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Abstract. We characterise imaginaries (up to interdefinability) in Hilbert spaces
using a Galois theory for compact unitary groups.

Introduction

Recall that a Banach space is a normed vector space over R or C, which is in addition
complete with respect to the metric induced by the norm. It is a Hilbert space if the
norm is induced by an inner product ‖x‖ =

√

〈x, x〉 (and then the inner product is
unique and can be recovered from the norm). Everything we say here holds both for
the class of real Hilbert space and for that of complex ones: in order to avoid repetition,
we will assume throughout the paper that all Hilbert spaces are of the same kind.

The model theory of Hilbert and Banach spaces have been studied from many dif-
ferent points of view. Henson defined the notion of positive bounded formulas, approx-
imate satisfaction and other substitutes for first order notions (see [HI02]). In [Iov99]
Iovino developed a theory of stability in this framework. He also used some definable
equivalence relations and their classes to generalise the Finite Equivalence Relation
Theorem and to define strong types. Another approach for this subject comes from
the work of the first author on compact abstract theories (see [Ben03]). We approach
Hilbert spaces from this second point of view:

• We work in a universal domain H , that is a Hilbert space far bigger than
any set of elements or formulas under consideration. It may be convenient to
pretend that H is a proper class. We consider H as a multi-sorted structure:
Bn(H ) = {v ∈ H : ‖v‖ ≤ n} is a sort for every n < ω (the sorts are not
disjoint). Unless explicitly said otherwise, we always work in the sort of the
unit ball B1(H ).

• Our atomic formulas (or predicates) are of the form Pn,λ<m,r,s(x<m) = [r ≤
‖

∑

i<m λixi‖ ≤ s], where m,n < ω, λi ∈ C (or R), r, s ∈ R+ and x0, ..., xm−1

are variables in the sort Bn. A positive formula is a positive boolean combi-
nation of predicates, and a partial type is a set of positive formulas. If fact,
we may restrict ourselves to atomic formulas Pn,λ̄,r,s(x̄) where λi ∈ Q[i] (or Q)
and r, s ∈ Q+, without changing what properties are expressible by a partial
type.
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• With respect to positive formulas, H is strongly homogeneous and compact.
It is therefore a universal domain for a cat.

• An additional property of positive formulas is that they eliminate quantifiers:
if π(x, y) is a partial type, then there exist partials types ρ(x) and τ(x) which
are equivalent in H to ∃y π(x, y) and ∀y π(x, y), respectively. (Do not forget
that the variable y is associated to a sort, so the quantification is over that
sort, and not over the entire space).

A type-definable set is the collection of realisations in H of a partial type, possibly
with parameters. A type-definable set would usually be of the same cardinality as
H : otherwise, we call it bounded. This is standard model-theoretic terminology, and
should not be confused with the meaning of the word “bounded” in metric spaces:
after all, since every type-definable set lives in a sort, it is automatically bounded in
the metric sense!

An imaginary is an equivalence class aE of a possibly infinite tuple modulo a type-
definable equivalence relation E (in first-order model theory we would call this a hy-
perimaginary, but the distinction does not seem to make sense for cats). There are
some natural applications of imaginaries in Hilbert spaces. In [Ber02] it is proved that
finite rank operators on a Hilbert space can be seen as finite tuples from H modulo a
positive formula. It is also shown that compact operators in H can be interpreted as
a countable collection of finite rank operators. The aim of this paper is to characterise
arbitrary imaginaries in a Hilbert space.

It should be mentioned that a property is type-definable in the sense defined above if
and only if it is definable by a set of positive bounded formulas in the sense of [HI02].
Thus, both logics are semantically equivalent as far as real elements are concerned.
The picture changes slightly when we also consider imaginaries. It is well understood
how to add imaginary (or hyperimaginary) sorts to a cat, and such a sort enjoys pretty
much the same status as the real sort ([Ben03]). One could also treat imaginary sorts
with positive bounded formulas in the same way that hyperimaginaries are treated in
first-order theories. For this paper, we will use the cat approach.

