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This article deals with the sliding mode fault-tolerant control (FTC) problem for a nonlinear system described under Takagi-
Sugeno (T-S) fuzzy representation. In particular, the nonlinear system is corrupted with multiplicative actuator faults, process
faults, and uncertainties. We start by constructing the separated FTC design to ensure robust stability of the closed-loop
nonlinear system. First, we propose to conceive an adaptive observer in order to estimate nonlinear system states, as well as
robust multiplicative fault estimation. The novelty of the proposed approach is that the observer gains are obtained by solving
the multiobjective linear matrix inequality (LMI) optimization problem. Second, an adaptive sliding mode controller is
suggested to offer a solution to stabilize the closed-loop system despite the occurrence of real fault effects. Compared with the
separated FTC, this paper provides an integrated sliding mode FTC in order to achieve an optimal robustness interaction
between observer and controller models. Thus, in a single-step LMI formulation, sufficient conditions are developed with
multiobjective optimization performances to guarantee the stability of the closed-loop system. At last, nonlinear simulation
results are given to illustrate the effectiveness of the proposed FTC to treat multiplicative faults.

1. Introduction

In the last few years, there has been a growing interest in
fault-tolerant control (FTC) design based on a fault estima-
tion (FE) technique (location, occurrence time, and magni-
tude). Active FTC takes a primordial place in modern
control application, system reliability, and supervision of
industrial technology.

The main challenge of active FTC is to conceive a robust
controller such that the closed-loop system is stable with
acceptable performances even with the presence simulta-
neously of faults and uncertainties. In the literature, several
approaches have been proposed to explore this powerful
issue (see for instance [1–6] and the references herein). In
practical applications, most of the systems are complex and
usually having hard nonlinearities, so it is significant to study
FE and FTC for nonlinear systems. Since their excellent abil-
ity to describe a nonlinear system, very interesting
approaches have represented nonlinear systems under the
T-S fuzzy form [7]. Actually, in the presence of system

uncertainties, several attempts have been oriented to the fault
diagnosis and FTC of nonlinear systems (see for instance [8–
13] and the references herein.

Popular FE approaches have been developed in a precise
and effective way for nonlinear systems, where fault is mod-
elled as additive changes appearing in actuators or sensors
[14–18]. The major drawback of the preceding approaches
resides primarily on treating actuator and sensor faults with
additive terms. However, in practical engineering, it is often
the case when some actuator faults and component faults
occur in a multiplicative form. Thus, multiplicative faults
are mixed with the inputs and outputs of the system. In this
way, estimation of the characteristic and magnitude of
unknown multiplicative faults has been a growing interest
in modern control theory in recent years. It is practically
important to decouple their eventual parameter or structure
effects in the system or in the process model subject to ame-
liorate FTC design for a large class of nonlinear systems. Spe-
cial attentions have already been made in the application of
observer design to achieve multiplicative FE for linear and
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nonlinear systems [19, 20]. In [21–24], robust observers have
been used to estimate unknown fault for linear systems. The
developed schemes are based on treating multiplicative faults
with additive terms. Nevertheless, this approach may not be
practical in all situations. For this purpose, it is not an easy
task; real effect multiplicative fault detection, location, and
estimation especially for nonlinear systems have been a sig-
nificant research activity in the past decade. Zhang et al.
[25] considers the problem of fault diagnosis for a class of
nonlinear systems with unstructured modeling uncertainty.
The proposed approach addresses the detection and isolation
of nonlinear fault function that are modeled as measurable
signals. More recently, in [26], a robust adaptive observer
FE approach is discussed in order to extract the real compo-
nent fault effects for Lipschitz nonlinear systems subject to
unknown disturbances.

1.1. Contributions. Regarding the fact that multiplicative
faults have not yet been fully tackled, an FE-based adap-
tive sliding mode FTC scheme for a class of uncertain
nonlinear systems, approximated by the T-S representa-
tion, is of great interest in this paper. Thus, sliding mode
control has been widely studied and employed in indus-
trial applications based on its computational simplicity
and in particular strong robustness against uncertainties
or disturbances. The main contributions of the present
paper are divided as follows:

(1) In the first scheme, we propose a separated sliding
mode FTC for the closed-loop nonlinear system
subject to both multiplicative faults and uncer-
tainties. More precisely, it should be pointing that
we consider multiplicative faults a partial loss of
actuator effectiveness and parameter changes in the
nonlinear system state matrix.

(2) In the second scheme, this paper provides an inte-
grated sliding mode FTC in order to achieve an
optimal robustness interaction between observer
and controller models. Thus, in a single-step LMI
formulation, sufficient conditions are developed
with H∞ optimization performances to guarantee
the stability of the closed-loop system. In particu-
lar, the fault nonlinear function satisfies a Lipschitz
condition. In this study, we use a multiobjective
LMI optimization approach in which the Lipschitz
constant and uncertainty attenuation level are
maximized simultaneously.

The remainder of this paper is organized as follows:
Section 2 gives the description of the nonlinear system. In
Section 3, we describe the proposed T-S adaptive observer
design. Section 4 presents the sliding mode controller struc-
ture. Sections 5 and 6 propose, respectively, the design of
separated and integrated sliding mode FTC schemes to stabi-
lize the closed-loop system. The simulation example is given
in Section 7 based on nonlinear simulation illustrating the
effectiveness of the proposed schemes. Finally, Section 8
presents some concluding remarks.

