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General Relativity’s Schwarzschild solution describes a spherically symmetric gravi-
tational field as an utterly static thing. The Space Generation Model describes it as
an absolutely moving thing. The light propagation time-delay experiment of Shapiro-
Reasenberg [1] and the falling atomic clock experiment of Vessot-Levine [2] provide the
ideal context for illustrating how, though the respective world views implied by these
models are radically different, they make nearly the same prediction for the results of
these experiments.

1 Introduction

A local gravitational field and the massive body serving as its
source are well-characterized by the readings of accelerome-
ters and the rates of clocks fixed to the body. The field could
be mapped by having numerous accelerometers and clocks at-
tached at various heights to extremely tall rigid vertical poles
that are firmly planted on the body. The Space Generation
Model (SGM) agrees with General Relativity (GR) concern-
ing the readings given by these accelerometers and the vary-
ing rates of these clocks. These models sharply diverge, how-
ever, for two different extensions of this picture: 1) If a di-
ameter length hole is dug through the body so as to extend
the array of instruments to the center, the SGM agrees with
GR concerning the accelerometer readings, but predicts (con-
trary to GR) that clock rates will increase toward the cen-
ter. And 2) According to GR, in the neighborhood of a given
point, the radial motion of clocks and the radial propagation
of light is essentially symmetrical with regard to the effect on
the clock’s rate and the speed of the light’s propagation. Ac-
cording to the SGM, by contrast, both of these circumstances
involve gross asymmetries: moving upward is much different
from moving downward.

These predictions arise in the SGM because the model is
based on a literal interpretation of the readings of accelerom-
eters and the rates of clocks. We adopt the simple and con-
sistent approach of regarding these instruments as indicating
not the potential to cause motion, but the existence of motion.
Gravitating bodies are thus analogous to uniformly rotating
bodies. In both cases motion sensing devices (accelerometers
and clocks) indicate the magnitude of the motion. Objections
that might be raised against this interpretation have been ad-
dressed in an earlier paper [3] and will be mentioned again
near the end of this one. Also discussed in [3] is astronomical
evidence that tends to support the SGM and a proposed labo-
ratory experiment whose result would unequivocally support
either the SGM or the objections to it.

In §2 a few details are added to the picture sketched
above. In the Shapiro-Reasenberg experiment the only clocks

essentially involved were those fixed on Earth. There was no
need to compare clock rates, so the experiment bears only on
light propagation, as discussed in §3. The Vessot-Levine ex-
periment involves a combination of these effects, as discussed
in §4. The fact that models that differ so radically in their
description of the world give nearly identical predictions for
such tests clearly indicates the need to perform tests that are
not so equivocal. Such is the conclusion drawn in §5.

2 Stationary outward motion vs. static refraction

At least two contexts in physics involve a distinction between
that which is static and that which is stationary. deSitter’s
cosmological solution, which predicts an exponential expan-
sion of the Universe, has been described by Robertson and
Noonan [4] as “the only non-static stationary model.” A
deSitter-like expansion takes place without the appearance of
the Universe changing over time. The much less well known
cosmological models of Masreliez [5] and the present author
[6] also have this non-static stationary character. The second
context, discussed by various authors, [7] [8] [9] is that of
uniform rotation. A uniformly rotating body such as a large
wheel-like space station manifests a range of magnitudes of
both acceleration and velocity extending across its seemingly
rigid parts, while also maintaining the same appearance over
time (especially to observers who are attached to the body).

Much has been written about the case of rotation largely
because the resulting mathematical description resembles the
Schwarzschild solution. However similar these descriptions
may be otherwise, a sharp distinction is drawn by most au-
thors with regard to motion. The gravitational field is static.
Whereas, the unchanging movement of the rotating body war-
rants the designation, stationary. Light propagation in the two
systems serves well to illustrate the difference. The Schwarz-
schild field is a near perfect analogy to a static medium with
varying refractive index. [10] Therefore, variation in the
speed of light is due only to its location within the medium.
Whereas, in the rotating system, the speed of light depends
also on direction. With respect to the rotating body light prop-
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agates at a speed less than c in the direction of rotation and at
a speed greater than c against the direction of rotation (Sagnac
effect).

GR, the SGM and empirical evidence all agree that the
rate of a clock fixed at a point in an external gravitational
field is given by

f(r) = f0

r
1� 2GM

rc2
; (1)

where G is Newton’s constant, M is the mass, r is a radial
distance and f0 is the rate of a clock “at infinity.” In GR the
metric coefficient, (1� 2GM=rc2) is the analog for the static
Newtonian potential GM=r. In the SGM, on the other hand,
the speed contained in this coefficient,

p
2GM=r is the ana-

log for the tangential speed in the case of rotation. The fre-
quency given by (1) is the rate a clock would have if it were
moving at the speed

p
2GM=r relative to a clock at infin-

ity because in a physically real sense that is what is actually
happening. At least, that is what our motion detecting instru-
ments seem to be telling us.