We assume familiarity with [Ben03] for the general framework of cats. Results related
to stability in Hilbert spaces will be quoted from [BB02]. The reader should not be
worried about the fact that [BB02] is written in the language of homogeneous model
theory, rather than that of cats, since all the notions we are going to need (dividing,
canonical bases, etc.) are defined identically (compare for example with [Ben02a]). For
general results about stability in Banach space, [Iov99] mentioned above is a good
source, although it uses a different approach to the definition of independence than the
previous two (following the “French school”).

As we said above, H denotes a universal domain. We use H, Hi, etc., to denote
small Hilbert subspaces, which usually serve as sets of parameters. Lowercase letters a,
b, c, etc., denote imaginaries. If we wish to emphasise that a certain imaginary is the
quotient of a tuple a (usually from B1(H )) by a type-definable equivalence relation
E, we note it aE. Caution: a fixed enumeration of a small Hilbert space H can also
be considered as an imaginary and be denoted a; as a general rule, we choose notation
according to the aspects we wish to emphasise.
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1. Preliminaries

1.1. Bounded closure. If a and b are two imaginaries, then we say that b is definable
from a if b is the unique realisation of tp(b/a), and we write b ∈ dcl(a) (read: b is
in the definable closure of a). We say that b is bounded over a if the realisations of
tp(b/a) form a bounded set, and we write b ∈ bdd(a) (read: b is in the bounded closure
of a). If a ∈ dcl(b) and b ∈ dcl(a) then a and b are interdefinable. The Hilbert space
generated by a tuple a ⊆ H is precisely dcl(a) ∩ H .

In first order theories, every type-definable equivalence relation is the intersection
of type-definable equivalence relations in countably many variables (see [BPW01]). In
cats, the same results holds when replacing countable with the cardinality of the lan-
guage (see [Ben02b]). As the language for Hilbert spaces can be taken to be countable,
we get the same result as in first-order theories: every imaginary is interdefinable with
a tuple of imaginaries, each of which being the quotient of a countable tuple (call them
countable imaginaries). It is a common abuse of notation to identify bdd(b) (which by
definition may contain elements from every possible imaginary sort, and is therefore
a proper class) with its restriction to countable sorts. The latter is a small set (with
respect to H ), for which we may choose an enumeration, thus rendering bdd(a) an
imaginary. This abuse of notation is justified by the fact that the class bdd(a) and the
imaginary bdd(a) are interdefinable.

Recall that if H < H is a Hilbert subspace and v ∈ H , then PH(v) ∈ H is
the orthogonal projection of v on H. If a is a tuple in H , then PH(a) is calculated
coordinate-wise.

Fact 1.1. Let a and b be (possibly infinite) tuples from H . Let Hb be the Hilbert space
generated by b. Then tp(a/b) is stationary and the canonical base of this type is the
Hilbert space H0 generated by PHb

(a).

Proof. This and other basic results about stability in Hilbert spaces can be found in
[BB02]. qed1.1

Lemma 1.2. Let aE be an imaginary. Then there is a Hilbert space H such that
H ⊆ bdd(aE) and aE ∈ dcl(H).

Proof. Let (ai : i ∈ ω) be a Morley sequence in tp(a/aE) such that a0 = a. Let H1 be
the Hilbert space spanned by a1 and H0 the one spanned by PH1

(a). Then a |̂
H0

a1.

Since aE ∈ dcl(a) ∩ dcl(a1), then aE ∈ bdd(H0). Since tp(a/H0) is stationary, so
is tp(aE/H0) and in fact aE ∈ dcl(H0). On the other hand, H0 = Cb(tp(a/a1)) =
Cb(lstp(a/aE)), so H0 ⊆ bdd(aE). qed1.2

Corollary 1.3. Let a be an imaginary. Then bdd(a) is (interdefinable with) a unique
Hilbert space.