2. Problem Formulation

Consider an uncertain nonlinear system governed by the fol-
lowing equations:

x t = φ1 x t , u t , ξ x, t , f x, u, t ,

y t = φ2 x t ,
1

where x t ∈ Rn is the state vector, u t ∈ Rm represents the
control inputs, y t ∈ Rp denotes the measurement output
vector, and ξ x, t ∈ Rl stands for the uncertainty vector. In
the present paper, f x, u, t ∈ Rq represents the component
and/or actuator gain fault which is described as

f x, u, t = 〠
q

j=1
θj t hj x, u, t , 2

where θj t is a vector of unknown function reflecting the
magnitude of the time-varying or constant multiplicative
faults. hj x, u, t represents the functional structure of the jt
h multiplicative faults and usually mixes with system states
and/or inputs. Before starting the main results of this paper,
we will make the following assumptions.

Assumption 1. The fault vector θj t is assumed to be
unknown but bounded as θ j t ≤ θmax = ρ, ∀j = 1,… , q

, where θmax ∈ Rq is a known constant vector and ρ is a

known positive constant.

Assumption 2. It is assumed that the nonlinear system states
and inputs are all bounded before and after the occurrence of
a fault, and fault nonlinear function structure hj x, u, t sat-
isfies a Lipschitz condition locally on a set M ⊂ Rn in which

hj x1, u, t − hj x2, u, t ≤ γj x1 − x2 , ∀x1, x2 ∈M,

3

where γj > 0 is called a Lipschitz constant and j = 1,… , q.2.1.
Design Objective. This paper features a robust estimation of
real effect factor θj t , ∀j = 1,… , q, for the uncertain nonlin-
ear system (1) subject both to multiplicative fault f x, u, t
given by (2) and to uncertainties ξ x, t . It was the main
purpose of the paper to solve two problems by (i) estimating
multiplicative fault magnitude using a robust adaptive
observer and (ii) stabilizing the closed-loop nonlinear sys-
tem, after the occurrence of multiplicative fault f x, u, t ,
using a robust adaptive sliding mode controller. To treat
this powerful issue, this article introduces two different
approaches: separated and integrated FE-based adaptive
sliding mode FTC design.

We will make the following definition, notation, and
lemma in obtaining the main results.

Definition. For an arbitrary matrix X ∈ Rn×m, if X+ ∈ Rm×n

verifies X+X = Im, then X+ = XTX
−1
XT is said to be the lef-

t_inverse of X.
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Notation. The notation (∗) corresponds to the symmetry
matrix block, He X signifies X + XT , and stands for
the standard norm symbol.

Lemma 1. For matrices X and Y with appropriate dimen-
sions, the following condition holds:

XTY + YTX ≤ ε−1XTX + εYTY , 4

where ε is the positive scalar.

3. T-S Adaptive Observer Design

Referring to an interpolation mechanism with the convex
sum properties [7], the system (1) can be approximated by
T-S fuzzy representation with multiplicative faults as follows:

x t = 〠
k

i=1
μi ς t Aix t + Biu t +Diξ x, t

+Mi 〠
q

j=1
θj t hj x, u, t ,

y t = 〠
k

i=1
μi ς t Cix t ,

5

where Ai, Bi, Di, Mi, and Ci are real known matrices with
appropriate dimensions. We assume that the pair Ai, Bi is
controllable and the pair Ai, Ci is observable. Let µi ζ t
be the normalized fuzzy membership functions which satisfy
the properties of the sum convex.

〠
k

i=1
µi ζ t = 1, 0 ≤ µi ζ t ≤ 1, ∀i ∈ 1,… , k 6

Through the approximation of the nonlinear system (1)
by augmented T-S fuzzy representation (5), we construct a
multiplicative fault estimation adaptive observer as

x̂ t = 〠
k

i=1
μi ς t Aix̂ t + Biu t + Gl,iey t

+Mi 〠
q

j=1
θ̂j t hj x̂, u, t ,

7

ŷ t = 〠
k

i=1
μi ς t Cix̂ t , 8

θ̂ j t = σjh
T
j x̂, u, t Γey t , j = 1,… , q, 9

where σj are positive scalars, x̂ t is the observer state, ŷ t

represents the observer output, θ̂j t denotes the estimated
fault magnitude, and ey t = y t − ŷ t is the output estima-
tion error. Gl,i are appropriate gain matrices, which can be
obtained using LMIs as discussed later. Γ is a design matrix
representing the learning rate.

From now on, we assume that the state and fault estima-
tion errors are defined, respectively, as e t = x t − x̂ t and
eθj t = θj t − θ̂j t . It remains to deduce that

e t = 〠
k

i=1
μi ς t Ai − Gl,iCi e t +Diξ x, t

+Mi 〠
q

j=1
θ j t hj x, u, t − θ̂j t hj x̂, u, t ,

10

eθ j t = 〠
k

i=1
μi ς t −σjh

T
j x̂, u, t Γiey t 11

The objective is to derive the gains of the robust adaptive
observer ((7), (8), and (9)) in order to estimate multiplicative
fault magnitudes.

