from Dα into Dβ whose value for each argument z ∈ Dα is
V (σ[z/Xα], sβ), where σ[z/Xα] is that assignment such that σ[z/Xα](Xα) = z
and σ[z/Xα]Yβ = σYβ when Yβ 6= Xα.

If an interpretation H = 〈{Dα}α∈T , I〉 is a Henkin model, the function V
is uniquely determined and V (σ, sα) ∈ Dα is called the denotation of sα. H is
called a standard model if and only if for all α and β, Dα�β is the set of all
functions from Dα into Dβ . It is easy to verify that each standard model is also
a Henkin model. A formula s of HOL is valid in a Henkin model H if and only
if V (σ, s) = T for all variable assignments σ. In this case we write H |=HOL s.
Formula s is (Henkin) valid, denoted as |=HOL s, if and only if H |=HOL s for
all Henkin models H.

While Church axiomatized the logical connectives in a rather conventional
fashion (using, for example, negation, conjunction, and universal quantification
as the primitive connectives), Henkin [66] and Andrews [2; 6] provided alternative
formulations in which the sole logical connective was primitive equality (at all
types). Not only was a formulation of logic using just this one logical connective



perspicuous, it also improved on the notion of Henkin models. In fact, as Andrews
shows in [2], the sets Dα→o may be so sparse when using a conventional set of
logical connectives that Leibniz equality may denote a relation, which does not
fulfill the functional extensionality principle. A solution is to presuppose the
presence of the identity relations in all domains Dα→α→o, which ensures the
existence of unit sets {a} ∈ Dα→o for all elements a ∈ Dα. The existence of
these unit sets in turn ensures that Leibniz equality indeed denotes the intended
(fully extensional) identity relation. Syntactically, the existence of these sets can
be enforced by working with primitive equality.

Modulo the above observation, Henkin models are fully extensional, that is,
they validate the functional and Boolean extensionality principles. The construc-
tion of non-functional models for elementary type theory has been pioneered by
Andrews [1]. In Andrews’ so-called v-complexes, which are based on Schütte’s
semi-valuation method [91], both the functional and the Boolean extensional-
ity principles fail. Assuming β-equality, functional extensionality splits into two
weaker and independent principles η (f

.
= λXfX, if X is not free in term f) and

ξ (from ∀X(f
.
= g) infer (λXf)

.
= (λXg), where X may occur free in f and g).

Conversely, βη-conversion, which is built-in in many modern implementations
of HOL, together with ξ implies functional extensionality. Boolean extension-
ality, however, is independent of any of these principles. A whole landscape of
respective notions of models structures for HOL between Andrews’ v-complexes
and Henkin semantics that further illustrate and clarify the above connections
is developed in [9; 18; 45], and an alternative development and discussion has
been contributed in [80].

2 Proof Systems and Proof-Theoretical Properties

2.1 Cut-free Sequent Calculi

Cut-free sequent calculi for elementary type theory and fragments of it have been
studied by Takeuti [103], Schütte [91], Tait [101], Takahashi [102], Prawitz [88],
and Girard [63]. Andrews [1] used the abstract consistency principle of Smullyan
[92] in order to give a proof of the completeness of resolution in elementary type
theory. Takeuti [105] presented a cut-free sequent calculus with extensionality
that is complete for Henkin models. The abstract consistency proof technique,
as used by Andrews, has been further extended and applied in [71; 9; 45; 18; 19;
20; 48] to obtain cut-elimination results for different systems between elementary
type theory and HOL.

We here present the cut-free, sound and complete, one-sided sequent calculi
for HOL (without choice) from [20]. In the context of this work, a sequent is
a finite set ∆ of β-normal closed formulas. A sequent calculus G provides an
inductive definition for when `G ∆ holds. A sequent calculus rule

∆1 · · · ∆n
r

∆



is admissible in G if `G ∆ holds whenever `G ∆i for all 1 ≤ i ≤ n.

Definition 1 (Sequent calculi Gβ and Gβfb). Let ∆ and ∆′ be finite sets of
β-normal closed formulas of HOL and let ∆, s denote the set ∆ ∪ {s}. The fol-
lowing sequent calculus rules are introduced:

Basic Rules
∆, s

G(¬)
∆,¬¬s

∆,¬s ∆,¬t
G(∨−)

∆,¬(s ∨ t)

∆, s, t
G(∨+)

∆, (s ∨ t)

∆,¬ (sl)
y
β

lα closed term
G(Π l

−)
∆,¬Παs

∆, (sc)
y
β

cδ new symbol
G(Π c

+)
∆,Παs

Initialization
s atomic (and β-normal)

G(init)
∆, s,¬s

∆, (s
.
=
o
t) s,t atomic

G(Init
.
=)

∆,¬s, t

Extensionality

∆, (∀XαsX
.
=
β
tX)

y
β
G(f)

∆, (s
.
=
α→β

t)

∆,¬s, t ∆,¬t, s
G(b)

∆, (s
.
=
o
t)

Decomposition

∆, (s1
.
=
α1 t1) · · · ∆, (sn .

=
αn tn)

n ≥ 1, β ∈ {o, ι},
hαn→β ∈ Σ

G(d)
∆, (hsn

.
=
β
htn)

Sequent calculus Gβ is defined by the rules G(init), G(¬), G(∨−), G(∨+),
G(Π l

−) and G(Π c
+). Sequent calculus Gβfb extends Gβ by the additional rules G(b),

G(f), G(d), and G(Init
.
=).

Theorem proving in these calculi works as follows: In order to prove
that a (closed) conjecture formula c logically follows from a (possibly empty)
set of (closed) axioms {a1, . . . , an}, we start from the initial sequent ∆ :=
{c,¬a1, . . . ,¬an} and reason backwards by applying the respective calculus
rules. We are done, if all branches of the proof tree can be closed by an ap-
plication of the G(init) rule. In this case `Gβ/Gβfb ∆ := {c,¬a1, . . . ,¬an} holds,
which means that the conjecture c logically follows from the axioms a1, . . . , an

within calculus Gβ , respectively Gβfb.
Soundness and completeness results for Gβ and Gβfb have been established

in [20].

Theorem 1 (Soundness and Completeness).