Proof. bdd(a) is itself an imaginary, so there is a Hilbert space H satisfying bdd(a) ⊆
dcl(H) and H ⊆ bdd(bdd(a)) = bdd(a). If b /∈ H is a real element then b /∈ bdd(H)
either, whereby H is unique. qed1.3

Convention 1.4. As we are only interested in bdd(a) up to interdefinability, we replace
from now on bdd(a) with the unique Hilbert space interdefinable with it.
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1.2. Compact sets. We try to connect the notions of (bounded and unbounded) type-
definable sets, which take place in the universal domain H , with geometric notions in
a relatively small Hilbert space H < H .

Lemma 1.5. A set X ⊆ B1(H)n is closed if and only if it is of the form X =
Y ∩ B1(H)n, where Y ⊆ B1(H )n is a type-definable set (one may say that X is a
relatively type-definable subset of B1(H)n). Moreover, we may choose Y to be defined
over H.

Proof. Assume that X ⊆ B1(H)n is closed. For each a ∈ B1(H)n rX, let ra = d(X, a)
be the distance between X and a (since X is closed, ra > 0). The partial type saying
that ‖x − a‖ ≥ ra for every a ∈ B1(H) defines X in B1(H) with parameters in H.
Conversely, the language for Hilbert spaces only defines closed sets. qed1.5

Corollary 1.6. The map B1(H)n → Sn(H) sending a 7→ tp(a/H) is a topological
embedding.

Proof. This map is clearly injective. By the previous lemma it induces a homeomor-
phism of B1(H)n with its image. qed1.6

Corollary 1.7. A subset K ⊆ B1(H)n is compact if and only if it is a (bounded) type-
definable set. (Of course, since it is “small”, if it is type-definable it is automatically
a bounded one).

Proof. Let K ′ ⊆ Sn(H) be the image of K. Then K is type-definable ⇐⇒ K ′ is closed
⇐⇒ K ′ is compact ⇐⇒ K is compact. qed1.7

Fact 1.8. Let K ⊆ H n be a bounded type-definable set. Then it has an imaginary
canonical parameter.

Proof. This was proved in [BPW01, Lemma 2.18] (for the special case of a hyperimag-
inary sort in a first order theory, but the same proof holds). qed1.8

2. Galois theory for imaginaries

Fix an imaginary c, and let H = bdd(c) (so of course, c ∈ dcl(H)). Fix an enu-
meration H = {hi : i < λ}, and let Y = y<λ where each variable yi is in the sort
corresponding to the smallest ball containing hi. Let p(x, Y ) = tp(c,H), and let
G = {q(Y, Z) ∈ SY,Z(∅) : ∃x p(x, Y ) ∧ p(x, Z) ∧ q(Y, Z)}. Assume that q(Y, Z) ∈ G.
Then all it says about Y is that it satisfies tp(H), and in particular q(H,Z) is consis-
tent. However, if ² q(H,H ′), then H ′ = {h′

i : i < λ} is also an enumeration of bdd(c),
so it is just another enumeration of H. Therefore, for every i < λ there is a unique
q[i] < λ such that hq[i] = h′

i, or equivalently q(Y, Z) ` yq[i] = zi. Thus q determines
a map gq ∈ Aut(H/c) defined by gq(hi) = hq[i]. Conversely, if g ∈ Aut(H/c) and
qg = tp(H, g(H)), then qg ∈ G and g = gqg

. We conclude that G can be identified
with the group Aut(H/c). However, it is also a compact Hausdorff space as a closed
subset of SY,Z(∅), and we would like to show that the two structures agree.

For q, r ∈ G, define (r ◦ q)(Y, Z) = ∃W r(Y,W ) ∧ q(W,Z). Then for i < λ we have
q(W,Z) ` wq[i] = zi and r(Y,W ) ` yr[i] = wi, whereby (r ◦ q)(Y, Z) ` yr[q[i]] = zi. This
shows that gr◦q = gr◦gq. For F ⊆ G, we have {(r, q) ∈ G2 : r◦q ∈ F} = θ(ψ−1(F ))∩G2,
where ψ : SY,W,Z(∅) → SY,Z(∅) and θ : SY,W,Z(∅) → SY,W (∅)×SW,Z(∅) are the obvious
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restriction maps, which are continuous. If F is closed in G then it is closed in SY,Z(∅)
as well, so ψ−1(F ) is closed and therefore compact. Then θ(ψ−1(F )) is compact, and
therefore closed, and we conclude that θ(ψ−1(F ))∩G2 is closed, and that composition
is continuous. Given the definition of composition it is clear that the inverse operation
in G is defined by q(Y, Z) 7→ q(Z, Y ), which is clearly continuous in SY,Z(∅).