4. Sliding Mode Controller Design

4.1. Adaptive Sliding Mode Controller Structure. The pro-
posed sliding mode controller with adaptive law is assigned
to provide a corrective action in order to compensate multi-
plicative fault effects and stabilize the nonlinear system
described by T-S fuzzy representation. Before starting FTC
design, we assume the following:

Assumption 3. rank CiBi = rank Bi , ∀i ∈ 1,… , k . As the
first step, one can define the sliding surface S, when the slid-
ing motion will take place on it, as

S = y t ∈ℝp Sc t = 0 12

Sc t ∈ℝm is a linear switching function, based on the output
feedback information, described as

Sc t = 〠
k

i=1
µi ζ t Nc,iy t , 13

where Nc,i = CiBi
+ − h Ip − CiBiCiBi

+ with an arbitrary
matrix h ∈ℝm×p. As mentioned above that Ai, Bi is control-
lable, a nonlinear control input is given by

u t = ul t + un t , 14

where ul t designs the linear part which is defined as

ul t = 〠
k

i=1
〠
k

j=1
μiμ j ς t −Kjx̂ t − Fa,i f̂ x, u, t , 15

where −Fa,i f̂ x, u, t is designed to compensate multiplicative
fault influence. It is assumed that Kj ∈ℝm×n and Fa,i = B+

i Mi.

As may be seen below, the nonlinear part un t , capable
of inducing the sliding motion on the sliding surface S, is
proposed with adaptive law as
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un t =
−ηc t

Sc t
Sc t

, if Sc t = 0,

0, otherwise,
16

where ηc t = ρ̂c + ϱc, where ϱc > 0 is a small constant and ρ̂c
is used to determinate ηc t such that we will make the fol-
lowing adaptive term as

ρ̂c = ϵc Sc t , ρ̂c 0 ≥ 0, 17

where ϵc is the positive gain.

4.2. Reaching Condition. As mentioned earlier, it must be
proven, using the nonlinear part structure of un t , that the
system will be forced to reach and slide onto the correspond-
ing sliding mode surface S in a finite time. In this way, we
design a Lyapunov function as

Vc t =
1
2
STc t Sc t +

1
2ϵc

ρ~2c , 18

where ρ~c = ρc − ρ̂c is the estimated error of ρc.
The derivative of (18) with respect to time gives

Vc t = 〠
k

i=1
〠
k

j=1
μiμj ζ t Nc,iCiAi − Kj x t

+ ρc − ηc t Sc t − ρc Sc t = 〠
k

i=1
〠
k

j=1
μiμj ζ t

Nc,iCiAi − Kj x t − ϱc − εc Sc t

19

Define the subset system as

Ωc = x x t ≤ κc 20

The reachability condition, which guarantees to force the
system to attain the sliding surface S, is satisfied if the scalar
ϱc is chosen to satisfy ϱc > Nc,iCiAi − K j κc such that

STc t Sc t ≤ −εc Sc t 21

Furthermore, the proposed sliding mode controller with
adaptive law ensures the existence of an ideal sliding motion
in finite time; that is, Sc t = Sc t = 0, ∀t ≥ tc.

5. FE-Based Fault-Tolerant Control Design: A
Separated Approach

For several years, great effort has been devoted to study the
FE-based FTC problem in a precise and effective way. The
focus of previous studies has been on the division of this issue
into separate steps:

Step 1. Conceive an observer to estimate faults and state
variables.

Step 2. Conceive a controller to stabilize the closed-loop
systems.

Figure 1 illustrates the separated FE-based FTC design
for uncertain nonlinear systems subject to process faults
and multiplicative actuator faults.

Now, we propose to design the separated FE-based FTC
problem in order to compute adaptive observer gains Gl,i
and controller gains Kj such that a robust stability of the
closed-loop nonlinear system, described by the T-S form, is
achieved despite the presence of multiplicative faults and
uncertainties.

5.1. LMI Optimization-Based Observer Stability. Theorem 1
establishes the sufficient conditions for the stability of the
observer errors ((10) and (11)) with prescribed ℋ∞ perfor-
mances by using Lyapunov stability and LMI technique.

Theorem 1. The state estimation error is robustly stable
with simultaneously maximized admissible Lipschitz con-
stant γj > 0 and minimized gain ς > 0 for the system uncer-
tainties ξ x, t , if there exist constants, 0 ≤ λ ≤ 1, ε > 0, and
αj > 0, and matrices Pe = PT

e > 0,Wi, such that the following
multiobjective optimization problem has a solution:

min   λ ε + 〠
q

j=1
αj + 1 − λ ς , 22

subject to the following LMI

Ξi + CT
e Ce PeDi PeMi In

∗ −ςIl 0 0

∗ ∗ −εIq 0

∗ ∗ ∗ −〠
q

j=1
αj

< 0, 23

where Ξi = AT
i Pe + PeAi −WiCi − Ci

TWi
T . One can prove

that the observer gain can be obtained from Gl,i = P−1
e Wi.

In addition, the T-S adaptive observer ((7), (8), and (9))
ensures that the estimated x̂ t and θ̂j t converge to the

Uncertain nonlinear
system

Actuator fault Process fault 

y(t)u(t)

Robust adaptive 
observer 

Robust sliding 
mode controller 

x(t)

f(x, u, t)

Step 1 

Step 2 

ˆ

ˆ

Figure 1: FE-based fault-tolerant control: a separated approach.
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nonlinear system state x t and the multiplicative fault
magnitude θ j t .