1. Gβ is sound and complete for ETT: |=ETT c if and only if `Gβ {c}
(Gβ is thus also sound for HOL).



2. Gβfb is sound and complete for HOL: |=HOL c if and only if `Gβfb {c}

Similarly, {a1, . . . , an} |=ETT/HOL c if and only if `Gβ/Gβfb {c,¬a1, . . . ,¬an}.

Rule G(cut)

∆, s ∆,¬s
G(cut)

∆

is available neither in Gβ nor in Gβfb, and cut-elimination holds for both calculi
[20].

Theorem 2 (Cut-elimination). The rule G(cut) is admissible in Gβ and Gβfb.

In spite of their cut-freeness, both calculi are obviously only mildly suited for
automation. One reason is that they are blindly guessing instantiations l in rule
G(Π l

−). Another reason is that the treatment of equality in both calculi relies on
Leibniz equality

.
=. Support for primitive equality is not provided. The problem

with Leibniz equality (or other forms of defined equality) is that it threatens
cut-freeness of the calculi by allowing for simulations (admissibility) of the cut
rule. The problem of cut-simulation, which is problematic for effective proof
automation, analogously applies to a wide range of other prominent HOL axioms.
We therefore address this issue in more depth within the next subsection. In §4
we will then outline a proof procedure that is better suited for proof automation
than sequent calculi Gβ and Gβfb above.

2.2 Cut-Simulation

We illustrate why Leibniz equality implies cut-simulation. Assume we want to
study in Gβ or Gβfb whether a conjecture c logically follows from an equal-
ity axiom l = r (where l and r are some arbitrary closed terms of type α).
Since primitive equality is not available we formalize the axiom as l

.
=
α
r and

initialize the proof process with sequent ∆ := {c,¬(l
.
=
α
r)}, that is, with

∆ := {c,¬Π(λPα→o(¬Pl ∨ Pr)).
Now consider the following derivation, where s is an arbitrary (cut) formula:

∆, s

∆,¬¬s G(¬)
∆,¬s

∆,¬(¬s ∨ s)
G(∨−)

∆,¬Π(λPα→o(¬Pl ∨ Pr))
G(Π λXs

− )

It is easy to see that this derivation introduces a cut on formula s; in the left
branch s occurs positively and in the right branch negatively.

Cut-simulation is also enabled by the functional and Boolean extensionality
axioms. The Boolean extensionality axiom (abbreviated as Bo) is given as

∀Ao∀Bo(A←→ B)→ A
.
=
o
B



The infinitely many functional extensionality axioms (abbreviated as Fαβ) are
parameterized over α, β ∈ T . They are given as

∀Fα→β∀Gα→β(∀XαFX
.
=
β
GX)→ F

.
=
α→β

G

Instead of the extensionality rules G(f) and G(b), as provided in calculus Gβfb,
we could alternatively postulate the validity of these axioms. For this we could
replace the rules G(f) and G(b) in Gβ by the following axiomatic extensionality
rules G(Fαβ) and G(B):

∆,¬Fαβ α→ β ∈ T
G(Fαβ)

∆

∆,¬Bo
G(B)

∆

This calculus is still Henkin complete (even if rules G(d) and G(Init
.
=) are ad-

ditionally removed) [20]. However, the modified calculus suffers severely from
cut-simulation. For axiom Bo this is illustrated by the following derivation (ao
is new constant symbol):

derivable in 7 steps....
∆, a←→ a

∆,¬¬(a←→ a)
G(¬)

∆, s ∆,¬s
.... derivable in 3 steps, see above

∆,¬(a
.
=
o
a)

∆,¬(¬(a←→ a) ∨ a .
=
o
a)

G(∨−)

∆,¬Bo
2× G(Π a

−)

The left branch is closed and on the right branch an arbitrary cut formula s is
introduced. A similar derivation is enabled with axiom Fαβ (bα is new constant
symbol):

derivable in 3 steps
....

∆, fb
.
=
β
fb

∆, (∀XαfX
.
=
β
fX)

G(Π b
+)

∆,¬¬∀XαfX
.
=
β
fX

G(¬)

∆, s ∆,¬s
.... derivable in 3 steps

∆,¬(f
.
=
α→β

f)

∆,¬(¬(∀XαfX
.
=
β
fX) ∨ f .

=
α→β

f)
G(∨−)

∆,¬Fαβ
2× G(Π f

−)

In all cut-simulations above we have exploited the fact that predicate variables
may be instantiated with terms that introduce arbitrary new formulas s. At
these points the subformula property breaks. At the same time this offers the
opportunity to mimic cut-introductions by appropriately selecting such instanti-
ations for predicate variables. In addition to Leibniz equations and the Boolean
and functional extensionality axioms, cut-simulations are analogously enabled by
many prominent other axioms, including excluded middle, description, choice,



comprehension, and induction. We may thus call these axioms cut-strong. More
details on such cut-strong axioms are provided in [20].1

Cut-simulations have in fact been extensively used in literature. For example,
Takeuti showed that a conjecture of Gödel could be proved without cut by using
the induction principle instead [104]; [75] illustrates how the induction rule can
be used to hide the cut rule; and [91] used excluded middle to similarly mask
the cut rule.

For the development of automated proof procedures for HOL we thus learn
an important lesson, namely that cut-elimination and cut-simulation should al-
ways be considered in combination: a pure cut-elimination result may indeed
mean little if at the same time axioms are assumed that support effective cut-
simulation. The challenge is to develop cut-free calculi for HOL that also try to
avoid the pitfall of cut-simulations (as far as possible).

Church’s use of the λ-calculus to build comprehension principles into the
language can therefore be seen as a first step in the program to eliminate cut-
strong axioms. Significant progress in the automation of HOL in existing prover
implementations has been achieved after providing calculus level support for ex-
tensionality and also choice (avoiding cut-simulation effects). Respective exten-
sionality rules have been provided for resolution [9; 10], expansion and sequent
calculi [45; 46], and tableaux [48]. Similarly, choice rules have been proposed for
the various settings: sequent calculus [78], tableaux [8] and resolution [38].

In §4 we outline the extensional RUE-resolution approach of the Leo-II the-
orem prover [39; 38]. In this approach some pragmatic improvements are offered
regarding most pressing challenges for effective proof automation.

3 Proof-Theoretical Properties via Semantic Embeddings

Cut-elimination and cut-simulation in HOL have been addressed in the previous
section. In particular, with sequent calculus Gβfb an example of a cut-free calculus
for HOL has been provided.