Thus G is a compact topological group.
In fact, the argument given above only uses the fact that we work in a Hausdorff cat

(see [Ben03]), and that we consider a group of the form G = Aut(bdd(c)/c) for some
imaginary c. We call G the absolute Galois group of c, and write G = Gal(c) and the
topology the Galois topology (one may compare with [LP01]).

We have shown that G carries a very natural model-theoretic topology. However,
we also have an inclusion G < U(H), where U(H) is the unitary group of H. For
our needs, the natural topology on U(H) is the strong operator topology, namely
that induced by the Tychonoff topology on HH (where H is taken with the ordinary
norm topology). This topology can also characterised by convergence: a network (gα)
converges strongly to g if and only if gα(a) → g(a) for every a ∈ H.

Lemma 2.1. The Galois topology on G coincides with the strong topology.

Proof. Let g ∈ G, a ∈ H and r > 0, and let V = {g′ ∈ G : ‖g(a) − g′(a)‖ < r}. We
want to show that V is a neighbourhood of g in the Galois topology. Assume that
a = hi and g(a) = hj. Then the set V is the set of all types q(Y, Z) ∈ G satisfying
‖yj − zi‖ < r, which is open. This shows that the strong topology is weaker than
the Galois topology. Since the Galois topology is compact, and the strong topology is
Hausdorff, they must coincide. qed2.1

And the converse is:

Lemma 2.2. Let H be any Hilbert space, and G < U(H) be any compact subgroup
in the strong topology. Then there is an imaginary c such that H = bdd(c) and
G = Gal(c).

Proof. Let (ei : i < λ) be an orthonormal basis for H, and set I = [λ]<ω. For every
I ∈ I, the orbit of (ei : i ∈ I) under the action of G is a compact subset of B1(H)I ,
which will be denoted by KI . By Corollary 1.7 KI is type-definable, and by Fact 1.8
it has a canonical parameter cI . Let c = (cI : I ∈ I).
Clearly, bdd(c) ⊆ H, but we also have ei ∈ K{i} ⊆ bdd(c{i}) for every i < λ, whereby
we have equality bdd(c) = H. It is also clear that G fixes every cI , and therefore it
fixes c.
Conversely, assume that g ∈ U(H) fixes c. Then g fixes cI for every I ∈ I, which
means that there is some gI ∈ G such that gI(ei) = g(ei) for every i ∈ I. Let
a =

∑

i<λ αiei ∈ H be any element. Then for every r > 0 there is I ∈ I such that
‖

∑

i/∈I αiei‖ < r/2, whereby ‖g(a) − gJ(a)‖ < r for every J ∈ I containing I. This
shows that gI(a) → g(a) as a network in H for every a ∈ H, whereby gI → g in U(H)
(with the strong topology). Since G is closed in U(H) we obtain g ∈ G. qed2.2

We conclude:

Theorem 2.3. Given a Hilbert space H, there is a Galois correspondence between
imaginaries c such that H = bdd(c) (up to interdefinability) and compact subgroups of
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U(H) in the strong topology, given by:

c 7→ Gal(c)

G 7→ HG = {c ∈ dcl(H) : ∀g ∈ G [g(c) = c]}

3. Elimination to finitary imaginaries

We already know that every imaginary is interdefinable with a set of countable ones.
Using the previous results and a theorem on representations of compact groups we
improve “countable” to “finite”:

Definition 3.1. An imaginary is finitary if it is (interdefinable with an imaginary) of
the form aE where a is a finite tuple.