Proof. One can start by investigating the following Lyapunov
function:

Ve t = eT t Pee t + 〠
q

j=1
σ−1j eTθ j t eθj t > 0, 24

where Pe ∈ℝn×n is the design Lyapunov matrix. The time
derivative of Ve t is handled as

Ve t = eT t Pee t + eT t Pee t

+ 〠
q

j=1
σ−1
j eTθ j t eθ j t + eTθ j t eθ j t

25

Based on state and fault estimation errors ((10) and (11)),
Ve t can be written as

Ve t = 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i e t

+ 〠
q

j=1
2eT t PeMi θj t hj x, u, t − θ̂j t hj x̂, u, t

+ 〠
q

j=1
2σ−1

j eθ j t θ̂ j t + 2eT t PeDiξ x, t ,

26

where Al,i = Ai −Gl,iCi. From this, one can conclude that

Ve t = 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i e t

+ 〠
q

j=1
2eT t PeMi θj t hj x, u, t − θj t hj x̂, u, t

+ 2eT t PeDiξ x, t
27

Referring to Lemma 1 and according to the Lipschitz
condition (3), one can further derive

2eT t PeMi θj t hj x, u, t − θj t hj x̂, u, t

≤
1
ε
eT t PeMiM

T
i Pee t + ε hj x, u, t − hj x̂, u, t

T

θTj t θj t hj x, u, t − hj x̂, u, t

≤
1
ε
eT t PeMiM

T
i Pee t + ε θj t

2

hj x, u, t − hj x̂, u, t
2

≤
1
ε
eT t PeMiM

T
i Pee t + ερ2γ2j e t 2

=
1
ε
eT t PeMiM

T
i Pee t + εγ~2j e t 2

28

where γj = ργj. Now, according to (28), one can derive
Ve t as

Ve t ≤ 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i e t

+
1
ε
eT t PeMiM

T
i Pee t + 〠

q

j=1
eT t εγ2j e t

+ 2eT t PeDiξ x, t

29

To attain the robustness of the proposed multiplicative
fault estimation adaptive observer ((7), (8), and (9)) against
system uncertainties ξ x, t , we investigate the controlled
estimation error r t as

r t = Cee t 30

Consider the following worst-case performance measure:

H ∞ = sup
ξ 2≠0

r t 2
2

ξ x, t 2
2
≤ ς 31

One can now proceed with the presence of the following
variable Je t as

Je t =Ve t + rT t r t − ςξT x, t ξ x, t 32

Obviously, one can write the above expression (32) by

Je t ≤ 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i +
1
ε
PeMiM

T
i Pe

+ 〠
q

j=1
εγ~2j + CT

e Ce e t + 2eT t PeDiξ x, t

− ςξT x, t ξ x, t
33

Let one define the following new variable as

αj =
1
εγ2j

34

From now on, one can get

γ j =
1
εαj

35

The stability of the T-S fuzzy system (5) is achieved for
any fault Lipschitz nonlinear function with Lipschitz con-
stant less than or equal to an unknown maximized constant
γ j, ∀j = 1,… , q. Maximization of γj and minimization of ς
can be accomplished by simultaneous minimization of αj, ε,
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and ς, ∀j = 1,… , q. In this way, one can obtain a multiobjec-
tive optimization design.

As is clear from (34), one has

Je t ≤ 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i +
1
ε
PeMiM

T
i Pe

+ 〠
q

j=1
α−1j + CT

e Ce e t + 2eT t PeDiξ x, t

− ςξT x, t ξ x, t =ΦT t ΔΦ t ,
36

where

Φ t =
e t

ξ x, t
,

Δ = 〠
k

i=1
μi ζ t

Ξij + CT
e Ce PeDi

DT
i Pe −ς

,

 Ξij = AT
l,iPe + PeAl,i +

1
ε
PeMiM

T
i Pe + 〠

q

j=1
α−1j

37

One can conclude that if Δ < 0, it implies that Je t < 0.
According to the Schur complement, the previous

inequality is satisfied if and only if we checked for the pres-
ence of this relation:

〠
k

i=1
μi ζ t Ωij < 0, 38

where Ωij are the same as those in (23).
In this way, the state estimation error is asymptotically

stable with the attenuation level ς as follows:

r t 2
2 ≤ ς ξ x, t 2

2 39

It is obvious that e t = x t − x̂ t → 0. Due to the fault,
nonlinear function hj x, u, t satisfies the Lipschitz condi-
tion; the T-S multiplicative fault estimation adaptive observer
((7), (8), and (9)) ensures that eθ j t → 0. From this, one can

deduce that, according to (9), the estimation of multiplicative
fault magnitude θ j t , for the uncertain nonlinear system (1)
described by T-S fuzzy structure (5), can be achieved.

This completes the proof.

5.2. LMI Optimization-Based Closed-Loop Stability. Once the
sliding mode is obtained, we consider to analyze the stability
of the closed-loop T-S fuzzy system. Let the equivalent con-
trol ueq t , such that Sc t is equal to zero, be

ueq t = 〠
k

i=1
μi ζ t −Nc,iCi Aix t +Diξ x, t +ul t

40

The dynamic of the closed-loop system with the equiva-
lent control law (40) takes the form

x t = 〠
k

i=1
〠
k

j=1
μiμ j ζ t ΘiAi − BiK j x t + Bi,jϕ t ,

41

y t = 〠
k

i=1
μi ζ t Cix t , 42

where Bi,j = BiK j Mi ΘiDi , Θi = In − BiNc,iCi, and ϕ t =

eT t eTf x, u, t ξT x, t
T
, where ef x, u, t = f x, u, t

− f̂ x, u, t .
The objective now is to develop a sufficient condition to

achieve the stability of the closed-loop T-S fuzzy system
((41) and (42)) on the sliding surface S despite the occurrence
of multiplicative faults and the presence of uncertainties.