The development of cut-free calculi for expressive logics is generally a non-
trivial task. By modeling and studying these logics as fragments of HOL — a
research direction proposed in [16] — existing results for HOL (for example, the
cut-free sequent calculus Gβfb) can easily be reused. The idea is illustrated next
by choosing quantified conditional logics [95] as an example.

3.1 Quantified Conditional Logic

As an exemplary challenging logic we consider quantified conditional logic
(QCL).

1 Obviously, any universally quantified predicate variable (occuring negatively in the
above approach) is a possible source for cut-simulation. The challenge thus is to
avoid those predicate variables as far as possible. An axiomatic approach based on
cut-strong axioms, as proposed by several authors including e.g. [68; 69], is therefore
hardly a suitable option for the automation of HOL.



Let IV be a set of first-order (individual) variables, PV a set of propositional
variables, and SYM a set of predicate symbols of any arity. Formulas of QCL are
given by the following grammar (where Xi ∈ IV, P ∈ PV, k ∈ SYM, and where
⇒ represents conditionality):

ϕ,ψ ::= P | k(X1, . . . , Xn) | ¬ϕ | ϕ ∨ ψ | ϕ⇒ ψ | ∀coXϕ | ∀vaXϕ | ∀Pϕ

From the selected set of primitive connectives, other logical connectives can
be introduced as abbreviations: for example, ϕ∧ψ, ϕ→ ψ (material implication),
ϕ ←→ ψ and �ϕ abbreviate ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ, (ϕ → ψ) ∧ (ψ → ϕ) and
¬ϕ ⇒ ϕ, respectively. ∀co and ∀va are associated with constant domain and
variable domain quantification. For ∗ ∈ {co, va}, ∃∗Xϕ abbreviates ¬∀∗X¬ϕ.
Syntactically, QCL can be seen as a generalization of quantified multimodal logic
where the index of modality ⇒ is a formula of the same language. For instance,
in (ϕ⇒ ψ)⇒ δ the subformula ϕ⇒ ψ is the index of the second occurrence of
⇒.

Regarding semantics, different formalizations have been proposed (see [83]).
Here we build on selection function semantics [95; 49], which is based on possible
world structures and has been successfully used in [85] to develop proof methods
for some propositional CLs.

An interpretation is a structure M = 〈S, f,D,D′, Q, I〉 where, S is a set of
items called possible worlds, f : S × 2S 7→ 2S is the selection function, D is a
non-empty set of individuals (the constant first-order domain), D′ is a function
that assigns a non-empty subset D′(w) of D to each possible world w (the
D′(w) are the varying domains), Q is a non-empty collection of subsets of S (the
propositional domain), and I is a classical interpretation function where for each
n-ary predicate symbol k, I(k,w) ⊆ Dn.

A variable assignment g = (gi, gp) is a pair of maps where, gi : IV 7→ D maps
each individual variable in IV to an object in D, and gp : maps each propositional
variable in PV to a set of worlds in Q.

Satisfiability of a formula ϕ for an interpretation M = 〈S, f,D,D′, Q, I〉, a
world s ∈ S, and a variable assignment g = (gi, gp) is denoted as M, g, s |= ϕ
and defined as follows, where [a/Z]g denote the assignment identical to g except
that ([a/Z]g)(Z) = a:

M, g, s |= k(X1, ... , Xn) if and only if 〈gi(X1), ... , gi(Xn)〉 ∈ I(k,w)

M, g, s |= P if and only if s ∈ gp(P )

M, g, s |= ¬ϕ if and only if M, g, s 6|= ϕ (that is, not M, g, s |= ϕ)

M, g, s |= ϕ ∨ ψ if and only if M, g, s |= ϕ or M, g, s |= ψ

M, g, s |= ∀coXϕ if and only if M, ([d/X]gi, gp), s |= ϕ for all d ∈ D
M, g, s |= ∀vaXϕ if and only if M, ([d/X]gi, gp), s |= ϕ for all d ∈ D′(s)
M, g, s |= ∀Pϕ if and only if M, (gi, [p/P ]gp), s |= ϕ for all p ∈ Q
M, g, s |= ϕ⇒ ψ if and only if M, g, t |= ψ for all t ∈ S such that t ∈ f(s, [ϕ])

where [ϕ] = {u |M, g, u |= ϕ}



An interpretation M = 〈S, f,D,D′, Q, I〉 is a QCL model if for every variable
assignment g and every formula ϕ, the set of worlds {s ∈ S | M, g, s |= ϕ} is
a member of Q. (This requirement, which is inspired by Fitting [60], Def. 3.5,
ensures a natural correspondence to Henkin models in HOL.) As usual, a condi-
tional formula ϕ is valid in a QCL model M = 〈S, f,D,D′, Q, I〉, denoted with
M |= ϕ, if and only if for all worlds s ∈ S and variable assignments g holds
M, g, s |= ϕ. A formula ϕ is valid, denoted |= ϕ, if and only if it is valid in every
QCL model.

f is defined to take [ϕ] (called the proof set of ϕ with respect to a given QCL
model M) instead of ϕ. This approach has the consequence of forcing the so-
called normality property: given a QCL model M , if ϕ and ϕ′ are equivalent (i.e.,
they are satisfied in the same set of worlds), then they index the same formulas
with respect to the ⇒ modality. The axiomatic counterpart of the normality
condition is given by the rule RCEA (which expresses a replacement property
for equivalent formulas on the left-hand side of a conditional formula):

ϕ↔ ϕ′

(RCEA)
(ϕ⇒ ψ)↔ (ϕ′ ⇒ ψ)

Moreover, it can be easily shown that the above semantics forces also the fol-
lowing rules to hold (RCEC expresses a right-hand side replacement property
analogous to RCEA, and RCK expresses compatibility of the right-hand side of
conditional formulas with conjunction):

ϕ↔ ϕ′

(RCEC)
(ψ ⇒ ϕ)↔ (ψ ⇒ ϕ′)

(ϕ1 ∧ . . . ∧ ϕn)↔ ψ
(RCK)

(ϕ0 ⇒ ϕ1 ∧ . . . ∧ ϕ0 ⇒ ϕn)→ (ϕ0 ⇒ ψ)

We refer to QCK (cf. CK in [50]) as the minimal QCL closed under rules
RCEA, RCEC and RCK. In what follows, only QCLs extending QCK are con-
sidered.