Lemma 3.2. An imaginary a is finitary if and only if H = bdd(a) is finite-
dimensional.

Proof. Clear. qed3.2

Recall that if (Hα : α ∈ I) are Hilbert spaces, then their Hilbert direct sum
⊕

α Hα

is defined as the set of all tuples (vα) ∈
∏

α Hα satisfying
∑

α ‖vα‖
2 < ∞. It has

an obvious structure of a vector space; equipped with the inner product 〈v̄, ū〉 =
∑

α〈vα, uα〉 it is a Hilbert space, and in fact it is the co-product of (Hα) in the category
of Hilbert spaces. We now introduce a tool from analysis:

Fact 3.3. Let G < U(H) be compact in the strong topology. Then H can be expressed
as a Hilbert direct sum H =

⊕

α Hα, where each Hα is finite-dimensional and G-
invariant.

Proof. See the fundamental theorem on unitary modules and Corollary 2.25 in [HM98].
qed3.3

Proposition 3.4. Every imaginary is interdefinable with a tuple of finitary imaginar-
ies.

Proof. We refine the proof of Lemma 2.2, by taking the basis (ei : i < λ) to be a union
of orthonormal bases for the Hα. Then for every I ∈ I = [λ]<ω, the tuple e∈I belongs to
the sum of a finite number of such Hα, which is also a finite-dimensional G-invariant
space. Thus every KI is contained in a finite-dimensional space, and cI is finitary.
Applying this to Gal(c) we obtain that c is interdefinable with (cI : I ∈ I). qed3.4

The very last step is to understand finitary imaginaries:

Definition 3.5. For n < ω, the group of unitary matrices U(n) acts in an obvious
manner on H n. Let G < U(n) and ē, f̄ ∈ H n. Then we say that ē EG f̄ if ē and f̄
are orthonormal tuples and g(ē) = f̄ for some g ∈ G.

Lemma 3.6. Assume that c is finitary, and let (ei : i < n) be an orthonormal basis
for H = bdd(c). Let G = Gal(c) < U(H) = U(n), where we identify U(H) with U(n)
through the basis (ei : i < n). Then EG is type-definable, and c is interdefinable with
ēEG

.
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Proof. Let p(x, ȳ) = tp(c, ē) and E(ȳ, z̄) = ∃x p(x, ȳ) ∧ p(x, z̄). We wish to show that
for every ē′, f̄ ∈ H n: ē′ E f̄ ⇐⇒ ē′ EG f̄ . Since both conditions are automorphism-
invariant, and either would imply that ē′ is an orthonormal tuple, we may assume that
ē = ē′. Then ē E f̄ if and only if there is an automorphism of H fixing c and sending
ē to f̄ , and this is equivalent to ē EG f̄ . Thus c is interdefinable with ēE, and EG = E
is type-definable. qed3.6

Corollary 3.7. EG is type-definable for every closed G < U(n).

Proof. By Theorem 2.3, every closed G < U(n) occurs as a Galois group. qed3.7

We conclude:

Theorem 3.8. Every imaginary is interdefinable with a tuple of imaginaries of the
form ēEG

, where each G < U(nē) is closed and ē is an orthonormal tuple of length nē.
In other words, Hilbert spaces eliminate imaginaries to quotients of finite orthonormal
tuples by closed unitary groups.

Remark 3.9. This is reminiscent of the situation in the (first order) theory of the infinite
set. There, if a is an imaginary (since we deal with a first order theory, we revert
to the definition of an imaginary as the quotient of a finite tuple by an equivalence
relation definable by a single formula), then acl(a) is (interdefinable with) a finite tuple
e0, . . . , en−1, and then a is interdefinable with ē/EG where G is a permutation group
of n elements, acting naturally on the tuple ē. Hyperimaginaries can be eliminated in
favour of imaginaries by general first order stability theory.
The only difference from the Hilbert space case is the replacement of “finite tuple”
with “finite dimensional” or “finite basis”, and of the symmetric group Sn with U(n).
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