Theorem 2. The closed-loop T-S fuzzy system ((41) and (42))
is robustly stable with the H∞ attenuation level ςs > 0, if there
exist the matrices Px = PT

x > 0, Qj, and Y = YT , such that

min   ςs 43

satisfying the following LMI constraints:

ΔSepaFTC =

ϒi, j BiQj Mi ΘiDi PxC
T
i

∗ −2Y + ςsIn 0 0 0

∗ ∗ −ςsIq 0 0

∗ ∗ ∗ −ςsIl 0

∗ ∗ ∗ ∗ −Ip

< 0,

44

where ϒi, j = PxA
T
i ΘT

i +ΘiAiPx − BiQj −QT
j B

T
i , Y = ςsPx,

and Kj =QjP
−1
x .

Proof. Consider the following Lyapunov function for the
closed-loop system as

Vx t = xT t Pxx t , 45

where Px ∈ℝn×n is the symmetric positive definite matrix.
The time derivative of Vx t is handled as

Vx t = 〠
k

i−1
〠
k

j=1
μiμj ζ t xT t ΘiAi − BiK j

TPx

+ Px ΘiAi − BiK j x t + 2xT t PxBi,jϕ t

46
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To achieve the robustness with H∞ performance of the
closed-loop T-S fuzzy system ((41) and (42)) to ϕ t , the
following inequality must then hold:

Jx t = Vx t + yT t y t − ςsϕ
T t ϕ t < 0 47

Insertion of (46) in (47) yields

Jx t = 〠
k

i=1
〠
k

j=1
μiμj ζ t xT t ΘiAi − BiK j

TPx

+ Px ΘiAi − BiK j + CT
i Ci x t + 2xT t PxBi,jϕ t

− ςsϕ
T t ϕ t

48

Consequently (in the matrix form), it remains to prove
that Jx t < 0, if

ψi,j PxBi,j

BT
i,jPx −ςsI

< 0, 49

where ψi,j = ΘiAi − BiK j
TPx + Px ΘiAi − BiK j + CT

i Ci.
Using the Schur complement, the relation (49) can be
reformulated as

∏
i,j
=

〠
i,j

PxBiK j PxMi PxΘiDi CT
i

∗ −ςsIn 0 0 0

∗ ∗ −ςsIq 0 0

∗ ∗ ∗ −ςsIl 0

∗ ∗ ∗ ∗ −Ip

< 0, 50

where ∑i,j =ΘT
i A

T
i Px + PxΘiAi − KT

j B
T
i Px − PxBiK j.

Inequality (50) contains several nonlinear terms. One can
design in the next step to formulate this as an LMI problem.
To effect the necessary change of variables, one will define the
following matrix X with the special diagonal structure as
X = diag P−1

x , P−1
x , Iq, Il, Ip . Then, X ×Πi,j × XT < 0 is true,

and it is obvious that

ϒi,j BiQj Mi ΘiDi PxC
T
i

∗ −ςsPxPx 0 0 0

∗ ∗ −ςsIq 0 0

∗ ∗ ∗ −ςsIl 0

∗ ∗ ∗ ∗ −Ip

< 0, 51

where ϒi,j = PxA
T
i ΘT

i +ΘiAiPx − BiQj −QT
i B

T
i , Px = P−1

x , and
Qj = K jP

−1
x . According to Lemma 1, it is evident to check

the presence of the following relation

Px + Px ≤ PxPx + In 52

Obviously, (52) is true for ςc > 0 as

−ςsPxPx ≤ −2ςsPx + ςsIn 53

After some manipulations, one can get

〠
k

i=1
〠
k

j=1
μiμ j ζ t ΔSepaFTC < 0, 54

where ΔSepaFTC has the same structure with (44). Clearly, a
stability proof of the closed-loop T-S fuzzy system ((41)
and (42)) is required with respect to the H∞ performance
level ςs.

This completes the proof.

6. FE-Based Fault-Tolerant Control Design: An
Integrated Approach

Several publications have appeared in recent years docu-
menting FE-based FTC design with a single step in order to
achieve an optimal robustness interaction between observer
and controller models. Figure 2 illustrates the integrated
FE-based FTC design for uncertain nonlinear systems subject
to process fault and multiplicative actuator fault.

In this section, we explore the possibility of the integrated
FE-based FTC design to compute, in a single step, adaptive
observer gains Gl,i and controller gains Kj in the sense that
it ameliorates the robustness of the closed-loop nonlinear
system despite the presence of multiplicative faults and
uncertainties. Combining (10), (11), and (41) gives the fol-
lowing augmented closed-loop system, including fault esti-
mation with fault compensation control, expressed as

x t = 〠
k

i=1
〠
k

j=1
μiμ j ζ t ΘiAi − BiK j x t + Bi,jϕ t ,

55

e t = 〠
k

i=1
μi ζ t Ai −Gl,iCi e t +D1

i ϕ t

+Mi 〠
q

j=1
θ j t hj x, u, t − θ̂ t hj x̂, u, t ,

56

Uncertain nonlinear
system

Actuator fault Process fault 

y(t)u(t)

Robust adaptive 
observer 

Robust sliding 
mode controller 

x(t)

f̂(x, u, t)

Single step ˆ

Figure 2: FE-based fault-tolerant control: an integrated approach.
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eθ j t = 〠
k

i=1
μi ζ t −σjh

T
j x̂, u, t Γiey t , 57

yL t = 〠
k

i=1
μi ζ t CL,ix t + Ce,ie t , 58

where Bi,j = BiK j Mi ΘiDi , D1
i = 0 0 Di , Θi = In

− BiNc,iCi, and ϕ t − e t T eTf x, u, t ξT x, t
T
.