To clarify this, suppose one of our tall poles extends to,
let’s say, just this side of infinity. From the top we drop
a clock alongside the pole. Our “literal interpretation” thus
means we expect the dropped clock to maintain the same rate
even as it falls. Nothing has ever caused it to accelerate. This
assertion is backed by the fact that a co-moving accelerometer
would read zero all the way down. In a strict sense, its speed
therefore does not increase, so its rate should not decrease as
it falls. With regard to its rate, this clock remains a faithful
representative of all clocks at infinity. The velocity that ac-
crues as between this dropped clock and the pole we ascribe
absolutely to the pole — because this is where we know the
accelerometers have non-zero readings and the clock’s rates
are slowed. By this reasoning, it follows that the speed of
light is isotropically equal to c only with respect to the clock
falling radially from infinity. I call these special trajectories
of objects falling radially from infinity, maximal geodesics.
In the SGM there is no single global preferred ether frame.
The preferred frames are the maximal geodesics determined
by locally dominant gravitating bodies.

3 Shapiro-Reasenberg experiment

By the above reasoning the radial speed of light at Earth’s
surface or anywhere along one of our tall poles is

c"# = c�
r

2GM

r
; (2)

where the upper sign refers to the upward speed and vice
versa. In a plane that passes through the center, we have the
more general equation:

c� =
r
c2 � 2GM

r
sin2� +

r
2GM

r
cos� : (3)

The Shapiro-Reasenberg tests began in the mid 1960’s
with a probe orbiting Venus. They culminated in the 1970’s
with a transponder that the Viking Mission had landed on the
surface of Mars. The key measurements were of the time
delay of signals transmitted between Earth and the planetary
probe as the planets approached and passed through superior
conjunction, which means, when the planets were on the far
side of a line from Earth that passes very near the surface
of the Sun. The idea is to compare the time taken for sig-
nals to make the out and back trip with the time that would
have elapsed for the same trip without the spacetime curva-
ture caused by the Sun’s gravity. The curvature increases the
effective distance, so especially during superior conjunction
the signals take longer to return.

The Schwarzschild solution (in standard coordinates)
gives a maximum delay for the Mars lander signal [11]

�tGR = 227:4584�sec : (4)

Numerical integration of an equation based on (3) corres-
ponding to the same superior conjunction path gives

�tSGM = 227:4589�sec : (5)

The observational error was given as 0:2�sec, so the SGM is
in excellent agreement with the observations.

4 Vessot-Levine experiment

In 1976 Vessot, Levine, et al launched a hydrogen maser
clock on a nearly vertical trajectory whose peak was � 1.6
Earth radii (� 10,000 km) over Earth’s surface. The rate of
the clock was monitored by a three-link system, two links of
which had the purpose of canceling the first order Doppler
shifts. The results were in agreement with the GR prediction
to about �f=f � 10�4.

In what follows we idealize the experiment by assuming
a perfectly radial trajectory. The GR prediction is

�fGR
fG

=
fP � fG

fG
=

q
1� 2GM

rP c2
� v2

c2q
1� 2GM

rGc2

� 1 ; (6)

where G and P denote ground and probe, and v is the probe’s
speed. Standard theorists implicitly assume that it’s possi-
ble to ascertain from a distance whether the actual rate of a
clock on such a trajectory agrees with (6) by implementing
a first order Doppler cancelation system such as that used by
Vessot-Levine. Including terms that represent the two-link
cancelation system, (6) becomes

�fGR
fG

=

(
1

1� v
c

2
4
q
1� 2GM

rP c2
� v2

c2q
1� 2GM

rGc2

� 1
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� 1
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�
1� v

c

1� v
c

� 1

�)
; (7)
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where the upper sign represents the ascent phase of the tra-
jectory and vice versa. After correlating the time and velocity
values from the Newtonian equation for radial free fall, the
frequency prediction and observational data yield the curve
in Figure 1.

Fig. 1: GR prediction for actual rate of probe clock and observa-
tional data. Observations match predictions so well that, to the scale
of this figure, one curve describes both.

On the face if it, the SGM is in stark disagreement with
this result. The SGM prediction for the actual rate of the
probe clock is

�fSGM
fG

=
fP � fG

fG
=

r
1�

�p
2GM=rP�v

�
2

c2q
1� 2GM

rGc2

� 1 : (8)

There is no “gravitational potential” here. In its place we
have what I call the stationary outward velocity of the ground,p
2GM=rG and the stationary outward velocity at the height

where the probe is momentarily located,
p
2GM=rP . The

rate of the probe clock is gotten by adding the latter velocity
to the probe’s velocity with respect to the ground, v, before
squaring. Since this term depends strongly on whether the
probe is going up or down, we get the asymmetrical curve of
Figure 2.

Curiously, when the effect of the first order Doppler can-
celation system is included in the calculation, the asymmetry
almost entirely disappears. The various additional velocity
terms make the equation more complicated than the corre-
sponding GR equation (7). To make it a little less unwieldy,
we make the following substitutions:

p
2GM=rG = W andp

2GM=rP = V . The three links then add up to

�fSGM
fG

=

2
4 c+ V

c+ V � v

q
1� (V�v)2

c2q
1� W 2

c2

� 1

3
5

� 1

2

�
c� V � v

c� v

c+ V

c+ V � v
� 1

�
: (9)

The difference between (9) and the GR prediction (6) is

Fig. 2: SGM prediction for actual rate of probe clock (black) and
prediction for results of experiment (gray). Observations match pre-
dictions so well that, to the scale of this figure, the gray curve de-
scribes both. The black curve is not directly deducible using the
methods of the Vessot-Levine experiment.