QCLs have many applications, including action planning, counterfactual rea-
soning, default reasoning, deontic reasoning, metaphysical modeling and reason-
ing about knowledge. While there is broad literature on propositional conditional
logics only a few authors have addressed first-order extensions [56; 62]. Most in-
terestingly, QCLs subsume normal modal logics (�ϕ can be defined as ¬ϕ⇒ ϕ,
see [95]).

Modeling QCLs as fragments of HOL. Regarding the particular choice of
HOL, we here assume a set of basic types {o, i, u}, where o denotes the type of
Booleans as before. Without loss of generality, i is now identified with a (non-
empty) set of worlds and u with a (non-empty) domain of individuals.

QCL formulas are now identified with certain HOL terms (predicates) of
type i � o. They can be applied to terms of type i, which are assumed to denote
possible worlds. Type i � o is abbreviated as τ in the remainder.



The mapping b·c translates QCL formulas ϕ into HOL terms bϕc of type τ .
The mapping is recursively defined:

bP c = Pτ
bk(X1, . . . , Xn)c = kun�τ X

1
u . . . X

n
u

b¬ϕc = ¬τ bϕc
bϕ ∨ ψc = ∨τ�τ�τ bϕcbψc
bϕ⇒ ψc =⇒τ�τ�τ bϕcbψc
b∀coXϕc = Πco

(u�τ)�τ λXubϕc
b∀vaXϕc = Πva

(u�τ)�τ λXubϕc
b∀Pϕc = Π(τ�τ)�τ λPτbϕc

Pτ and X1
u, . . . , X

n
u are variables and kun�τ is a constant symbol. ¬τ , ∨τ�τ�τ ,

⇒τ�τ�τ , Πco,va
(u�τ)�τ and Π(τ�τ)�τ realize the QCL connectives in HOL. They

abbreviate the following HOL terms:2

¬τ�τ = λAτλXi¬(AX)
∨τ�τ�τ = λAτλBτλXi(AX ∨BX)
⇒τ�τ�τ = λAτλBτλXi∀Vi(f X AV → B V )
Πco

(u�τ)�τ = λQu�τλVi∀Xu(QX V )

Πva
(u�τ)�τ = λQu�τλVi∀Xu(eiw V X → QX V )

Π(τ�τ)�τ = λRτ�τλVi∀Pτ (RP V )

Constant symbol f in the mapping of ⇒ is of type i � τ � τ . It realizes the
selection function. Constant symbol eiw (for ’exists in world’), which is of type
(τ � u) � τ , is associated with the varying domains. The interpretations of f
and eiw are chosen appropriately below. Moreover, for the varying domains a
non-emptiness axiom is postulated:

∀Wi∃Xu(eiwW X) (NE)

Analyzing the validity of a translated formula bϕc for a world represented by
term ti corresponds to evaluating the application (bϕc ti). In line with [21] (and
analogous to [33; 34; 35]), we define vldτ�o = λAτ∀Si(AS). With this definition,
validity of a QCL formula ϕ in QCK corresponds to the validity of (vld bϕc) in
HOL, and vice versa.

Soundness and completeness of this embedding of QCL in HOL has been
studied in [15].

Theorem 3 (Soundness and Completeness of QCL-embedding).
|=QCL ϕ if and only if {NE} |=HOL vld bϕc

Combining Theorem 3 with Theorem 1 we obtain:

2 Note the predicate argument A of f in the term for ⇒τ�τ�τ and the second-order
quantifier ∀Pτ in the term for Π(τ�τ)�τ . FOL encodings of both constructs, if fea-
sible, will be less natural.



Theorem 4 (Soundness and Completeness of Gβfb for QCL).
|=QCL ϕ if and only if `Gβfb {vld bϕc,¬NE}

Since Gβfb is cut-free (Theorem 2), we thus obtain a cut-elimination result
for QCL for free. However, we need to point again to the subtle issue of cut-
simulation. For example, when postulating additional axioms for the embedded
logics in HOL (for example, QCL axiom ID: ∀ϕ(ϕ⇒ ϕ)), cut-simulation effects
may apply. In some cases the semantical conditions which correspond to such
axioms can be postulated instead in order to circumvent the effect. This is for
example possible for many prominent modal logic axioms. for example, the cor-
responding semantical condition for modal axiom T: ∀ϕ(�ϕ ⊃ ϕ) is ∀x(rxx)
(where constant r denotes the associated accessibility relation). The latter axiom
obviously does not support cut-simulations and should therefore be preferred.
However, the semantical condition that corresponds to ID, ∀Aτ∀Wi(f WA ⊆ A),
unfortunately still introduces some problematic predicate variables.

3.2 Other Logic Embeddings in HOL

Recent work has shown that many other challenging logics can be characterized
as HOL fragments via semantic embeddings. The logics studied so far comprise
prominent non-classical logics, including modal logics, tense logics, intuitionistic
logic, security logics, conditional logics, hybrid logics and logics for time and
space [33; 34; 35; 12; 14; 22; 21; 32; 107; 108]. These fragments also comprise
first-order and even higher-order extensions of non-classical logics, for which only
little practical automation support has been available so far. Most importantly,
however, combinations of embedded logics can be elegantly achieved in this ap-
proach. And, similar to above, cut-elimination results for these embedded logics
can be obtained ‘for free’ by exploiting the results already achieved for HOL.

The embeddings approach bridges between the Tarski view of logics (for
‘meta logic’ HOL) and the Kripke view (for the embedded source logics) and
exploits the fact that well known translations of logics, such as the relational
translation [84], can be easily formalized in HOL. This way HOL-ATP systems
can be uniformly applied to reason within and also about embedded logics and
their combinations.

4 Pragmatic Properties

In this Section we outline the calculus and working principles of the higher-order
automated theorem prover Leo-II [39; 38].

4.1 Extensional RUE-Resolution Calculus of Leo-II

Leo-II is an automated theorem prover for HOL. It supports primitive equality
and choice.