Theorem 3. Under the sliding mode input structure (14), the
closed-loop T-S fuzzy system ((55), (56), (57), and (58)) is
robustly stable with both maximized admissible Lipschitz
constant γe,j > 0 and minimized gain HyLϕ ∞

< ςc, if there
exist constants, 0 ≤ λc ≤ 1, εe > 0, and αe,j > 0, and matrices

Pe = PT
e > 0, Px = PT

x > 0, Wi, Qj, and Y = YT , such that the
multiobjective LMI optimization problem admits a solution as

min   λc εe + 〠
q

j=1
αe,j + 1 − λc ςc ,

subject to Ξij =
Ξ11,ij Ξ12,ij

∗ Ξ22,ij

< 0,

59

where

Ξ11,ij =
Ξ11,ij 0

∗ Ξ22,i
,

 Ξ11,ij =He ΘiAiPx −He BiQj ,

Ξ22,i =He PeAi −He WiCi + CT
e,iCe,i Wi = PeGl,i

Ξ12,ij =
BiQj Mi ΘiDi PxC

T
L,i 0 0

0 0 PeDi 0 PeMi In
,

Ξ22,ij = −diag 2Y − ςcIn, ςcIq, ςcIl, Ip, εeIq, 〠
q

j=1
α−1e,j ,

Y = ςcPx, Px = P−1
x ,Qj = K jP

−1
x

60

The gain matrices of the adaptive sliding mode controller
Kj and observer Gl,i are given by

Kj =QjP
−1
x ,

Gl,i = P−1
e Wi

61

Proof. Stability analysis: In order to assure the stability of the
augmented closed-loop system ((55), (56), (57), and (58)),
one can start by investigating the following Lyapunov
function as

V t =Ve t +Vx t , 62

where Ve t = eT t Pee t +∑q
j=1σ

−1
j eTθ j t eθ j t > 0 and

Vx t = xT t Pxx t > 0, and Px ∈ℝn×n is the symmetric
positive definite matrix.

As first, one can proceed analogously to Theorem 1.
Hence, the time derivative of Ve t is bounded as

Ve t ≤ 〠
k

i=1
μi ζ t eT t AT

l,iPe + PeAl,i +
1
εe
PeMiM

T
i Pe

+ 〠
q

j=1
α−1e,j e t + 2eT t PeD

1
i ϕ t

63

On the other hand, similar to Theorem 2 and by taking
into account the closed-loop T-S fuzzy system (55), the time
derivative of Vx t is expressed as

Vx t = 〠
k

i=1
〠
k

j=1
μiμj ζ t xT t ΘiAi − BiK j

TPx

+ Px ΘiAi − BiK j x t + 2xT t PxBijϕ t

64

Robust performance index: Let

J t =V t + yTL t yL t − ςcϕ
T t ϕ t < 0 65

The inequality (65), after substituting (63) and (64),
becomes

J t ≤ 〠
k

i=1
〠
k

j=1
μiμj ζ t xT t B1

ij

T
Px

+ PxB
1
ij + CT

L,iCL,i x t + eT t AT
l,iPe + PeAl,i

+
1
εe
PeMiM

T
i Pe + 〠

q

j=1
α−1e,j + CT

e,iCe,i e t

+ 2xT t PxBijϕ t + 2eT t PeD
1
i ϕ t − ςcϕ

T t ϕ t

66

where B1
ij =ΘiAi − BiK j. Equivalently, in the matrix form,

one can obtain the following expression as

J t ≤ 〠
k

i=1
〠
k

j=1
μiμj ζ t χT t Γijχ t , 67

where χ t = xT t eT t ϕT t
T . The variable Γij is

defined as

Γij =

Γ11,ij 0 PxBiK j PxMi PxΘiDi

∗ Γ22,i 0 0 PeDi

∗ ∗ −ςcIn 0 0

∗ ∗ ∗ −ςcIq 0

∗ ∗ ∗ ∗ −ςcIl

, 68

8 Complexity



such that

Γ11,ij =He ΘiAi − BiK j
TPx + CT

L,iCL,i,

Γ22,i =He AT
l,iPe +

1
εe
PeMiM

T
i Pe + 〠

q

j=1
α−1e,j + CT

e,iCe,i

69

To effect the necessary change of variables, one will make
the following matrix X with the special diagonal structure as
X = diag P−1

x , In, P−1
x , Iq, Il . After pre- and postmultiplying

by X and its transpose in Γij, then it is obvious that

Γij =

Γ11,ij 0 BiQj Mi ΘiDi

∗ Γ22,i 0 0 PeDi

∗ ∗ −ςcPxPx 0 0

∗ ∗ ∗ −ςcIq 0

∗ ∗ ∗ ∗ −ςcIl

, 70

where

Γ11,ij =He ΘiAiPx −He BiQj + PxC
T
L,iCL,iPx,

Γ22,i =He PeAi +He WiCi +
1
εe
PeMiM

T
i Pe

+ 〠
q

j=1
α−1e,j + CT

e,iCe,i,

Px = P−1
x ,Qj = KjP

−1
x ,Wi = PeGl,i

71

After simple manipulation by using Lemma 1, it is evi-
dent to obtain the relation (59). From this, one can conclude
that the augmented closed-loop T-S fuzzy system ((55), (56),
(57), and (58)) is robustly stable against e t , ef x, u, t , and
ξ x, t with respect to the H∞ performance level ςc.

This completes the proof.

7. Illustrative Example

In the present section, the design of the separated and inte-
grated sliding mode fault-tolerant control based on adaptive
observer information requirement is performed by consider-
ing the nonlinear model of a single-link flexible-joint robot
arm taken from [13]. Firstly, let us consider the nonlinear
model without faults defined by

θm = ωm,

ωm =
k
Jm

θl − θm −
Bν

Jm
ωm +

Kτ

Jm
u t ,

θl = ωl,

ωl =
k
J l

θl − θm −
mgh
J l

sin θl ,

72

where θm and ωm are the position and angular velocity of the
DC motor, respectively, and θl and ωl represent the position
and angular velocity of the link. The values of the parameters
are given in Table 1.