�F

fG
=

��v
2c

nV �W + v

c

o2
�
: (10)

The difference appears only at O(v=c)3. Figure 3 shows the
residuals, which are consistent with the empirical data.

Vessot and Levine claimed not only that their experiment
would “measure directly the effect of the gravitational poten-
tial on the frequency of a proper clock.” They also claimed
that their experiment was “the first direct, high-accuracy test
of the symmetry of the propagation of light.” (They con-
cluded that the asymmetry of light speed is less than �c=c �
6 � 10�8). Their use of the word, “direct” was obviously
misguided. For in making these claims they tacitly and unwit-
tingly excluded models that equally well account for the data
by predicting gross light speed anisotropy that is tightly cor-
related with an equally gross direction-dependence on clock
rate. Their first statement quoted above (concerning clock
rate) may well be true for that moment when the probe was at
apogee. But in light of the SGM, the second statement (con-
cerning light speed) may not be true at all.

Note that, although the agreement with the Shapiro-
Reasenberg test was within the experimental error by at least

Fig. 3: SGM – GR residuals. An order of magnitude improvement
in sensitivity would suffice to test between these models.
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three orders of magnitude, in the Vessot-Levine experiment
the envelope is narrower. Near launch and impact the residu-
als go slightly beyond the 10�4 margin.

This suggests that if the same experiment were done with
another order of magnitude sensitivity, the difference between
the GR and SGM predictions could be revealed. Another pos-
sibility, at least in principle, is to compare elapsed times given
by a clock on its ascent phase vs. its descent phase. For a
trajectory such as that of the Vessot-Levine experiment, GR
says these times should be equal; whereas the SGM says more
time (� 10�6 sec) should elapse on the descent phase.

5 Conclusion

I’m not sure how a General Relativist would assess the SGM’s
agreement with these tests. Turning the question around, on
the other hand, under the assumption that the SGM turns out
to be essentially correct, I’d say that the Schwarzschild so-
lution evidently represents a sort of “staticalized” approxi-
mation of what is actually a most “unstatic” phenomenon. I
would argue further that the SGM approach of literally in-
terpreting the indications of motion sensing devices follows a
more natural order of cause and effect. The warped spacetime
of GR is, geometrically speaking, a very small effect because
the quantities representing the curvature are to second order
of a ratio which is already small at first order,

p
2GM=r=c.

The unnatural thing about GR, it seems to me, is that first or-
der effects such as velocity and acceleration are supposed to
be caused by the much smaller second order quantities that
are devoid of all motion. Surely it would be more natural to
have second order effects arising as consequences of first or-
der effects. Regarding motion as the cause of curvature makes
more sense than regarding static curvature as the cause of mo-
tion.

However “natural” the SGM approach may be, in its
present state, it leaves a major complication unresolved. The
“stationary outward motion” that plays such a central role in
this scheme cannot be consistently modeled or visualized in
three-dimensional space. The lack of a mathematical model
corresponding to the conceptual one is, of course, a valid ob-
jection. My response echoes that given in an earlier paper. [3]
In addition to a literal interpretation of motion sensing de-
vices, the SGM’s guiding concepts are the rotation analogy
and the geometric consequence that spatial dimensions are
generated by the projection of one dimension into the next.
On this basis, I suggest that it should be possible to devise a
mathematical theory in which matter and space are described
as a continuum of four space dimensions that perpetually re-
generates itself. The density contrast manifested by matter
vs. space results in a locally inhomogeneous expansive pro-
cess (/ 1=r2) whose cumulative effect is an exponential ex-
pansion of the Universe (/ r).

A modest laboratory should be all that’s needed to find out

Fig. 4: Hierarchy of dimensions: Linear, rotational and omnidirec-
tional projection.

whether the standard approach or the SGM is richer in truth.
Recall that the SGM diverges from GR not only with regard
to the radial motion of light and clocks beyond the surface of
a gravitating body. The faster clock rate (mentioned in §1)
at the center of the gravitating body reflects a rather more
drastic difference in predictions. GR predicts that a clock at
the center is the slowest one, as it resides at the bottom of a
“potential well.” This corresponds to the prediction that a test
object dropped into a hole through the center would oscillate
from one end of the hole to the other. Whereas, if the rate of
the central clock is as fast as a clock at infinity, which is the
SGM prediction, then an object dropped into the hole would
not pass the center. A simple experiment designed to test this
prediction is discussed in [3].
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10. Möller C. The theory of relativity. Clarendon Press, 1972, 394.

11. Adler, R., Bazin M., and Schiffer M. Introduction to general
relativity, second edition. McGraw-Hill, 1975, 220.

c© Richard Benish September 2007 5