In Leo-II, logical consequence of a conjecture c from a (possibly empty) set of
axioms {a1, . . . , an} is established by refuting the initial set of (non-normalized)



unit clauses {[c]ff , [a1]tt, . . . , [an]tt}. Refuting means deriving the empty clause
from this initial set by subsequent forward applications of the rules presented
below. These rules operate on the clauses of a given clause set and they add their
result clauses to this clause set. The superscripts tt and ff denote the polarity of
clause literals. Clauses are generally depicted as C ∨ [s]α below, where [s]α is a
literal (for α ∈ {tt, ff}) and where C is a clause rest.

Leo-II’s calculus is based on an adaption of the RUE-resolution approach
[57], originally developed for first-order logic with equality, to HOL [9; 10]. In
RUE-resolution unification constraints are explicitly represented and manipu-
lated as disagreement pairs, that is, negated equations. A unification constraint
[l = r]ff in clause C ∨ [l = r]ff can also be seen as a condition (obligation to
make terms l and r equal) under which the clause rest C follows. In Leo-II,
such unification constraints are amenable to resolution and factorization.

The calculus rules of Leo-II are presented next.

Definition 2 (Extensional Higher-order RUE-Resolution). The fol-
lowing rules implicitly assume symmetry and associativity of the clause-level
∨-operator. Moreover, they assume that the formulas in clauses are always kept
in βη-normal form.

Basic Rules
C ∨ [¬s]tt

R(¬tt)
C ∨ [s]ff

C ∨ [¬s]ff
R(¬ff)

C ∨ [s]tt

C ∨ [s ∨ t]tt
R(∨tt)

C ∨ [s]tt ∨ [t]tt

C ∨ [Παs]tt Xα fresh variable
R(Π X

ff )
C ∨ [sX]tt

C ∨ [s ∨ t]ff
R(∨ff)

C ∨ [s]ff C ∨ [t]ff

C ∨ [Παs]ff skα Skolem term
R(Π sk

tt )
C ∨ [s skα]ff

These rules deal with the normalization of clauses. The rules are straightforward
– for instance, R(∨tt) lifts object-level disjunction to meta-level (i.e. clause-
level) disjunction. Similarly, the rule R(¬ff) removes a dominant negation from
a literal and flips the literal’s polarity. Normalization cannot be treated as a
pre-process as in first-order logic, since instantiations of predicate variables,
for example with rules R(Subst) and R(PrimSubst) may introduce non-normal
clauses and require subsequent clause normalization steps. Instead of blindly
guessing instantiations as in sequent rule G(Π l

−), Leo-II thus introduces free
variables in the search space. The hope is that suitable instantiations for these
variables can be determined by pre-unification within the subsequent proof search
process. However, as we will explore further below, this idea can only be partly
realized in HOL.

Resolution
C ∨ [s]tt D ∨ [t]ff

R(Res)
C ∨D ∨ [s = t]ff

C ∨ [s]p ∨ [t]p

R(Fac)
C ∨ [s]p ∨ [s = t]ff

In Leo-II, resolution and factorization are applied only to proper clauses, that
is, clauses in which all literal formulas are atomic (or unification constraints).



Note that both rules introduce unification constraints [s = t]ff . On these
unification constraints the pre-unification rules given below operate. Instead of
the factorization rule as shown here, factorization in Leo-II is (for pragmatic
reasons and at the cost of completeness) restricted to binary clauses only.

Extensionality

C ∨ [s =α�β t]tt Xα fresh variable
R(ftt)

C ∨ [sX =β tX]tt

C ∨ [s =o t]tt

R(btt)
C ∨ [s←→ t]tt

C ∨ [s =α�β t]ff skα Skolem term
R(fff)

C ∨ [s sk =β t sk]ff

C ∨ [s =o t]ff

R(bff)
C ∨ [s←→ t]ff

Conceptually the extensionality rules R(ftt) and R(btt) belong to the nor-
malization rules of Leo-II, while R(fff) and R(bff) are integrated with the
pre-unification rules. Similar to sequent rules G(f) and G(b), these rules
realize full extensionality reasoning while avoiding cut-simulation effects. The
extensionality principles for Leibniz equality are implied.

Pre-Unification
C ∨ [hsn =β htn]ff n ≥ 1, β ∈ {o, ι}, hαn→β ∈ Σ R(d)

C ∨ [s1 =α1 t1]ff · · · C ∨ [sn =αn tn]ff

C ∨ [s = s]ff

R(Triv)
C

C ∨ [X = s]ff X 6∈ free(s)
R(Subst)

[s/X]C

C ∨ [Fsn =β htm]ff n ≥ 1, hγm→β ∈ Σ, l ∈ AB
(h)

αn→β R(FlexRigid)
C ∨ [F = l]ff ∨ [Fsn =β htm]ff

This set of rules implements pre-unification, cf. [67; 93]. Leo-II actually pack-
ages its unification steps into a single, abstract rule called extuni. This package
also integrates the extensionality rules R(fff) and R(bff). The integration of these
two rules, in particular, of R(bff), is the reason why pre-unification in Leo-II
should rather be called extensional pre-unification; cf. [11]. Moreover, logical con-
stants, such as disjunction, equality, etc. are interpreted and a special treatment
is provided for them (an example would be symmetric decomposition in rule R(d)
in case h is ∨ or =α).

In rule R(FlexRigid) (and again in rule R(PrimSubst) below), we use the

symbol AB(h)
αn→β to denote the set of approximating/partial bindings parametric

to a type αn → β and to a constant hγm−→β. This is explained further next; see
also [93]. Given a name k (where a name is either a constant or a variable)
of type γm −→ β, term l having form λXn

αn(krm) is a partial binding of type
αn → β and head k. Each ri≤m has form HiXn

αn where Hi≤m are fresh variables
typed αn −→ γi≤m. Projection bindings are partial bindings whose head k is one
of Xi≤l. Imitation bindings are partial bindings whose head k is identical to the



given symbol h in the superscript of AB(h)
αn→β. AB(h)

αn→β is the set of all projection

and imitation bindings modulo type αn→β and h.
Leo-II follows Huet [68; 69] in regarding flexflex clauses, that is, clauses

consisting only of flexflex unification literals [Fsn =β Gtm]ff (where both F and
G are variables), to be empty.