We choose that x1 = θm, x2 = ωm, x3 = θl, and x4 = ωl.
The flexible-joint robot arm system is described in the

nonlinear form as follows:

x t = Ax t + Bu t + Γ x, t +Mf x, u, t +Dξ x, t ,

y t = Cx t ,
73

with

A =

0 1 0 0

−48 6 −1 25 48 6 0

0 0 0 1

19 5 0 −19 5 0

,

B =M =

0

21 62

0

0

,

D =

0

0 25

0

0

,

C =

1 0 0 0

0 1 0 0

0 0 1 0

,

Γ x, u, t =

0

21 62u t

0

3 33sin x3 t

,

74

Table 1: Nonlinear system parameters.

System parameters Values Units

Motor inertia Jm 3.7× 10−3 kgm2

Link inertia J l 9.3× 10−3 kgm2

Pointer mass m 0.21 kg

Link length h 0.15 m

Torsional spring k 0.18 Nm/rad

Viscous friction Bv 4.6× 10−3 M

Amplifier gain Kτ 8× 10−2 Nm/V
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where Γ x, u, t encapsulates the nonlinearities present in
the DC motor. The schematic diagram of a single-link
flexible-joint robot arm is shown in Figure 3.

To evaluate the performances of the proposed FE-based
adaptive sliding mode fault-tolerant control, we consider the
presence of two types ofmultiplicative faults affecting the con-
siderednonlinear system,whicharedescribed in the following.

(1) Actuator gain fault (loss of effectiveness): multiplica-
tive fault occurs in the actuator which is defined as a partial
loss of effectiveness. We suppose that fault magnitude θ1 t
has the following structure:

θ1 t =

0, t < 5 sec,

0 8, 5 sec ≤ t < 20 sec,

0, t > 15 sec

75

The fault function h1 x, u, t is expressed as

h1 x, u, t = 0 u t 0 0 T 76

In this case, the first multiplicative fault is modeled as

f1 x, u, t = 0 3θ1 t u t 0 0 T 77

(2) Abnormal friction subject to process fault: an abnor-
mal friction appears in the DCmotor where it leads to param-
eter changes in the nonlinear system state matrix. This
multiplicative process fault has the following special structure:

f2 x, u, t = 0 −5θ2 t ωm t 0 0 T , 78

which corresponds to the structure function handled as

h2 x, u, t = 0 −5ωm t 0 0 T 79

We suppose that the viscous friction constant Bν
increases by 80% at t = 2 5 sec, that is, θ2 t = 0 at t < 2 5
sec and θ2 t = 0 8 at t ≥ 2 5 sec.

The flexible-joint robot arm system can be formu-
lated in the T-S representation (5), where k = 2, with the
system matrices:

A1 =

0 1 0 0

−48 6 −1 25 48 6 0

0 0 0 1

19 5 0 −22 83 0

,

B1 =M1 =

0

21 62

0

0

,

A2 =

0 1 0 0

−48 6 −1 24 48 6 0

0 0 0 1

19 5 0 −18 77 0

,

B2 =M2 =

0

21 62

0

0

D1 =D2 =

0

0 25

0

0

,

C1 = C2 =

1 0 0 0

0 1 0 0

0 0 1 0

80

The parameters μi x t are given by

μ1 x t =
ϑ t + 0 21

1 21
,

μ2 x t =
1 − ϑ t
1 21

,
81

where ϑ t = sin x3 t /x3 t .
Comparative simulations are given using the separated

and integrated multiplicative FE-based FTC design with the
same system parameters and initial conditions.

7.1. Separated Multiplicative FE-Based FTC Design

7.1.1. First Step: Adaptive Observer Design. The design
parameters were chosen as λ = 0 9 and H = I4×4. By solving
Theorem 1 with the MATLAB LMI Toolbox, the adaptive
observer ((7), (8), and (9)) design is achieved as

𝜃L

𝜃M

JM, BM

Actuator

g

k
l

Figure 3: Schematic diagramof a single-linkflexible-joint robot arm.

Table 2: LMI optimization gains.

Integrated FTC
Separated FTC

Observer Controller

Uncertainty
attenuation level

ςc = 0 1588 ς = 0 0612 ςs = 0 7337

Admissible
Lipschitz constant

γ1 = γ2 = 0 7916 γe,1 = γe,2 = 0 3911
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Gl,1 = 104 ×

0 0001 −0 0021 −0 0088

4 0422 0 1157 3 8222

0 0117 −0 0027 0 0001

0 0077 −0 0013 −0 0021

,

Gl,2 = 104 ×

0 0006 0 0023 −0 0050

−2 5615 1 1566 −0 6657

0 0066 0 0005 0 0015

0 0228 0 0003 −0 0170

,

82

where we find that

Pe =

4 1673 0 0 0

0 0 0022 0 0

0 0 3 7929 −2 0669

0 0 −2 0669 4 1673

83

7.1.2. Second Step: Sliding Mode Controller Design. From
Theorem 2, the sliding mode controller gains (14) are
described as