Primitive Substitution
C ∨ [Qαn→os

n]p l ∈ AB(¬,∨,Π
α,=α)

αn→o R(PrimSubst)
[l/Q](C ∨ [Qαn→os

n]p)

In this rule, which is related to Huet’s splitting rule [68; 69] and Andrews’s prim-

itive substitutions [4], AB(¬,∨,Π
α,=α)

αn→o stands for AB(¬)
αn→o∪AB

(∨)
αn→o∪AB

(Πα)

αn→o∪
AB(=

α)

αn→o. This rule introduces a certain amount of blind guessing into the proof

procedure. However, unlike in sequent calculus rule G(Π l
−) only the top-level logi-

cal structure of the instantiation term l is guessed, while further decisions on l are
delayed. The hope is that they can eventually be determined by pre-unification
in subsequent resolution steps. Generally, however, subsequent applications of
rule R(PrimSubst) are permitted and the deeper logical structure of l may thus
be guessed later. It is an open challenge to suitably restrict this rule without
threatening completeness.

A simple, prominent example to illustrate the need for splittings is ∃Po P .
When using resolution the formula is first negated and then normalized to
clause [Xo]

ff , where X is a predicate variable. There is no resolution partner for
this clause available, hence the empty clause can not be derived. However, when
guessing some top-level, logical structure for X, here the substitution [¬Y/X] is
suitable, then [¬Y ]ff is derived, which normalizes into a new clause [Y ]tt. Now,
resolution between the clauses [X]ff and [Y ]tt with substitution [Y/X] directly
leads to the empty clause.

Choice
[PX]ff ∨ [P (f(α→o)→αP )]tt

R(DetectChoice)
CFs←− CFs ∪ {f(α→o)→α}

C := C ′ ∨ [s[E(α→o)→αt]]
p

E = ε for ε ∈ CFs or E ∈ free(C),
free(t) ⊆ free(C), Y fresh

R(Choice)
[t Y ]ff ∨ [t (ε(α→o)→αt)]

tt

Rule R(Choice) investigates whether a term ε(α→o)→αtα→o (where ε is a choice
function, registered and memorized in a special set CFs, or a free variable) is
contained as a subterm of a literal [s]p in a clause C. In this case it adds the
instantiation of the choice axiom at type (α → o) → α with term tα→o to the
search space.3 Side-conditions guard against unsound reasoning, such as the ‘un-
capturing’ of free variables in t. Additionally, rule R(DetectChoice) detects and
removes uninstantiated choice-axiom clauses from the search space (remember
that they are cut-strong) and registers the corresponding choice function sym-

3 Note that the instantiation of the choice axiom (scheme) ∀Fτ→o((∃YτFY ) →
F (ε(τ→o)→τF )) for term t leads to the clause [t Y ]ff ∨ [t (ε(α→o)→αt)]

tt.



bols f in CFs. By default, CFs contains at least one choice function symbol for
each choice type. The rule does not describe a typical logical inference, since
the conclusion of the rule indicates a side-effect which extends the set CFs of
choice functions and which removes a clause. Both rules are obviously motivated
by the idea to avoid cut-simulation effects. Moreover, it is easy to see that they
are sound: R(DetectChoice) simply removes (cut-strong) clauses from the search
space and registers choice functions, and for any registered choice function f , the
rule R(Choice) only introduces new instances of the corresponding choice axiom.

Both choice rules can be disabled in LEO-II with the help of a special flag.

We now briefly summarize the organization of proof search in Leo-II.
In first-order logic, unification is decidable, and it is used as an eager filter

during resolution. Unification in HOL is undecidable in general, so it is used more
carefully. Therefore, Leo-II relies on a variant of Huet’s pre-unification, which is
a semi-decidable procedure. It works by accumulating flexflex unification pairs as
unification constraints. When a clause consists only of flexflex constraints then
it is considered to be empty, since, as Huet showed [67], such a system of equa-
tions always has solutions. An additional aspect of unification in Leo-II is the
integration of the extensionality rule R(btt). In addition to flexflex constraints,
pre-unification in Leo-II may thus return negated equivalence literals.

Though it was originally intended as an alternative option for Leo-II’s ar-
chitecture, lazy unification has never been implemented. Instead eager unifica-
tion is used in Leo-II, which works as follows: extensional pre-unification is
applied to clauses with a predefined depth bound (for example, maximally five4

nestings of the branching flex-rigid rule; modulo this depth-bound higher-order
pre-unification becomes decidable, but at the cost of completeness; however,
regarding the unification depth an iterative deepening approach is actually pro-
vided in Leo-II). The solved unification constraints are exhaustively applied in
the resulting clauses, and any remaining flexflex unification pairs or negated
equivalence literals generated by R(btt) are kept as literals of the result clause.

Leo-II’s calculus-level treatment of the axiom of choice is inspired by the
work of Mints [78]. Choice is related to Skolemization. In HOL, Skolemization
is not as straightforward as in first-order logic [77]. Näıve Skolemization is un-
sound with respect to Henkin models that invalidate choice, and incomplete with
respect to Henkin models that validate choice [8; 17].

Like many other provers, Leo-II spends its time looping during its explo-
ration of the search space — executing its main loop. By search space we mean
the totality of clauses surveyed by Leo-II during its execution. Each iteration
of this loop might generate new clauses, thus contributing to the representation
of the search space that is kept by Leo-II. Each iteration does not change the
satisfiability of the problem and its search space; this is an invariant of a prover’s
main loop.

4 The pre-unification depth is a parameter in Leo-II that can be specified at the
command line. By default Leo-II currently operates with values up to depth 8. So
far there has been no exhaustive empirical investigation of the optimal setting of the
pre-unification depth.



Unlike many provers Leo-II keeps an additional representation of the search
space. This is used to store the input to external provers. The contents of this
store are produced by translating the clauses in the main store. The source
clauses consist of higher-order clauses, and the target clauses are encoded in the
target logic. Since Leo-II currently only cooperates with first-order provers, the
target clauses consist of first-order clauses.

The first-order clauses are accumulated during iterations of Leo-II’s main
loop, and are periodically sent to the external prover with which Leo-II is co-
operating. If the external prover finds the first-order clauses to be inconsistent
then, assuming that the translation was sound, it means that the original HOL
clauses must also be inconsistent. This refutation is accepted by Leo-II, and
presented to the user as a refutation of the initial conjecture.