K1 = K2 = 101 5736 11 6305 −34 4968 11 4298 ,
84

such that

Px =

0 2650 −0 9467 0 2119 −0 8697

−0 9467 12 3589 0 0313 0 0634

0 2119 0 0313 0 4505 −0 5907

−0 8697 0 0634 −0 5907 6 2204

85

7.2. Integrated Multiplicative FE-Based FTC Design. By solv-
ing the LMI conditions given in Theorem 3, using the
“mincx” function of the MATLAB LMI toolbox, the matrix
gains of the adaptive observer ((7), (8), and (9)) and the slid-
ing mode controller (14) are computed in a single step as

Gl,1 =

0 5001 0 4705 −4 4445

386 9460 475 4862 24 2993

4 4446 0 0295 0 9559

21 2220 0 0114 −21 4797

,

Gl,2 =

0 5001 0 4705 −4 4445

386 9496 475 4862 24 3004

4 4446 0 0295 0 9559

21 2220 0 0114 −17 4097

,

K1 = K2 = 102 6561 11 4223 −35 6482 12 0718 ,
86

where we find that

Pe = 104 ×

0 9035 0 0 0

0 0 0011 0 0

0 0 1 0631 −0 4119

0 0 −0 4119 1 0631

,

Px =

0 2689 −0 9436 0 2134 −0 8727

−0 9436 26 4751 0 0344 0 0597

0 2134 0 0344 0 4366 −0 5899

−0 8727 0 0597 −0 5899 5 9295
87

Additionally, the LMI optimization gains of the inte-
grated and separated FE-based FTC designs are listed in
Table 2. As can be seen, the uncertainty attenuation level,
which refers to the integrated approach, is much less than
that of the separated approach. This latter loses a certain
robustness degree against uncertainties illustrating the better
multiplicative fault estimation and compensation using the
integrated FE-based FTC approach.

We learned that the fault nonlinear function satisfies the
Lipschitz condition. In this way, the admissible Lipschitz
constant, which refers to the integrated approach, is greater
than the one given by the separated approach, thus illustrat-
ing the superiority of the integrated FE-based FTC approach
to treat a large range of fault nonlinear function.

It is worth pointing that simulation results are given with
online multiplicative fault estimation and compensation for
the closed-loop nonlinear system in the presence of uncer-
tainties as ξ x, t = 0 1 × 3sin 0 3t such that

(i) the sliding mode controller (14) is considered where
Fa,1 = Fa,2 = 1, N1 =N2 = −0 7500 0 0463 −0 7500 ,
and ηc t = ρ̂c + 0 1 such that the adaptive term is
given by ρ̂Sc = 2 × Sc t ,

(ii) the initial conditions are x10 =Π/15, x20 = 0 2,
x30 =Π/12, x40 = 0, θ̂1 t = 0 = θ̂2 t = 0 = 0, and
ρ̂c t = 0 = 0,

(iii) σ1 = σ2 = 10 and Γ1 = Γ2 = 0 75 × 1 1 1 .

From Figure 4, it is quite clear to see that the state estima-
tion errors remain zero in finite time; that is, the T-S adaptive
observer proposed in this paper can robustly estimate non-
linear system states with acceptable performances. Figure 5
illustrates the first multiplicative fault estimation error (par-
tial loss of actuator effectiveness).

The results display that the proposed adaptive observer
((7), (8), and (9)), using the integrated FE-based FTC design,
is capable of estimating multiplicative actuator fault with bet-
ter performances compared to the separated FE-based FTC
design. Note that abrupt changes of fault can generate small
peak in Figure 5 at time 5 sec. Meanwhile, an abnormal
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friction in the DC motor has been introduced, at t = 2 5 sec,
to show the capability of the proposed FE strategy to handle
process faults.

Consider Figure 6, which plots process fault estimation
error generated using the separated FE-based FTC scheme
against this variable using the integrated FE-based FTC
scheme. It should be highlighted that the proposed adaptive
observer design, using a single-step LMI formulation, can
still track the considered process fault with better perfor-
mances compared to the separated FE-based FTC design in
terms of precision and robustness against the uncertainties.

Figures 7–9 outline a comparison between the nonlinear
single-link flexible-joint robot output responses referring to
two different cases: output responses with the separated FE-
based FTC and output responses with the integrated FE-
based FTC.

Based on the figures shown above, the conceived adaptive
sliding mode controller (14) can stabilize with satisfactory

performances the closed-loop nonlinear single-link flexible-
joint robot based on the integrated and separated FE-based
sliding mode FTC. More precisely, as can be seen in zoomed
versions from Figures 7–9, the proposed integrated FE-based
FTC is capable of compensating real multiplicative faults
with better performances compared to the separated FE-
based FTC in terms of precision and robustness against
uncertainties.

8. Conclusion

This paper has proposed two adaptive sliding mode FTC
schemes for an uncertain nonlinear system subject to multi-
plicative and process faults. In the first scheme, the separated
FE-based FTC is constructed to compensate real fault effects
based on output feedback information and to ensure robust
stability of the closed-loop system. In the second scheme,
the integrated FE-based sliding mode FTC is conceived in
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order to achieve an optimal robustness interaction between
observer and controller models. The novelty of the proposed
approach is that the observer and controller gains are
obtained by solving a single-step multiobjective LMI optimi-
zation problem in order to offer a solution to stabilize the
closed-loop nonlinear system despite the occurrence of real
fault effects. As shown in the comparative simulations of
the flexible-joint robot arm system described by the T-S fuzzy
model, the proposed integrated FE-based FTC improves the
best robustness interactions between multiplicative fault esti-
mation and sliding mode control. Summing up the results,
we can conclude that the research into the integrated FE-
based sliding mode FTC for an uncertain nonlinear system
has been very successful.
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