Various translations from HOL to first-order logic are implemented in Leo-II
[38]. These translations differ in the amount of information they encode in the
resulting FO formulas. Encoding less information can lead to incompleteness.
Leo-II also implements a method devised in [55], which describes an analysis on
the cardinalities of types in order to safely erase some information. As part of
this analysis, SAT problems are generated, and these are processed by MiniSat
via an interface adapted from the Satallax prover [44; 47].

4.2 Leo-II’s Proof Certificates

Running Leo-II on a problem can have several outcomes: the conjecture could
be found to be a theorem, or found to be a non-theorem, or the prover could give
up (because of a timeout, for instance). Leo-II conforms to the SZS standard
ontology [97] for communicating the outcome of a proof attempt. This makes it
easier for external tools to interpret this outcome.

In addition to this, Leo-II can also output a proof certificate. This details
the justification for the outcome given by Leo-II, by providing the reasoning
steps used by Leo-II to derive a refutation. This could then be used by an
independent system to check Leo-II’s reasoning, or to use that derivation in a
bigger formalisation.

Leo-II can generate proof certificates in two levels of detail. When called
with the option -po 1, Leo-II produces a proof containing the reasoning steps
made by Leo-II alone — information on the reasoning made by the cooperating
FO ATP are omitted. When called with option -po 2, Leo-II tries to merge the
proof steps of the cooperating FO ATP with its own steps in order to return a
joint THF-FOF proof object [96]. The ’-po 2’ mode is unfortunately still very
brittle and therefore not yet recommended for extensive use.

Leo-II’s proof certificates are encoded in the TPTP TSTP syntax [98; 99], in
which each inference is encoded as an annotated formula. The inference’s conclu-
sion appears as the formula (e.g., in THF0 or FOF syntax), and the inference’s
hypotheses and other meta-data are referenced resp. encoded in the formula’s
annotations. Examples of proofs of both levels of detail are provided on the Leo-
II website, at http://page.mi.fu-berlin.de/cbenzmueller/leo/download.

html.



5 Tools and Provers

5.1 The TPTP THF Initiative

To foster the systematic development and improvement of higher-order auto-
mated theorem proving systems the TPTP THF infrastructure [100] has been
initiated (THF stands for typed higher-order form). This project, which was
supported by several other members of the community, has introduced the THF
syntax for higher-order logic, it has developed a library of benchmark and exam-
ple problems, and it provides various support tools for the new THF0 language
fragment. The THF0 language supports HOL with choice.

Version 6.0.0 of the TPTP library contains more than 3000 problems in the
THF0 language. The library also includes the entire problem library of Andrews’s
TPS project, which, among others, contains formalizations of many theorems of
his textbook [6]. The first-order TPTP infrastructure [99] provides a range of re-
sources to support usage of the TPTP problem library. Many of these resources
are now immediately applicable to the higher-order setting although some have
required changes to support the new features of THF. The development of the
THF0 language has been paralleled and significantly influenced by the devel-
opment of the Leo-II prover. Several other provers have quickly adopted this
language, leading to fruitful mutual comparisons and evaluations. Several imple-
mentation bugs in different systems have been detected this way.

5.2 Automated Theorem Provers for HOL

We briefly describe the currently available, fully automated theorem provers
for HOL (with choice). These systems all support the new THF0 language and
they can be employed online (avoiding local installations) via Sutcliffe’s Syste-
mOnTPTP facility [98; 99].5 The descriptions below have been adapted from
[24].

TPS The TPS prover can be used to prove theorems of ETT or HOL auto-
matically, interactively, or semi-automatically. When searching for a proof au-
tomatically, TPS first searches for an expansion proof [76] or an extensional
expansion proof [45] of the theorem. Part of this process involves searching for
acceptable matings [3]. Using higher-order unification, a pair of occurrences of
subformulas (which are usually literals) is mated appropriately on each vertical
path through an expanded form of the theorem to be proved. Skolemization and
pre-unification is employed, and calculus rules for extensionality reasoning are
provided. The behavior of TPS is controlled by sets of flags, also called modes.
About fifty modes have been found that collectively suffice for automatically
proving virtually all the theorems that TPS has proved automatically thus far.
A simple scheduling mechanism is employed in TPS to sequentially run these
modes for a limited amount of time. The resulting fully automated system is
called TPS (TPTP).

5 See also http://www.tptp.org/cgi-bin/SystemOnTPTP.



Leo-II [39; 38], the successor of LEO-I [23], has been described in more detail
in §4. Communication between Leo-II and the cooperating first-order theorem
prover uses the TPTP language and standards. Leo-II outputs proofs in TPTP
TSTP syntax. An incremental communication between LEO-II and the first-
order prover(s) would clearly make sense, and this has been on the list of planned
improvements for quite some time. However, such a solution has not yet been im-
plemented. The latest versions of Leo-II provide some modest (counter-)model
finding capabilities.

Isabelle/HOL The Isabelle/HOL [82] system has originally been designed as an
interactive prover. However, in order to ease user interaction several automatic
proof tactics have been added over the years. By appropriately scheduling a sub-
set of these proof tactics, some of which are quite powerful, Isabelle/HOL has in
recent years been turned also into an automatic theorem prover, that can be run
from a command shell like other provers. The latest releases of this automated
version of Isabelle/HOL provide native support for different TPTP syntax for-
mats, including THF0. The most powerful proof tactics that are scheduled by
Isabelle/HOL include the sledgehammer tool [41], which invokes a sequence of
external first-order and higher-order theorem provers, the model finder Nitpick
[42], the equational reasoner simp [81], the untyped tableau prover blast [87],
the simplifier and classical reasoners auto, force, and fast [86], and the best-
first search procedure best. The TPTP incarnation of Isabelle/HOL does not yet
output proof terms.

Satallax The higher-order automated theorem prover Satallax [44; 47] comes
with model finding capabilities. The system is based on a complete ground
tableau calculus for HOL (with choice) [8]. An initial tableau branch is formed
from the assumptions of a conjecture and negation of its conclusion. From
that point on, Satallax tries to determine unsatisfiability or satisfiability of this
branch. Satallax progressively generates higher-order formulas and correspond-
ing propositional clauses. Satallax uses the SAT solver MiniSat as an engine to
test the current set of propositional clauses for unsatisfiability. If the clauses
are unsatisfiable, the original branch is unsatisfiable. Satallax employs restricted
instantiation and pre-unification, and it provides calculus rules for extensional-
ity and choice. If there are no quantifiers at function types, the generation of
higher-order formulas and corresponding clauses may terminate. In that case,
if MiniSat reports the final set of clauses as satisfiable, then the original set of
higher-order formulas is satisfiable (by a standard model in which all types are
interpreted as finite sets). Satallax outputs proofs in different formats, including
Coq proof scripts and Coq proof terms.

Nitpick and Refute These systems are (counter-)model finders for HOL. The
ability of Isabelle to find (counter-)models using the Refute and Nitpick [42]
commands has also been integrated into automatic systems. They provide the
capability to find models for THF0 formulas, which confirm the satisfiability of



axiom sets, or the counter-satisfiability of non-theorems. The generation of mod-
els is particularly useful for exposing errors in some THF0 problem encodings,
and revealing bugs in the THF0 theorem provers. Nitpick employs Skolemization.

agsyHOL The agsyHOL prover [74] is based on a generic lazy narrowing proof
search algorithm. Backtracking is employed and a comparably small search state
is maintained. The prover outputs proof terms in sequent style which can be
verified in the Agda system.

coqATP The coqATP prover [40] implements (the non-inductive) part of the
calculus of constructions. The system outputs proof terms which are accepted as
proofs by Coq (after the addition of a few definitions). The prover has axioms
for functional extensionality, choice, and excluded middle. Propositional exten-
sionality is not supported yet. In addition to axioms, a small library of basic
lemmas is employed.

Satallax-MaLeS and Leo-II-MaLeS MaLeS is an automatic tuning framework
for automatic theorem provers. It combines random-hill climbing based strategy
finding with strategy scheduling via learned runtime predictions. The MaLeS
system has been successfully combined with Satallax and with Leo-II [72].

6 Proof Applications

With respect to full proof automation the TPS system has long been the lead-
ing system, and the system has been employed to build up the TPS library of
formalized and automated mathematical proofs. More recently, however, TPS is
outperformed by several other THF0 theorem provers. Below we briefly point to
some selected recent applications of the leading systems.

Both Isabelle/HOL and Nitpick have been successfully employed to check
a formalization of a C++ memory model against various concurrent programs
written in C++ (such as a simple locking algorithm) [43]. Moreover, Nitpick
has been employed in the development of algebraic formal methods within Is-
abelle/HOL [64].

Isabelle/HOL, Satallax, and Leo-II performed well in recent experiments
related to the Flyspeck project [65], in which a formalized proof of the Kepler
conjecture has been developed (mainly) in HOL Light; cf. the experiments re-
ported in [70], which inter alia investigated the potential of several ATPs for au-
tomating subgoals in the Flyspeck corpus. In these experiments the higher-order
automated teorem provers performed better than many prominent first-order
theorem provers, and they contributed many unique solutions.

Most recently, Leo-II, Satallax, and Nitpick were employed to achieve a
formalization, mechanization, and automation of Gödel’s ontological proof of
the existence of God [32; 31; 27; 28; 30; 29; 26]. This work employs a semantic
embedding of quantified modal logic in HOL [35], similar to the embedding
presented in §2. Leo-II was the first prover to fully automate the four key steps of



Dana Scott’s version of the proof [94]. These results were subsequently confirmed
by Satallax, and consistency of the axioms was shown with Nitpick. Moreover,
some previously unknown results were contributed by the provers.

Using the semantic embeddings approach, a wide range of propositional
and quantified non-classical logics, including parts of their meta-theory and
their combinations, can be automated with THF0 reasoners [14]. Automation
is thereby competitive, as recent experiments for first-order modal logics show
[37; 25]. In [13] HOL theorem provers have been successfully employed to reason
about meta-level properties of modal logics. More precisely, the provers have
been employed to verify the modal logic cube.

THF0 reasoners can also be fruitfully employed for reasoning in expressive on-
tologies [36]. Furthermore, the heterogeneous toolset HETS [79] employs THF0
to integrate the automated higher-order provers Satallax, Leo-II, Nitpick, Re-
fute, and Isabelle/HOL.

7 Trends and Open Problems

The development of automated theorem provers for HOL has significantly pro-
gressed recently. At the same time the systems still lag far behind the theoretical
and technical maturity that has been achieved in first-order automated theorem
proving. Existing HOL provers have nevertheless already demonstrated their
competitiveness in various applications.

Further challenges in this field include the development and systematic im-
provement of the theoretical foundations, in particular, of the underlying calculi,
and better proof search organization.

The challenges also include the automation of reasoning with polymorphism,
subtypes, type classes, and possibly even dependent types as supported in mod-
ern interactive proof assistants. The rationale here is that automated theorem
provers for HOL should ideally be applicable directly to the logics as provided
and employed in these proof assistants. It will be relevant to improve and adapt
the TPTP THF languages accordingly.

Moreover, challenges include the suitable automation of any of the remaining,
prominent cut-strong principles of HOL, such as induction and description.

There are also significant challenges regarding proof representation and user
interaction. Experience shows that HOL proofs, for example, as produced by
Leo-II or Satallax, can be quite hard to read and understand by humans. To
foster the use of our systems in contexts where human understanding and the
generation of human level answers is relevant, significant further improvements
are thus required.
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abelle/hol. Archive of Formal Proofs, 2013, 2013.

[28] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Gdel’s god on the
computer. In 10th International Workshop on the Implementation of Log-
ics, 2013.

[29] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Formalization and
automated verification of gdel’s proof of god’s existence. In 4th World
Congress on the Square of Opposition, 2014.

[30] Christoph Benzmüller and Bruno Woltzenlogel Paleo. On logic embeddings
and gdel’s god. In 22nd International Workshop on Algebraic Development
Techniques, 2014.

[31] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Formalization,
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1879-1931. Source books in the history of the sciences series. Harvard Univ.
Press, Cambridge, MA, 3rd printing, 1997 edition, 1967.

[107] Max Wisniewski and Alexander Steen. Embedding of quantified higher-
order nominal modal logic into classical higher-order logic. In Proc. of the
1st International Workshop on Automated Reasoning in Quantified Non-
Classical Logics (ARQNL), Vienna, 2014.

[108] Bruno Woltzenlogel Paleo. An Embedding of Neighbourhood-Based
Modal Logics in HOL. Available at https://github.com/Paradoxika/

ModalLogic.


